WMT 2016 Shared Task on Cross-lingual Pronoun Prediction

Liane Guillou, Christian Hardmeier, Preslav Nakov, Sara Stymne, Jörg Tiedemann, Yannick Versley, Mauro Cettolo, Bonnie Webber and Andrei Popescu-Belis

12/08/2016

Pronoun Translation Remains an Open Problem

- Pronoun systems do not map well between languages
 - ightharpoonup E.g. grammatical gender for English ightarrow German
- Functional ambiguity:

anaphoric	I have an umbrella . It is red.
pleonastic	I have an umbrella. It is raining.
event	He lost his job. It came as a total
	surprise.

- SMT systems translate sentences in isolation
 - Inter-sentential anaphoric pronouns translated without knowledge of antecedent
- Two pronoun-related tasks at DiscoMT 2015:
 - Translation: systems failed to beat phrase-based baseline
 - ▶ Prediction: systems failed to beat language model baseline

Cross-Lingual Pronoun Prediction

- Given an input text and a translation with placeholders, replace the placeholders with pronouns
- Evaluated as a standard classification task

Even though they were labeled whale meat , they were dolphin meat .

Même si • avaient été étiquettés viande de baleine ,

• était de la viande de dauphin .

0-0 1-1 2-2 3-3 3-4 4-5 5-8 6-6 6-7 7-9 8-10 9-11 10-16 11-13 11-14 12-17

Solution: ils c'

Task Overview

- DiscoMT 2015 English-French pronoun prediction task
 - Used fully inflected target-language text
- WMT 2016 tasks
 - Use lemmatised PoS-tagged target-language text
 Simulates SMT scenario in which we cannot trust inflection
- Four subtasks at WMT 2016:
 - English-French
 - ► French-English
 - English-German
 - German-English

Source and Target Pronouns

- Focus on source-language pronouns:
 - In subject position
 - ► That exhibit functional ambiguity (→ multiple possible translations)

Source language	Pronouns
English	it, they
French	il, ils, elle, elles
German	er, sie, es

• Prediction classes: commonly aligned target-language translations

English-French Subtask: Pronouns

English subject pronouns

French prediction classes

it they

```
ce (inc. c') [demonstrative]
cela (inc. ça) [demonstrative]
elle [Fem. sg.]
elles [Fem. pl.]
il [Masc. sg.]
ils [Masc. pl.]
on [impersonal]
OTHER [anything else]
```

Data

- Training data:
 - ► News v9
 - ► Europarl v7
 - ► TED Talks (IWSLT 2015)
 - Automatic filtering of subject pronouns
- Development data: TED Talks
- Test data: TED Talks
 - Documents selected to ensure rare prediction classes are represented
 - Manual checks on subject pronoun filtering

```
elles Elles They arrive first . REPLACE_0 arriver|VER en|PRP premier|NUM .|. 0-0 1-1 2-2 2-3 3-4
```

Figure: Example of training data format

Baseline System

- Baseline does what a typical SMT system would do: Predict everything with an n-gram model
- Fills REPLACE token gaps by using:
 - A fixed set of pronouns (prediction classes)
 - ► A fixed set of non-pronouns (OTHER words)
 Includes NONE (i.e., do not insert anything in the hypothesis)
- Configurable NONE penalty for empty slots to counterbalance the n-gram model's preference for brevity
- 5-gram language model provided for the task
- Similar language model baseline unbeaten at DiscoMT 2015

Evaluation

- Macro-averaged Recall averaged over all classes to be predicted
 - DiscoMT 2015: Macro-averaged F-score
 - F-scores count each error twice once for precision; again for recall

Accuracy

- Two official baseline scores provided for each subtask:
 - ▶ Default: NONE penalty set to zero
 - Optimised: NONE penalty tuned (for each subtask)

Submitted Systems

- 11 participants some submitted to all subtasks
- Accepted primary and contrastive systems
- Two systems use LMs; all others use classifiers
- Two main approaches:
 - Use context from source and target text 4 systems
 - Use source and target context + language-specific external tools / resources
 8 systems
- Popular external tools: coreference resolution, pleonastic "it" detection, dependency parsing

Results: English-French (Primary Systems)

	System	Macro-Avg Recall	Accuracy
1	TurkuNLP	65.70 ₁	70.51 ₅
2	UU-Stymne	65.35 ₂	73.99 ₂
3	UKYOTO	62.44 ₃	70.51_{4}
4	uedin	61.62 ₄	71.31 ₃
5	UU-Hardmeier	60.63 ₅	74.53 ₁
6	limsi	59.32 ₆	68.36 ₇
7	UHELSINKI	57.50 ₇	68.90 ₆
	baseline-1	50.85	53.35
8	UUPPSALA	48.92 ₈	62.20_{8}
	baseline0	46.98	52.01
9	ldiap	36.36 ₉	51.219

Results: English-German (Primary Systems)

	System	Macro-Avg Recall	Accuracy
1	TurkuNLP	64.41 ₁	71.54 ₂
2	UKYOTO	52.50 ₂	71.28 ₃
3	UU-Stymne	52.12 ₃	70.764
4	UU-Hardmeier	50.36 ₄	74.67 ₁
5	uedin	48.72 ₅	66.32 ₆
	baseline-2	47.86	54.31
6	UUPPSALA	47.43 ₆	68.67 ₅
7	UHELSINKI	44.69 ₇	65.80 ₇
8	UU-Cap	41.61 ₈	63.71 ₈
	baseline0	38.53	50.13
9	CUNI	28.26 ₉	42.04 ₉

Results: French-English (Primary Systems)

	System	Macro-Avg Recall	Accuracy
1	TurkuNLP	72.03 ₁	80.79 ₂
2	UKYOTO	65.63 ₂	82.93_1
3	UHELSINKI	62.98 ₃	78.96 ₃
4	UUPSALA	62.65 ₄	74.39 ₄
	baseline-1.5	42.96	53.66
	baseline0	38.38	52.44
5	UU-Stymne	36.44 ₅	53.66 ₅

Results: German-English (Primary Systems)

	System	Macro-Avg Recall	Accuracy
1	TurkuNLP	73.91 ₁	75.36 ₃
2	UKYOTO	73.17 ₂	80.33_1
3	UHELSINKI	69.76 ₃	77.85 ₂
4	CUNI	60.42 ₄	64.18 ₆
5	UUPPSALA	59.56 ₅	73.714
6	UU-Stymne	59.28 ₆	69.98 ₅
	baseline-1.5	44.52	54.87
	baseline0	42.15	53.42

Conclusions

- Most systems beat the baseline, in stark contrast with DiscoMT 2015
- En-Fr and En-De subtasks most popular
 - External tools / resources available for English
- RNNs work well for cross-lingual pronoun prediction
 - ► TURKUNLP: best system; all four subtasks
 - ▶ UKYOTO: next best system; 3 subtasks
 - Systems use only source and target context
- $\bullet~\mathrm{UU\text{-}STYMNE}$ second place system for English-French

Next Steps

For Participants:

- Analyse and improve system performance
- Integrate prediction systems into MT pipeline (post-editing, decoder feature, etc.)
- New task in 2017 [TBC]