
Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 319–325,
Berlin, Germany, August 11-12, 2016. c©2016 Association for Computational Linguistics

The AMU-UEDIN Submission to the WMT16 News Translation Task:
Attention-based NMT Models as Feature Functions in Phrase-based SMT

Marcin Junczys-Dowmunt1,2, Tomasz Dwojak1, Rico Sennrich2

1Faculty of Mathematics and Computer Science, Adam Mickiewicz University in Poznań
2School of Informatics, University of Edinburgh

junczys@amu.edu.pl t.dwojak@amu.edu.pl
rico.sennrich@ed.ac.uk

Abstract

This paper describes the AMU-UEDIN
submissions to the WMT 2016 shared
task on news translation. We explore
methods of decode-time integration of
attention-based neural translation mod-
els with phrase-based statistical machine
translation. Efficient batch-algorithms for
GPU-querying are proposed and imple-
mented. For English-Russian, our system
stays behind the state-of-the-art pure neu-
ral models in terms of BLEU. Among re-
stricted systems, manual evaluation places
it in the first cluster tied with the pure neu-
ral model. For the Russian-English task,
our submission achieves the top BLEU re-
sult, outperforming the best pure neural
system by 1.1 BLEU points and our own
phrase-based baseline by 1.6 BLEU. Af-
ter manual evaluation, this system is the
best restricted system in its own cluster. In
follow-up experiments we improve results
by additional 0.8 BLEU.

1 Introduction

This paper describes the AMU-UEDIN submis-
sions to the WMT 2016 shared task on news trans-
lation. We explore methods of decode-time inte-
gration of attention-based neural translation mod-
els with phrase-based decoding. Experiments have
been conducted for the English-Russian language
pair in both translation directions.

For these experiments we re-implemented the
inference step of the models described in Bah-
danau et al. (2015) (more exactly the DL4MT1

variant also present in Nematus2) in efficient
1https://github.com/nyu-dl/

dl4mt-tutorial
2https://github.com/rsennrich/nematus

C++/CUDA code that can be directly compiled as
a Moses feature function. The GPU-based com-
putations come with their own peculiarities which
we reconcile with the two most popular phrase-
based decoding algorithms — stack-decoding and
cube-pruning.

While it seems at first that for English-Russian
our phrase-based system is holding back the neu-
ral models in terms of BLEU, the manual evalua-
tion reveals that our systems is tied with the pure
neural systems, occupying the same top cluster
for restricted systems with an even slightly higher
TrueSkill score. We achieve the top BLEU re-
sult for the Russian-English task, outperforming
the best pure neural system by 1.1 BLEU points
and our own phrase-based baseline by 1.6 BLEU.
After manual evaluation, this system is the best re-
stricted system in its own cluster.

Our implementation is available as a Moses fork
from https://github.com/emjotde/
mosesdecoder_nmt

2 Preprocessing

As we reuse the neural systems from Sennrich et
al. (2016), we follow their preprocessing scheme
for the phrase-based systems as well. All data is
tokenized with the Moses tokenizer, for English
the Penn-format tokenization scheme has been
used. Tokenized text is true-cased.

Sennrich et al. (2016) use byte-pair-encoding
(BPE) to achieve open-vocabulary translation with
a fixed vocabulary of subword symbols (Sennrich
et al., 2015b). For English, the vocabulary size
is limited to 50,000 units, for Russian to 100,000.
This has the interesting consequence of using sub-
word units for phrase-based SMT. Although SMT
seems to be better equipped to handle large vo-
cabularies, the case of Russian still poses prob-
lems which are usually solved with transliteration

319

mechanisms (Durrani et al., 2014). Resorting to
subword units eliminates the need for these.3

3 Neural translation systems

As mentioned before, we reuse the English-
Russian and Russian-English NMT models from
Sennrich et al. (2016) and refer the reader to that
paper for a more detailed description of these sys-
tems. In this section we give a short summariza-
tion for the sake of completeness.

The neural machine translation system is an at-
tentional encoder-decoder (Bahdanau et al., 2015),
which has been trained with Nematus. Additional
parallel training data has been produced by au-
tomatically translating a random sample (2 mil-
lion sentences) of the monolingual Russian News
Crawl 2015 corpus into English (Sennrich et al.,
2015a), which has been combined with the origi-
nal parallel data in a 1-to-1 ratio.4 The same has
been done for the other direction. We used mini-
batches of size 80, a maximum sentence length of
50, word embeddings of size 500, and hidden lay-
ers of size 1024. We clip the gradient norm to
1.0 (Pascanu et al., 2013). Models were trained
with Adadelta (Zeiler, 2012), reshuffling the train-
ing corpus between epochs. The models have been
trained model for approximately 2 weeks, saving
every 30000 mini-batches.

For our experiments with PB-SMT integration,
we chose the same four models that constituted the
best-scoring ensemble from Sennrich et al. (2016).
If less than four models were used, we chose the
models with the highest BLEU scores among these
four models as measured on a development set.

4 Phrase-Based baseline systems

We base our set-up on a Moses system (Koehn
et al., 2007) with a number of additional feature
functions. Apart from the default configuration
with a lexical reordering model, we add a 5-gram
operation sequence model (Durrani et al., 2013).

We perform no language-specific adaptations
or modifications. The two systems differ only

3In experiments not described in this paper, we tried BPE
encoding for the English-German language pair and found
subword units to cope well with German compound nouns
when used for phrase-based SMT.

4This artificial data has not been used for the creation of
the phrase-based system, but it might be worthwhile to ex-
plore this possibility in the future. It might enable the phrase-
based system to produce translation that are more similar to
the neural output.

with respect to translation direction and the avail-
able (monolingual) training data. For domain-
adaptation, we rely solely on parameter tuning
with Batch-Mira (Cherry and Foster, 2012) and
on-line log-linear interpolation. Binary domain-
indicators for each separate parallel corpus are in-
troduced to the phrase-tables (four indicators) and
a separate language model per parallel and mono-
lingual resource is trained (en:16 and ru:12). All
language models are 5-gram models with Modi-
fied Kneser-Ney smoothing and without pruning
thresholds (Heafield et al., 2013). We treat differ-
ent years of the News Crawl data as different do-
mains to take advantage of possible recency-based
effects. During parameter tuning on the newstest-
2014 test set, we can unsurprisingly observe that
weights for the last three LMs (2013, 2014, 2015)
are much higher than for the remaining years.

After concatenating all resources, a large 5-
gram background language model is trained, with
3-grams or higher n-gram orders being pruned if
they occur only once. The same concatenated files
and pruning settings are used to create a 9-gram
word-class language model with 200 word-classes
produced by word2vec (Mikolov et al., 2013).

5 NMT as Moses feature functions

As mentioned in the introduction, we imple-
mented a C++/CUDA version of the inference step
for the neural models trained with DL4MT or Ne-
matus, which can be used directly with our code.
One or multiple models can be added to the Moses
log-linear model as different instances of the same
feature, which during tuning can be separately
weighted. Adding multiple models as separate
features becomes thus similar to ensemble trans-
lation with pure neural models.

In this section we give algorithmic details about
integrating GPU-based soft-attention neural trans-
lation models into Moses as part of the fea-
ture function framework. Our work differs from
Alkhouli et al. (2015) in the following aspects:

1. While Alkhouli et al. (2015) integrate RNN-
based translation models in phrase-based de-
coding, this work is to our knowledge the first
to integrate soft-attention models.

2. Our implementation is GPU-based and our
algorithms being tailored towards GPU com-
putations require very different caching
strategies from those proposed in Alkhouli et

320

h0

h0|0
p0|0

h0|0,2
p0|0,2

h0|0,3
p0|0,3

h0|0,3,4
p0|0,3,4

h0|0,3,4,5
p0|0,3,4,5h0|1

p0|1

h1

h1|1
p1|1

h1|1,2
p1|1,2

h1|1,2,3
p1|1,2,3

h1|1,4
p1|1,4

h1|2
p1|2

h1|2,2
p1|2,2

h1|2,2,4
p1|2,2,4

w0

w2

w3
w4 w5

w1

w1

w2

w3

w4

w2

w2 w4

Step 1

Step 2

Step 3 Step 4

Figure 1: SCOREBATCH procedure for a forest consisting of two per-hypothesis prefix trees. Words are
collected at the same tree depths across all trees in the forest.

al. (2015). Our implementation seems to be
about 10 times faster on one GPU, 30 times
faster when three GPUs are used.

5.1 Scoring hypotheses and their expansions
We assume through-out this section that the neural
model has already been initialized with the source
sentence and that the source sentence context is
available at all time.

In phrase-based machine translation, a pair con-
sisting of a translation hypothesis and a chosen
possible target phrase that expands this hypoth-
esis to form a new hypothesis can be seen as
the smallest unit of computation. In the typical
case they are processed independently from other
hypothesis-expansion pairs until they are put on a
stack and potentially recombined. Our aim is to
run the computations on one or more GPUs. This
makes the calculation of scores per hypothesis-
expansion pair (as done for instance during n-gram
language model querying) unfeasible as repeated
GPU-access with very small units of computation
comes with a very high overhead.

In neural machine translation, we treat neural
states to be equivalent to hypotheses, but they
are extended only by single words, not phrases,
by performing computations over the whole target
vocabulary. In this section, we present a batching
and querying scheme that aims at taking advantage
of the capabilities of GPUs to perform batched cal-
culations efficiently, by combining the approaches
from phrase-based and neural decoding.

Given is a set of pairs (h, t) where h is a decod-
ing hypothesis and t a target phrase expanding the

1: procedure SCOREBATCH(L, NMT)
2: Create forest of per-hypothesis prefix trees

from all hypotheses and expansions in L
3: for i from 1 to maximum tree depth do
4: Construct embedding matrix Ei from

all edge labels at depth i

5: Construct row-wise corresponding
state matrix Hi−1 from source nodes

6: Compute forward step:
(Hi, Pi)← NMT(Hi−1, Ei)

7: Cache state pointers and probabilities
at target nodes

Figure 2: Scoring of hypothesis expansion pairs

hypothesis. In a naive approach (corresponding to
unmodified stack decoding) the number of queries
to the GPU would be equal to the total number of
words in all expansions. A better algorithm might
take advantage of common target phrase prefixes
per hypothesis. The number of queries would be
reduced to the number of collapsed edges in the
per-hypothesis prefix-tree forest.

By explicitly constructing this forest of prefix
trees where a single prefix tree encodes all target
phrases that expand the same hypothesis, we can
actually reduce the number of queries to the neural
model to the maximum depth of any of the trees
(i.e. the maximum target phrase length) as illus-
trated in Figures 1 and 2.

Target phrases t are treated as sequences of
words w. Rectangles at tree nodes should be imag-
ined to be empty before the preceding step has

321

been performed. The first embedding matrix E1 is
constructed by concatenating embedding vectors
ei ← LOOKUP(wi) as rows of the matrix, for all
wi marked in the first dashed rectangle. The ini-
tial state matrix H0 is a row-wise concatenation
of the neural hypothesis states, repeated for each
outgoing edge. Thus, the embedding matrix and
state matrix have the same number of correspond-
ing rows. Example matrices for the first step take
the following form:

E1 =

e0
e1
e1
e2

 H0 =

h0

h0

h1

h1

Given the precomputed source context state, we
can now perform one forward step in the neural
network which yields a matrix of output states and
a matrix of probabilities, both corresponding row-
wise to the input state matrix and embedding ma-
trix we constructed earlier. The target nodes for
each edge pointed to after the first step are filled.
Probabilities will be queried later during phrase-
based scoring, neural hypothesis states are reused
to construct the state matrix of the next step and
potentially as initial states when scoring another
batch of hypotheses at later time.

5.2 Two-pass stack decoding

Standard stack decoding still scores hypotheses
one-by-one. In order to limit the number of mod-
ifications of Moses to a minimum, we propose
two-pass stack decoding where the first pass is a
hypothesis and expansions collection step and the
second pass is the original expansion and scoring
step. Between the two steps we pre-calculate per-
hypothesis scores with the procedure described
above. The data structure introduced in Figure 1
is then reused for probability look-up during the
scoring phrase of stack decoding as if individual
hypotheses where scored on-the-fly.

Figure 3 contains our complete proposal for
two-pass stack decoding, a modification of the
original stack decoding algorithm described in
Koehn (2010). We dissect stack decoding into
smaller reusable pieces that can be passed func-
tors to perform different tasks for the same sets of
hypotheses. The main reason for this is the small
word “applicable” in line 12, which hides a com-
plicated set of target phrase choices based on re-
ordering limits and coverage vectors which should

1: procedure TWOPASSSTACKDECODING

2: Place empty hypothesis h0 into stack S0

3: for stack S in stacks do
4: L← ∅
5: PROCESSSTACK(S, GATHER{L})
6: C ← SCOREBATCH(L, NMT)
7: PROCESSSTACK(S, EXPAND{C})
8:

9: procedure PROCESSSTACK(S, f)
10: for hypothesis h in S do
11: for target phrase t do
12: if applicable then
13: Apply functor f (h, t)
14:

15: procedure GATHER(h, t)
16: L← L ∪ {(h, t)}
17:

18: procedure EXPAND(h, t)
19: Look-up p for (h, t) in C
20: Create new hypothesis ĥ from (h, t, p)
21: Place ĥ on appropriate stack s
22: if possible then
23: Recombine hypothesis ĥ with other

hypotheses on stack s

24: if stack s too big then
25: Prune stack s

Figure 3: Two-pass stack decoding

not be discussed here. This allows our algorithm
to collect exactly the set of hypotheses and expan-
sions for score pre-calculation that will be used
during the second expansion step.

As already mentioned, the number of forward
steps for the NMT network per stack is equal to
the greatest phrase length among all expansions.
The total number of GPU queries increases there-
fore linearly with respect to the sentence length.
Branching factors or stack sizes affect the matrix
sizes, not the number of steps.5

For this method we do not provide results due
to a lack of time. We confirmed for other experi-
ments that improvements are smaller than for the
next method. A comparison will be provided in an
extended version of this work.

5.3 Stack rescoring
The previous approach cannot be used with lazy
decoding algorithms — like cube pruning —

5Large matrix sizes, however, do slow-down translation
speed significantly.

322

1: procedure STACKRESCORING

2: Place empty hypothesis h0 into stack S0

3: for stack S in stacks do
4: L← ∅
5: for hypothesis h in S do
6: Extract predecessors (h̄, t̄) from h
7: L← L ∪ {(h̄, t̄)}
8: C ← SCOREBATCH(L, NMT)
9: for hypothesis h in S do

10: Extract predecessors (h̄, t̄) from h
11: Look-up p for (h̄, t̄) in C
12: Recalculate score of h using p

13: Create cache C0 with 0-probabilities
14: PROCESSSTACK(S, EXPAND{C0})

Figure 4: Stack decoding with stack rescoring

which has also been implemented in Moses. Apart
from that, due to the large number of expan-
sions even small stack sizes of around 30 or 50
quickly result in large matrices in the middle steps
of BATCHSCORE where the prefix trees have the
greatest number of edges at the same depth level.
In the worst case, matrix size will increase by a
factor bd, where b is the branching factor and d is
the current depth. In practice, however, the maxi-
mum is reached at the third or fourth step, as only
few target phrases contain five or more words.

To address both shortcomings we propose a sec-
ond algorithm: stack rescoring. This algorithm
(Figure 4) relies on two ideas:

1. During hypothesis expansion the NMT fea-
ture is being ignored, only probabilities of 0
are assigned for this feature to all newly cre-
ated hypotheses. Hypothesis recombination
and pruning take place without NMT scores
for the current expansions (NMT scores for
all previous expansions are included). Any
stack-based decoding algorithm, also cube-
pruning, can be used in this step.

2. The BATCHSCORE procedure is applied to
all direct predecessors of hypotheses on the
currently expanded stack. Predecessors con-
sist of the parent hypothesis and the expan-
sion that resulted in the current hypothesis.
The previously assigned 0-probabilities are
replaced with the actual NMT scores.

This procedure results in a number of changes
when compared to standard stack decoding ap-
proaches and the previous method:

• The maximum matrix row count is equal to
the stack size, and often much smaller due to
prefix collapsing. Branching factors are irrel-
evant and stack sizes of 2,000 or greater are
possible. By contrast, for two-pass stack de-
coding stack sizes of around 50 could already
result in row counts of 7,000 and more.

• With cube pruning, by setting cube pruning
pop-limits much larger than the stack size
many more hypotheses can be scored with
all remaining feature functions before the sur-
vivors are passed to BATCHSCORE.

• Scoring with the NMT-feature is delayed un-
til the next stack is processed. This may re-
sult in missing good translations due to re-
combination. However, the much larger stack
sizes may counter this effect.

• N-best list extraction is more difficult, as
hypotheses that have been recombined do
not display correct cumulative sums for the
NMT-feature scores. The one-best trans-
lation is always correctly scored as it has
never been discarded during recombination,
so there is no problem at test time. For tun-
ing, where a correctly scored n-best list is
required, we simply rescore the final n-best
list with the same neural feature functions as
during decoding. The resulting scores are
the same as if they were produced at decode-
time. Final n-best list rescoring can thus be
seen as an integral part of stack-rescoring.

6 Experiments and results

For decoding, we use the cube-pruning algorithm
with stack size of 1,000 and cube-pruning pop
limit of 2,000 during tuning. At test time, a stack-
size of 1,000 is kept, but the cube-pruning pop
limit is increased to 5,000. We set a distortion
limit of 12. We run 10 iterations of Batch-Mira
(Cherry and Foster, 2012) and choose the best set
of weights based on the development set. Our de-
velopment set is a subset of 2,000 sentences from
the newstest-2014 test set. Sentences have been
selected to be shorter than 40 words to avoid GPU-
memory problems. Our GPUs are three Nvidia
GeForce GTX-970 cards with 4GB RAM each.

In this paper, similar as Alkhouli et al. (2015),
we ignore the implications of the infinite neural
state and hypothesis recombination in the face of

323

System 2015 2016

Phrase-Based (PB) 23.7 22.8

Pure neural:
NMT-2 26.4 25.3
NMT-4 (Sennrich et al., 2016) 27.0 26.0

Stack rescoring:
PB+NMT-2 (subm.) — 25.3

Follow-up:
NMT-4-Avg 26.7 25.5
PB+NMT-4-Avg 27.3 25.9

(a) BLEU scores English-Russian

System 2015 2016

Phrase-Based (PB) 27.4 27.5

Pure neural:
NMT-3 28.3 27.8
NMT-4 (Sennrich et al., 2016) 28.3 28.0

Stack rescoring:
PB+NMT-3 (subm.) 29.5 29.1

Follow-up:
NMT-10-Avg 28.3 28.1
PB+NMT-10-Avg 30.2 29.9

(b) BLEU scores Russian-English

Table 1: Systems marked with subm. are our final WMT 2016 submissions.

words/s

Alkhouli et al. (2015) (1 thread?) 0.19
Phrase-based PB (24 threads) 40.30
PB-NMT-10-Avg (3 GPUs) 4.83

Table 2: Translation speed for different configura-
tions in words per second.

infinite state. We rely on the hypothesis recom-
bination controlled by the states of the other fea-
ture functions. It is worth mentioning again that
our phrase-based baseline features a 9-gram word-
class language model which should be rather pro-
hibitive of recombinations. If recombination was
only allowed for hypotheses with the same partial
translations, results were considerably worse.

6.1 Speed

Translation speed is difficult to compare across
systems (Table 2). Even with three GPUs our sys-
tem is ten times slower than than a pure PB-SMT
system running with 24 CPU-threads. It is how-
ever unclear at this moment if the large stack sizes
we use are really necessary. Significant speed-up
might be achieved for smaller stacks.

6.2 Submitted results

Table 1 summarizes the results for our experi-
ments. BLEU scores are reported for the newstest-
2015 and newstest-2016 test sets.

Our baseline phrase-based systems (PB) are
quite competitive when comparing to the best
results of last year’s WMT (24.4 and 27.9
for English-Russian and Russian-English, respec-

tively). NMT-4 is the best pure neural ensemble
from Sennrich et al. (2016) for both translation
directions. Due to memory restrictions, we were
not able to use all four models as separate feature
functions and limit ourselves to the best two mod-
els for English-Russian and best three for Russian-
English. The pure neural ensembles are NMT-2
(en-ru) and NMT-3 (ru-en), respectively.

For English-Russian, our results stay behind
the pure-neural 4-ensemble NMT-4 in terms of
BLEU. In a direct comparison between ensembles
of 2 models (PB+NMT-2 and NMT-2), we actually
reach similar BLEU scores. However, in the man-
ual evaluation our system is best restricted system,
tied with the neural system. Absolute TrueSkill
scores are even slightly higher for our system.

For Russian-English the best-performing pure
neural system NMT-4 and the phrase-based base-
line are only 0.5% BLEU apart. Adding three
NMT models as feature functions to Moses re-
sults in a 1.1% BLEU improvement over the neu-
ral model and 1.6% over the phrase-based system.
The systems PB-NMT-2 (en-ru) and PB-NMT-
3 (ru-en) are our submissions to the WMT-2016
news translation task. PB-NMT-3 scores the top
BLEU results for Russian-English. In the manual
evaluation, our system is the best restricted system
in its own cluster.

6.3 Follow-up experiments

Frustrated by the limited memory of our GPU
cards and against better knowledge6, we computed

6The neural network lore seems to suggest that this should
not work, as neural networks are non-linear models. We only
found one paper with evidence to the contrary: Utans (1996)

324

the element-wise average of all model weights
in the NMT ensembles and saved the resulting
model. Interestingly, the performance of these
new models (NMT-4-Avg) is not much worse than
the actual ensemble (NMT-4), while being four
times smaller and four times faster at decode-
time. The average models outperforms any sin-
gle model or the smaller 2-ensembles. All mod-
els taking part in the average are parameter dumps
saved at different points in time during the same
training run. This seem to be an interesting re-
sults for model compression and deployment set-
tings. We can also average more models: for
the Russian-English direction we experiment with
the parameter-wise average of ten models (NMT-
10-Avg) which even slightly outperforms the real
four-model ensemble NMT-4.

With this smaller model it is easier to tune and
deploy our feature function. The performance
of our combined setup improves for both transla-
tion directions. For English-Russian, however, the
pure NMT system (NMT-4) remains ahead of our
WMT 2016 submission. For Russian-English we
get another improvement of 0.8 BLEU, which sets
the new state-of-the-art for this direction.

Acknowledgments

This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innova-
tion programme under grant agreements 644333
(TraMOOC) and 688139 (SUMMA) and was par-
tially funded by the Amazon Academic Research
Awards programme.

References
Tamer Alkhouli, Felix Rietig, and Hermann Ney. 2015.

Investigations on phrase-based decoding with recur-
rent neural network language and translation mod-
els. In Proceedings of the Tenth Workshop on Statis-
tical Machine Translation, pages 294–303, Lisbon,
Portugal, September. Association for Computational
Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR).

Colin Cherry and George Foster. 2012. Batch tun-
ing strategies for statistical machine translation. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

NAACL HLT ’12, pages 427–436, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Nadir Durrani, Alexander Fraser, Helmut Schmid,
Hieu Hoang, and Philipp Koehn. 2013. Can Markov
models over minimal translation units help phrase-
based SMT? In ACL, pages 399–405. The Associa-
tion for Computer Linguistics.

Nadir Durrani, Hassan Sajjad, Hieu Hoang, and Philipp
Koehn. 2014. Integrating an unsupervised translit-
eration model into statistical machine translation. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, EACL 2014, April 26-30, 2014, Gothen-
burg, Sweden, pages 148–153.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the ACL,
pages 690–696.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL,
pages 177–180. ACL.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press, New York, NY, USA,
1st edition.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. 2013. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th Inter-
national Conference on Machine Learning, ICML
2013, pages 1310–1318, , Atlanta, GA, USA.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015a. Improving Neural Machine Translation
Models with Monolingual Data. ArXiv e-prints,
November.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015b. Neural Machine Translation of Rare Words
with Subword Units. CoRR, abs/1508.07909.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh Neural Machine Translation Sys-
tems for WMT 16. In Proc. of the Conference on
Machine Translation (WMT), Berlin, Germany.

Joachim Utans. 1996. Weight averaging for neural
networks and local resampling schemes. In Proc.
AAAI-96 Workshop on Integrating Multiple Learned
Models, pages 133–138. AAAI Press.

Matthew D. Zeiler. 2012. ADADELTA: An Adaptive
Learning Rate Method. CoRR, abs/1212.5701.

325

