
Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 423–427,
Berlin, Germany, August 11-12, 2016. c©2016 Association for Computational Linguistics

ILLC-UvA Adaptation System (Scorpio) at WMT’16 IT-DOMAIN Task

Hoang Cuong and Stella Frank and Khalil Sima’an
Institute for Logic, Language and Computation

University of Amsterdam
Science Park 107, 1098 XG Amsterdam, The Netherlands

Abstract

This paper describes Scorpio, the ILLC-
UvA Adaptation System submitted to the
IT-DOMAIN translation task at WMT
2016, which participated with the lan-
guage pair of English-Dutch. This sys-
tem consolidates the ideas in our previous
work on latent variable models for adapta-
tion, and demonstrates their effectiveness
in a competitive setting.

1 Introduction

ILLC-UvA participated in the WMT 2016 Shared
Task of Machine Translation for the Information
Technology (IT) Domain. In this paper, we briefly
describe our system, which was submitted for the
language pair of English–Dutch. Our system uses
simple latent domain variable models for adapta-
tion proposed in Cuong and Sima’an (2014b) and
Cuong and Sima’an (2014a). More specifically,
we enhance a standard phrase-based baseline sys-
tem (Koehn et al., 2007) with adapted translation
models and language models.

We equip these models with a latent domain
variable and adapt them to an in-domain task rep-
resented by a seed corpus. We do not adapt the re-
ordering models as we find reordering adaptation
does not help much for this language pair. Several
additional adapted features proposed in Cuong
and Sima’an (2015) and Cuong et al. (2016)
are also deployed, including domain-specific and
domain-invariant translation features.

Despite the simplicity of our adaptation mod-
els, our results show effective adaptation perfor-
mance for the task. This system consolidates the

ideas in our previous work of latent variable mod-
els for adaptation, and shows their effectiveness in
a competitive setting.

2 Data

We use all the training data provided by the orga-
nizers. Table 1 summarizes the data.

English-Dutch
In-
Domain

Sents 211K
Words 1.69M 1.65M

General-
Domain

Sents 1.95M
Words 52.60M 52.95M

Internal
Dev

Sents 1800
Words 41.35K 42.06K

Internal
Test

Sents 200
Words 6.4K 6.3K

Table 1: Data Preparation.

More specifically, we use the European Parlia-
ment (Europarl) parallel corpus (Koehn, 2005) as
general-domain data. We use the corpora of IT-
related terms from Wikipedia and Localization PO
files as the in-domain data. For training Dutch lan-
guage models we use the monolingual Dutch side
of Europarl, together with in-domain data.

We split the provided development data (2K
sentence pairs) into two different internal datasets:

• A dev set of 1800 sentence pairs used for sys-
tem optimization.

• A test set of 200 sentence pairs used for eval-
uation.

Preprocessing

All the data is preprocessed before training. For
preprocessing we remove all sentences that have

423



more than 80 tokens. The data is tokenized and
lowercased using the standard Moses toolkit (tok-
enizer.perl and lowercase.perl). A recaser is also
built for postprocessing the system output. Fi-
nally, the standard Moses detokenizer script is
used to detokenize the output.

For the submission, we also apply a few addi-
tional rules that we believe would help recasing
and detokenization, such as:1

• “ ’s”→ ”’s” (We remove spaces before ’s.)

• “> a” → “> A”, “> b” → “> B”, etc. (We
uppercase the first character after > .)

• If the target sentence contains the string “> ”
(which has a space) but the source sentence con-
tains only “>” (which does not have a space),
we replace all “> ” with “>”.

Despite those additional efforts, we found there
is still (1): a huge difference in final performance
between BLEU case-insensitive and BLEU case-
sensitive; (2): a quite big difference between
BLEU scores on the final test set and our (ad-
mittedly small) validation set. This suggests that
there is still lots of room for improving our final
translations with better de-tokenization. However,
this was not the focus of our submission.

3 System Description

We first train a baseline with standard phrase-
based system, using all the parallel data, i.e. the
concatenation of in-domain and general-domain
data. The system includes MOSES (Koehn et
al., 2007) baseline feature functions, plus eight
hierarchical lexicalized reordering model feature
functions (Galley and Manning, 2008). The train-
ing data is first word-aligned using GIZA++ (Och
and Ney, 2003) and then symmetrized with grow(-
diag)-final-and (Koehn et al., 2003). We limit the
phrase length to a maximum of seven words.

Somewhat surprisingly, we find that increasing
the maximum number of words for phrases from
three to seven significantly improves the baseline
on the adaptation task. We believe this is quite
important. It suggests that for validating domain
adaptation methods over a phrase-based system,

1However, we are not sure whether these “heuristics”
rules are correct or not, as there is no way to verify them.

the system itself should be built over phrases with
a reasonable maximum length (e.g. seven words).

We use the phrase extraction component from
Stanford Phrasal (Cer et al., 2010), instead of the
phrase extraction component included in Moses.
Our experience has been that this usually produces
better translation accuracy, making the baseline
stronger.

Note that we do not filter any phrases. All
phrases generated from the word alignments are
kept. In this way, instead of discarding phrases
with small translation probabilities, we keep all
of them and assign a fixed and small translation
probability of 0.0001 in such cases.

To tune the system, we use the k-best batch
MIRA (Cherry and Foster, 2012). Finally, we use
MOSES as a decoder (Koehn et al., 2007).

Our Dutch language models are interpolated 4-
grams with Kneser-Ney smoothing, estimated us-
ing KenLM (Heafield et al., 2013).

In the following, we denote features from the
baseline system as Concatenation. To improve
the baseline, we enhance the system with addi-
tional adaptation models that are trained by uti-
lizing the in-domain data. The following sections
will describe our methods in detail.

3.1 Biasing translation models

Given the general-domain corpus and the small
in-domain corpus, we first bias the learning of
translation models over the general-domain cor-
pus, with guidance from the in-domain data that
directly represents the task. We use simple latent
domain variable model for adaptation proposed in
(Cuong and Sima’an, 2014b; Cuong and Sima’an,
2014a). There are four translation models we aim
to learn here, specifically two translation models
and two lexical weightings. More technical de-
tail can be found in (Cuong and Sima’an, 2014b;
Cuong and Sima’an, 2014a).

Along with our biased translation models
(Weighted), we also train translation models
directly on the provided in-domain data (In-
domain). Note that our biased translation models
are sharp in terms of having low entropies in trans-
lation distributions. Meanwhile, the translation
statistics we induce from the in-domain are even
sharper. Meanwhile, the translation statistics we
induce from the in-domain are even sharper. Our

424



experience suggests the statistics induced from in-
domain data still incrementally contributes to the
adaptation.

We combine all three different types of trans-
lation models together. The combination is op-
timized over the (internal) development set using
linear combination (Sennrich, 2012).

To have an idea what the combining weights
look like, Table 2 presents results for four trans-
lation features, i.e. the translation models (TM)
and lexical weights (LEX) in both directions (en-
nl and nl-en).

Combining weights for translation features
Concat. Weighted In-Domain

TM en-nl 0.002 0.724 0.274
Lex en-nl 0.001 0.594 0.405
TM nl-en 0.002 0.755 0.243
Lex nl-en 0.001 0.573 0.426

Table 2: Combining weights

We see that most of the adaptation is credited
to the models trained with biased weighting. The
models trained on the in-domain data still partially
contributes to the adaptation. On the other hand,
the model trained on the simple concatenation of
the data does not contribute much.

3.2 Biasing language models

Along with biasing the translation models, we
find it useful to bias the language models as well.
With similar simple latent domain variable mod-
els (but in this case, trained on target side data
only), we learn the relevance of each sentence
with respect to the target domain. We train 3-
gram language models with relevance weights. To
avoid overfitting, we find that it is necessary to ap-
ply an expected smoothing approach in training.
We choose expected Kneser-Ney smoothing tech-
nique (Zhang and Chiang, 2014) as it is simple
and achieves state-of-the-art performance on the
language modeling problem.

Note that we also train a 3-gram language
model directly on the provided in-domain data,
as well as another one trained on the concatena-
tion of in- and general- domain data. This results
in three different language models, similar to the
three translation models we trained above. They
are treated as separate dense features for our sys-
tem.

We provide the combining weights (after tun-
ing) in Table 3, in order to demonstrate the relative
importance of the different language models.

Tuning weights for language modeling features
Concatenation Weighted In-Domain
0.0336 0.0397 0.009

Table 3: Optimized weights for language models

All language models incrementally contribute
to the adaptation performance. The model that
trains with biased weighting contribute most.
Meanwhile, the model trained on the concatena-
tion of all data also contributes significantly to the
adaptation performance. The model trained on the
in-domain data, however, contributes least, proba-
bly because its size is relatively small.

3.3 Biasing reordering models
We also try adapting reordering models with the
same technique. This, however, does not lead to
much improvement, at least for the language pair
we deployed. We thus drop this direction.

3.4 Additional adaptation features
Following (Cuong and Sima’an, 2015), we find
it useful to exploit the word-level feature derived
from IBM model 1 score (Och et al., 2004). Note
that adding word-level features from both trans-
lation sides does not help much, as observed by
(Och et al., 2004). We thus add only one from
a translation side. More technical detail can be
found in Cuong and Sima’an (2015).

Finally, we found it useful to add domain-
invariant translation features for SMT. Specifi-
cally, we push the system to make safer choices,
preferring domain-invariant translations which
work well across latent domains, over risky
domain-specific alternatives. More technical de-
tail can be found in Cuong et al. (2016). The im-
provement we achieve, however, is quite modest
compared to what we achieve by utilizing the in-
domain data. Nonetheless, we believe this is very
natural, as the most effective adaptation method
always comes from providing more in-domain
data.

4 Results

Our baseline, as described earlier, is created from
the concatenation of all parallel data provided

425



by the organizer. The language models are also
trained by concatenating all monolingual data pro-
vided by the organizer. The baseline has 17 trans-
lation and language modeling features in total.
Meanwhile, our system has 23 features (17 + 6
adapted features).

Table 4 and 5 present translation results on the
internal dev and test sets respectively, with BLEU
(Papineni et al., 2002), METEOR (Denkowski
and Lavie, 2011), TER (Snover et al., 2006) and
finally BEER (Stanojević and Sima’an, 2014).

English-Dutch
System BLEU METEOR TER BEER
Baseline 28.1 28.7 53.3 18.4
Scorpio 30.1 29.9 51.6 20.9

Table 4: Results on Dev set

English-Dutch
System BLEU METEOR TER BEER
Baseline 34.5 32.9 45.3 24.7
Scorpio 36.8 34.5 43.1 28.7

Table 5: Results on Test set

Note that these results are case-insensitive,
without the post-processing steps for detokeniz-
ing/recasing sentences as described above.

Despite the simplicity of the adaptation mod-
els, our experiments suggest efficient adaptation
performance for the task. The adaptations consis-
tently improve all measures by more than 1 point,
occasionally much more.

5 Conclusion

We have described our ILLC-UvA adaptation sys-
tem (Scorpio) at WMT’16 IT-DOMAIN Task.
Relying on simple latent domain variable mod-
els proposed in our previous work (Cuong and
Sima’an, 2014b; Cuong and Sima’an, 2014a),
the system shows promising performance for the
adaptation task.

Acknowledgements

We thank two anonymous reviewers for their con-
structive comments on earlier versions. The first
author is supported by the EXPERT (EXPloit-
ing Empirical appRoaches to Translation) Initial
Training Network (ITN) of the European Union’s
Seventh Framework Programme. The second au-
thor is supported by funding from the European

Union’s Horizon 2020 research and innovation
programme under grant agreement Nr. 645452.
The third author is supported by VICI grant nr.
277-89-002 from the Netherlands Organization
for Scientific Research (NWO).

References
Daniel Cer, Michel Galley, Daniel Jurafsky, and

Christopher D. Manning. 2010. Phrasal: A toolkit
for statistical machine translation with facilities for
extraction and incorporation of arbitrary model fea-
tures. In NAACL HLT 2010 Demonstration Session.

Colin Cherry and George Foster. 2012. Batch tun-
ing strategies for statistical machine translation. In
NAACL HLT.

Hoang Cuong and Khalil Sima’an. 2014a. Latent
domain phrase-based models for adaptation. In
EMNLP.

Hoang Cuong and Khalil Sima’an. 2014b. La-
tent domain translation models in mix-of-domains
haystack. In COLING.

Hoang Cuong and Khalil Sima’an. 2015. Latent do-
main word alignment for heterogeneous corpora. In
Proceedings of NAACL-HLT.

Hoang Cuong, Khalil Sima’an, and Ivan Titov. 2016.
Adapting to all domains at once: Rewarding domain
invariance in SMT. In TACL.

Michael Denkowski and Alon Lavie. 2011. Meteor
1.3: Automatic metric for reliable optimization and
evaluation of machine translation systems. In Pro-
ceedings of the Sixth Workshop on Statistical Ma-
chine Translation, WMT ’11. Association for Com-
putational Linguistics.

Michel Galley and Christopher D. Manning. 2008. A
simple and effective hierarchical phrase reordering
model. In EMNLP.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied kneser-ney language model estimation. In ACL
(Short Papers).

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
NAACL.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In ACL (Interactive Poster and Demonstration
Sessions).

426



Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In MTSummit.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Comput. Linguist., 29(1):19–51, March.

Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur,
Anoop Sarkar, Kenji Yamada, Alex Fraser, Shankar
Kumar, Libin Shen, David Smith, Katherine Eng,
Viren Jain, Zhen Jin, and Dragomir Radev. 2004.
A smorgasbord of features for statistical machine
translation. In HLT-NAACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In ACL.

Rico Sennrich. 2012. Perplexity minimization for
translation model domain adaptation in statistical
machine translation. In EACL.

Matthew Snover, Bonnie Dorr, R. Schwartz, L. Micci-
ulla, and J. Makhoul. 2006. A study of translation
edit rate with targeted human annotation. In AMTA.

Miloš Stanojević and Khalil Sima’an. 2014. Beer:
Better evaluation as ranking. In WMT.

Hui Zhang and David Chiang. 2014. Kneser-Ney
smoothing on expected counts. In ACL.

427


