
Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 672–678,
Berlin, Germany, August 11-12, 2016. c©2016 Association for Computational Linguistics

Quick and Reliable Document Alignment via TF/IDF-weighted Cosine
Distance

Christian Buck
University of Edinburgh

Edinburgh, Scotland
christian.buck@ed.ac.uk

Philipp Koehn
Center for Language and Speech Processing

Department of Computer Science
Johns Hopkins University, Baltimore, MD

phi@jhu.edu

Abstract

This work describes our submission to the
WMT16 Bilingual Document Alignment
task. We show that a very simple dis-
tance metric, namely Cosine distance of
tf/idf weighted document vectors provides
a quick and reliable way to align docu-
ments. We compare many possible vari-
ants for constructing the document vec-
tors. We also introduce a greedy algorithm
that runs quicker and performs better in
practice than the optimal solution to bipar-
tite graph matching. Our approach shows
competitive performance and can be im-
proved even further through combination
with URL based pair matching.

1 Related Work

The process of finding bilingual data online has
been investigated since the early days of the world
wide web (Resnik, 1999). In this work we are con-
cerned with the problem of finding pairs of docu-
ments, a problem that can be structured in the fol-
lowing steps:

1. Candidate Generation The naive approach
of considering all possible pairs of websites
is often not applicable on a web scale, even
when limiting the scope to a single webdo-
main. To overcome computational complex-
ity previous work has focused on (i) match-
ing pairs of URLs (Resnik and Smith, 2003)
by removing language identifiers such as
&lang=en or /fr/ from URLs, (ii) consid-
ering only documents that either link to each
other or that share a parent page (Resnik,
1999) that links to them, (iii) following links
on already aligned documents (Shi et al.,
2006), (iv) querying a search engine for pos-
sible translations (Ruopp and Xia, 2008), and

(v) rephrasing the task as near-duplicate de-
tection after translating all non-English con-
tent to English (Uszkoreit et al., 2010).

(Ture et al., 2011) map all document vec-
tors into a target language space and use an
approximation of cosine distance based on
locally-sensitive hashing (LSH) together with
a sliding window algorithm to efficiently col-
lect similar pairs.

2. Document alignment After possible pair-
ings have been generated any distance func-
tion that compares two documents can be
used to remove unlikely candidates. Com-
mon choices include (i) edit-distance be-
tween linearized documents (Resnik and
Smith, 2003) (ii) cosine distance of idf-
weighted bigram vectors (Uszkoreit et al.,
2010), and (iii) probability of a probabilis-
tic DOM-tree alignment model (Shi et al.,
2006).

2 Approach

In this work we deal mainly with the second prob-
lem, document alignment, and just allow all pos-
sible source/target pairings. Thus, the task can be
formalized as such: We are given a set of possible
pairings

C = {(ds, dt) | ds ∈ Ds, dt ∈ Dt}

where C is the set of candidates, ds ∈ Ds are
source language documents and dt ∈ Dt are target
language documents. The task is to find a subset
of C ′ = {(ds,i, dt,i), . . .} ⊂ C such that ds,i is a
translation of dt,i (and vice versa) and the number
|C ′| of such pairings is maximized.

We consider all source/target pairings that come
from the same webdomain so that C = Ds ×Dt.
This yields a fully connected bipartite graph with

672

source and target pages being the partitions. By
using a scoring function defined on edges the
graph becomes weighted. We allow every page
to occur not more than once in C ′, i.e. we do not
allow 1:n or m:1 connections:

ds,i = ds,j ⇔ dt,i = dt,j

∀ (ds,i, dt,i), (ds,j , dt,j) ∈ C ′

2.1 Selecting pairs
After computing a score for every edge of the bi-
partite graph, a matching of maximum weight can
be found in O(max(|Ds||Dt|)3) by solving the
assignment problem using the Kuhn-Munkres al-
gorithm (Munkres, 1957). We expect every page
of the non-dominant language to have a translated
counterpart, thus min(|Ds|, |Dt|) pairs are gener-
ated.

In section 3.3, we compare the optimal as-
signment to a greedy solution by incrementally
choosing the edge with the highest score and
removing all other edges pointing to respective
vertices. The greedy algorithm stops once no
edges are left and produces the same number
of pairs as the optimal solution but only re-
quires O (|Ds||Dt| × log(|Ds||Dt|)) time to sort
the score matrix.

3 Experiments

In total, the training dataset consists of 1624 doc-
ument pairs from 49 web domains. The number of
annotated aligned document pairs per web domain
ranges from 4 to over 200.

Our experiments that led to the selection of the
method used on the evaluation data are all based
on a fixed and random split into train and develop-
ment (dev) data: we split the data set into training
(998 document pairs in 24 web domains) and test
(626 document pairs in 25 web domains). The for-
mer is used for extensive experimentation, the lat-
ter to select the best approach for our shared task
submission.

3.1 Performance considerations
Our approach requires us to produce a dense ma-
trix of feature values which seems prohibitively
expensive given the high number of possible pair-
ings. In practice, even for the largest webdomains
in our data, requiring the scoring of roughly 1B
possible pairs, we are able to produce all values
quickly enough that the run-time is dominated by
I/O and preprocessing steps such as tokenization.

ngram size n = 1 n = 3 n = 5

Number of unique n-grams
Used for scoring 53k 1.2M 1.7M
Ignored because freq < 2 11k 351k 658k

Non-zero entries in (sparse) document matrix
Source (English) 1.5M 5.7M 6.1M
Target (French) 0.4M 1.4M 1.4M

Time per processing step (single-threaded)
Read tokenized corpus 117s 117s 117s
IDF estimation 15s 26s 30s
Document vectors 33s 86s 91s
Pairwise distances 8s 11s 20s

Table 1: Runtime details for generation of 971M
pairwise cosine similarity features for n-grams of
size {1, 3, 5} on virtualhospice.ca. N-
grams which occur fewer than 2 times are filtered
from the corpus. Single-threaded execution on
2.66Ghz Xeon CPU.

As can be seen from Table 1, a total of 1.2M
3-grams types are used for scoring pages from
virtualhospice.ca which holds 43.5k En-
glish and 22.3k French pages. Loading the cor-
pus, estimating the idf weights, and populating the
sparse document matrices with roughly 7M entries
both take about 2 minutes. On the other hand, pro-
ducing the 43.5k × 22.3k = 971M pairwise dis-
tances only accounts for 11 seconds.

Speed and, more importantly, memory con-
sumption can be further improved by pruning all
n-grams that occur fewer times than a set threshold
in the corpus. We find empirically that maintain-
ing a very low minimum count cutoff somewhere
below 10 is crucial for maintaining high recall, as
shown in Figure 1.

3.2 TF-IDF weighting

In the literature (Manning et al., 2008) a num-
ber of different weighting schemes based on tf/idf
have been proposed with the overall goal to assign
lower scores to terms (or n-grams) that are less dis-
criminatory for document comparison.

However, these approaches usually aim at doc-
ument retrieval, i.e. finding relevant documents
given a large (in comparison to the overall doc-
ument size) number of search terms. In the setting
of near duplicate detection, our query is a com-
plete document and other weighting schemes may
apply.

To empirically evaluate the fitness of different
approaches we implement the following weighting
schemes for term frequency (tf).

673

20 21 22 23 24 25 26 27

50

60

70

80

90

100

Minimum count cutoff

%
re

ca
ll

on
tr

ai
n

in
g

d
at

a
Greedy matching with MT

n = 1
n = 2
n = 3

Figure 1: Recall on training set using varying
minimum counts of n-grams in the corpus. N-
grams seen fewer times than the threshold are ig-
nored when building the document vectors.

In every case we define

tf(wn
1 , d) = 0 if wn

1 /∈ d

and give the other case below:

tf1(wn
1 , d) = 1 (1)

tf2(wn
1 , d) = freq(wn

1 , d) (2)

tf3(wn
1 , d) = 1 + log (freq(wn

1 , d)) (3)

tf4(wn
1 , d) = .4 + .6

freq(wn
1 , d)

maxw′n
1

freq(w′n
1 , d)

(4)

tf5(wn
1 , d) =

freq(wn
1 , d)

max(w̄n
1 ,d̄) freq(w̄n

1 , d̄)
(5)

tf6(wn
1 , d) =

√
freq(wn

1 , d) (6)

In the same way we implement weighting
schemes for inverse document frequency
idf(wn

1 , Ds, Dt) = idf(·):

idf1(·) = 1 (7)

idf2(·) =
|Ds ∪Dt|

1 + df(wn
1 , D)

(8)

idf3(·) = log

(
1 +

maxw̄n
1

df(w̄n
1 , D)

df(wn
1 , D)

)
(9)

idf4(·) = log

(
1 +
|Ds ∪Dt|
df(wn

1 , D)

)
(10)

idf5(·) = max

(
0, log

|Ds ∪Dt| − df(wn
1 , D)

df(wn
1 , D)

)

(11)

idf6(·) = 1 + log
|Ds ∪Dt|

1 + df(wn
1 , D)

(12)

where D = Ds ∪Dt and

df(wn
1 , D) = |{d ∈ D | wn

1 ∈ d}|

Slight variations of the above definitions can be
found in the wild, for example the search engine
Apache Lucene1 uses tf6 and idf6 but uses 1 +
|Ds ∪Dt| in the numerator since version 6.

We evaluate the cross product of weighting
schemes using the train and dev splits as described
above. Looking at the results in Tables 2 and 3, a
number of interesting observations can be made:

1. Performance differs between train and dev
data, with results on the training portion
of the data being several percents better.
This indicates a skew in the data distribu-
tion which is surprising given that the web-
domains were selected beforehand. We know
from the training data that about 1

4 of the
known pairs, 236 of 998, are found in a single
webdomain tsb.gc.ca which could explain the
skew. However, the difference remains if that
large webdomain is removed.

Further investigation reveals that the under-
lying cause of poor performance on the dev
set can be attributed to three webdomains
that contain near duplicates, such as the same
main content but interface elements in a dif-
ferent language.

2. When choosing the optimal length of scoring
n-grams, shorter is better. Good recall can be
achieved using 1-grams for the monolingual

1https://lucene.apache.org/core/
6_0_1/core/org/apache/lucene/search/
similarities/TFIDFSimilarity.html

674

case where no machine translated (MT) data
is used and 1-grams or 2-grams for the case
where all French data is translated to English
beforehand.

3. In tf-idf weighting the inverse document fre-
quency acts as an indicator of a term’s impor-
tance. This is important in the case of infor-
mation retrieval where query words differ in
utility. In the duplicate detection setting idf
weights play a less important role and a com-
mon choice such as idf3 defined in Equation
9 can be used throughout.

4. Results produced by using only the untrans-
lated text, a configuration that requires no
bilingual resources and little computational
resources, are better than we expected: only
between 5% (for train) and 8% (for dev) be-
low the recall achieved using machine trans-
lated texts. In this case we just ignore that
two pages are written in different languages
and only rely on untranslated parts such as
boilerplate, names, and numbers to provide
sufficient cues.

For our submission we used the machine trans-
lated text provided by the organizers and chose
n = 2, tf4 (Equation 4), and idf3 (Equation 9).

3.3 Greedy vs. optimal solution
We found that producing the optimal solution for
the assignment problem using the Kuhn-Munkres
algorithm (Munkres, 1957) was slightly worse in
almost all cases. We hypothesize that by maxi-
mizing the aggregate score for all selected pairs
the low-scoring pairs for which no matching doc-
ument exists are over-emphasized. To test this
hypothesis we compare the scores of the selected
pairs for both algorithms: For each webdomain we
sort the selected pairs by their score and select, for
each algorithm, the n top scoring pairs:

Let s(ds, dt) be our scoring function, in this
case we use Cosine similarity, and let

(ds,g1 , dt,g1), . . . , (ds,gN , dt,gN)

be the document pairs selected by the greedy algo-
rithm and, likewise,

(ds,o1 , dt,o1), . . . , (ds,oN , dt,oN)

those selected by the optimal algorithm. Let these
pairs be sorted by score such that

s(ds,gi , dt,gi) ≥ s(ds,gi+1 , dt,gi+1) ∀i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

−0.2

0

0.2

0.4

0.6

n: Number of selected pairs

∆
(n

)

Figure 2: Difference in accumulated cosine dis-
tances between greedy and optimal algorithm. For
more than the first half of the selected pairs, the
greedy algorithm overall outperforms the optimal
one, indicated by a negative ∆(n).

and

s(ds,oi , dt,oi) ≥ s(ds,oi+1 , dt,oi+1) ∀i
Let ∆(n) be the accumulated difference of scores
for the first n pairs:

∆(n) =
n∑

i=1

s(ds,oi , dt,oi)− s(ds,gi , dt,gi) (13)

Since the greedy algorithm is not necessarily
optimal we know that ∆(N) ≥ 0. However, as can
be seen from Figure 2, the greedy selection of the
best scoring pairs outperforms the Kuhn-Munkres
algorithm for the top-scoring half, confirming our
assumption that lower scoring pairs are selected in
order to find better scoring matches for the docu-
ments without a counterpart.

We note that even after selecting 10 000
pairs, the accumulated difference is comparatively
small, hinting that very similar sets have been se-
lected. Figure 3 shows the Jaccard Similarity be-
tween the top n pairs

Pg(n) = {(ds,gi , dt,gi)|1 ≤ i ≤ n} (14)

Po(n) = {(ds,oi , dt,oi)|1 ≤ i ≤ n} (15)

for both algorithms. The Figure confirms that ei-
ther approach selects virtually the same set of pairs
for low numbers of n.

Thus, the globally optimal solution is not only
expensive to compute but also very similar to the
greedy selection and it outperforms the greedy al-
gorithm mostly for pairs in the tail that are likely
misaligned anyways, because no translated page
exists. Hence, all our reported results use the
greedy selection introduced in Section 2.1.

675

n idf1 idf2 idf3 idf4 idf5 idf6 idf1 idf2 idf3 idf4 idf5 idf6

1 tf1 90.4 93.5 93.9 93.9 93.9 93.4 86.1 86.1 86.3 86.1 86.3 85.9
tf2 65.5 83.7 80.6 81.7 81.2 83.5 69.5 80.8 80.7 80.8 81.0 80.7
tf3 86.8 91.3 92.0 92.1 91.8 91.4 83.4 85.0 84.8 84.8 84.3 85.1
tf4 88.7 92.9 93.5 93.4 93.6 92.9 86.6 87.2 87.2 87.1 86.7 87.1
tf5 65.5 83.7 80.6 81.7 81.2 83.5 69.3 80.8 80.7 80.8 81.0 80.7
tf6 65.6 83.7 80.5 81.6 81.2 83.5 68.8 80.2 80.4 81.0 80.8 80.2

2 tf1 76.6 84.9 84.0 84.7 85.5 84.9 78.1 81.5 81.5 81.3 81.5 81.0
tf2 70.3 81.1 80.5 80.7 81.3 80.4 70.8 76.0 75.6 75.7 76.5 75.2
tf3 76.0 83.2 82.6 83.2 83.6 83.0 75.1 79.9 79.4 79.7 80.2 79.6
tf4 76.1 84.3 83.7 84.0 85.1 84.2 77.8 80.5 80.5 80.7 80.7 80.0
tf5 70.3 81.1 80.5 80.7 81.3 80.4 70.8 76.0 75.6 75.7 76.5 75.2
tf6 70.3 81.1 80.5 80.7 81.3 80.4 70.8 76.0 75.6 75.7 76.5 75.2

3 tf1 65.7 72.2 71.7 72.3 72.6 72.0 64.9 65.3 65.3 65.8 65.2 65.2
tf2 62.7 70.5 70.0 70.3 70.6 70.1 61.2 63.6 63.3 63.7 63.4 63.6
tf3 65.3 71.8 71.4 71.6 72.0 71.2 62.9 64.5 64.9 64.9 64.2 65.0
tf4 65.1 71.9 71.7 71.9 72.5 71.7 63.4 65.8 66.0 66.0 65.7 66.0
tf5 62.7 70.5 70.0 70.3 70.6 70.1 61.2 63.6 63.3 63.7 63.4 63.6
tf6 62.7 70.5 70.0 70.3 70.6 70.1 61.3 63.6 63.3 63.7 63.4 63.6

4 tf1 59.0 63.2 63.0 63.4 63.7 63.4 56.5 57.5 57.5 57.7 57.2 57.3
tf2 58.1 63.6 62.9 63.6 63.7 63.3 55.1 56.5 56.2 56.7 56.5 56.4
tf3 58.5 63.1 62.9 63.6 63.7 63.3 56.2 57.7 58.0 58.3 57.7 57.7
tf4 58.6 63.3 63.0 63.3 63.6 63.1 56.7 58.1 58.1 58.3 57.7 57.7
tf5 58.1 63.6 62.9 63.6 63.7 63.3 55.1 56.5 56.2 56.7 56.5 56.4
tf6 58.1 63.6 62.9 63.6 63.7 63.3 55.1 56.7 56.2 56.7 56.7 56.4

Table 2: Recall on train (left) and dev (right) split of the training data using different tf/idf weighting
schemes and only untranslated text.

n idf1 idf2 idf3 idf4 idf5 idf6 idf1 idf2 idf3 idf4 idf5 idf6

1 tf1 97.7 97.9 97.9 97.9 97.9 97.9 89.8 89.8 89.8 86.7 89.8 89.8
tf2 93.1 94.8 94.8 94.8 91.0 94.8 88.2 89.9 89.9 89.9 87.5 89.9
tf3 97.9 97.7 97.7 97.8 97.7 97.8 89.8 90.4 90.4 90.4 90.6 90.4
tf4 97.9 98.2 98.2 98.2 98.2 98.2 89.6 89.1 89.1 89.1 89.1 89.1
tf5 93.2 94.9 94.9 94.9 91.1 94.9 88.2 89.9 89.8 89.9 87.5 89.9
tf6 93.4 94.9 95.1 94.9 91.1 95.1 88.5 89.9 89.5 89.5 86.9 90.3

2 tf1 97.9 98.2 98.2 98.2 98.2 98.2 94.2 94.7 94.7 94.9 94.7 94.6
tf2 95.5 96.8 96.8 96.8 96.8 96.8 92.8 93.9 93.9 94.1 93.9 93.6
tf3 97.7 98.1 98.2 98.2 98.1 98.3 94.1 95.4 95.4 95.4 95.4 95.2
tf4 97.8 98.2 98.2 98.2 98.2 98.3 94.1 95.0 95.0 95.0 95.0 94.9
tf5 95.5 96.8 96.8 96.8 96.8 96.8 92.8 93.9 93.9 94.1 93.9 93.6
tf6 95.4 96.8 96.8 96.8 96.8 96.8 93.0 94.1 94.1 94.2 93.9 93.6

3 tf1 96.6 96.9 96.9 96.8 96.9 96.9 94.1 93.5 93.5 93.5 93.5 93.5
tf2 95.3 96.1 96.1 96.1 96.1 96.1 92.3 93.5 93.5 93.3 93.5 93.5
tf3 96.2 96.5 96.5 96.5 96.5 96.5 93.6 93.6 93.6 93.6 93.6 93.6
tf4 96.5 96.7 96.7 96.7 96.7 96.7 93.8 93.5 93.5 93.5 93.5 93.5
tf5 95.4 96.1 96.1 96.1 96.1 96.1 92.3 93.5 93.5 93.3 93.5 93.5
tf6 95.2 96.1 96.1 96.1 96.1 96.1 92.7 93.5 93.5 93.5 93.5 93.6

4 tf1 95.0 96.1 96.0 96.0 96.0 96.1 93.3 93.6 93.6 93.6 93.6 93.6
tf2 94.5 96.3 96.3 96.3 96.3 96.3 91.7 92.5 92.5 92.5 92.5 92.5
tf3 95.1 96.2 96.1 96.1 96.1 96.1 93.0 93.1 93.1 92.7 93.0 93.3
tf4 95.0 96.0 95.9 95.9 95.9 96.0 93.5 93.5 93.5 93.5 93.5 93.6
tf5 94.5 96.3 96.3 96.3 96.3 96.3 91.7 92.5 92.5 92.5 92.5 92.5
tf6 94.5 96.3 96.3 96.3 96.3 96.3 91.5 92.8 92.5 92.7 92.8 92.5

Table 3: Recall on train (left) and dev (right) split of the training data using different tf/idf weighting
schemes to compare English and machine translated French text.

676

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
0.9

0.92

0.94

0.96

0.98

1

n: Number of selected pairs

|P
g
(n
)
∩
P
o
(n
)|

|P
g
(n
)
∪
P
o
(n
)|

Figure 3: Jaccard Similarity between the top-n
pairs selected by greedy and Kuhn-Munkres algo-
rithm.

4 Results

The test data for the shared task consists of 203
crawled websites that are all distinct from the
training set. No additional known pairs are pro-
vided for these webdomains, but the organizers of-
fer translations of French text into English, as for
the training data. As above, performance in evalu-
ated via recall under the condition that every docu-
ment can only be part of a single pair. The number
of pages per domain varies wildly between 9 and
almost 100k. In the latter case, 50k pairs need to
be picked from roughly 2.5B possibilities. After
some preprocessing such as tokenization we pro-
duce 368 260 pairs using greedy selection and co-
sine distance as explained above. For all webdo-
mains this takes less than 4h on a single machine.

In total, 13 research teams contributed 21 sub-
missions to the shared task. The official results
can be found in Table 4. Our submission ranks on
3rd place. We would like to point out that, apart
from selecting the best performing tf/idf weighting
method, the training data is not used at all. Thus,
besides a baseline machine translation system no
additional resources are needed, which makes our
approach widely applicable.

A baseline system based on matching URL
patterns such as site.com/home-fr/ and
site.com/home/en/ as used in previous
work (Resnik and Smith, 2003; Smith et al., 2013)
is provided by the organizers. We combine our
approach and the Baseline by simply selecting all
148 537 baseline pairs first. While not on official
submission, Table 4 shows that this combination
outperforms all other systems.

Name Recall % Found

NovaLincs-url-coverage 94.96 2 281
YODA 93.92 2 256
UEdin1 cosine 89.09 2 140
NovaLincs-coverage 88.63 2 129
DOCAL 88.59 2 128
UEdin2 LSI-v2 87.64 2 105
UEdin2 LSI 85.85 2 062
NovaLincs-coverage-url 85.76 2 060
ILSP-ARC-pv42 84.93 2 040
UFAL-4 84.22 2 023
YSDA 84.14 2 021
UA PROMPSIT bitextor 5.0 83.31 2 001
UFAL-1 81.31 1 953
UFAL-3 80.68 1 938
Meved 79.39 1 907
Jakubina-Langlais 79.31 1 905
UFAL-2 79.14 1 901
UA PROMPSIT bitextor 4.1 31.14 748
ADAPT 27.10 651
ADAPT-v2 26.81 644
JIS 2.00 48

Baseline 59.78 1 436
Baseline + UEdin1 cosine† 96.21 2 311

Table 4: Official results on the shared task test
data. Results described in this work are fat. Across
all webdomains a total of 2402 known pairs were
to be found. (†) indicates a non-official result that
was produced post-submission.

5 Conclusion

We present a comparison of tf/idf weighting
schemes for comparison of original and translated
documents via cosine distance. We find that the
right choice of term-frequence (tf) weighting is
crucial in this setting, along with the inclusion of
low-frequency words.

We compare a greedy selection algorithm to a
computationally more expensive solution which
yields a slightly better global solution. We can
show that the former often outperforms the lat-
ter in practical settings where a tail of un-pairable
document exits.

Our best results are based on machine translated
documents. However, even when ignoring the fact
that two documents are written, at least partially,
in different languages, we are still able to discover
a substantial number of parallel pages.

Results of the shared task show that our ap-
proach, which only uses the website’s text, yields
competitive results. Results improve further when
our predictions are combined with pairs found via
URL matching.

677

References
[Manning et al.2008] Christopher D. Manning, Prab-

hakar Raghavan, and Hinrich Schtze. 2008. Intro-
duction to Information Retrieval. Cambridge Uni-
versity Press, New York.

[Munkres1957] James Munkres. 1957. Algorithms for
the assignment and transportation problems. Jour-
nal of the Society for Industrial and Applied Mathe-
matics, 5(1):32–38.

[Resnik and Smith2003] Philip Resnik and Noah A
Smith. 2003. The web as a parallel corpus. Compu-
tational Linguistics, 29(3):349–380.

[Resnik1999] Philip Resnik. 1999. Mining the web
for bilingual text. In Proceedings of the 37th An-
nual Meeting of the Association for Computational
Linguistics on Computational Linguistics, ACL ’99,
pages 527–534, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Ruopp and Xia2008] Achim Ruopp and Fei Xia. 2008.
Finding parallel texts on the web using cross-
language information retrieval. In IJCNLP, pages
18–25.

[Shi et al.2006] Lei Shi, Cheng Niu, Ming Zhou, and
Jianfeng Gao. 2006. A dom tree alignment model
for mining parallel data from the web. In Proceed-
ings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics,
pages 489–496. Association for Computational Lin-
guistics.

[Smith et al.2013] Jason Smith, Hervé Saint-Amand,
Magdalena Plamada, Philipp Koehn, Chris Callison-
Burch, and Adam Lopez. 2013. Dirt cheap web-
scale parallel text from the common crawl. In
Proceedings of ACL. Association for Computational
Linguistics, August.

[Ture et al.2011] Ferhan Ture, Tamer Elsayed, and
Jimmy Lin. 2011. No free lunch: Brute force
vs. locality-sensitive hashing for cross-lingual pair-
wise similarity. In Proceedings of the 34th interna-
tional ACM SIGIR conference on Research and de-
velopment in Information Retrieval, pages 943–952.
ACM.

[Uszkoreit et al.2010] Jakob Uszkoreit, Jay M Ponte,
Ashok C Popat, and Moshe Dubiner. 2010. Large
scale parallel document mining for machine transla-
tion. In Proceedings of the 23rd International Con-
ference on Computational Linguistics, pages 1101–
1109. Association for Computational Linguistics.

678

