

ListNet-based MT Rescoring

Jan Niehues, Quoc Khanh Do, Alexandre Allauzen and Alex Waibel

KIT - Institute for Anthropomatics and Robotics and LIMSI-CNRS

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Motivation

- Log-linear model is widely used in SMT
 - Use during decoding
 - Use in MT rescoring
- MT Rescoring
 - Easy and efficient way to integrate of complex models
- Machine learning view
 - Ranking problem
 - Promising approach: ListNet algorithm
- Apply ListNet algorithm to SMT

Related Work

Optimization in Machine translation

- Minimum Error Rate Training (MERT) (Och, 2003)
 - Standard in most machine translation systems
- MIRA (Watanabe et al., 2007; Chiang et al., 2008)
- PRO (Hopkins and May, 2011)
- Expected BLEU (Rosti et al, 2011; He and Deng, 2012)

Ranking in machine learning

- ListNet algorithm (Cao et al., 2007)
- Overview over different ranking algorithms (Chen et al., 2009)

Overview

- Motivation
- ListNet Algorithm
- MT Rescoring
 - MT specific problems
- Evaluation
 - WMT
 - IWSLT TED

4 2015-09-17 Jan Niehues - ListNet-based MT Rescoring

ListNet -Ranking

Input:

- List
- Model score
- Metric for reference ranking

Hypothesis	Model	Metric
A	7.4	24.4
В	7.8	24.2
С	7.2	24.5
D	7.1	24.1

4 2015-09-17 Jan Niehues - ListNet-based MT Rescoring

ListNet -Ranking

Input:

- List
- Model score
- Metric for reference ranking

Hypothesis	Model	Metric
В	7.8	24.2
А	7.4	24.4
С	7.2	24.5
D	7.1	24.1

According to the model

4 2015-09-17 Jan Niehues - ListNet-based MT Rescoring

ListNet -Ranking

Input:

- List
- Model score
- Metric for reference ranking

Hypothesis	Model	Metric
С	7.2	24.5
А	7.4	24.4
В	7.8	24.2
D	7.1	24.1

According to the metric

ListNet -Ranking

Input:

- List
- Model score
- Metric for reference ranking

Hypothesis	Model	Metric]	Hypothesis	Model	Metric
В	7.8	24.2		С	7.2	24.5
А	7.4	24.4	\Rightarrow	А	7.4	24.4
С	7.2	24.5		В	7.8	24.2
D	7.1	24.1		D	7.1	24.1

Aim: Learn a model to rank like the metric

ListNet - Idea

- Define a probability distribution over possible rankings
- Learn model that produces a distribution similar to the one defined by the metric
- Problem: large number of possible rankings
- Define a probability distribution associated to the model ranking based on first ranked object

$$P_{s}(j) = \frac{\exp(s_j)}{\sum_{k=1}^{n} \exp(s_k)}$$
(1)

ListNet - Distribution

Minimize cross-entropy difference

Overview

- Motivation
- ListNet Algorithm
- MT Rescoring
 - MT specific problems
- Evaluation
 - WMT
 - IWSLT TED

MT Rescoring

- Use ListNet to rescore N-Best list
 - Train log-linear model
- Input:
 - N-Best list
 - Additional features
- Learn new weights for log-linear model

Model

Define probability distribution associated to the model ranking

$$P_{s}(j) = \frac{\exp(s_j)}{\sum_{k=1}^{n} \exp(s_k)}$$
(2)

Problem:

- Many scores are small probabilities
- Log-probabilities are very small negative values
- exp(s) calculation may be erroneous
- Feature normalization:
 - Linear transform all features to the range [-1, 1]
- Score normalization:
 - Linear transform the final score of the model to the range [-r, r]

Metric

- Define probability distribution associated to the reference ranking
- Reference ranking for every sentence needed
- Ranking induced by MT metric
- Sentence-wise MT metric
 - Metric: BLEU+1 (Liang et al. 2006)
 - Smoothed version of BLEU score

$$P_{y^{(i)}}(x_j^{(i)}) = \frac{\exp(\text{BLEU}(x_j^{(i)}))}{\sum_{j'=1}^{n^i} \exp(\text{BLEU}(x_{j'}^{(i)}))}$$
(3)

Training

- Minimize cross-entropy difference between model-based and BLEU+1-based probability distribution
 - Use ListNet algorithm to calculate derivation
- Stochastic gradient descent
 - 100,000 batches
 - Batch size of 10

Overview

- Motivation
- ListNet Algorithm
- MT Rescoring
 - MT specific problems
- Evaluation
 - WMT
 - IWSLT TED

Evaluation

- WMT 2015 EN-DE
 - PBMT System
 - Additional features based on neural network translation models
- WMT 2015 DE-EN
 - PBMT System
 - Additional features using RBM-based translation models and source DWL
- TED 2014 EN-DE
 - Translation of TED talks

WMT – English to German

WMT – German to English

Convergence

Score normalization

TED – English to German

Conclusion

Presented a new technique to train log-linear model

- Scale to many features
- Consider whole list
- Technique can also be applied to more complex models
- Evaluated using different tasks and languages
 - WMT English German
 - WMT German English
 - IWSLT TED English German
- Translation quality improvements measured in BLEU score
 - Outperform MERT in all configurations
 - Less prone to overfitting

WMT – English to German

	Base	eline	NCE		SOUL		SOUL+NCE	
System	Dev	Test	Dev	Test	Dev	Test	Dev	Test
Baseline		20.19						
MERT	20.63	20.52	21.24	20.92	21.36	20.84	21.36	20.94
KB-MIRA	20.64	20.38	21.51	20.96	21.65	20.83	21.71	21.06
PRO	20.17	21.01	21.04	21.25	21.18	21.31	21.14	21.34
ListNet	19.95	20.98	21.00	21.51	21.02	21.54	21.14	21.63

WMT – German to English

	Baseline		SDWL		SDWL+RBMTM	
System	Dev	Test	Dev	Test	Dev	Test
Baseline		27.77				
MERT	28.18	27.80	28.24	27.65	28.23	27.64
KB-MIRA	28.23	28.06	28.18	28.00	28.00	27.88
PRO	27.38	28.01	27.56	28.14	28.68	28.04
ListNet	28.00	27.87	27.89	28.18	27.94	28.28

TED – English to German

	Base	eline	extra D	ev Data
System	Dev	Test	Dev	Test
Baseline		23.67		
MERT	27.69	23.46	25.63	23.36
KB-MIRA	27.47	23.19	25.65	23.76
PRO	26.67	23.10	25.00	23.65
ListNet	27.37	23.51	25.49	24.08

22 2015-09-17 Jan Niehues - ListNet-based MT Rescoring