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Abstract

This paper describes the UU-Hardmeier
submissions to the WMT 2016 shared task
on cross-lingual pronoun prediction. Our
model is a system combination of two dif-
ferent approaches, one based on a neural
network with latent anaphora resolution
and the other one on an n-gram model with
an additional dependency on the source pro-
noun. The combination of the two models
results in an improvement over each indi-
vidual system, but it appears that the contri-
bution of the neural network is more likely
due to its context modelling capacities than
to the anaphora resolution subnetwork.

1 Introduction

The primary submission of the UU-Hardmeier
system to the pronoun prediction shared task at
WMT 2016 (Guillou et al., 2016) consists of two
components. The first is a reimplementation of
the pronoun prediction neural network proposed by
Hardmeier et al. (2013). The other system compo-
nent is based on a standard n-gram language model
over the lemmas of the target side. Apart from im-
plementation details, the main difference between
this model and the official baseline provided by the
shared task organisers is the integration of informa-
tion about the pronoun found on the source side,
which allows the model to recognise whether a
given pronoun was singular or plural in the source.

2 Neural Network Component

The first component of our model is a modified
reimplementation of the pronoun prediction net-
work introduced by Hardmeier et al. (2013). The
main differences between the model used in this
work and the previous implementation are the fol-
lowing:

• A complete reimplementation of the neural
network code based on Theano (The Theano
Development Team, 2016) and Keras (Chollet,
2016).

• Substitution of the coreference preprocessing
component by CORT (Martschat and Strube,
2015).

• Inclusion of target-language context lemma
and part-of-speech features.

• (Accidental) omission of a hidden layer in the
submitted systems.

• Substitution of the internal softmax layer (V)
by a sigmoid layer.

The overall structure of the network is shown
in figure 1. To create input data for the network,
we first generate a set of antecedent candidates
for a given pronoun by running the preprocess-
ing pipeline of the coreference resolution system
CORT (Martschat and Strube, 2015). Each training
example for our network can have an arbitrary num-
ber of antecedent candidates. Next, we prepare four
types of features. Anaphor source context features
describe the source language (SL) pronoun (P) and
its immediate context consisting of three words to
its left (L1 to L3) and three words to its right (R1
to R3), encoded as one-hot vectors. Anaphor tar-
get context features cover a window of three TL
lemmas and part-of-speech tags to the left and to
the right of the pronoun, each encoded as a one-hot
vector.

Antecedent features (A) describe an antecedent
candidate. Candidates are represented by the TL
words aligned to the syntactic head of the source
language markable noun phrase, again represented
as one-hot vectors. These vectors cannot be fed into
the network directly because their number depends
on the number of antecedent candidates and on the

576



E

Target POS

Target lemma

Source context

Source pronoun

S

1

2

3

T

U

V

1 2 3

A

Figure 1: Neural network with latent anaphora resolution

number of TL words aligned to the head word of
each antecedent. Instead, they are averaged to yield
a single vector per antecedent candidate.

Finally, anaphoric link vectors (T) describe the
relationship between an anaphor and a particular
antecedent candidate. These vectors are generated
by the feature extraction machinery in CORT and
include a standard set of features for coreference
resolution borrowed wholesale from the default
configuration of the coreference resolution system,
including a number of lexicalised feature templates
that generate a large number of individual features.
To increase the efficiency of the training process,
all input feature sets are limited to a vocabulary
consisting of the 1000 most frequent words per
feature type.

In the forward propagation pass, the input word
representations are mapped to a low-dimensional
representation in an embedding layer (E). In this
layer, the embedding weights for all the SL vec-
tors (the pronoun and its 6 context words) are tied,
so if two words are the same, they are mapped to
the same lower-dimensional embedding regardless
of their position relative to the pronoun. To pro-
cess the information contained in the antecedents,
the network first computes the link probability for
each antecedent candidate. The anaphoric link fea-
tures (T) are mapped to a hidden layer with lo-
gistic sigmoid units (U). The activations of the
hidden units are then mapped to a single value,
which functions as an element in an internal soft-

max layer over all antecedent candidates (V). This
softmax layer assigns a probability p1 . . . pn to
each antecedent candidate. The antecedent feature
vectors A are projected to lower-dimensional em-
beddings, weighted with their corresponding link
probabilities and summed. The weighted sum is
then concatenated with the source language embed-
dings in the E layer. To improve the training of
the antecedent-related network parts, whenever a
training example is presented to the network, with
a probability of 20 % all source and target context
features are set to zero. The E layer is connected
to a softmax output layer predicting the pronoun
class as defined by the shared task specification.

In our setup, the dimensionality of the word em-
beddings is 30 for the source context words, target
lemmas and antecedent features and 15 for the tar-
get POS features, resulting in a total embedding
layer size of 482 (two source pronoun features,
six 30-dimensional source context embeddings, six
30-dimensional target lemma embeddings, six 15-
dimensional target POS embeddings and one 30-
dimensional antecedent feature vector). The net-
work is regularised with an `2 penalty that was set
to 10−6 using grid search over a held-out develop-
ment set. It is trained with the ADAGRAD algorithm
with minibatches of size 16 and with cross-entropy
as the training objective. The gradients are com-
puted using backpropagation. Note that the number
of weights in the network is the same for all training
examples even though the number of antecedent
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Source: It ’s got these fishing lures on the bottom .
Target lemmas: REPLACE 0 avoir ce leurre de pêche au-dessous .
Solution: ils

LM training data: It REPLACE ils avoir ce leurre de pêche au-dessous .
LM test data: It REPLACE avoir ce leurre de pêche au-dessous .

Figure 2: Data for the source-aware language model

candidates varies because all weights related to an-
tecedent word features and anaphoric link features
are shared between all antecedent candidates. The
model is trained for 60 epochs on the training data
in the IWSLT set; the other training data sets are
not used.

3 Source-Aware Language Model

In the pronoun prediction task at DiscoMT 2015
(Hardmeier et al., 2015), it turned out that a sim-
ple n-gram model considering only the target-side
local context of the word to be predicted outper-
formed all submissions to the shared task. These
results suggest that it is important to include strong
n-gram modelling capacities into any system. The
neural network system described in the previous
section does not necessarily have this, so we de-
cided to address this problem with a system combi-
nation approach.

The official baseline of the current shared task is
identical to that of the previous year, but the task
is different in that the target language words are
provided in lemmatised form only. Lemmatisation
deprives the language model of important morpho-
logical information about the context words, in par-
ticular about their number. As a result, we observe
much lower scores with the official baseline than in
the 2015 shared task. Frequently, however, a look
at the source pronoun would be entirely sufficient
to supply the required information for the source
language at least, and while the correspondence of
number marking across languages is not perfect,
the number of the pronoun in the source language
is a strong hint.

Our source-aware language model is an n-gram
model trained on an artificial corpus generated from
the target lemmas of the parallel training (Figure 2).
Before every REPLACE tag occurring in the data,
we insert the source pronoun aligned to the tag
(without lowercasing or any other processing). The
alignment information attached to the REPLACE

tag in the shared task data files is stripped off.

In the training data, we instead add the pronoun
class to be predicted. The n-gram model used for
this component is a 6-gram model with modified
Kneser-Ney smoothing (Chen and Goodman, 1998)
trained with the KenLM toolkit (Heafield, 2011)
on the complete set of training data provided for
the shared task.

To predict classes for an unseen test set, we
first convert it to a format matching that of the
training data, but with a uniform, unannotated RE-
PLACE tag used for all classes. We then recover
the tag annotated with the correct solution using
the disambig tool of the SRILM language mod-
elling toolkit (Stolcke et al., 2011). This tool runs
the Viterbi algorithm to select the most probable
mapping of each token from among a set of possi-
ble alternatives. The map used for this task trivially
maps all tokens to themselves with the exception
of the REPLACE tags, which are mapped to the set
of annotated REPLACE tags found in the training
data.

The source-aware language model described
here is identical to the base model of the UUPP-
SALA system (Loáiciga et al., 2016). Its output
was submitted to the shared task as the UUPP-
SALA primary submission for English–German,
German–English and French–English and as the
UUPPSALA contrastive submission for English–
French.

4 System Combination

To combine the neural predictor with the source-
aware language model, we linearly interpolated the
probabilities assigned to each class by each model.
The class finally predicted was the one that scored
highest according to the interpolated probability
distribution.

The neural network prediction probabilities are
obtained trivially as the posterior distribution of
the final softmax layer S. For the source-aware lan-
guage model, we run SRILM’s disambig tool
with the -posteriors option, which causes it
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English–French

Class NN LM NN+LM

ce 0.865 0.825 0.855
elle – 0.483 0.325
elles – 0.167 0.143

il 0.624 0.667 0.677
ils 0.787 0.747 0.810

cela 0.603 0.542 0.679
on – 0.400 0.444

OTHER 0.873 0.889 0.905

Macro-F 0.469 0.590 0.605
Macro-R 0.508 0.598 0.606

English–German

Class NN LM NN+LM

er – 0.091 –
sie 0.793 0.716 0.788
es 0.684 0.688 0.718

man – 0.182 0.222
OTHER 0.756 0.729 0.800

Macro-F 0.447 0.481 0.506
Macro-R 0.466 0.474 0.504

NN: neural network (Section 2; contrastive submission)
LM: source-aware language model (Section 3)

NN+LM: interpolated model (Section 4; primary submission)

Table 1: F-scores per class and macro-averaged F-score and recall for component and combined systems

to output an approximate posterior distribution de-
rived from information collected during the Viterbi
decoding pass. For all classes i, the probability
pNN(i) predicted by the neural network and the
probability pLM(i) predicted by the source-aware
language model were combined as follows:

p(i) = λ pNN(i) + (1− λ) pLM(i) (1)

The single weight λ (0 ≤ λ ≤ 1) was determined
by grid search on a linearly spaced grid of step size
0.1 to maximise the macro-averaged recall score for
the DiscoMT2015.test corpus (for English–French)
and the TEDdev corpus (for English–German). The
weights used by the submitted systems are λ = 0.5
for English–French and λ = 0.6 for English–
German. The fact that the optimal weight setting
assigns close to equal weight to the two systems for
both language pairs demonstrates that both systems
have complementary information to contribute and
both of them are useful to improve the overall re-
sult.

5 Results and Discussion

Table 1 shows the F-scores per class for each of the
two component systems and for the system com-
bination that we submitted as our primary system.
The most important observation that we can make
is the complete failure of the neural network model
to predict the infrequent classes: elle, elles and on
for English–French and er and man for English–
German. This is highly disappointing since we
hoped that the neural network, with its ability to
see potential antecedents, would be in a better posi-
tion to make accurate predictions for these classes.

Good performance for the French feminine plu-
ral class elles was a key motivating factor in our
initial development of the pronoun prediction net-
work (Hardmeier et al., 2013), but unfortunately
we have repeatedly struggled to produce similarly
good results with different data sets and tasks. In
this shared task, we are forced to conclude that the
effect of the neural network classifier is detrimental
for the French feminine singular and plural classes
and for the German masculine singular when com-
bined with the source-aware language model.

In the system combination, we do observe im-
provements over the source-aware language model
for all other classes, including the infrequent
generic classes on and man. For the latter two
classes, the neural network brings about an im-
provement in the combination even though it com-
pletely fails to predict the classes on its own.

In sum, the score patterns of our two component
systems suggest that the value added in this task
by the neural network stems from its better ability
to distinguish between the various impersonal pro-
noun classes rather than, as we had hoped, from
improved performance on anaphoric pronouns.
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