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Abstract

This paper describes our systems for
Task 1 of the WMT16 Shared Task on
Quality Estimation. Our submissions use
(i) a continuous space language model
(CSLM) to extract sentence embeddings
and cross-entropy scores, (ii) a neural net-
work machine translation (NMT) model,
(iii) a set of QuEst features, and (iv) a com-
bination of features produced by QuEst
and with CSLM and NMT. Our primary
submission achieved third place in the
scoring task and second place in the rank-
ing task. Another interesting finding is
the good performance obtained from us-
ing as features only CSLM sentence em-
beddings, which are learned in an unsuper-
vised fashion without any additional hand-
crafted features.

1 Introduction

Quality Estimation (QE) aims at measuring the
quality of the output of Machine Translation (MT)
systems without reference translations. Generally,
QE is addressed with various features indicating
fluency, adequacy and complexity of the source
and translation texts. Such features are used along
with Machine Learning methods in order to learn
prediction models.

Features play a key role in QE. A wide range
of features from the source segments and their
translations, often processed using external re-
sources and tools, have been proposed. These
go from simple, language-independent features, to
advanced, linguistically motivated features. They
include features that rely on information from the
MT system that generated the translations, and
features that are oblivious to the way translations
were produced. This leads to a potential bottle-

neck: feature engineering can be time consuming,
particularly because the impact of features vary
across datasets and language pairs. Also, most
features in the literature are extracted from seg-
ment pairs in isolation, ignoring contextual clues
from other segments in the text. The focus of our
contributions this year is to explore a new set of
features which are language-independent, require
minimal resources, and can be extracted in unsu-
pervised ways with the use of neural networks.

Word embeddings have shown their poten-
tial in modelling long distance dependencies in
data, including syntactic and semantic informa-
tion. For instance, neural network language mod-
els (Bengio et al., 2003) have been success-
fully explored in many problems including Au-
tomatic Speech Recognition (Schwenk and Gau-
vain, 2005; Schwenk, 2007) and Machine Trans-
lation (Schwenk, 2012).

In this paper, we extend our previous work
(Shah et al., 2015a; Shah et al., 2015b) to inves-
tigate the use of sentence embeddings extracted
from a neural network language model along with
cross entropy scores as features for QE. We also
investigate the use of a neural machine translation
model to extract the log likelihood of sentences
as QE features. The features extracted from such
resources are used in isolation or combined with
hand-crafted features from QuEst to learn predic-
tion models.

2 Continuous Space Language Model
Features

Neural networks model non-linear relationships
between the input features and target outputs.
They often outperform other techniques in com-
plex machine learning tasks. The inputs to the
neural network language model used here (called
Continuous Space Language Model (CSLM)) are
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the hj context words of the prediction: hj =
wj−n+1, ..., wj−2, wj−1, and the outputs are the
posterior probabilities of all words of the vocab-
ulary: P (wj |hj) ∀i ∈ [1, N ] where N is the vo-
cabulary size. A CSLM encodes inputs using the
so called one-hot coding, i.e., the ith word in the
vocabulary is coded by setting all elements to 0
except the ith element. Due to the large size of
the output layer (vocabulary size), the computa-
tional complexity of a basic neural network lan-
guage model is very high. Schwenk (2012) pro-
posed an implementation of the neural network
with efficient algorithms to reduce the computa-
tional complexity and speed up the processing us-
ing a subset of the entire vocabulary called short
list.

As compared to shallow neural networks, deep
neural networks can use more hidden layers and
have been shown to perform better (Schwenk et
al., 2014). In all CSLM experiments described in
this paper, we use 40-gram deep neural networks
with four hidden layers: a first layer for the word
projection (320 units for each context word) and
three hidden layers of 1024 units for the proba-
bility estimation. At the output layer, we use a
softmax activation function applied to a short list
of the 32k most frequent words. The probabilities
of the out of the short list words are obtained us-
ing a standard back-off n-gram language model.
The training of the neural network is done by the
standard back-propagation algorithm and outputs
are the posterior probabilities. The parameters of
the models are optimised on a held out develop-
ment set. Our CSLM models were trained with the
CSLM toolkit 1 and used to extract the following
features:

• source sentence cross-entropy

• source sentence embeddings

• translation output cross-entropy

• translation output embeddings.

Table 1, reports detailed statistics on the mono-
lingual data used to train the back-off LM and
CSLM. The training dataset consists of WMT16
translation task monolingual corpora with the
Moore-Lewis data selection method (Moore and
Lewis, 2010) to select the CSLM training data
with respect to the task’s development set. The

1http://www-lium.univ-lemans.fr/cslm/

CSLM models are tuned using the WMT16 Qual-
ity Estimation development corpus.

Lang. Train Dev 4-g LM px CSLM px
en 84G 17.8 k 61.30 50.69
de 79G 19.7 k 64.99 54.45

Table 1: Training and dev datasets size (in number
of tokens) and models perplexity (px).

3 Neural Machine Translation Features

In addition to the monolingual features learned us-
ing the neural network language model, we exper-
iment with bilingual features derived from a neu-
ral machine translation system (NMT). Our NMT
system is developed based on a framework in-
spired from the dl4mt-material project2. The sys-
tem is an end-to-end sequence to sequence model
tuned to minimise the negative log-likelihood us-
ing a stochastic gradient descent. In our experi-
ments we trained two NMT systems (EN ↔ DE)
with an attention mechanism similar to the one de-
scribed in (Bahdanau et al., 2014).

Let X and Y be a source sentence of length Tx
and a target sentence of length Ty respectively:

X = (x1, x2, ..., xTx) (1)

Y = (y1, y2, ..., yTy) (2)

Each source and target word is represented with a
randomly initialised embedding vector of size Es

and Et respectively. A bidirectional recurrent en-
coder reads an input sequence X in forward and
backward directions to produce two sets of hidden
states. At the end of the encoding step, we ob-
tain a bidirectional annotation vector ht for each
source position by concatenating the forward and
backward annotations:

ht =

[
~ht
~ht

]
(3)

A Gated Recurrent Unit (GRU) (Chung et al.,
2014) is used for the encoder and decoder. They
have 1000 hidden units each, leading to an anno-
tation vector ht ∈ R2000.

The attention mechanism, implemented as a
simple fully-connected feed-forward neural net-
work, accepts the hidden state ht of the decoder’s
recurrent layer and one input annotation at a time,

2github.com/kyunghyuncho/dl4mt-material
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to produce the attention coefficients. A softmax
activation is applied on those attention coefficients
to obtain the attention weights used to generate the
weighted annotation vector for time t.

Both NMT systems are trained with WMT16
Quality Estimation English-German datasets (we
used post-editions on the German side) and tuned
on the official development set. Table 2 reports the
statistics of NMT training data and BLEU scores
on the QE development set.

Trans. Direction Train Dev BLEU
DE-to-EN 21k-20k 17.8 k 35.38
EN-to-DE 20k-21k 19.7 k 37.51

Table 2: Training and development datasets sizes
(number of tokens) and development set BLEU
scores.

4 Experiments

In what follows we present our experiments on the
WMT16 QE Task 1 with CSLM and NMT fea-
tures.

4.1 Dataset

Task 1’s English-German dataset consists respec-
tively of a training set and development set with
12, 000 and 1, 000 source segments, their machine
translations, the post-editions of the latter, and the
edit distance scores between the MT and its post-
edited version (HTER). The test set consists of
2, 000 English-German source-MT pairs. Each
of the translations was post-edited by professional
translators, and HTER labels were computed us-
ing the TER tool (settings: tokenised, case insensi-
tive, exact matching only, with scores capped to 1).

4.2 Features

We extracted the following features:

• QuEst: 79 black-box features using
the QuEst framework (Specia et al.,
2013; Shah et al., 2013a) as described
in Shah et al. (2013b). The full set
of features can be found on http:
//www.quest.dcs.shef.ac.uk/
quest_files/features_blackbox.

• CSLMce: A cross-entropy feature for each
source and target sentence using CSLM as
described in Section 2.

• NMTll: A log likelihood feature for each
source and target sentence using NMT as de-
scribed in Section 3.

• CSLMemb: Sentence features extracted by
taking the mean of 320-dimension word vec-
tors trained using CSLM for both source and
target. We also experimented with taking the
min or the max of the embeddings, but em-
pirically it was found that the mean performs
better. Therefore, all our results are reported
using the mean of word embeddings.

4.3 Learning algorithm

We use the Support Vector Machines implemen-
tation in the scikit-learn toolkit (Pedregosa
et al., 2011) to perform regression (SVR) on each
feature set with either RBF kernels and parameters
optimised using grid search.

To evaluate the prediction models we use all
evaluation metrics in the task: Pearson’s correla-
tion r, Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Spearman’s correlation ρ
and Delta Average (DeltaAvg).

4.4 Results

We trained various models with different feature
sets and algorithms and evaluated the performance
of these models on the official development set.
The results are shown in Table 3. Based on these
findings, as official submissions for Task 1, we
submitted two systems:

• SHEF-SVM-CSLMce-NMTll-CSLMboth−emb

• SHEF-SVM-QuEst-CSLMce-NMTll-CSLMboth−emb

These systems contain all of our CSLM and
NMT features either with or without QuEst: 719
and 644 features in total, respectively. We
named them SVM-NN-both-emb and SVM-NN-
both-emb-QuEst in the official submissions. The
official results are shown in Table 4. Our systems
show promising performance across all of the met-
rics used for evaluation in both scoring and rank-
ing task variants. Our best system was ranked:

• Third place in the scoring task variant accord-
ing to Pearson r (official scoring metric), and
second place according MAE and RMSE.

• Second place in the ranking task variant ac-
cording to Spearman ρ (official ranking met-
ric) and first place according to DeltaAvg.

840



System. # of Feats. MAE RMSE Pearson r
Baseline (SVM) 17 13.97 19.65 0.359
SHEF-SVM-QuEst 79 13.94 19.71 0.386
SHEF-SVM-QuEst-CSLMce-NMTll 83 14.27 19.92 0.460
SHEF-SVM-CSLMsrc−emb 320 13.97 18.87 0.416
SHEF-SVM-CSLMtgt−emb 320 13.70 18.60 0.422
SHEF-SVM-CSLMboth−emb 640 13.74 18.10 0.425
SHEF-SVM-CSLMce-NMTll-CSLMboth−emb 644 13.48 17.94 0.500
SHEF-SVM-QuEst-CSLMce-NMTll-CSLMtgt−emb 383 13.49 17.99 0.500
SHEF-SVM-QuEst-CSLMce-NMTll-CSLMboth−emb 719 13.46 17.92 0.501

Table 3: Results on the development set of Task 1. Systems in bold are used as official submissions.

System. MAE RMSE Pearson r DeltaAvg Spearman ρ
Baseline 13.53 18.39 0.351 62.981 0.390

SVM-NN-both-emb 12.973 17.333 0.4305 78.861 0.4522

SVM-NN-both-emb-QuEst 12.882 17.032 0.4513 81.301 0.4742

Table 4: Official results on the test set of Task 1. The superscript shows the overall ranking of the system
against various official evaluation metrics.

Some of the interesting findings are:

• The mean of word embeddings extracted for
each sentence performs much better than the
max or min.

• Sentence features extracted from CSLM em-
beddings bring the largest improvements.

• Target embeddings produce better predic-
tions than source embeddings, which is in-
line with our previous findings (Shah et al.,
2015b).

• CSLM cross entropy and NMT log likelihood
features bring further improvements on top of
embedding features.

• QuEst features bring improvements when-
ever added to either CSLM embeddings or
cross entropy and NMT likelihood features.

• Neural Network features alone perform very
well. This is a very encouraging finding since
for many language pairs it can be difficult
to find appropriate resources to extract hand-
crafted features.

5 Conclusions

In this paper we have explored novel features for
translation Quality Estimation which are obtained
with the use of Neural Networks. When added to
QuEst standard feature sets for the WMT16 QE
Task 1, the CSLM sentence embedding features

along with cross entropy and NMT likelihood led
to large improvements in prediction. Moreover,
CSLM and NMT features alone performed very
well. Combining all CSLM and NMT features
with the ones produced by QuEst improved the
performance and led to very competitive systems
according to the task’s official results.

In the future work, we plan to explore bilin-
gual embeddings extracted from our NMT models.
Compared to the CSLM embeddings, NMT mod-
els generate embeddings (with the bidirectional
Neural Network as presented in Section 3) of the
whole sentence with a focus on the current word.
In addition, we plan to train a Neural Network
model to directly predict the QE scores.
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