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Abstract

This paper describes the TALP–UPC sys-
tem in the Spanish–English WMT 2016
biomedical shared task. Our system is
a standard phrase-based system enhanced
with vocabulary expansion using bilin-
gual word embeddings and a character-
based neural language model with rescor-
ing. The former focuses on resolving out-
of-vocabulary words, while the latter en-
hances the fluency of the system. The two
modules progressively improve the final
translation as measured by a combination
of several lexical metrics.

1 Introduction

Machine Translation (MT) has been evolving in
recent years achieving successful translations as
shown by international evaluations such as WMT1

and increasing use of MT in commercial applica-
tions. However, specific domains like legal, bio-
medical, etc., still lag behind the state-of-the-art
MT systems. This can mostly be attributed to the
lack of available corpora. The new biomedical
task from WMT 2016 especially helps in improv-
ing our understanding in this direction.

In this paper, we describe our participation in
the WMT 2016 biomedical task. We participated
with a phrase-based SMT system enhanced with
bilingual word embeddings and a character-based
neural language model. Section 2 presents some
related work to our approach. Next, Section 3 in-
troduces the theoretical aspects of the system com-
ponents and Section 4 the experiments. Finally,
we justify our choice for the final submission and
draw the conclusions in Section 5.

1http://www.statmt.org/wmt16

2 Related Work

In this paper, we are interested in research in the
area that target OOVs and approaches to re-rank
n-best lists of translations.

Our work closely follows Vulic and Moens
(2015) and Zhao et al. (2015) in spirit, where word
vectors are used to induce bilingual lexicons of
words or phrases. We go a step further and build
lexicons from bilingual word embeddings to be
later used within an SMT system.

There is also a rich body of recent literature that
focuses on obtaining bilingual word embeddings
using aligned corpora (Bhattarai, 2012; Gouws et
al., 2015; Kočiskỳ et al., 2014). We approach the
problem differently and obtain embeddings sepa-
rately on monolingual corpora and then use super-
vision in the form of a small sparse bilingual dic-
tionary. This is similar to Mikolov et al. (2013b),
who obtain monolingual embeddings for both the
languages separately and then learn transforma-
tion for projecting the embeddings of words onto
embeddings of the word translation pairs using a
big bilingual dictionary.

On the other hand, there have been several
language models used for rescoring in SMT.
For example, neural feed-forward language mod-
els (Schwenk et al., 2006) have been used to
rescore both n-gram-based and phrase-based sys-
tems. Mikolov (2012) re-ranks n-best lists with
recurrent neural networks. Vaswani et al. (2013)
combine feed-forward language models, with rec-
tified linear units and noise-contrastive estimation.
Luong et al. (2015) propose to use deeper neu-
ral models which improve re-ranking. In this pa-
per, we are using Kim et al. (2016) a character-
based language model to re-rank the output of the
phrase-based system.
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3 The Translation System

The TALP-UPC translation system is built on
three different components. We describe their the-
oretical basis in the following subsections.

3.1 Phrase-based SMT

The standard phrase-based machine translation
system (Koehn et al., 2003) focuses on finding
the most probable target sentence given the source
sentence. The phrase-based system has evolved
from the noisy-channel to the log-linear model
which combines a set of feature functions in the
decoder, including the translation and language
model, the reordering model and the lexical mod-
els. Although the phrase-based system is a com-
moditized technology used at the academic and
commercial level, there are still many challenges
to solve, such as OOVs.

3.2 Vocabulary Expansion using Bilingual
Word-Embeddings

We look at this task as a bilinear prediction task as
proposed by (Madhyastha et al., 2014). The pro-
posed model makes use of word embeddings of
both languages with no additional features. The
basic function is formulated —the probability of
a target word given a source word— as log-linear
model and takes the following form:

Pr(t|s;W ) =
exp{φs̃(s)>Wφt̃(t)}∑
t′ exp{φs̃(s)>Wφt̃(t

′)} (1)

Where φ(.) denotes the n-dimensional distributed
representation of the words, and we assume we
have both source (φs̃) embeddings and target (φt̃)
embeddings.

Essentially, our problem reduces to: a) first get-
ting the corresponding word embeddings of the
vocabularies on both the languages on a signifi-
cantly large monolingual corpus and b) estimating
W given a relatively small dictionary. To learn W
we use the source word to target word dictionaries
as training supervision.

We learn W by minimizing the negative
log-likelihood of the dictionary using a nu-
clear norm regularized objective as: L(W ) =
−∑

s,t log(Pr(t|s;W )) + λ‖W‖∗. λ is the con-
stant that controls the capacity of W . To find the
optimum, we follow the previous work and use an
optimization scheme based on Forward-Backward
Splitting (FOBOS) (Singer and Duchi, 2009).

Table 1: Size of the parallel (top) and monolin-
gual (bottom) corpora used to train the translation
systems

Corpus Segments Words Vocab

Biomedical 1 · 106 20 · 106 0.3 · 106
Quest 13 · 106 340 · 106 0.5 · 106

Bio-mono/en 0.1 · 106 2 · 106 0.1 · 106
Bio-mono/es 0.01 · 106 0.1 · 106 0.01 · 106
Wikipedia/en 92 · 106 1900 · 106 2.0 · 106
Wikipedia/es 20 · 106 465 · 106 0.8 · 106

3.3 Character-based Neural Language Model

Language models based on Recurrent Neural Net-
works are currently one of the best performing ap-
proaches in terms of perplexity (Mikolov et al.,
2010). They are also a good re-ranking option
in tasks such as speech recognition and machine
translation. However, the standard lookup-based
word embeddings are limited to a finite-size vo-
cabulary for both computational and sparsity rea-
sons. Moreover, the orthographic representation
of the words is completely ignored. The standard
learning process is blind to the presence of stems,
prefixes, suffixes and any other kind of affixes in
words.

As a solution to those drawbacks, new alterna-
tive character-based word embeddings have been
recently proposed for tasks as language model-
ing (Kim et al., 2016; Ling et al., 2015), parsing
(Ballesteros et al., 2015) or part-of-speech tagging
(Ling et al., 2015; Santos and Zadrozny, 2014).
For our system we selected the best character-
based embedding architecture proposed by Kim et
al. (Kim et al., 2016). The computation of the rep-
resentation of each word starts with a character-
based embedding layer that associates each word
(sequence of characters) with a sequence of vec-
tors. This sequence of vectors is then processed
with a set of 1D convolution filters of different
lengths (from 1 to 7 characters) followed with a
max pooling layer and two additional highway
layers. The output of the second highway layer
provide us with the final vector representation of
each source word that replaces the standard source
word embedding in the recurrent neural network
used for language modeling (Kim et al., 2016).
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4 Experimental Framework

4.1 Data

Our main corpus is the compilation of the corpora
assigned for the shared task, which was built us-
ing scientific publications gathered from the Sci-
elo database. We focus on the Spanish–English
language pair, for which the size of the corpora is
summarised in Table 1. We further increase the
vocabulary of the system by using standard paral-
lel corpora for the Spanish–English language pair
(i.e., UN corpora, Europarl corpora, News corpus,
etc.2). This corpus appears as Quest in Table 1.
For the monolingual corpus we use an English and
Spanish Wikipedia dump3.

The corpora has been pre-processed with a stan-
dard pipeline for both Spanish and English: to-
kenizing and keeping parallel sentences between
1 and 80 words. Additionally, for Spanish we
used Freeling (Padró and Stanilovsky, 2012) to to-
kenize pronouns from verbs (i.e. comenzándose to
comenzando + se), we also split prepositions and
articles, i.e. del to de + el and al to a + el. This
was done for similarity to English.

We divided the provided parallel corpus into
training, development and test sets. Sentences
from development and test set were taken ran-
domly, proportionally to the amount of Medline
and Scielo (biomedical and health) sources and
only from unique parallel sentences.

Since the domain of the test set is the same as
the domain of training corpus, the number of OOV
words is small. Table 2 shows the total number and
percentage of unknown words in our in-house de-
velopment and test sets with respect to translation
tables (see the following section). For compari-
son, we also include the figures for the two test
sets made available for the final evaluation.

4.2 System Description

As introduced in the previous section, three differ-
ent modules build our system: the SMT engine,
the module to resolve OOVs and the module for
re-reranking.

SMT Engine. Three different state-of-the-art
phrase-based SMT translation systems are trained

2In particular, we use the parallel data given
for the Quality Estimation task at WMT13, http:
//statmt.org/˜buck/wmt13qe/wmt13qe_t13_
t2_MT_corpus.tgz

3Dumps downloaded from https://dumps.
wikimedia.org in January 2015.

on the parallel corpora detailed in Table 1. For the
purely in-domain system, we use only the biomed-
ical data made available for the task (STT systems,
small translation table). For more general systems,
we also use the Quest data; we name these systems
BTT (big translation table).

For the in-domain system, a 5-gram language
model is estimated on the target side of the cor-
pus using interpolated Kneser-Ney discounting
with SRILM (Stolcke, 2002) (SLM, small lan-
guage model). For the extended systems, we use
all the monolingual corpora available and the tar-
get side of the large parallel corpus (BLM, big
language model). Word alignment is done with
GIZA++ (Och and Ney, 2003) and both phrase ex-
traction and decoding are done with the Moses
package (Koehn et al., 2007). The optimisa-
tion of the weights of the model is trained with
MERT (Och, 2003) against the BLEU (Papineni
et al., 2002) evaluation metric on devBio.

OOVs resolution. This module first obtains
bilingual embeddings from the monolingual ones
as explained in Section 3.2. For estimating mono-
lingual word vector models, we use the CBOW al-
gorithm as implemented in the Word2Vec pack-
age (Mikolov et al., 2013a) using a 5-token win-
dow. We obtain 300 dimension vectors for English
and Spanish from the monolingual and the source
side of the parallel corpora in Table 1. The bilin-
gual counterpart has been estimated using 34,806
words from the Apertium bilingual dictionary4 as
seed lexicon divided for training and validation.
Each bilingual pair has an associated probability
given by Eq. 1. We keep the top-10 pairs for each
out-of-vocabulary word in the test (development)
set and include these new translation options at
decoding time. Since we are only dealing with
OOVs, the new options do not interact with the
other phrase pairs in the translation table, but there
is interaction with the language model.

Re-ranking. The 1000-best list of translations
given by the SMT engine is re-ranked using the
characted-based language model described in Sec-
tion 3.3. It has 1D convolutional filters of width
[1,2,3,4,5,6,7] and size [50, 100, 150, 200, 200,
200, 200] for a total of 1,100 filters with a tanh ac-
tivation, 2 highway layers with a ReLU activation,
and 2 LSTM with 650 hidden units. The network

4http://repositori.upf.edu/handle/
10230/17110
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Table 2: Figures –tokens and OOVs– on the development and test sets used in the experiments

English Spanish

Seg. Tokens OOVSTT OOVBTT Tokens OOVSTT OOVBTT

devBio 1000 18967 16 (0.08%) 2 (0.01%) 19931 14 (0.07%) 6 (0.03%)
testBio 1000 26105 31 (0.11%) 19 (0.07%) 27651 25 (0.09%) 9 (0.03%)

Biological 4344 115709 434 (0.37%) 333 (0.29%) 126008 415 (0.33%) 254 (0.20%)
Health 5111 125624 133 (0.10%) 98 (0.08%) 146368 160 (0.11%) 40 (0.03%)

has been trained on the monolingual part of the in-
domain data (Biomedical corpus in Table 1).

4.3 Results
We evaluate the performance of each module
when added to the three standard SMT sys-
tems built with different amount of training data
(STTSLM, STTBLM, BTTBLM). In the follow-
ing, we denote the module for OOV resolution
with oov and the module for re-reraking with
reranked. For the total.reranked system, we re-
ranked the n-best lists for the thirteen systems with
our neural language model. We conduct the eval-
uation automatically with a set of lexical metrics
calculated with the Asiya toolkit5 (Giménez and
Màrquez, 2010). Table 3 reports the results for
the English-to-Spanish translation systems and Ta-
ble 4 for the Spanish-to-English ones.

The first thing to notice is that the best trans-
lation is obtained when only in-domain data
are used to build the translation model. This
is true in both directions. When going from
Spanish into English, we obtain 0.45 BLEU
points of improvement when adding the oov mod-
ule to the in-domain system (STTSLM.oov) and
an additional 0.15 with the re-ranking module
(STTSLM.oov.reranked). Even if the number of
OOV is only a 0.09% in this test set, the improve-
ment with this module is consistent through all
metrics. The main reason is that making available
new translation options at decoding time allows
the language model to modify the sentence as a
whole, and the neighbouring words can be modi-
fied accordingly.

In the English-to-Spanish direction, the trends
are less homogeneous through the set of met-
rics. For BLEU and METEOR (with the stem-
ming variant, MTRst), the best system is still
STTSLM.oov. However, with NIST and TER, the
best system is STTBLM. In this case, enlarging
the language model has a similar effect as injecting

5http://nlp.cs.upc.edu/asiya

new vocabulary through OOV translations. This
is because only a 31% of the OOV belong to the
biomedical domain, suggesting that in this case
and for an in-domain test set, it is important to gain
fluency on the general domain phrases. The effect
of the re-ranking module is more evident in this di-
rection: the more data one uses, the more distinct
the final n-best list is and the more improvement
one can obtain. For the in-domain system the re-
ranking is not promoting a better translation, but
for the general system the improvement is signifi-
cant.

5 Conclusions

We have built thirteen translation systems per di-
rection. The ones chosen for the final submis-
sion follow two criteria: i) they have a top per-
formance according to BLEU and METEOR (the
official metrics) and, ii) they allow us a coher-
ent comparison among languages and methodolo-
gies. With this criteria, our primary submission
both for the health and biological test sets is the
strictly in-domain system with the OOV module
(STTSLM.oov). For comparison, we also submit-
ted our baseline as a second run: the same system
without the OOV module (STTSLM). Finally, we
submitted as third run a system with re-ranking of
a 1000-best list. Due to time constraints, we could
not submit the system that re-ranks all the n-best
lists for the thirteen systems, total.reranked, but
we used instead the two most promising options
per direction.

According to the preliminary results of the
shared task, the OOV module consistently im-
proves the translations with respect to our base-
line specially in the health subdomain as measured
by BLEU. The effect is similar to the results in
our in-house test set. On the other hand, the re-
ranking module is also always better than the in-
domain phrase-based baseline and, in this case, the
performance on the competition test set is signif-
icantly better than the one in our test set, espe-
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Table 3: Automatic evaluation of the in-house test set for the En2Es systems

WER PER TER BLEU NIST GTM-2 MTRst MTRpa RG-S* ULC

BTTBLM.oov 48.45 29.82 44.27 43.84 8.81 36.30 61.58 62.87 49.85 66.03
BTTBLM.oov.reranked 47.58 29.74 43.56 44.43 8.90 36.97 62.01 63.25 50.43 67.16
BTTBLM 47.74 30.39 43.72 43.61 8.86 36.51 61.50 62.76 49.98 66.19
BTTBLM.reranked 47.64 29.91 43.52 44.24 8.89 36.90 61.88 63.14 50.29 66.95

STTBLM.oov 48.00 29.60 43.73 44.32 8.87 36.65 62.13 63.32 50.12 66.88
STTBLM.oov.reranked 47.22 29.85 43.11 44.57 8.96 37.21 62.22 63.42 50.44 67.57
STTBLM 47.01 29.93 42.81 44.51 8.98 37.36 62.28 63.47 50.49 67.75
STTBLM.reranked 47.10 29.91 42.96 44.65 8.97 37.40 62.31 63.46 50.68 67.78

STTSLM.oov 47.84 29.28 43.61 44.99 8.88 37.36 62.33 63.44 50.51 67.60
STTSLM.oov.reranked 47.41 29.82 43.25 44.52 8.94 37.29 62.25 63.36 50.68 67.54
STTSLM 47.29 29.84 43.16 44.64 8.96 37.58 62.27 63.42 50.56 67.71
STTSLM.reranked 47.40 29.93 43.24 44.39 8.94 37.36 62.21 63.30 50.56 67.44

total.reranked 47.06 29.82 43.03 44.75 8.98 37.56 62.33 63.53 50.66 67.88

Table 4: Automatic evaluation of the in-house test set for the Es2En systems

WER PER TER BLEU NIST GTM-2 MTRst MTRpa RG-S* ULC

BTTBLM.oov 50.95 29.98 46.79 40.94 8.59 35.02 35.03 37.28 49.13 65.30
BTTBLM.oov.reranked 50.41 29.75 46.23 41.58 8.65 35.52 35.25 37.48 49.50 66.24
BTTBLM 50.21 29.33 45.98 41.97 8.68 35.88 35.44 37.65 50.01 66.97
BTTBLM.reranked 50.41 29.63 46.28 41.62 8.65 35.51 35.27 37.53 49.50 66.29

STTBLM.oov 50.75 29.95 46.68 40.82 8.61 34.83 35.05 37.12 49.15 65.27
STTBLM.oov.reranked 50.19 29.22 46.04 42.10 8.71 35.72 35.57 37.65 49.95 67.04
STTBLM 50.91 29.74 46.74 41.16 8.62 34.97 35.33 37.40 49.39 65.67
STTBLM.reranked 50.27 29.08 46.01 42.19 8.72 35.79 35.62 37.66 50.08 67.20

STTSLM.oov 49.79 29.45 45.62 42.16 8.75 35.94 35.57 37.60 50.13 67.31
STTSLM.oov.reranked 50.15 29.08 45.99 42.30 8.71 35.88 35.65 37.66 50.10 67.30
STTSLM 50.62 29.53 46.46 41.71 8.65 35.47 35.46 37.48 49.71 66.34
STTSLM.reranked 50.25 29.12 46.04 42.13 8.70 35.76 35.59 37.62 49.97 67.09

total.reranked 50.06 29.42 45.93 42.06 8.71 35.80 35.47 37.65 49.93 67.00

cially for English-to-Spanish. Run 3, the system
that includes re-ranking with a char-based neural
language model, is 2 points of BLEU over the av-
erage value among participants in the biological
subdomain and 1 point of BLEU on the health sub-
domain.
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Open Toolkit for Automatic Machine Translation
(Meta-)Evaluation. The Prague Bulletin of Mathe-
matical Linguistics, 94:77–86.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. BilBOWA: Fast Bilingual Distributed Rep-
resentations without Word Alignments. In Proceed-
ings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July
2015, pages 748–756, July.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI’16).

467
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