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Abstract

This paper presents the systems submitted
by the Abu-MaTran project to the English-
to-Finnish language pair at the WMT 2016
news translation task. We applied mor-
phological segmentation and deep learn-
ing in order to address (i) the data scarcity
problem caused by the lack of in-domain
parallel data in the constrained task and
(ii) the complex morphology of Finnish.
We submitted a neural machine transla-
tion system, a statistical machine transla-
tion system reranked with a neural lan-
guage model and the combination of their
outputs tuned on character sequences. The
combination and the neural system were
ranked first and second respectively ac-
cording to automatic evaluation metrics
and tied for the first place in the human
evaluation.

1 Introduction

This paper presents the machine translation (MT)
systems submitted by the Abu-MaTran project to
the WMT 2016 news translation task. We partici-
pated in the English-to-Finnish constrained task.

English-to-Finnish is a particularly challenging
language pair for corpus-based MT because of the
lack of in-domain parallel data (the only avail-
able parallel corpus in the shared task is Europarl)
and the complex morphology of Finnish. The fact
that the same root can be inflected in many dif-
ferent ways and that nouns can be joined together
in order to build compound words exacerbates the
aforementioned lack of parallel data problem.

As in our last year’s submission (Rubino et al.,
2015), we used morphological segmentation (Piri-
nen, 2015) on the Finnish side in order to deal with
data scarcity and reduce the size of the Finnish vo-
cabulary. We also used character-level evaluation

metrics during the development of our systems,
which correlate better than word-based ones with
human judgements according to the results of last
year’s metrics shared task (Stanojević et al., 2015)
for English-to-Finnish.

When a Finnish sentence is morphologically
segmented, it becomes much longer (number of
tokens) than its English counterpart. This results
in the distance between the Finnish tokens that
depend on each other to produce a correct trans-
lation increasing too.1 We addressed this poten-
tial issue by introducing deep learning in our sys-
tems: we submitted a neural MT (NMT) system
and a phrase-based statistical MT (SMT) system
enhanced with a neural language model (LM). In
the latter, we reduced the length of the Finnish seg-
mented sentences by joining the most frequent se-
quences of morphs. We also submitted a system
that combines the outputs of our best NMT and
SMT systems and is tuned on character sequences.

The paper is organised as follows: the data and
tools used are described in Section 2, while our
NMT, SMT and combined submissions are pre-
sented respectively in sections 3, 4 and 5. The
paper ends with some concluding remarks.

2 Datasets and Tools

We preprocessed the training corpora with scripts
included in the Moses toolkit (Koehn et al., 2007).
We performed the following operations: punctu-
ation normalisation, tokenisation, true-casing and
escaping of problematic characters. The true-
caser is lexicon-based and it was trained on all the
monolingual data. In addition, we removed sen-
tence pairs from the parallel corpora where either
side is longer than 80 tokens.

1For instance, the distance between the morph that repre-
sents the case of an adjective and the morph that represents
the case of the noun being modified by the adjective is in-
creased. Morphs are the segments in which a word is split
after applying morphological segmentation (see Section 3.1).
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Corpus Sentences (k) Words (M)
Europarl v8 2 121 39.5
Common Crawl 113 995 2 416.7
News Crawl 2014–15 6 741 83.1

Table 1: Finnish monolingual data, after prepro-
cessing, used to train the LMs of our SMT sub-
mission.

Corpus Sentences (k) Words (M)
Europarl v7 2 218 59.9
News Commentary v11 391 9.8
News Crawl 2007–15 117 446 2 713.2
News Discussions 57 804 983.2

Table 2: English monolingual data, after prepro-
cessing, used to train the LM of the Finnish-to-
English SMT system we used to backtranslate the
Finnish News Crawl monolingual corpora into En-
glish (see Section 3).

Since the Common Crawl Finnish monolingual
corpus was obtained by crawling websites, we ap-
plied a set of additional preprocessing steps in or-
der to remove as much noisy data as possible:
(i) detecting sentences with an incorrect charac-
ter encoding and re-encoding them with the right
one; (ii) replacing XML entities with the charac-
ters they represent; (iii) removing sentences with a
low proportion of alphabetic characters (less than
50%); (iv) removing short sentences (less than 3
alphabetic tokens); and (v) removing sentences
whose first 18 tokens are equal to those in another
sentence. The last filtering is necessary because it
is relatively common in the corpus to find the same
sentence with some segment missing at the end. If
these lines were kept, n-gram counts from which
LM probabilities are estimated would be less re-
liable. As a result of these preprocessing steps,
around 43 million sentences were removed.

Table 1 shows the Finnish monolingual corpora
we used together with their size and Table 3 shows
the same information for the parallel corpora. We
used an additional synthetic parallel corpus to train
our NMT system, which was obtained by back-
translating the Finnish News Crawl corpora into
English with an SMT system (see Section 3).2 The
monolingual corpora used for training its LM are
listed in Table 2.

Throughout the paper we evaluate the sys-
tems we build in terms on three automatic eval-
uation metrics: BLEU (Papineni et al., 2002),

2The number of sentences in News Crawl displayed in ta-
bles 1 and 3 do not match because, due to time constraints,
we did not backtranslate a few tens of thousands of sentences.

Words (M)
Corpus Sentences (k) English Finnish
Europarl v8 1 901 50.9 36.6
backtranslated

6 674 106.6 82.3News Crawl 2014–15
(only for NMT)

Table 3: Parallel data, after preprocessing, used to
train our SMT and NMT systems.

TER (Snover et al., 2006) and chrF1 (Popović,
2015). As the performance obtained in the de-
velopment (newsdev2015) and validation (new-
stest2015) sets guides our decisions, we believe it
is sensible to use three metrics with different un-
derlying methodologies and that work on different
elements (words and characters). Statistical signif-
icance of the difference between systems is com-
puted with paired bootstrap resampling (Koehn,
2004) (p ≤ 0.05, 1 000 iterations).

3 Neural Machine Translation

NMT systems have been reported to outperform
SMT systems for different language pairs (Sen-
nrich et al., 2015a; Luong et al., 2015; Costa-Jussà
and Fonollosa, 2016; Chung et al., 2016a). Un-
like SMT, in which different models are trained
independently and their weights are tuned jointly,
in NMT all the components are jointly trained to
maximise translation quality. NMT systems have
a strong generalisation power because they encode
words as real-valued vectors (similar words are
close to each other in that vector space) and they
are able to model long-distance phenomena thanks
to the use of LSTM (Hochreiter and Schmidhu-
ber, 1997) or GRU (Chung et al., 2014) units. We
followed the encoder-decoder architecture with at-
tention proposed by Bahdanau et al. (2015).3

NMT models are trained only from a parallel
corpus, that is, they are not designed to make
use of additional target-language (TL) monolin-
gual corpora. Given the lack of in-domain parallel
corpora available for English–Finnish, we trained
our system on the concatenation of Europarl and
a synthetic corpus obtained by backtranslating
the in-domain monolingual Finnish corpora (News
Crawl) from Finnish to English. Backtranslation
has been reported to be a successful way of inte-
grating TL monolingual corpora into an NMT sys-
tem (Sennrich et al., 2015a). It was performed by
means of a Finnish-to-English SMT system that

3We used the code available at: https:
//github.com/sebastien-j/LV_groundhog/
tree/master/experiments/nmt
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followed the set-up of the rule-based morphologi-
cally segmented system from our last year’s con-
strained submission (Rubino et al., 2015). It was
trained on Europarl and the concatenation of the
English monolingual corpora listed in Table 2.

Most of the NMT architectures in the literature
can only operate with a fixed TL vocabulary (that
ranges from 30 000 to 80 000 words, according
to Jean et al. (2015)), since training and decod-
ing computational complexity grows with its size.
Although Jean et al. (2015) proposed an to re-
duce that complexity and hence use larger vocab-
ularies, Sennrich et al. (2015b) showed that seg-
menting words into smaller units can also reduce
complexity, increase effective vocabulary size and
even improve translation quality. We followed the
latter strategy. The evaluation of character-based
NMT approaches (Ling et al., 2015; Costa-Jussà
and Fonollosa, 2016; Chung et al., 2016b) was left
as future work.

In the remainder of this section, we present the
segmentation approach we followed together with
the alternatives we evaluated and we describe the
training and decoding set-up of our NMT system,
including the strategy followed to translate out-of-
vocabulary words (OOVs).

3.1 Word Segmentation

Existing word segmentation approaches for
NMT (Sennrich et al., 2015b) rely on frequencies
of sequences of characters in the training corpus.
We studied whether using linguistic information
to segment the training corpus allows the neural
network to generalise better: we applied the
rule-based morphological segmentation provided
by Omorfi (Pirinen, 2015) for Finnish. It splits
words into morphs, that is, minimal segments
carrying semantic or syntactic meaning.

We evaluated the segmentation schemes listed
below.4 Table 4 depicts an example of the effect
they produce on a Finnish sentence.

• No segmentation at all.

• Byte pair encoding (BPE) on both the source
language (SL) and the TL. This is one of the
best performing strategies proposed by Sen-
nrich et al. (2015b). It consists of initially
segmenting each word in characters, and iter-

4We did not include unsupervised morphological segmen-
tation (Virpioja et al., 2013; Grönroos et al., 2014) in our eval-
uation since the results in our last year’s submission (Rubino
et al., 2015, Table 4) showed that it was outperformed by rule-
based morphological segmentation.

atively joining the most frequent pair of seg-
ments in the training corpus. We applied it
independently to the SL and TL sides of the
parallel corpus. We performed 60 000 join
operations on each language.

• BPE only on the TL side of the parallel cor-
pus, since Finnish is morphologically more
complex than English.

• Morphological segmentation with Omorfi
on the TL.

• BPE on the TL using the morphs produced
by Omorfi as the starting point. We evalu-
ated the effect of performing 1 000, 10 000,
25 000 and 50 000 join operations. Mor-
phological segmentation produces an average
sentence length significantly higher than that
of the English side of the parallel corpus. Af-
ter performing 1 000 operations, average sen-
tence lengths are similar: we reduce vocabu-
lary size without significantly increasing sen-
tence length. As the number of operations in-
creases, average sentence length is closer to
that of the unsegmented approach.

For each of these segmentation schemes, we
trained an NMT system on Europarl during 5 days
(a model was saved every 3 hours of training), we
chose the model that achieved the highest transla-
tion quality on newsdev20155 and evaluated it on
newstest2015. The remainder of the training and
decoding parameters were the same ones we used
in our submission (described in Section 3.2).

Table 5 depicts the results of the evaluation to-
gether with the vocabulary size of the NMT sys-
tem6 and the proportion of tokens in the training
corpus that belong to the vocabulary. Results show
that, despite the fact that the BPE-based systems
have full coverage of the training corpus, their per-
formance is below that of the unsegmented alter-
native. These results are probably related to the
fact that domains of the training and testing cor-
pora do not match, and words in the test set that do
not contain subsegments observed in the training

5Translation quality was measured by chrF1 in the seg-
mentation alternatives that included BPE, since segments
were joined before performing the evaluation and this metric
is reported to correlate better than BLEU with human judge-
ments. For the evaluation of the segmentation scheme based
solely on Omorfi, we chose the best model according to
BLEU, as the evaluation was performed before joining the
morphs (the TL side of the development corpus was also seg-
mented with Omorfi).

6This size may represent words or subword units, depend-
ing on whether word segmentation was performed.
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Segmentation Sentence
None haluaisimme , ett oppisimme tst yhden perusasian
BPE: 60k ops haluaisimme , ett opp→←isimme tst yhden perusasi→←an
Omorfi halua→←isi→←mme , ett opp→←isi→←mme tst yhde→←n perus→←asia→←n
Omorfi + BPE: 1k ops. halua→←isimme , ett opp→←isimme tst yhden perus→←asian
Omorfi + BPE: 50k ops. haluaisimme , ett opp→←isimme tst yhden perus→←asian
English there is one basic lesson I would like us to learn from this

Table 4: Example of the application of the different segmentation schemes described in Section 3.1 to
a Finnish sentence. Arrows represent boundaries between the morphs in which a word is split. Note
how the compound word perusasian is segmented by the different schemes: Omorfi splits it into perus
(“basic”), asia (“thing, affair”) and the case marker -n, while the application of BPE over it joins the
marker to the second noun. The pure BPE scheme, however, fails to segment perusasian correctly.

corpus are segmented into very long sequences.
The Omorfi-based approach, which is domain
agnostic, is close to the unsegmented alternative in
terms of BLEU and TER (there is no statistically
significant difference between them) and clearly
outperforms it in terms of the character-level met-
ric chrF1. This shows the effect of segmentation:
the system is probably producing a better trans-
lation for some parts of compound words and/or
producing lemmas that can be found in the refer-
ence, but inflected in a different way. Finally, the
combination of BPE with morphological segmen-
tation does not bring a clear improvement. In view
of the results, we decided to segment the TL side
of the training corpus with Omorfi in our sub-
mission.

3.2 Training and Decoding Details

We generally followed the training set-up by Sen-
nrich et al. (2015b). We defined a hidden layer
size of 1 000 and an embedding layer size of 620.
We used Adadelta (Zeiler, 2012) with a minibatch
size of 80, and reshuffled the training set between
epochs. We applied gradient clipping (Pascanu
et al., 2013) with a cutoff of 1.0. The vocabulary
contained the 50 000 most frequent SL tokens and
the 50 000 most frequent TL tokens in the training
corpus.

We trained our system during 8 days (a model
was saved every 3 hours).7 We chose the 4 models
that produced the highest BLEU score on news-
dev2015. The training of these 4 models contin-
ued for 12 hours without changing the values of
the embedding layers. After that, we translated the
test set with an ensemble of these 4 models.8

7Training was performed on a NVIDIA Tesla K20 GPU.
8We used a beam size of 12 for beam search and nor-

malised the probability by sentence length.

3.3 Dealing with Unknown Words

In order to translate OOVs,9 we followed an en-
hanced version of the approach by Jean et al.
(2015, Sec. 3.3). OOVs in the training corpus
were replaced with the special token UNK, as were
those in the SL sentences to be translated by the
NMT system. As a result, the output contained
some UNK tokens.

In order to replace the UNK tokens generated by
the model, we identified the most likely SL word
to which the unknown TL word was aligned. If
the SL word started with an uppercase letter, we
copied it to the output. Otherwise, we replaced the
UNK token with its translation according to a bilin-
gual dictionary obtained from the parallel corpus
with fast align (Dyer et al., 2013).

For each UNK token, Jean et al. (2015) selected
the SL word with the highest alignment probablity
according to the attention mechanism, while our
enhanced approach combines the attention mech-
anism and a heuristic that aims at preserving the
named entities in the SL sentence. We consid-
ered the top 5 SL words with the highest atten-
tion alignment probability for each UNK token,10

and, for each sentence, we chose the set of SL
words that ensured that the maximum number of
words that start with an uppercase letter in the SL
sentence were included in the translation.11 Ta-

9We define OOVs as those words either not present in the
training corpus or present but not frequent enough to be part
of the NMT system vocabulary.

10We ignored those SL words whose probability was 4
times lower than that of the most probable SL word.

11We relied on the capitalisation of the first character to
detect a named entity. We carried out a small study in order
to test the accuracy of this approach: from 100 capitalized
words (after truecasing) randomly chosen from the English
side of newstest2016, 76 were named entities that do not need
to be translated into Finnish (person names, place names, etc.
) and 24 needed to be translated (days of the week, country
names, demonyms, etc.). However, when we analyzed only
those capitalized SL words that were not part of the vocabu-
lary of the NMT system (and hence they were likely to pro-
duce an UNK symbol), the accuracy increased: 23 out of 24
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voc. size coverage
Segmentation SL TL SL TL BLEU TER chrF1
None 50 000 50 000 99.80% 94.01% 0.1090 0.8460 41.6519
BPE: 60k ops. on SL; 60k ops. on TL 60 000 60 000 100% 100% 0.0838 ↓ 0.9219 ↓ 40.4590 ↓
BPE: 60k ops. only on TL 50 000 60 000 99.80% 100% 0.0844 ↓ 0.9306 ↓ 40.2059 ↓
Omorfi on TL 50 000 50 000 99.80% 99.30% 0.1085 0.8509 43.3688 ↑
Omorfi + BPE: 1k ops. on TL 50 000 50 000 99.80% 99.29% 0.1073 0.8837 ↓ 42.6609 ↑
Omorfi + BPE: 10k ops. on TL 50 000 50 000 99.80% 98.98% 0.1009 ↓ 0.8937 ↓ 43.6689 ↑
Omorfi + BPE: 25k ops. on TL 50 000 50 000 99.80% 98.39% 0.1034 0.8925 ↓ 43.5525 ↑
Omorfi + BPE: 50k ops. on TL 50 000 50 000 99.80% 96.60% 0.0963 ↓ 0.9500 ↓ 43.1849 ↑

Table 5: Results of the evaluation of different word segmentation schemes on an NMT system trained
on Europarl. The vocabulary size of the NMT system is depicted, as well as the proportion of tokens
covered in the training copus. Scores displayed correspond to the evaluation on newstest2015. The
best score for each metric is shown in bold. An arrow pointing upwards (↑) means that the corresponding
system outperforms the system without segmentation by a statistically significant margin, while an arrow
pointing downwards (↓) means the opposite: the system without segmentation wins.

System BLEU TER chrF1
best individual model

0.1568 0.7714 49.52(most probable SL word)
ensemble

0.1819 ↑ 0.7409 ↑ 52.21 ↑(most probable SL word)
ensemble

0.1830 ↑ 0.7411 52.43 ↑(preserve named entities)

Table 6: Results of the evaluation on newstest2016
of our NMT submission (in bold), the simpler
strategy for translating unknown words by Jean
et al. (2015, Sec. 3.3) (labelled as most proba-
ble SL word) and our best individual NMT model.
The best score for each metric is shown in bold.
An arrow pointing upwards (↑) means that the cor-
responding system outperforms the system in the
previous row by a statistically significant margin.

ble 6 shows the results of the automatic evalua-
tion of our submitted NMT system (in bold; as
described in the previous section, it is an ensem-
ble of 4 models) on newstest2016. We also evalu-
ated the simpler OOV translation strategy by Jean
et al. (2015), and the best NMT individual model
according to BLEU on the development set. Our
enhanced strategy for OOV translation resulted in
a statistically significant improvement in terms of
BLEU and chrF1. Note also the huge impact of
model ensembling.

4 Statistical Machine Translation

Our work on SMT systems built upon our last
year’s best constrained individual system (Rubino
et al., 2015). This was a phrase-based SMT sys-
tem where the Finnish data was segmented to
morphs with Omorfi (Pirinen, 2015). It also used
two additional models: an Operation Sequence

words were named entities that do not need to be translated).

Model (Durrani et al., 2011) and a Bilingual Neu-
ral Language Model (Devlin et al., 2014), as well
as three reordering models: word- and phrase-
based and hierarchical (Koehn et al., 2005; Galley
and Manning, 2008).

This year’s SMT systems used the same models
and datasets, except for the LMs, which this time
were log-linearly interpolated and used the addi-
tional corpus available (Common Crawl, cf. Table
1). We built three SMT systems, which share the
same models and data, with the only difference be-
ing the segmentation used in the Finnish data:

• No segmentation.

• Segmentation on morphs (Omorfi).

• Segmentation on morphs followed by join-
ing the most frequent sequences (Omorfi +
BPE).

In the latter we joined the most frequent sequences
(1 000 operations) so that the length of the Finnish
side (measured in number of tokens) becomes sim-
ilar to that of the English side. As previously men-
tioned in Section 3.1, this is a trade-off to avoid
both having a big vocabulary (as is the case with-
out segmentation), and having to deal with long-
distance phenomena (as is the case with Omorfi).

Table 7 shows the results of these three SMT
systems. We corroborate the results found out
last year, i.e. morphological segmentation outper-
forms the unsegmented system by a statistically
signifcant margin across all the automatic met-
rics. We also observe that joining the most fre-
quent morphs results in a further improvement on
BLEU (2.3% relative), and small changes in TER
(−0.5%) and chrF1 (−0.3%).
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System BLEU TER chrF1
No segmentation 0.1444 0.7775 49.63
Omorfi 0.1501 ↑ 0.7717 ↑ 51.13 ↑
Omorfi + BPE 0.1536 ↑ 0.7679 ↑ 50.99 ↑

Table 7: Results of the evaluation on newstest2016
of the SMT systems built. The best score for each
metric is shown in bold. An arrow pointing up-
wards (↑) means that the corresponding system
outperforms the system without segmentation by
a statistically significant margin.

4.1 Reranking

We reranked the n-best list (top 500 distinct
translations) produced by our best SMT system
(Omorfi + BPE) using two neural LMs: left-to-
right (i.e. trained in the same direction as the LMs
included in the SMT system) and right-to-left (i.e.
reverse direction). We hypothesise that the latter
LM might bring a higher improvement as the se-
quences this LM is trained on have not been used
by the SMT decoder.12

Both neural LMs were trained on in-domain
data (a subset of 4 million sentences13 randomly
selected from News Crawl) with the rwthlm
toolkit (Sundermeyer et al., 2014). The main pa-
rameters we used are as follows: vocabulary lim-
ited to the 50 000 most frequent tokens, 2 layers
(linear and LSTM), both of size 200 and 1 000
word classes, generated with mkcls.

Table 8 shows the results of reranking using
left-to-right and right-to-left neural LMs on their
own and jointly (row bidirectional). Reranking
with left-to-right or the right-to-left LMs on their
own does not result in a substantial improvement.
However, when both LMs are used jointly we ob-
serve better scores for all the metrics: 1.7% rela-
tive improvement for BLEU, −0.5% for TER and
0.1% for chrF1.

5 System Combination

As we have seen in the previous two sections, our
best NMT system outperforms by a wide margin
our best SMT system. These two systems are ty-
pologically different, and thus, despite the gap in
performance, we might expect them to have com-
plementary strengths. We therefore explored com-
bining both systems in order to answer the fol-
lowing question: whether SMT, despite the gap in
performance, can still be useful, used jointly with

12Because of the way SMT decoders work they can use
left-to-right LMs but not reverse LMs.

13Due to time constraints.

System BLEU TER chrF1
Without reranking 0.1536 0.7679 50.99
Left-to-right 0.1536 0.7671 50.96
Right-to-left 0.1536 0.7707 50.94
Bidirectional 0.1562 ↑ 0.7644 ↑ 51.04

Table 8: Results of the different reranking strate-
gies applied to the best SMT system (Omorfi +
BPE) on newstest2016. The best score for each
metric is shown in bold, as is the system submit-
ted. An arrow pointing upwards (↑) means that
the corresponding system outperforms the sys-
tem without reranking by a statistically significant
margin.

NMT, to improve upon NMT on its own.
We combined the outputs produced by the best

NMT and SMT systems with MEMT (Heafield and
Lavie, 2010). We used default settings, except for
radius (5), following empirical results obtained on
newsdev2015. The LM used in the combination
was built on the concatenation of all the Finnish
monolingual corpora available, cf. Table 1.

As the systems combined use different seg-
mentations (Omorfi in NMT and Omorfi fol-
lowed by BPE in SMT), we joined the morphs
before combining them. Therefore the tuning of
the system combination was performed without
segmentation. Since chrF1 was found to corre-
late well with human evaluation for Finnish last
year (Stanojević et al., 2015), we explored tuning
on this metric, alongside tuning on BLEU.

Finally, we reranked the n-best list of the sys-
tem combination (top 500 translations) with the
same procedure used to rerank the best SMT sys-
tem (cf. Section 4.1). While the best SMT sys-
tem was reranked on segmented data (Omorfi +
BPE), the output of the system combination is not
segmented. Therefore, similarly to what we did
for system combination, we explored tuning the
reranking on chrF1.

Table 9 shows the results of system combina-
tion and its rerankings. In system combination, we
observe that tuning on character sequences results
in considerably better scores compared to tuning
on BLEU. That said, the output produced by the
best system combination system without rerank-
ing (i.e. tuned on chrF1) is still worse than the one
produced by the NMT system alone according the
automatic metrics (−3.4% relative on BLEU and
−0.1% on chrF1) except for TER (2.3% relative
improvement).

Overall, reranking the system combination14

14We reranked the system combination that performed

367



System BLEU TER chrF1
Best SMT 0.1562 0.7644 51.04
Best NMT 0.1830 0.7411 52.43
Combo (BLEU) 0.1638 0.7298 ↑ 51.75
Combo (chrF1) 0.1767 0.7241 ↑ 52.37
Reranked (BLEU) 0.1791 0.7257 ↑ 52.38
Reranked (chrF1) 0.1845 0.7290 ↑ 52.65 ↑

Table 9: Results of the system combination exper-
iments on newstest2016. The best score for each
metric is shown in bold, as is the system submit-
ted. An arrow pointing upwards (↑) means that the
corresponding system outperforms the best NMT
system by a statistically significant margin.

yields better scores, tuning both on BLEU and
chrF1, with the latter leading to the best results
across all metrics (except TER). This system out-
performs the NMT system in terms of TER and
chrF1 and it is the system combination output that
we submitted.

6 Conclusions

Our participation in WMT 2016 news transla-
tion shared task focused on tackling data scarcity
in English-to-Finnish translation with the help of
morphological segmentation and deep learning.

Our experiments showed that rule-based mor-
phological segmentation improves translation
quality when applied to both NMT and SMT. In
the latter, we had to adapt the segmentation strat-
egy to avoid generating a training corpus with very
different SL and TL sentence lengths. On the con-
trary, difference in sentence length was not a rele-
vant factor in NMT.

The use of deep learning approaches to MT al-
lowed us to obtain a remarkable improvement over
SMT. Our best NMT system outperforms our best
SMT system by a huge margin and their combina-
tion is only slightly better than the NMT system
according to automatic evaluation. Our best SMT
system also includes a neural LM but our results
suggest that pure neural MT approaches constitute
an important breakthrough.

Tuning on character sequences (chrF1 met-
ric),15 used for system combination, resulted in
better performance than tuning on the de facto
standard BLEU, corroborating the results seen in
human evaluation, i.e. better correlation.

Our combined and NMT submissions were

best, i.e. the one tuned on chrF1.
15The code has been made available as part of Joshua

and can be found at https://github.com/apache/
incubator-joshua/pull/27

ranked first and second respectively (both in terms
of BLEU and TER) in the English-to-Finnish news
translation task automatic evaluation16 and they
tied for the first place in the human evaluation.

Acknowledgments

The research leading to these results has re-
ceived funding from the European Union Seventh
Framework Programme FP7/2007-2013 under
grant agreement PIAP-GA-2012-324414 (Abu-
MaTran). We would like to thank the Irish Centre
for High-End Computing (www.ichec.ie) for pro-
viding computational infrastructure and Kazuki
Irie for his help to our questions re RWTHLM.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural Machine Translation by
Jointly Learning to Align and Translate. arXiv
preprint arXiv:1409.0473 .

Junyoung Chung, Kyunghyun Cho, and Yoshua
Bengio. 2016a. A character-level decoder with-
out explicit segmentation for neural machine
translation. arXiv preprint arXiv:1603.06147 .

Junyoung Chung, Kyunghyun Cho, and Yoshua
Bengio. 2016b. A character-level decoder with-
out explicit segmentation for neural machine
translation. arXiv preprint arXiv:1603.06147 .
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Ondřej Bojar, Alexandra Constantin, and Evan
Herbst. 2007. Moses: Open source toolkit for
statistical machine translation. In Proceedings
of the 45th Annual Meeting of the ACL on
Interactive Poster and Demonstration Sessions.
Prague, Czech Republic, pages 177–180.

Wang Ling, Isabel Trancoso, Chris Dyer, and
Alan W Black. 2015. Character-based neu-
ral machine translation. arXiv preprint
arXiv:1511.04586 .

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. In
Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing.
Lisbon, Portugal, pages 1412–1421.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of 40th Annual Meeting of the Associ-
ation for Computational Linguistics. Philadel-
phia, Pennsylvania, USA, pages 311–318.

Razvan Pascanu, Tomas Mikolov, and Yoshua
Bengio. 2013. On the difficulty of training
recurrent neural networks. In Sanjoy Das-
gupta and David Mcallester, editors, Proceed-
ings of the 30th International Conference on
Machine Learning (ICML-13). JMLR Work-
shop and Conference Proceedings, volume 28,
pages 1310–1318.

Tommi A. Pirinen. 2015. Omorfi —free and
open source morphological lexical database for
finnish. In Proceedings of the 20th Nordic Con-
ference of Computational Linguistics (NODAL-
IDA 2015). Vilnius, Lithuania, pages 313–315.
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