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Abstract

We present a doubly-attentive multimodal
machine translation model. Our model
learns to attend to source language and
spatial-preserving CONV5,4 visual fea-
tures as separate attention mechanisms in
a neural translation model. In image de-
scription translation experiments (Task 1),
we find an improvement of 2.3 Meteor
points compared to initialising the hidden
state of the decoder with only the FC7 fea-
tures and 2.9 Meteor points compared to a
text-only neural machine translation base-
line, confirming the useful nature of at-
tending to the CONV5,4 features.

1 Introduction

Our system learns to translate image descriptions
using both the source language descriptions and
the images. We integrate an attention-based neu-
ral network for machine translation and image de-
scription in a unified model, in which two sep-
arate attention mechanisms operate over the lan-
guage and visual modalities. We believe that this
is a principled approach to learning which source
words and which areas of the image to attend to
when generating words in the target description.

We are inspired by recent successes in using at-
tentive models in both neural machine translation
(NMT) and neural image description. Originally,
in non-attentive NMT models, the entire source
sentence is encoded into a single vector which is
in turn used by the decoder to generate a transla-
tion (Cho et al., 2014; Sutskever et al., 2014). In
a similar vein, image description models can use a
vector encoding the image as input for the descrip-
tion generation process (Vinyals et al., 2015; Mao
et al., 2015, inter-alia).

Bahdanau et al. (2014) first proposed a NMT
model with an attention mechanism over the
source sentence. Their model is trained so that
the decoder learns to attend to words in the source
sentence when translating each token in the tar-
get sentence. Xu et al. (2015) introduced a similar
attention-based neural image description model.
In this case, the attention mechanism learns which
parts of the image to attend to while generating
words in the description.

When translating image descriptions, given
both the source description and the source image
(i.e., the setting for Task 1), we believe that both
modalities can provide cues for generating the tar-
get language description. The source description
provides the content for translation, but in cases
where this may be ambiguous, the image features
can provide contextual disambiguation. The sys-
tem we propose is a first step towards integrating
both modalities using attention mechanisms.

Previous work has demonstrated the plausibility
of multilingual multimodal natural language pro-
cessing. Elliott et al. (2015) showed how to gen-
erate descriptions of images in English and Ger-
man by learning and transferring features between
independent neural image description models. In
comparison, our approach is a single end-to-end
model over the source and target languages with
attention mechanisms over both the source lan-
guage and the visual features.

2 Model Description

We represent the source language with a bi-
directional recurrent neural network (RNN) with
a gated recurrent unit (GRU) that computes, for
each word, forward and backward source annota-
tion vectors

−→
hi and

←−
hi . The final source annotation

vector for a word hi is the concatenation of both
[
−→
hi ;
←−
hi ].
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We use the visual features released by the
shared task organisers, extracted from the pre-
trained VGG-19 convolutional neural network
(CNN) (Simonyan and Zisserman, 2015).

The organisers release two types of visual fea-
tures according to the layer they were extracted
from: FC7 features are extracted from the fi-
nal fully-connected layer (FC7), which encode
information about the entire image in a 4096-
dimensional feature vector; and CONV5,4 fea-
tures, extracted from the final convolutional layer
(CONV5,4), namely a 196 x 512 dimensional ma-
trix where each row (i.e., a 512D vector) repre-
sents features from a specific spatial ‘patch’ and
therefore encodes information about that specific
‘patch’ (i.e., area) of the image.

2.1 FC7-initialised model
In this model, we use visual features extracted
from the final fully-connected FC7 layer from the
pre-trained VGG-19 CNN. These features rep-
resent an abstract summary of the entire im-
age and crucially are not spatially aware, unlike
the CONV5,4 features we use in the subsequent
double-attention model. We integrate the FC7 fea-
tures into the initial state of the decoder.

We first affine-transform the 4096D FC7 image
feature vector i into the source language bidirec-
tional RNN hidden states dimensionality, where
the affine transformation parameters (WI , bI ) are
trained jointly with the model:

iproj = i ·WI + bI . (1)

We then simply sum these projected image fea-
tures iproj with the first source language context
vector h1, obtained by the encoder bidirectional
RNN, and use the resulting vector as input to a
feed-forward neural network finit used to initialise
the decoder hidden state:

s0 = finit(h1 + iproj) (2)

2.2 Doubly-attentive model
The goal of the doubly-attentive model is to in-
tegrate separate attention mechanisms over the
source language words and visual features in a sin-
gle decoder. Similarly to the FC7 model, we rep-
resent the source language using a bi-directional
RNN with GRUs. We use visual features extracted
from the CONV5,4 layer of the VGG-19 CNN
alongside the FC7 features. The CONV5,4 fea-
tures consist of a 196 x 512 dimensional matrix,

where each row represents features from a specific
spatial ‘patch’. Analogous to how the attention
mechanism for the source language can focus on
specific words or phrases in the source description,
the image attention mechanism can focus on spe-
cific parts of the image (Xu et al., 2015).

Our doubly-attentive decoder is conditioned on
the source sentence and the image via the two sep-
arate attention mechanisms, as well as the previ-
ous hidden state of the decoder and the previously
emitted word. Therefore, in computing the de-
coder hidden state st at time step t, the decoder
has access to the following information:

• it – the image context vector for the current
time step obtained via attention over the im-
age representation;

• ct – the source language context vector for
the current time step obtained via attention
over the source sentence representation;

• st−1 – the decoder’s previous hidden state;

• yt−1 – the target word emitted by the decoder
in the previous time step.

Figure 1 illustrates the computation of the de-
coder hidden state st according to our doubly-
attentive model.

2.3 Source sequence context vector

To compute the time-dependent source sentence
context vector, we follow Bahdanau et al. (2014)
and use a single-layer feed-forward network fsscore
for computing an expected alignment est,i between
each source annotation vector hi — computed as
the concatenation of forward and backward source
annotation vectors

−→
hi and

←−
hi — and the target

word to be emitted at the current time step t.

est,i = fsscore(hi, st−1, yt−1), (3)

where fsscore uses all source annotation vectors h,
the decoder’s previous hidden state st−1 and the
previously emitted word yt−1 in computing the ex-
pected alignments for the target word at current
time step t. In Equation 4, these alignments are
then normalised and converted into probabilities.

αt,i =
exp (est,i)∑N
j=1 exp (e

s
t,j)

, (4)
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Figure 1: A doubly-attentive decoder learns to independently attend to image patches and source lan-
guage words when generating translations.

where αt,i are weights representing the attention
over the source annotation vectors. The final time-
dependent source context vector ct is a weighted
sum over the source annotation vectors, where
each vector is weighted by the attention weight
αt,i:

ct =

N∑

i=1

αt,ihi. (5)

2.4 Image context vector

The time-dependent image context vectors are
based on the “soft” visual attention mechanism
(Xu et al., 2015). As outlined above, the image
annotation vectors are the features extracted from
CONV5,4 layer, resulting in 196 vectors (each cor-
responding to one of the 14 × 14 patches in the
image) of 512 dimensions each. These annotation
vectors are denoted al (with l = 1 . . . 196) and
are used analogously to the hidden states hi of the
source sentence encoder.

The expected alignments eit,l over the image
features are computed by a single layer feed-
forward network f iscore:

eit,l = f iscore(al, st−1, yt−1), (6)

where f iscore uses all image annotation vectors a,
the decoder previous hidden state st−1 and the pre-

viously emitted word yt−1 in computing the ex-
pected image–target word alignments at current
time step t. In Equation 7 these expected align-
ments are further normalised and converted into
probabilities, as in the source context vector.

αi
t,l =

exp (eit,l)∑L
j=1 exp (e

i
t,j)

, (7)

where αi
t,i are the model’s image attention

weights. A time-dependent image context vec-
tor it is then computed by using these attention
weights.

it =

N∑

l=1

αi
t,lal. (8)

Ideally, this image context vector it captures the
image patches that are relevant to the current state
of the decoder and for generating the next word.

3 Experiments

We report results for Task 1, which uses the trans-
lated data in the Multi30K corpus (Elliott et al.,
2016). English and German descriptions in the
Multi30K were normalised and tokenized, and
compounds in German descriptions were further
split in a pre-processing step1.

1We use the scripts in the Moses SMT Toolkit to nor-
malise, tokenize and split compounds (Koehn et al., 2007).
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Meteor

Moses 52.3
CONV5,4-Multimodal NMT 46.4
FC7-Multimodal NMT 44.1
Text-only Attention NMT 43.5
Elliott et al. (2015) 24.7

Table 1: Results for our models on Task 1. We
find that attending over the source language and
CONV5,4 visual features is better than not using
image features (text-only, attentive NMT model)
and also just initialising an attention-based de-
coder with FC7 features.

Throughout, we parameterise our models us-
ing 300D word embeddings, 1000D hidden states,
and 1000D context vectors; the source and tar-
get languages are estimated over the entire vo-
cabularies. Our non-recurrent matrices are ini-
tialised by sampling from a Gaussian distribution
(µ = 0, σ = 0.01), recurrent matrices are orthog-
onal and bias vectors are all initialised to zero. We
apply dropout on the source language words (en-
coder) and before the readout operation (decoder)
with probability of 0.3 and apply no other regu-
larisation. We apply early stopping for model se-
lection based on Meteor scores (Denkowski and
Lavie, 2014), and if it has not increased for 20
epochs on a validation set, training is halted. The
models are trained using the Adadelta optimizer
(Zeiler, 2012) with an initial learning rate of 0.005.

In Table 1 we compare our models — CONV5,4

and FC7-Multimodal NMT — against a text-only,
attention-based NMT baseline, the Moses transla-
tion baseline (Koehn et al., 2007) and the multi-
lingual image description baseline (Elliott et al.,
2015). First, it is clear that the Moses SMT base-
line is very strong, given that it is only trained
over the parallel text without any visual informa-
tion. Our models are unable to match the perfor-
mance of Moses, however, we do see a substantial
increase of 20-22 Meteor points compared to the
independent image description models (Elliott et
al., 2015). The magnitude of the difference shows
the importance of learning the source and target
language representations in a single joint model.

We also observe improvements in Meteor when
we compare our double-attentive CONV5,4 model
against the FC7 initialised model (2.3 points) and

against a text-only NMT model (2.9 points).
Our results indicate that incorporating image

features in multimodal models helps, as compared
to our text-only NMT baseline. Even though our
neural models — both text-only and multimodal
models — fall short of the SMT baseline perfor-
mance, we believe that the use of neural architec-
tures for this task is more principled, due to the
ability to incorporate images and translations in
one network that is trained end-to-end.

4 Conclusions and Future Work

We present a model which incorporates multi-
ple multimodal attention mechanisms into a neu-
ral machine translation decoder. Source language
and visual attention mechanisms have been well-
studied in the recent literature, but our results indi-
cate that multimodal attention appears to be more
complex than simply combining two independent
attention mechanisms. In particular, we hoped
to find a greater improvement from adding vi-
sual features, relative to text-only models. How-
ever, the Multi30k dataset is relatively small, with
a small vocabulary and simple syntactic struc-
tures (Elliott et al., 2016). Whereas SMT models
can be trained effectively on such datasets, neural
models usually perform best when a large amount
of data is available. We believe that as the amount
of data in multimodal translation datasets increase,
neural models will become more competitive.

In future work we plan to study why the source
language attention mechanism contributes more to
the model than the visual attention. We believe
that using the source language context vector ct
may help when computing the image context vec-
tor it. We also plan to investigate other attention
mechanisms, for instance the “hard” attention as
proposed by Xu et al. (2015). Soft attention may
be too diffuse in this setting, especially over the
large set of image context vectors.
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