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CIFAR Senior Fellow

Abstract

We describe the neural machine trans-
lation system of New York Univer-
sity (NYU) and University of Mon-
treal (MILA) for the translation tasks of
WMT’16. The main goal of NYU-MILA
submission to WMT’16 is to evaluate a
new character-level decoding approach in
neural machine translation on various lan-
guage pairs. The proposed neural machine
translation system is an attention-based
encoder–decoder with a subword-level en-
coder and a character-level decoder. The
decoder of the neural machine translation
system does not require explicit segmen-
tation, when characters are used as to-
kens. The character-level decoding ap-
proach provides benefits especially when
translating a source language into other
morphologically rich languages.

1 Introduction

Word-level modelling with explicit segmentation
has been a standard approach in statistical machine
translation systems. This is mainly due to the issue
of data sparsity, caused by the, exponential growth
of the state space as the length of sequences grows
larger. This becomes much more severe when a
sequence is represented with characters. In addi-
tion to the data sparsity issue, in linguistics, words
or their segmented-out lexemes are usually con-
sidered as basic units of meaning, which makes
words to be more suitable when solving natural
language processing tasks.

There are however two pressing issues here.
The first issue is the absence of a perfect segmen-
tation algorithm for any single language. A perfect

This system description paper summarizes and details
the experimental procedure described in Chung et al. (2016)

segmentation algorithm should be able to segment
given unsegmented sentence into a sequence of
lexemes and morphemes. The other issue, which
is specific to neural network approaches, is that
neural machine translation systems suffers from
increased complexity due to the large vocabulary
size (Jean et al., 2015; Luong et al., 2015), which
does not happen with character-level modelling.

Most issues of word-level modelling can be ad-
dressed to certain extent by switching into finer to-
kens, e.g., characters. In fact, to neural networks,
each and every token in the vocabulary is treated as
an independent entity, and the semantics of tokens
are simply learned to maximize the objective func-
tion (Chung et al., 2016). This property allows a
lot of freedom to the neural machine translation
system in the choice of tokens.

The NYU-MILA neural machine translation
system is built on the idea of directly generating
characters, instead of words, that can possibly un-
link a machine translation system from the need
of explicit segmentation as a preprocessing step,
which is often suboptimal in solving translation
tasks. We focus on representing the target sen-
tence as a sequence of characters, and the source
sentence as a sequence of subwords (Sennrich et
al., 2015).

2 System Description

In this section, we describe the details of the NYU-
MILA neural machine translation system. In our
system, we closely follow the neural machine
translation model proposed by Bahdanau et al.
(2015). A neural machine translation model (For-
cada and Ñeco, 1997; Kalchbrenner and Blunsom,
2013; Cho et al., 2014; Sutskever et al., 2014) aims
at building an end-to-end neural network that takes
as input a source sentence X = (x1, . . . , xTx) and
outputs its translation Y = (y1, . . . , yTy), where
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xt and yt′ are respectively source and target to-
kens. The neural network is constructed as a com-
posite of an encoder network and a decoder net-
work.

The encoder maps the input sentence X into its
continuous representation. A bidirectional recur-
rent neural network, which consists of two recur-
rent neural networks (RNNs), is used to give more
representational power to the encoder. The for-
ward network reads the input sentence in a for-
ward direction: −→z t =

−→
φ (ex(xt),

−→z t−1), where
ex(xt) is a continuous embedding of the t-th in-
put symbol, and φ is a recurrent activation func-
tion. Similarly, the reverse network reads the
sentence in a reverse direction (right to left):
←−z t =

←−
φ (ex(xt),

←−z t+1). At each location in the
input sentence, we concatenate the hidden states
from the forward and reverse RNNs to form a
context set: C = {z1, . . . , zTx} , where zt =[−→z t;

←−z t

]
.

Then the decoder computes the conditional dis-
tribution over all possible translations based on
this context set. This is done by first rewriting the
conditional probability of a translation: log p(Y |
X) =

∑Ty

t′=1 log p(yt′ | y<t′ , X). For each con-
ditional term in the summation, the decoder RNN
updates its hidden state by

ht′ = φ(ey(yt′−1),ht′−1, ct′), (1)

where ey is the continuous embedding of a target
symbol. ct′ is a context vector computed by a soft-
alignment mechanism:

ct′ = falign(ey(yt′−1),ht′−1, C)). (2)

The soft-alignment mechanism falign weights
each vector in the context set C according to its
relevance given what has been translated. The
weight of each vector zt is computed by

αt,t′ =
1

Z
efscore(ey(yt′−1),ht′−1,zt), (3)

where fscore is a parametric function returning an
unnormalized score for zt given ht′−1 and yt′−1.
We use a feedforward network with a single hid-
den layer in this paper. Z is a normalization con-
stant: Z =

∑Tx
k=1 e

fscore(ey(yt′−1),ht′−1,zk). This
procedure can be understood as computing the
alignment probability between the t′-th target
symbol and t-th source symbol.

The hidden state ht′ , together with the previous
target symbol yt′−1 and the context vector ct′ , is

fed into a feedforward neural network to result in
the conditional distribution:

p(yt′ | y<t′ , X) ∝ ef
yt′
out(ey(yt′−1),ht′ ,ct′ ). (4)

The whole network, consisting of the encoder,
decoder and soft-alignment mechanism, is then
tuned end-to-end to minimize the negative log-
likelihood using stochastic gradient descent. In
our system, the source sentenceX is a sequence of
subword tokens extracted by byte-pair-encoding
(BPE) (Sennrich et al., 2015), and the target sen-
tence Y is represented as a sequence of characters.

3 Experimental Settings

In this section, we describe the details of the ex-
perimental settings for our system.

Corpora and Preprocessing We use all avail-
able training parallel corpora for four language
pairs from WMT’16: En-Cs, En-De, En-Ru and
En-Fi. They consist of 63.5M, 4.5M, 2.3M and
2M sentence pairs, respectively. We do not use
any monolingual corpus. We only use the sentence
pairs, when the source side is up to 50 subword
symbols long and the target side is up to 500 char-
acters. For all the pairs other than En-Fi, we use
newstest-2013 as a development set, and for En-
Fi, we use newsdev-2015 as a development set.

All of the source corpora were preprocessed us-
ing BPE (Sennrich et al., 2015), and for the tar-
get corpora, no additional preprocessing step is
required. For the target vocabulary, we use 300
characters and two additional tokens reserved for
〈EOS〉 and 〈UNK〉. For the source vocabulary we
constrain the size of BPE symbols up to 30, 000.

Models and Training We use gated recurrent
units (Cho et al., 2014) (GRUs) for the recurrent
neural networks. The encoder has 512 hidden
units for each direction (forward and reverse), and
the decoder has two hidden layer with 1024 units
each. The embedding layers of both source and
target sides have dimensionality of 512 without
any non-linearity. Both fout and fscore are feedfor-
ward neural networks with an intermediate hidden
layer with 512 tanh units.

We train the model using stochastic gradient de-
scent with Adam (Kingma and Ba, 2014) using the
default parameters introduced in the paper. Each
update is computed using a minibatch of 128 sen-
tence pairs. The norm of the gradient is rescaled
with a threshold set to 1 (Pascanu et al., 2013). We
set the initial learning rate of 0.0001.
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Language Pair BLEU-c TER
Ranking

BLEU-c cons. BLEU-c uncons. Human
En-Cs 23.6 0.639 2/12 2/12 2/8
En-De 30.8 0.583 3/12 3/12 4/11
En-Fi 15.1 0.771 3/12 4/13 4/11
En-Ru 23.1 0.677 6/7 6/8 4/8

Table 1: Empirical results of the NYU-MILA systems on WMT’16 test sets. All of our submitted
systems are constrained. For ranking by BLEU-c scores, when there are multiple submissions from a
single system, we count it as one system. Some of the systems that showed in BLEU-c case do not show
in the human evaluation, hence the total number of systems does not match. We present the ranking in
both constrained setting (cons.) and unconstrained setting (uncons.) on the table.

Decoding and Evaluation We use beamsearch
to approximately find the most likely translation
given a source sentence. We use a beam width
of 15 to find the model with best translation qual-
ity. The translation quality is evaluated by using
BLEU.1 For the WMT’16 test sets, we use the
same beam width.

Ensembles We build an ensemble model us-
ing eight independent neural machine translation
models initialized with different parameters. We
decode from an ensemble by taking the average of
the output probabilities at each step.

Decoding Speed of the Character-Level De-
coder We evaluate the decoding speed of the
character-level decoder and compare with a
subword-level decoder on newstest-2013 corpus
(En-De) with a single Titan X GPU. The subword-
level decoder generates 31.9 words per second,
and the character-level decoder generates 27.5
words per second. Note that this is evaluated in an
online setting, where only one sentence is trans-
lated at a time, and translating in a batch setting
could differ from these results.

4 Experimental Results

The results of the NYU-MILA system is presented
in Table 1. The character-level decoding works
well on most of the languages that are tested,
achieving comparable BLEU-c scores to other ap-
proaches using words or subwords (BPE) as to-
kens. Note that our system does not incorporate
extra monolingual training corpus, and does not
include any kind of postprocessing e.g., reranking.

1We used the multi-bleu.perl script from Moses during
training and internal evaluation.

5 Conclusion

We present the NYU-MILA neural machine trans-
lation system for WMT’16, which has a character-
level decoder on the target side. Our results show
that a character-level decoder can perform compa-
rable to state-of-the-art systems. The NYU-MILA
neural machine translation system achieved sec-
ond rank in En-Cs and En-Fi (constrained only)
and third rank in En-De. To the best of our knowl-
edge the NYU-MILA system may be the only sub-
mitted system that directly generates characters in-
stead of words or subwords. The biggest advan-
tage of the character-level decoding approach is
that the machine translation system no longer re-
quires any preprocessing step, such as segmenta-
tion.
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