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Abstract

We present a novel neural machine trans-
lation (NMT) architecture associating vi-
sual and textual features for translation
tasks with multiple modalities. Trans-
formed global and regional visual features
are concatenated with text to form attend-
able sequences which are dissipated over
parallel long short-term memory (LSTM)
threads to assist the encoder generating a
representation for attention-based decod-
ing. Experiments show that the proposed
NMT outperform the text-only baseline.

1 Introduction

In fields of machine translation, neural network at-
tracts lots of research attention recently that the
encoder-decoder framework is widely used. Nev-
ertheless, the main drawback of this neural ma-
chine translation (NMT) framework is that the de-
coder only depends on the last state of the encoder,
which may deteriorate the performance when the
sentence is long. To overcome this problem, atten-
tion based encoder-decoder framework as shown
in Figure 1 is proposed. With the attention model,
in each time step the decoder depends on both the
previous LSTM hidden state and the context vec-
tor, which is the weighted sum of the hidden states
in the encoder. With attention, the decoder can
“refresh” it’s memory to focus on source words
that may help to translate the correct words rather
than only seeing the last state of the sentences
where the words in the sentence and the ordering
of words are missing.

Most of the machine translation task only focus
textual sentences of the source language and target
language; however, in the real world, the sentences
may contain information of what people see. Be-
yond the bilingual translation, in WMT 16’ multi-
modal translation task, we would like to translate

Figure 1: Attention-based neural machine
translation framework using a context vector to
focus on a subset of the encoding hidden states.

the image captions in English into German. With
the additional information from images, we would
further resolve the problem of ambiguity in lan-
guages. For example, the word “bank” may refer
to the financial institution or the land of the river’s
edge. It would be confusing if we only look at the
language itself. In this task, the image may help to
disambiguate the meaning if it shows that there is
a river and thus the “bank” means “river bank”.

In this paper, we explore approaches to integrat-
ing multimodal information (text and image) into
the attention-based encoder-decoder architecture.
We transform and make the visual features as one
of the steps in the encoder as text, and then make
it possible to attend to both the text and the image
while decoding. The image features we used are
(visual) semantic features extracted from the en-
tire images (global) as well as the regional bound-
ing boxes proposed by the region-based convolu-
tional neural networks (R-CNN) (Girshick et al.,
2014). In the following section, we first describe
the related works, and then we introduce the pro-
posed multimodal attention-based NMT in Section
3, followed by re-scoring of the translation can-
didates in Section 4. Finally we demonstrate the
experiments in Section 5.

2 Related Work

As the advances of deep learning, Neural Machine
Translation (NMT) (Kalchbrenner and Blunsom,
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2013; Jean et al., 2014) leveraging encode-
decoder architecture attracts research attention.
Under the NMT framework, less domain knowl-
edge is required and large training corpora can
compensate for it. However, encoder-decoder
structure encodes the source sentence into one
fixed-length vector, which may deteriorate the
translation performance as the length of source
sentences increasing. (Bahdanau et al., 2014) ex-
tended encoder-decoder structure that the decoder
only focuses on parts of source sentence. (Lu-
ong et al., 2015) further proposed attention-based
model that combine global, attending to all source
words, and local, only focusing on a part of source
words, attentional mechanism.

Rather than using the embedding of each
modality independently, Some works (Hardoon
et al., 2004; Andrew et al., 2013; Ngiam et al.,
2011; Srivastava and Salakhutdinov, 2014) focus
on learning joint space of different modalities. In
machine translation fields, (Zhang et al., 2014; Su
et al., 2015) learned phrase-level bilingual repre-
sentation using recursive auto-encoder. Beyond
textual embedding, (Kiros et al., 2014) proposed
CNN-LSTM encoder to project two modalities
into the same space. Based on the jointly learn-
ing of multiple modalities or languages, we find
it possible to evaluate the quality of the transla-
tions that if the space of the translated sentence is
similar to the source sentence or the image, it may
imply that the translated sentence is good.

3 Attention-based Multimodal Machine
Translation

Based on the encoder-decoder framework, the
attention-based model aim to handle the missing
order and source information problems in the basic
encoder-decoder framework. At each time step t
in the decoding phrase, the attention-based model
attends to subsets of words in the source sentences
that can form up the context which can help the de-
coder to predict the next word. This model infers a
variable-length alignment weight vector at based
on the current target state ht and all source states
hs. The context feature vector ct = at · hs is the
weighted sum of the source states hs according to
at, which is defined as:

at(s) =
escore(ht,hs)

∑′
s e

score(ht,h′
s)

(1)

The scoring function score(ht,hs) can be re-

ferred as a content-based measurement of the sim-
ilarity between the currently translating target and
the source words. We utilize a transformation ma-
trix Wa which associates source and target hidden
state to learn the general similarity measure by:

score(ht,hs) = htWahs (2)

We produce an attentional hidden state ĥt by
learning Wc of a single layer perceptron activated
by tanh. The input is simply the concatenation
of the target hidden state ht and the source-side
context vector ct:

ĥt = tanh(Wc[ct;ht]) (3)

After generating the context feature vector and
the attentional hidden state, the target word is
predicted through the softmax layer with the at-
tentional hidden state ht vector by p(yt|x) =
softmax(Wsĥt). The following we will intro-
duce how we incorporate images features based on
the attention models.

3.1 Model 1: LSTM with global visual
feature

Visual features from convolution neural network
(CNN) may provide additional information to tex-
tual features in machine translation with multiple
modalities. As depicted in Figure 2, we propose to
append visual features at the head/tail to the origi-
nal text sequence in the encoding phase. Note that
for simplicity, we omit the attention part in the fol-
lowing figures.

Global (i.e., whole image) visual feature are ex-
tracted from the last fully connected layer known
as fc7, a 4096-dimensional semantic layer in
the 19-layered VGG (Simonyan and Zisserman,
2014). With the dimension mismatch and the in-
herent difference in content between the visual and
textual embedding, a transformation matrix Wimg

is proposed to learn the mapping. The encoder
then encode both textual and visual feature se-
quences to generate the representation for decod-
ing. In the decoding phase, the attention model
weights all the possible hidden states in the encod-
ing phase and produce the context vector ct with
Eq. 1 and Eq. 2 for NMT decoding.

3.2 Model 2: LSTM with multiple regional
visual features

In addition to adding only one global visual fea-
ture, we extend the original NMT model by in-
corporating multiple regional features in the hope
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Figure 2: Model 1: Attention-based NMT with single additional global visual feature. Decoder may
attend to both text and image steps of encoding. For clarity, the possible attention path is hidden here.

Figure 3: Model 2: Attention-based NMT with multiple additional regional visual features.

that those regional visual attributes would assist
LSTM to generate better and more accurate repre-
sentations. The illustration of the proposed model
is depicted in 3. We will first explain how to deter-
mine multiple regions from one image and explain
how these visual features are extracted and sorted.

Intuitively, objects in an image are most likely
to appear in both source and target sentences.
Therefore. we utilize the region proposal network
(RPN) in the region-based convolutional neural
network (Ren et al., 2015) (R-CNN) to identify
objects and their bounding boxes in an image and
then extract visual feature from those regions. In
order to integrate these images to the original se-
quence in the LSTM model, we design a heuris-
tic approach to sort those visual features. The
regional features are fed in the ascending order
of the size of the bounding boxes; followed by
the original global visual feature and the text se-
quence. Visual features are sequentially fed in
such order since important features are designed
to be closer to the encoded representation. Heuris-
tically, larger objects may be more noticeable and
essential in an image described by both the source
and target language contexts.

In the implementation, we choose top 4 regional

objects plus the whole image and then extracted
their fc7 with VGG-19 to form the visual se-
quence followed by the text sequence. If there are
less than 4 objects recognized in the original im-
age, zero vectors are padded instead for the batch
process during training.

3.3 Model 3: Parallel LSTM threads

To further alleviate the assumption that regional
objects share some pre-defined order, we further
propose a parallel structure as shown in Figure 4.
The encoder of NMT is composed of multiple en-
coding threads where all the LSTM parameters are
shared. In each thread, a (regional) visual fea-
ture is followed by the text sequence. This par-
allel structure would associate the text to the most
relevant objects in the encoding phase and distin-
guish them when computing attention during de-
coding. Intuitively, the text sequence follows a
regional object would be interpreted as encoding
the visual information with the textual description
(i.e., encoding captions as well as visual features
for that object). An encoder hidden state for at-
tention can be interpreted as the “word” imprinted
by the semantics features of some regional object.
The decoder can therefore distinctively attend to
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Figure 4: Model 3: Parallel LSTM threads with multiple additional regional visual features.

words that describe different visual objects in mul-
tiple threads.

In the encoding phase, parameters in LSTM are
shared over threads. All possible hidden states
over multiple threads are recorded for attention.
At the end of encoding phase, the outputs of differ-
ent encoding threads are fused together to generate
the final embedding of the whole sentence as well
as all the image objects. In the decoding phase,
candidates of global attention are all the text hid-
den states over multiple threads. For example, at
time t, the decoder may choose to attend to ‘bear’
at the second thread (which sees a teddy bear im-
age at the beginning) as well as the ’bear’ in the
global image thread. At time t + 1, the decoder
may switch to another thread and focus on “the
man” with the person image.

For implementation simplicity for batch train-
ing, we limit the number of regional objects to 4
and add one global image thread. We also choose
an average pooling in the encoder fusion process
and back-propagate accordingly.

4 Re-scoring of Translation Candidates

In the neural machine translation, the easiest way
to decode is to greedily get the words with highest
probability step-by-step. To achieve better perfor-
mance, ensemble of models are required. Transla-
tion candidates are generated from multiple mod-
els, and we aim to figure out which candidate
should be the best one. The following we de-
scribe the approaches we investigated to re-score
the translation candidates using monolingual and
bilingual information.

4.1 Monolingual Re-scoring

To evaluate the quality of the translation, the most
simple approach is to check whether the translated
sentences are readable. To achieve this, using lan-
guage model is an effective way to check whether
the sentences fit into the model that trained on a
large corpus. If the language model score is high,
it implies that the sentence holds the high proba-
bility to be generated from the corpus. We trained
a single layer LSTM with 300 hidden state to pre-
dicting the next word. Image caption datasets
MSCOCO and IAPR TC-12 (overall 56,968 sen-
tences) are used as training data.

4.1.1 Bilingual autoencoder

A good translation would also recognize the sen-
tence in the source language. We utilize bilin-
gual autoencoder (Ngiam et al., 2011) depicted as
in Fig.5 to reconstruct source language given the
source language. Bilingual autoencoder only uses
single modality (here we used source language or
target language) and re-constructs the both modal-
ities. We project bilingual information into the
joint space (the bottleneck layer); if the two target
and source sentences have similar representation,
the model is able to reconstruct both sentences.
Moreover, if the similarity of values of bottleneck
layer is high, it may indicate that the source sen-
tence and the translated sentence are similar in
concepts; therefore, the quality of the translation
would be better. The inputs of the autoencoder are
the last LSTM encoder states trained on monolin-
gual image captions dataset. The dimension of the
input layer is 256, and 200 for the middle, and 128
for the joint layer.
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Figure 5: Bilingual auto-encoder to re-construct
both English and German using only one of them.

4.2 Bilingual dictionary

In the WMT 16’ multimodal task, captions are
structured with simple grammars; therefore, only
considering language model may be insufficient
to distinguish good translations. In order to di-
rectly consider whether the concepts mentioned in
the source sentences are all well-translated, we uti-
lize the bilingual dictionary Glosbe1, in which we
use the words in one language extracting the corre-
sponding words in the other language. We directly
count the number of words in the source language
that the synonyms in target language are also in
the translated results as the re-ranking score.

5 Experiments

5.1 Experimental Setup

In the official WMT 2016 multimodal translation
task dataset (Elliott et al., 2016), there are 29,000
parallel sentences from English to German for
training, 1014 for validation and 1000 for testing.
Each sentence describes an image from Flickr30k
dataset (Young et al., 2014). We preprocessed all
the descriptions into lower case with tokenization
and German compound word splitting.

Global visual features (fc7) are extracted with
VGG-19 (Simonyan and Zisserman, 2014). For
regional visual features, the region proposal net-
work in RCNN (Girshick et al., 2014) first recog-
nizes bounding boxes of objects in an image and
then we computed 4096-dimensional fc7 features
from these regions with VGG-19. The RPN of
RCNN is pre-trained on ImageNet dataset 2 and
then fine-tuned on MSCOCO dataset 3 with 80 ob-

1https://glosbe.com/en/de/
2http://image-net.org/
3http://mscoco.org/

Table 1: BLEU and METEOR of the proposed
multimodal NMT

BLEU METEOR
Text baseline 34.5 (0.7) 51.8 (0.7)

m1:image at tail 34.8 (0.6) 51.6 (0.7)
m1:image at head 35.1 (0.8) 52.2 (0.7)

m2:5 sequential RCNNs 36.2 (0.8) 53.4 (0.6)
m3:5 parallel RCNNs 36.5 (0.8) 54.1 (0.7)

ject classes.
We use a single-layered LSTM with 256 cells

and 128 batch size for training. The dimension of
word embedding is 256. Wimg is a 4096 × 256
matrix transforming visual features into the same
embedding space as words. When training NMT,
we follow (Luong et al., 2015) with similar set-
tings: (a) we uniformly initialized all parameters
between -0.1 and 0.1, (b) we trained the LSTM
for 20 epochs using simple SGD, (c) the learning
rate was initialized as 1.0, multiplied by 0.7 af-
ter 12 epochs, (d) dropout rate was 0.8. Note that
the same dropout mask and NMT parameters are
shared by all LSTM threads in model 3.

5.2 Results of Adding Visual Information

The quantitative performance of the proposed
models can be seen in Table 1. We evaluate BLEU
and METEOR scores with tokenization under the
official settings of WMT 2016 multimodal ma-
chine translation challenge. The text-only baseline
is the NMT implementation with global attention.
Adding single global visual feature from an image
at the head of a text sequence improves BLEU by
0.6% and METEOR by 0.4% respectively.

The results show that the additional visual in-
formation improves the translations in this dataset.
However, the lukewarm improvement is not as sig-
nificant as we expected. One possible explana-
tion is that the information required for the multi-
modal translation task is mostly self-contained in
the source text transcript. Adding global features
from whole images do not provide extra supple-
mentary information and thus results in a subtle
improvement.

Detailed regional visual features provide extra
attributes and information that may help the NMT
translates better. In our experiment, the proposed
model2 with multiple regional and one global vi-
sual features showed an improvement of 1.7%
in BLEU and 1.6% in METEOR while model3
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showed an improvement of 2.0% in BLEU and
2.3% in METEOR. The results correspond to our
observation that most sentences would describe
important objects which could be identified by R-
CNN. The most commonly mentioned object is
“person”. It’s likely that the additional attributes
provided by the visual features about the person in
an image help to encode more detailed context and
thus benefit NMT decoding. Other high frequency
objects are “car”, “baseball”, “cellphone”, etc.

For the proposed LSTM with multiple regional
visual features (model 2), the semantic features
in fc7 of the regions-of-interest in an image pro-
vide additional regional visual information to form
a better sentence representation. We also experi-
mented other sorting methods including descend-
ing size, random, and categorical order to generate
the visual sequences. However, ascending-ordered
sequences achieve the best result.

For the proposed parallel LSTM architecture
with regional visual features (model 3), the re-
gional visual features further help the NMT de-
coder to attend more accurately and accordingly
to focus on the right thread where the hidden states
are twiddle by the local visual attributes. The best
result of our models achieve 36.5% in BLEU and
54.1% in METEOR, which is comparable to the
state-of-the-art Moses results in this challenge.

5.3 Results of Re-Scoring

The experimental results of re-scoring are shown
in table 2, we compare our re-scoring methods
based on the candidates generated by our best mul-
timodal NMT modal (model 3). The second row
is the results using LSTM monolingual language
model with hidden size as 300. The reason why we
can barely achieve improvement might be that the
grammar in the caption task is much easier com-
pared to other translation tasks such as dialog or
News; therefore, the candidate sentences with low
score of evaluation (BLEU or METEOR) may also
looks like a sentence, but without relevance to the
source sentence.

The third row shows the re-scoring results with
the bi-lingual autoencoder. This approach results
in drops in both BLEU and METEOR. The rea-
son might be that the quality and quantity of our
Bi-lingual corpus is insufficient for the purpose of
learning a good autoencoder. Furthermore, we ob-
serve the test perplexity is higher than the training
and validation perplexity, showing the over-fitting

Table 2: Results of re-scoring using monolin-
gual LSTM, Bi-lingual auto-encoder, and dictio-
nary based on multimodal NMT results.

BLEU METEOR
Original Model 3 36.5 (0.8) 54.1 (0.7)
Language model 36.3 (0.8) 53.3 (0.6)

Bilingual autoencoder 35.9 (0.8) 53.4 (0.7)
Bilingual dictionary 35.7 (0.8) 55.2 (0.6)

in language modeling and the effects of unknown
words. It’s clear that more investigation is required
for designing a better bilingual autoencoder for re-
scoring.

The last row shows the results using the bilin-
gual dictionary. For each word in the source sen-
tence and the target candidates, we retrieve the
term and the translation in the other language, and
count the number of matching. We can achieve
much more improvement on METEOR compared
to other methods. This is because that the qual-
ity of the translation of captions depends on how
much we correctly translate the objects and their
modifiers. The bad translation can still achieve fair
performance without re-scoring because the sen-
tence structure is similar to good translation. For
example, a lot of sentences start with “A man” and
both good and bad translation can also translate
the sentences start with “Ein Mann”. The bilingual
dictionary is proved to be an efficient re-scoring
approach to distinguish these cases.

6 Conclusions

We enhanced the attention-based neural machine
translation by incorporating information in mul-
tiple modalities. We explored different encoder-
decoder architectures including the LSTM with
multiple sequential global/regional visual and tex-
tual features as states for attention and the parallel
LSTM threads approach. Our best model achieved
2.0% improvement in BLEU score and 2.3% in
METEOR using the visual features of an entire
image and interesting regional objects within. For
re-scoring translation candidates, we investigated
monolingual LSTM language model, bilingual au-
toencoder, and bilingual dictionary re-scoring. We
further achieved an additional 1.1% improvements
in METEOR using a bilingual dictionary. Integra-
tion of more modalities such as audio would be a
challenging but interesting next step.
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