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Abstract

We describe the statistical machine trans-
lation system developed at the National
Research Council of Canada (NRC) for
the Russian-English news translation task
of the First Conference on Machine Trans-
lation (WMT 2016). Our submission is
a phrase-based SMT system that tackles
the morphological complexity of Russian
through comprehensive use of lemmatiza-
tion. The core of our lemmatization strat-
egy is to use different views of Russian for
different SMT components: word align-
ment and bilingual neural network lan-
guage models use lemmas, while sparse
features and reordering models use fully
inflected forms. Some components, such
as the phrase table, use both views of the
source. Russian words that remain out-of-
vocabulary (OOV) after lemmatization are
transliterated into English using a statisti-
cal model trained on examples mined from
the parallel training corpus. The NRC
Russian-English MT system achieved the
highest uncased BLEU and the lowest
TER scores among the eight participants
in WMT 2016.

1 Introduction

We present NRC’s submission to the Russian-
English news translation task of WMT 2016.
Russian-English is a challenging language pair for
statistical machine translation because Russian is
a highly inflectional and free word order language.
Case information is encoded by modifying the
Russian words, which makes the number of word
types present in the Russian side of a Russian-
English parallel corpus much higher than in the
English side, introducing a data sparsity problem.

Lemmatization is one of the possible solutions
for handling data sparsity when translating highly
inflectional languages. However, Russian is a free
word order language, meaning that case informa-
tion conveyed through inflection plays an impor-
tant role in disambiguating the meaning of a sen-
tence. The MT system would be unable to recover
this case information if we were to blindly lemma-
tize all the Russian words to their root form.

Instead, we rely most heavily on lemmatiza-
tion only when the missing inflections are un-
likely to cause ambiguity. For example, in au-
tomatic word alignment, the missing case infor-
mation should not confuse the system as compet-
ing inflections are unlikely to appear in the same
sentence (El Kholy and Habash, 2012). There-
fore, we build automatic word alignments with
lemmatized Russian, but then restore the Russian
lemmas to their inflected forms before estimat-
ing our other model parameters. The end result
is a system with higher-quality word alignments,
but which can still use case information to drive
its translation and reordering models. Similarly,
our bilingual language models have large source
context windows that allow them to resolve ambi-
guities introduced by lemmatization, so we build
these based on lemmatized versions of the source
by default. These include neural network joint
models (NNJMs) and lexical translation models
(NNLTMs) (Devlin et al., 2014).

We have found that blind lemmatization of
phrase tables is actually quite harmful to transla-
tion, but Russian morphology still causes a signif-
icant increase in the number of OOVs. Therefore,
we built a fallback Russian lemma phrase table for
the OOVs in the Russian input, implemented as
an interpolated phrase table. For any remaining
Russian OOVs, we use a semi-supervised translit-
eration system to translate the word orthograph-
ically. This character-level subsystem is trained
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Figure 1: System diagram for the NRC Russian-English submission, highlighting our use of two different
views of the Russian source. In this figure, Russian words in their inflected surface form are denoted as
r1, r2, . . ., while their automatically lemmatized root forms are denoted l(r1), l(r2), . . .

on a transliteration corpus mined from our paral-
lel training corpus, where the mining process is
seeded by the name-pair corpora provided by the
competition.

Figure 1 summarizes our lemmatization strat-
egy. In this figure, phrasetable#1 corresponds to
the phrase table given the highest weight in our in-
terpolation (see Section 3.2), while NNJM#1 sim-
ply denotes that NNJM we found empirically to be
the most informative. We did not have time to try
duplicating all the models in this way; for instance,
it might have been interesting to try lemma-based
reordering models and an NNLTM based on Rus-
sian words rather than Russian lemmas, but we
will leave this for future work.

The NRC submission achieved the highest un-
cased BLEU, the second highest cased BLEU and
the lowest TER scores among the eight partici-
pants in the task, and ranked third out of ten sys-
tems in the human evaluation.

2 Portage - the NRC PBMT system

The core of the NRC MT system is Portage
(Larkin et al., 2010). Portage is a conventional
log-linear phrase-based SMT system. We describe
the basic features of Portage in this section and the

new features first tested on our Russian-English
submission in the next section.

2.1 Data and preprocessing

We used all the Russian-English parallel cor-
pora available for the constrained news translation
task. They include the CommonCrawl corpus, the
NewsCommentary v11 corpus, the Yandex cor-
pus and the Wikipedia headlines corpus. We also
added the WMT 12 and WMT 13 Russian-English
news translation test set to the parallel training
data. In total, 2.6 million parallel Russian-English
sentences are used to train the translation model.
For monolingual English corpora, we used the Gi-
gaword corpus (191 million sentences) and the
monolingual English corpus available for the con-
strained news translation task, which is a combina-
tion of the Europarl v7 corpus, the NewsCommen-
tary v11 monolingual corpus and the NewsCrawl
2015 (206 million sentences in total). Due to
resource limits, we have not used the newly re-
leased 3 billion sentence CommonCrawl monolin-
gual English corpus. Our submitted system was
tuned on the WMT 2014 test set. Both the Rus-
sian and English text in the parallel and monolin-
gual corpora in the training/development/test cor-
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pora were lower cased and tokenized.

2.2 Translation model
We obtain the word alignment by first lemmatizing
the Russian side of the parallel training data using
Yandex MyStem (Segalovich, 2003). Word align-
ments are built for the lemmatized Russian using
IBM2, HMM and IBM4 models. The Russian is
then restored to its fully inflected surface form,
and phrase-pairs are extracted for each of our three
alignment methods. Counts from all three align-
ments are then combined into a single phrase ta-
ble, with a maximum phrase length of 7 tokens.
Phrase pairs were filtered so that the top 30 trans-
lations for each source phrase were retained.

Our internal development experiments indi-
cated that using lemma alignments improved the
translation quality of a baseline phrase-based sys-
tem by roughly 0.2 BLEU, and also benefited the
perplexity of the bilingual neural language models
described in Section 2.5 and 3.1.

2.3 Language models
Our system consists of three n-gram language
models (LMs) and two word class language mod-
els (Stewart et al., 2014). Each is included as a
distinct feature in the decoder’s log-linear model.

• A 4-gram LM trained on the target side of all
the WMT parallel training corpora.

• A 6-gram LM trained on the Gigaword cor-
pus.

• A 6-gram LM trained on the WMT monolin-
gual English training corpus.

• A 6-gram, 200-word-class coarse LM trained
on a concatenation of the target side of all the
WMT parallel training corpora and the WMT
monolingual English training corpus.

• A 6-gram, 800-word-class coarse LM trained
on the same corpus as the 200-word-class
model.

Word classes are built using mkcls (Och, 1999).

2.4 Distortion and sparse feature models
Similar to the translation model, our hierarchi-
cal distortion model and sparse feature model are
based on Russian words but are built on the lem-
matized alignment. The sparse feature model con-
sists of the standard sparse features proposed in

Hopkins and May (2011) and sparse hierarchi-
cal distortion model features proposed in Cherry
(2013).

2.5 Neural network joint model

We employ two neural network joint models,
or NNJMs (Vaswani et al., 2013; Devlin et al.,
2014). The NNJM is a feed-forward neural net-
work language model that assumes access to a
source sentence f and an aligned source index ai,
which points to the most influential source word
for the translation of the target word ei. The
NNJM calculates the language modeling proba-
bility p(ei|ei−1

i−n+1, f
ai+m
ai−m ), which accounts for the

n−1 preceding target words, and for 2m+1 words
of source context, centered around fai . Following
Devlin et al. (2014), we use n = 4 and m = 5, re-
sulting in 3 words of target context and 11 words
of source context, effectively a 15-gram language
model.

Our two models differ only in the rendering of
their source strings, with one using lemmas, and
the other using words. The lemma-to-word system
achieved a development perplexity of 6.04, while
the word-to-word system reached 6.78. Since
our decoder’s input is Russian words, the decoder
needed to map words to lemmas before calculat-
ing lemma-based NNJM probabilities. This was
done by running Yandex MyStem on the Russian
source at test time, in order to build sentence-
specific position-to-lemma mappings. For both
models, the source link ai is derived from IBM4
Russian-lemma to English-word alignments.

NNJM training data is pre-processed to limit
vocabularies to 96K types for source or target in-
puts, and 32K types for target outputs. We build
400 deterministic word clusters for each corpus
using mkcls. Any word not among the 96K
/ 32K most frequent words is replaced with its
cluster. For our feed-forward network architec-
ture, we used 192 units for source embeddings
and 512 units for the single hidden layer. We
train our models with mini-batch stochastic gra-
dient descent, with a batch size of 128 words, and
an initial learning rate of 0.3. We check our train-
ing objective on the development set every 20K
batches, and if it fails to improve for two consec-
utive checks, the learning rate is halved. Training
stops after 5 consecutive failed checks or after 90
checks. To enable efficient decoding, our models
are self-normalized with a squared penalty on the
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log partition function, weighted with α = 0.1 (De-
vlin et al., 2014).

2.6 Tuning and decoding
The parameters of the log-linear model were tuned
by optimizing BLEU on the development set us-
ing the batch variant of MIRA (Cherry and Foster,
2012). Decoding uses the cube-pruning algorithm
of (Huang and Chiang, 2007) with a 7-word dis-
tortion limit.

2.7 Rescoring
We rescored 1000-best lists output from the de-
coder using a rescoring model (Och et al., 2004;
Foster et al., 2009) consisting of 82 features: 27
decoder features and 55 additional rescoring fea-
tures. The rescoring model was tuned using n-
best MIRA. Of the rescoring features, 51 consisted
of various IBM features for word- and lemma-
aligned IBM1, IBM2, IBM4 and HMM models,
as well as various other standard length, n-gram,
and n-best features.

The final four features used NNJMs for rescor-
ing, two Russian-word NNJM rescoring features
and two Russian-lemma ones. Following Devlin et
al. (2014), one NNJM feature rescored the 1000-
best list using a English-to-Russian NNJM, where
the roles of the source and target languages are
reversed, while the other used a right-to-left and
English-to-Russian NNJM, where the Russian tar-
get side is traversed in reverse order. These NNJM
variants were trained and self-normalized using
the same parameters as the NNJMs used for de-
coding described above in Section 2.5, the only
difference being to swap source and target and re-
verse target word order as described above. Dur-
ing development, rescoring improved our uncased
BLEU score by 0.4 on newstest2015.

2.8 Truecasing
The decoder was used to translate the lowercased,
rescored output to mixed case using a target side
LM and a truecase map. The 3-gram truecasing
LM was trained on the target side of all the WMT
parallel training data as well as the WMT mono-
lingual English corpus described in Section 2.1.
Beginning of sentence case was normalized be-
fore training the LM. In addition, casing informa-
tion was transferred heuristically from the source
to the target for OOVs and title/upper cased multi-
word sequences. Beginning-of-sentence case was
also restored. There were no OOVs because of

transliteration (Section 3.3), so case for translit-
erated words was restored via a post-processing
script. As a final step, the output was detokenized
with rule-based methods.

3 New features

Our success in using Russian lemmas to improve
word alignment and NNJMs to improve the over-
all system performance has inspired us to fur-
ther develop new components to leverage these
ideas. In this section, we describe the new fea-
tures integrated with Portage in our submitted sys-
tem: a neural network lexical translation model
(NNLTM), a fallback Russian lemma phrase table,
and a semi-supervised transliteration model.

3.1 Neural network lexical translation model

In addition to the NNJM feature described above,
we also implemented the neural network lexical
translation model (NNLTM) from (Devlin et al.,
2014). The NNLTM is identical in structure to the
NNJM except that it does not use target context.
It is complementary to the NNJM because it ac-
counts for all source words: for each source word
fj in the current sentence, it models p(ēaj |f j+m

j−m ),
where ēaj is the sequence of zero or more words
aligned to fj . Following Devlin et al. (2014), we
set m = 5, and used 192 units for source embed-
dings and 512 units for the hidden layer.

We used a single NNLTM trained on source
lemmas with source and target vocabulary sizes
of 128K and 64K, and backoff to source classes
as described above for the NNJM. On the tar-
get side, sequences of words ēaj that were not
among the most frequent 64K sequences were
mapped to classes that depended on the mkcls
class of their first word and their length, up
to a maximum length of 2. For example, un-
known word sequences A, A_B, and A_B_C get
mapped to classes mkcls(A):1, mkcls(A):2, and
mkcls(A):2 respectively.

Training and self-normalization details were
identical to those for the NNJM. Perpexity on the
development set was 10.41.

3.2 Fallback Russian lemma phrase table

To augment source coverage, we used an addi-
tional phrase table trained on source lemmas in
a similar fashion to the regular phrase table de-
scribed in Section 2.2. We combined the two ta-
bles statically prior to decoding, into a single ta-

329



ble with non-lemmatized source phrases. For a
given source text and its lemmatized version, we
first create an expansion phrase table with an entry
for each source phrase in the text whose lemma-
tized form is present in the lemmatized phrase ta-
ble. The target phrase and scores for the entry are
obtained from the lemmatized table; that is, entries
for different surface forms of the same lemma will
have identical scores in the expansion table. We
then linearly interpolate the regular and expansion
tables, using epsilon probabilities for missing en-
tries, and a weight of 0.9 on the regular table.1 The
combined table is used in a standard way during
decoding.

3.3 Transliteration

We transliterated the lemmatized forms of all
Russian words whose surface forms are out-of-
vocabulary, regardless of whether their lemma-
tized forms occurred in either the standard or the
lemmatized phrase tables. Transliterations were
encoded as translation rules with multiple scored
alternatives, similar to the approach found to be
optimal by Durrani et al. (2014). We experimented
with letting transliterations compete with trans-
lations of lemmatized forms from the phrase ta-
ble when available, but found that using only the
transliteration rules for OOVs resulted in slightly
higher BLEU scores.

Transliterations were produced by two versions
of our Portage PBMT system trained to map Cyril-
lic character sequences into Latin ones. Words
containing more than 2 characters, all of which
were either alphabetic or hyphens, and at least one
of which was non-ASCII, were transliterated with
a standard system; others (about 20% of OOVs)
were transliterated using a backoff system.

The standard transliteration system was trained
on parallel corpora consisting of the wiki-guessed-
names and wiki-guessed-patronymic-names cor-
pora,2 with first and last names split into sepa-
rate entries; and additionally on 200K transliter-
ated word pairs mined from the parallel corpora as
described below. Two character 6-gram language
models were trained on all word types from the
English side of the parallel corpora, and from the
English Gigaword. The standard system used KN
smoothing for phrase probabilities and an indica-

1We experimented with log-linear and backoff combina-
tions, but these did not perform as well.

2Both corpora are provided as part of the official WMT
2016 Russia-to-English training data.

5 runs ave. best run
System dev test
word-aligned baseline 35.3 28.0 28.1
lemma-aligned baseline 35.3 28.2 28.3
+ lemma NNJM 36.1 28.7 28.8
+ word NNJM 36.3 28.8 28.8
+ NNLTM 36.3 28.8 28.9
+ fallback lemma table 36.8 29.1 29.2
+ transliteration 37.0 29.2 29.3
+ rescoring – – 29.7

Table 1: Selected results from our development
experiments.

tor feature on phrase pairs from the mined corpus.
The backoff system was intended to enforce a

more literal style of transliteration appropriate for
non-words. It was trained only on the guessed-
*names corpora, with a phrase length limit of 3
and a restriction to monotonic translation.

We used a semi-supervised approach to mine
transliterated word pairs from the parallel cor-
pora, loosely modeled on the work of Sajjad et
al. (2012). We first extracted candidate pairs from
one-to-one word alignments where both words
were longer than 2 characters and contained only
alphabetic characters. Next we scored each can-
didate pair e, f using the formula log p(e|f) +
log p(f |e)−log pn(e, f), where p(e|f) and p(f |e)
are probabilities from (character-wise) HMM
models trained on the guessed-*names corpora,
and pn(e, f) = pn(e)pn(f) is a character unigram
model. Finally, we ranked all candidates by de-
scending score and retained the top 200K.

4 Development Experiments

We carried out a large number of development
experiments throughout the design of this sys-
tem, using the data conditions described in Sec-
tion 2.1, with the WMT 2014 test set as our tuning
set (dev), and the WMT 2015 test set as our test
set. We monitored uncased BLEU on a system-
tokenized version of the test set, reporting the av-
erage and the best of 5 random tuning replications.

Table 1 provides some selected results from
these experiments and table 2 shows an example of
how the different components improve the trans-
lation quality. The word baseline reflects a sys-
tem with standard phrase-based features, reorder-
ing models, sparse features, monolingual language
models and an uninterpolated phrase table. The
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input полиция карраты предъявила 20-летнему мужчине обвинение в
отказе остановиться и опасном вождении .

reference karratha police have charged a 20-year-old man with failing to stop and
reckless driving .

word-aligned baseline police charge man in 20-years punching карраты refusing to stop and dan-
gerous driving .

lemma-aligned baseline police charged карраты 20-years man indicted in refusing to stop and dan-
gerous driving .

+ neural components police charged карраты 20-years man charged with refusing to stop and
dangerous driving .

+ OOV handling karratha police charged a 20-year-old man accused of refusing to stop and
dangerous driving .

+ rescoring karratha police have charged a 20-year-old man accused of refusing to stop
and dangerous driving .

Table 2: Example that shows significant improvements by using lemma alignments, adding neural com-
ponents (i.e. 2NNJMs and NNLTM), adding OOV handling (i.e. fallback lemma table and transliteration)
and rescoring.

alignment for all components in this word baseline
is based on the surface form of the Russian word.
We then replace the word alignment for all com-
ponents with lemma alignment to form the lemma
baseline. We then add the neural components, the
fallback lemma table and the transliteration com-
ponent. The rescoring step is only done on the best
model as the final step before recasing and detok-
enizing.

Given such a strong lemma baseline, the biggest
impact comes from the addition of the first NNJM.
The next largest jump comes from the fallback
Russian lemma phrase table, which also improved
our OOV rate considerably. We were pleas-
antly surprised to see the transliteration compo-
nent helping to the extent that it does. These
sorts of point-wise vocabulary improvements do
not always have a visible impact on BLEU. We are
optimistic that its impact will be even more pro-
nounced in the human evaluation.

5 Conclusion

We have presented the NRC submission to the
WMT 2016 Russian-English news translation
task. The key contributions of our system in-
clude 1) using Russian lemmas to improve word
alignment while using the original Russian words
to preserve case information in different models;
2) the incorporation of NNJMs and NNLTM; 3)
a fallback Russian lemma phrase table for Rus-
sian OOVs and 4) a semi-supervised transliter-
ation model built on a seed corpus mined from

the standard parallel training data. Our system
achieved the highest uncased BLEU, the second
highest cased BLEU and the lowest TER scores
among the eight participants in WMT 2016, and
ranked third out of ten systems in the human eval-
uation.
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