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Abstract

This paper presents the University of Cam-
bridge submission to WMT16. Motivated
by the complementary nature of syntac-
tical machine translation and neural ma-
chine translation (NMT), we exploit the
synergies of Hiero and NMT in different
combination schemes. Starting out with a
simple neural lattice rescoring approach,
we show that the Hiero lattices are often
too narrow for NMT ensembles. There-
fore, instead of a hard restriction of the
NMT search space to the lattice, we pro-
pose to loosely couple NMT and Hiero by
composition with a modified version of the
edit distance transducer. The loose combi-
nation outperforms lattice rescoring, espe-
cially when using multiple NMT systems
in an ensemble.

1 Introduction

Previous work suggests that syntactic machine
translation such as Hiero (Chiang, 2007) and
Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Cho et al., 2014; Bahdanau et al., 2015) are very
different and have complementary strengths and
weaknesses (Neubig et al., 2015; Stahlberg et
al., 2016). Recent attempts to combine syntac-
tic SMT and NMT report large gains over both
baselines. Authors in (Neubig et al., 2015) used
NMT to rescore n-best lists which were gener-
ated with a syntax-based system. They report that
even with 1000-best lists, the gains of using the
NMT rescorer often do not saturate. Syntactically
Guided NMT (Stahlberg et al., 2016, SGNMT)
constrains the NMT search space to Hiero transla-
tion lattices which contain significantly more hy-
potheses than n-best lists. In SGNMT, an NMT

beam decoder with a relatively small beam can ex-
plore spaces much larger than n-best lists, yielding
BLEU score improvements with far fewer expen-
sive NMT evaluations.

However, these rescoring approaches enforce
an exact match between the NMT and syntactic
decoders. In general, this kind of hard restric-
tion is best avoided when combining diverse sys-
tems (Liu et al., 2009; Frederking et al., 1994). For
example, in speech recognition, ROVER (Fiscus,
1997) is a system combination approach based on
a soft voting scheme. In machine translation, min-
imum Bayes-risk (MBR) decoding (Kumar and
Byrne, 2004) can be used to combine multiple sys-
tems (de Gispert et al., 2009). MBR also does not
enforce exact agreement between systems as it dis-
tinguishes between the hypothesis space and the
evidence space (Goel and Byrne, 2000; Tromble
et al., 2008).

We find that Hiero lattices generated by gram-
mars extracted with the usual heuristics (Chiang,
2007) do not provide enough variety to explore the
full potential of neural models, especially when
using NMT ensembles. Therefore, we present
a “soft” lattice-based combination scheme which
uses standard operations on finite state transduc-
ers such as composition. Our method replaces
the hard combination in previous methods with a
similarity measure based on the edit distance, and
gives the NMT decoder more freedom to diverge
from the Hiero translations. We find that this loose
coupling scheme is especially useful when using
NMT ensembles.

2 Combining Hiero and NMT via Edit
Distance Transducer

In contrast to the strict coupling in SGNMT, we
propose to loosely couple Hiero and NMT via
an edit distance transducer and shortest distance
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(a) Standard edit distance transducer. (b) Modified edit distance transducer E. ‘a’ is an NMT
OOV.

Figure 1: “Flower automata” for calculating edit distances over the alphabet {a, b,UNK}.

search. With loose coupling, the NMT decoder
is not restricted to the Hiero lattice as in previous
work, but runs independently to produce transla-
tion lattices on its own, which are then combined
with the Hiero lattices. The combination does
not require an exact match. Instead, we will de-
scribe a procedure for combining NMT and Hi-
ero that captures similarity under the edit distance
and both the NMT and Hiero translation system
scores. This scheme is implemented efficiently
using standard FST operations (Allauzen et al.,
2007). First, we introduce the FST composition
operation and the edit distance transducer. We will
describe the whole pipeline in Sec. 2.3.

2.1 Composition of Finite State Transducers
The composition of two weighted transducers T1,
T2 (denoted as T1 ◦ T2) over a semiring (K,⊕,⊗)
is defined following (Mohri, 2004)

[T1 ◦T2](x, y) =
⊕

z

T1(x, z)⊗T2(z, y). (1)

We will make extensive use of this operation as
tool for building complex automata which make
use of both the NMT and Hiero translation lattices.

2.2 The Edit Distance Transducer
Composition can be used together with a “flower
automaton” to calculate the edit distance between
two sequences (Mohri, 2003). The edit distance
transducer shown in Fig. 1(a) transduces a se-
quence x to another sequence y over the alphabet
{a, b} and accumulates the number of edit opera-
tions via the transitions with cost 1. In our case,
x corresponds to an NMT hypothesis which is to
be combined with a Hiero hypothesis y. In con-
trast to SGNMT, where we require an exact match
between NMT and Hiero (up to UNKs), our edit-
distance-based scheme allows different hypothe-
ses to be combined. We replaced the standard

definition of the edit distance transducer (Mohri,
2003) by a finer-grained model designed to work
well for combining NMT and Hiero. Instead of
uniform costs, we lower the cost for UNK substi-
tutions as we want to encourage substituting NMT
UNKs by words in the Hiero translation. We dis-
tinguish between three types of edit operations.

• Type I: Substituting UNK with a word out-
side the NMT vocabulary is free.

• Type II: For substitutions of UNK with a
word inside the NMT vocabulary we add the
cost λsub.

• Type III: All other edit operations are penal-
ized with cost λedit (and λedit > λsub).

We will refer to the modified edit distance trans-
ducer as E. Fig. 1(b) shows E over the alphabet
{a, b,UNK}, with ‘a’ being an NMT OOV.

2.3 Loose Coupling of Hiero and NMT
Our edit-distance-based scheme combines an
NMT translation lattice N with a Hiero transla-
tion lattice H . Weights in N and H are scaled
by λnmt and λhiero, respectively. The similarity
measure between NMT and Hiero translations is
parametrized with λins, λedit, and λsub. We keep
the various costs separated by using transducers
with tropical sparse tuple vector semirings (Igle-
sias et al., 2015). Instead of single real-valued arc
weights, this semiring uses vectors which can hold
multiple features. The inner product of these vec-
tors with a constant parameter vector determines
the final weights on the arcs1. The sparse tu-
ple vector semiring enables us to optimize the λ-
parameters with LMERT (Macherey et al., 2008)
on a development set.

1The ucam-smt tutorial contains details to the
tropical sparse tuple vector semiring: http://ucam-
smt.github.io/tutorial/basictrans.html#lmert veclats tst
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(a) Example Hiero lattice H .

(b) Example NMT lattice N .

(c) Transducer with UNK insertion arcs: Replace(N, UNK, U).

(d) Best path in the combined transducer C. Hiero scores are omitted in this figure.

(e) Projection of the best path: ΠUNK(ShortestPath(C)). The final hypothesis is die regionale Politik in Gross-
wahlstadt darf jedoch nicht leiden.

Figure 2: Combining Hiero and NMT via edit distance transducer.

Examples for H and N are shown in Fig. 2(a)
and Fig. 2(b). The shortest path in H containing
the string nicht erlaubt sein sollte zu has grammat-
ical and stylistic flaws but is complete, whereas
there is a better path in N with an UNK. Our
goal is to merge these two hypotheses by using the
NMT translation in N with the UNK replaced by
a word from the Hiero lattice H .

1. Adding UNK insertions. We found that of-
ten NMT produces an isolated UNK token,
even if multiple tokens are required. There-
fore, we allow extending a single UNK to-
ken to a sequence of up to three UNK to-
kens. This is realized by replacing UNK
arcs in N with the transducer U shown in
Fig. 3 using OpenFST’s Replace operation.
Fig. 2(c) shows the result of the replace oper-
ation when applied to the example lattice N
in Fig. 2(b). We denote this operation as fol-
lows:

Replace(N, UNK, U) (2)

Figure 3: UNK extension transducer U .

2. Composition with the edit distance trans-
ducer. The next step finds the edit dis-
tances to the Hiero hypotheses as described
in Sec. 2.2.

C := Replace(N, UNK, U) ◦ E ◦H (3)

3. Shortest path. The above operation gener-
ates very large lattices, and dumping all of
them is not feasible. We could use disam-
biguation (Iglesias et al., 2015; Mohri and
Riley, 2015) on the combined transducerC to
find the best alignment for each unique NMT
hypothesis. However, we only need the sin-
gle shortest path in order to generate the com-
bined translation.

ShortestPath(C) (4)

4. Projection. A complete path in the trans-
ducer C has an NMT hypothesis on the input
labels (marked green in Fig. 2(d)) and a Hiero
hypothesis on the output labels (marked blue
in Fig. 2(d)). Therefore, we can generate dif-
ferent translations from the best path in C. If
we project the input labels on the output la-
bels with OpenFST’s Project, we obtain a
hypothesis t̂NMT in the NMT lattice N .

t̂NMT = Π1(ShortestPath(C)) (5)
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However, t̂NMT still contains UNKs. If we
project on the input labels, we end up with
the aligned Hiero hypothesis without UNKs
(blue labels in Fig. 2(d))

t̂Hiero = Π2(ShortestPath(C)) (6)

but we do not use the NMT translation di-
rectly. Therefore, we introduce a new projec-
tion function ΠUNK which switches between
preserving symbols on the input and output
tapes: if the input label on an arc is UNK,
we write the output label over the input label.
Otherwise, we write the input label over the
output label. This is equivalent to projecting
the output labels to the input labels only if the
input label is UNK, and then projecting the
input labels to the output labels. As shown in
Fig. 2(e), we obtain the NMT hypothesis, but
the UNK is replaced by the matching word
Grosswahlstadt from the Hiero lattice. Thus,
the final combined translation is described by
the following term:

t̂comb = ΠUNK(ShortestPath(C)) (7)

In general, the final hypothesis t̂comb is a mix
of an NMT and a Hiero hypothesis. We do not
search for t̂comb directly but for pairs of NMT and
Hiero translations which optimize the individual
model scores as well as the distance between them.
Stated more formally, the shortest path in C yields
a pair (t̂NMT , t̂Hiero) for which holds

t̂NMT , t̂Hiero = argmin
(tN ,tH)∈N×H

(
dedit(tN , tH)

+λnmt · SN (tN |s) + λhiero · SH(tH |s)
) (8)

where dedit(tN , tH) is the modified edit distance
between tN and tH (according E and U ), and
SN (tN |s) and SH(tH |s) are the scores NMT and
Hiero assign to the translations given source sen-
tence s. If we interpret these scores as negative
log-likelihoods, we arrive at a probabilistic inter-
pretation of Eq. 8.

t̂NMT , t̂Hiero = argmax
(tN ,tH)∈N×H

(

e−dedit(tN ,tH) · P (tN , tH |s)
) (9)

with (assuming independence)

P (tN , tH |s) := PN (tN |s)λnmt ·PH(tH |s)λhiero .

Eq. 9 suggests that we maximize the product
of two quantities – the similarity between Hiero
and NMT hypotheses and their joint probability.
The FST operations allow to optimize over the
set N × H efficiently. Note that the NMT lat-
tice N is rather small in our case (|N | ≤ 20)
due to the small beam size used in NMT decod-
ing. This makes it possible to solve Eq. 8 almost
always without pruning 2.

3 Experimental Setup

The parallel training data includes Europarl v7,
Common Crawl, and News Commentary v10. Sen-
tence pairs with sentences longer than 80 words
or length ratios exceeding 2.4:1 were deleted, as
were Common Crawl sentences from other lan-
guages (Shuyo, 2010). We use news-test2014 (the
filtered version) as a development set, and keep
news-test2015 and news-test2016 as test sets.

The NMT systems are built using the Blocks
framework (van Merriënboer et al., 2015) based
on the Theano library (Bastien et al., 2012) with
the network architecture and hyper-parameters as
in (Bahdanau et al., 2015): the encoder and de-
coder networks consist of 1000 gated recurrent
units (Cho et al., 2014). The decoder uses a sin-
gle maxout (Goodfellow et al., 2013) output layer
with the feed-forward attention model described
in (Bahdanau et al., 2015). In our final ensemble,
we use 8 independently trained NMT systems with
vocabulary sizes between 30,000 and 60,000.

Rules for our En-De Hiero system were ex-
tracted as described in (de Gispert et al., 2010).
A 5-gram language model for the Hiero system
was trained on WMT16 parallel and monolingual
data (Heafield et al., 2013).

We apply gentle post-processing to the German
output for fixing small number and currency for-
matting issues. The English source sentences in
the training corpus are lower-cased. During de-
coding, we lower case only in-vocabulary words,
and pass through OOVs with correct casing. We
apply a simple heuristic for recognizing surnames
to avoid literal translation of them into German3.

2We limit the Hiero lattices to a maximum of 100,000
nodes with OpenFST’s Prune to remove the worst outliers.

3We mark a word as surname if it has occurred after a first
name, is on a census list of known surnames, and is written
with a capitalized initial letter.
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Setup news-test2014 news-test2015 news-test2016
Best in competition4 20.6 25.2 34.8
Hiero baseline 18.9 21.2 26.0
Single NMT Pure NMT 17.5 19.6 23.2

SGNMT (lattice rescoring) 21.2 23.5 28.7
Edit distance transducer based combination 21.7 24.1 28.6

Ensemble NMT Pure NMT 19.4 21.7 25.4
SGNMT (lattice rescoring) 21.9 24.6 29.7
Edit distance transducer based combination 22.9 25.7 31.3

Table 1: English-German lower-cased BLEU scores calculated with Moses mteval-v13a.pl.

Method BLEU
NMT baseline: ShortestPath(N) 25.4
Hiero baseline: ShortestPath(H) 26.4
NMT hypothesis used for combination: t̂NMT 26.7
Hiero hypothesis used for combination: t̂Hiero 30.4
Combined translation: t̂comb 31.3

Table 2: Projection methods on news-test2016
with NMT 8-ensemble.

4 Results

Tab. 1 reports performance on news-test2014,
news-test2015, and news-test20165. Similarly to
previous work (Stahlberg et al., 2016), we observe
that rescoring Hiero lattices with NMT (SGNMT)
outperforms both NMT and Hiero baselines sig-
nificantly on all test sets. For SGNMT, we see fur-
ther improvements of between +0.7 BLEU (news-
test2014) and +1.1 BLEU (news-test2015) by us-
ing NMT ensembles rather than single NMT.
However, these gains are rather small consider-
ing the improvements from using ensembles for
the (pure) NMT baseline (between +1.9 BLEU
and +2.2 BLEU). Our combination scheme makes
better use of the ensembles. We report 31.3
BLEU on news-test2016, which in the English-
German WMT’16 evaluation is among the best
systems (within 0.1 BLEU) which do not use
back-translation (Sennrich et al., 2016a). Back-
translation is a technique for making use of mono-
lingual data in NMT training, and we expect our
system could benefit from back-translation, al-
though we leave this analysis to future work.

The combination procedure we propose is non-
trivial. It is not immediately clear how the gains
arise as the final scores are mixtures between edit
distance costs, NMT scores, and Hiero scores. In
the remainder we will try to provide some insight.
Unless stated otherwise, we report investigations

4http://matrix.statmt.org/
5The code we used for SGNMT and ensembling is avail-

able at http://ucam-smt.github.io/sgnmt/html/.

into the Hiero + NMT 8-system ensemble which
yields the best results in Tab. 1.

First, we focus on the projection function
ΠUNK(·) which switches between preserving the
input and output label at the UNK symbol to pro-
duce the combined translation t̂comb (Eq. 7). As
explained in Sec. 2.3, we can use OpenFST’s
Project operation to fetch the NMT and Hi-
ero hypotheses t̂NMT and t̂Hiero which have been
used to produce the combined translation (Eq. 5
and 6). Tab. 2 shows that the hypotheses that are
aligned in the final transducer are often not the 1-
best translations of any of the baseline systems.
Remarkably, using the t̂Hiero translations results
in 30.4 BLEU, which is a very substantial im-
provement over the baseline Hiero system (26.0
BLEU). Note that this BLEU score is achieved
with hypotheses from the original Hiero lattice H
but weighted in combination with the NMT scores
and the edit distance. However, these selected
paths are often given very low scores by Hiero: in
only 8.6% of the sentences is the Hiero hypothesis
left unchanged. If we look for t̂Hiero in the Hiero
n-best list, we find that even very deep 20,000-best
lists contain only 63.5% of the Hiero hypotheses
which were selected by the combination scheme
(Fig. 4). This indicates the benefit in using lattice-

Figure 4: Percentage of t̂Hiero hypotheses found
in the baseline Hiero n-best list.
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Distance measure component Avg. number per sentence Percentage of affected sentences
UNK insertions (U ) 0.16 12.9%
UNK→non-OOV substitutions (Type II) 1.34 55.9%
Other edit operations (Type III) 1.74 61.7%

Table 3: Breakdown of the distances measured between NMT and Hiero along the shortest path in C on
news-test2016.

based approaches over n-best lists.

Next, we investigate the distance measure be-
tween NMT and Hiero translations, which is re-
alized with the UNK insertion transducer U and
the modified edit distance transducer E (Sec. 2.3).
Tab. 3 shows that UNK insertions are relatively
rare compared to the edit operations of types II
and III allowed by E (Sec. 2.3). The average
edit distance between NMT and Hiero disregard-
ing UNKs on the best path (type III) is 1.74. In
61.7% of the cases the input and output labels dif-
fer not only at UNK – i.e. in only 38.3% of the sen-
tences do we have an exact match between NMT
and Hiero. We note that UNK is often replaced
with an NMT in-vocabulary word (55.9% of the
sentences). It seems that NMT often produces an
UNK even if a better word is in the NMT vocabu-
lary. This could be due to the over-representation
of UNK in the NMT training corpus.

To study the effectiveness of our edit distance
transducer based combination scheme in correct-
ing NMT UNKs, we trained individual NMT sys-
tems with vocabulary sizes between 10,000 and
60,000. Tab. 4 shows that nearly one in six tokens
(16.3%) produced by our pure NMT system with
a vocabulary size of 30,000 are UNKs. Increasing
the NMT vocabulary to 50k or 60k does improve
pure NMT very significantly, but results show that
these improvements are already captured by the
combination scheme with Hiero. As in the liter-
ature, we see large variation in performance over
individual NMT systems even with the same vo-
cabulary size (Sennrich et al., 2016b), which could
explain the small performance drop when increas-
ing the vocabulary size from 50k to 60k.

One important practical issue for system build-
ing is the number of systems to be ensembled as
training each individual NMT system takes a sig-
nificant amount of time. Fig. 5 indicates that even
for 8-ensembles the gains for pure NMT do not
seem to saturate. The combination with Hiero via
edit distance transducer also greatly benefits from
using ensembles, but most of the gains are gotten
with fewer systems.

Vocabulary Pure NMT NMT+Hiero
size BLEU # of UNKs BLEU
10,000 18.9 18.0% 28.1
30,000 21.6 16.3% 28.8
50,000 23.2 9.1% 28.6
60,000 22.9 9.9% 28.5

Table 4: BLEU scores on news-test2016 for dif-
ferent vocabulary sizes (single NMT). Each indi-
vidual NMT system is combined with Hiero as de-
scribed in Sec. 2.3.

Figure 5: BLEU score over the number of systems
in the ensemble on news-test2016.

5 Conclusion and Future Work

We have presented a method based on the edit dis-
tance that is effective in combining Hiero SMT
systems with NMT ensembles. Our approach
makes use of standard WFST operations, and we
showed the effectiveness of the approach with
a successful WMT’16 submission for English-
German. In the future, we are planning to add
back-translation (Sennrich et al., 2016a) and in-
vestigate the use of character- or subword-based
NMT (Sennrich et al., 2016b; Chitnis and DeN-
ero, 2015; Ling et al., 2015; Chung et al., 2016;
Luong and Manning, 2016) within our combina-
tion framework.
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