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Idea

Use Synchronous LCFRS instead of SCFG for translation modeling

LCFRS: Linear Context-Free Rewriting Systems
(Vijay-Shanker et al., 1987; Weir, 1988)

@ mildly context-sensitive formalism
@ suitable for the direct modeling of discontinuous constituents

@ Probabilistic data-driven parsing with LCFRS is feasible. (Maier,
2010; van Cranenburgh and Bod, 2013; Kallmeyer and Maier, 2013)
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Use Synchronous LCFRS instead of SCFG for translation modeling

LCFRS: Linear Context-Free Rewriting Systems
(Vijay-Shanker et al., 1987; Weir, 1988)

@ mildly context-sensitive formalism
@ suitable for the direct modeling of discontinuous constituents

@ Probabilistic data-driven parsing with LCFRS is feasible. (Maier,
2010; van Cranenburgh and Bod, 2013; Kallmeyer and Maier, 2013)

Discontinuous phrase-based SMT (Galley and Manning, 2010)

— improvement in BLEU score for Chinese-English

— this work: hierarchical, tree-based counterpart
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[bo] [oc] [se]
(VP)
[oa] [Hp]
Das wollen wir umkehren
PDS VMFIN PPER VVINF
that want we reverse

We want to reverse that.
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CFG:

LCFRS:

N IR

[bo] [oc] [se]
(VP)
[oa] [Hp]
Das wollen wir umkehren
PDS VMFIN PPER VVINF
that want we reverse

We want to reverse that.

VP(X;,X;) — PDS(X|)VVINF (X3)
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Inspiration from Parsing

(D
CFG:  LCEFRS: . [Ep] [oc]  [se]
(VP)
/D |
A
/ \ Das wollen wir umkehren
[\ " /\ PDS VMFIN PPER  VVINF
Y that want we reverse

We want to reverse that.

VP(X,,X;) — PDS(X,)VVINF (X)
S(X1X2X3X4) —
VMFIN(X,)PPER(X3)VP(X},X4)
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Inspiration from Parsing

CFG:  LCFRS: o

N IR

[bo] [oc] [se]
(VP)
[oa] [Hp]
Das wollen wir umkehren
PDS VMFIN PPER VVINF
that want we reverse

We want to reverse that.

VP(X\,X2) — PDS(X,)VVINF (X,)

S(X1X2X3X4) —
VMFIN(X;)PPER(X3)VP(X1,Xs)

PDS(Das) — €

VMFIN(wollen) — €

PPER(wir) — &

VVINF (umkehren) — €
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Inspiration from Parsing

CFG:

LCFRS:

N IR

@ (u,v)-LCFRS: grammar G

with rank u and fan-out v

[bo] [oc] [se]
(VP)
[oa] [Hp]
Das wollen wir umkehren
PDS VMFIN PPER VVINF
that want we reverse

We want to reverse that.

VP(X1,X2) — PDS(X|)VVINF (Xy)

S(X1X2X3X4) —
VMFIN(X,)PPER(X3)VP(X,X4)

PDS(Das) — €

VMFIN(wollen) — €

PPER(wir) — €

VVINF (umkehren) — €
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Inspiration from Parsing

(s
G LCFRS: . - - -
vP)
/ \ Das wollen wir umkehren
" /\ PDS VMFIN PPER  VVINF
that want we reverse
We want to reverse that.
® (u,v)-LCFRS: grammar G VP(X,,X;) — PDS(X,)VVINF (X)
with rank u and fan-out v S(X1X2X3X4) —
VMFIN(X;)PPER(X3)VP(X1,X4)
@ G with fan-out 1: PDS(Das) — €
equivalent to CFG VMFIN(wollen) — ¢

PPER(wir) — €
VVINF (umkehren) — €
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Synchronous LCFRS (SLCFRS)

A tuple G= (NYaNt)TsaT;v‘/sv‘/t)PvSSaSt) Where

o N, Ty, Vi, Sg, resp. N;, T;, V;, S, are defined as for LCFRS
— alphabets for the source and target side respectively.

@ P is a finite set of synchronous rewriting rules (rs,r;,~) where

o rs and r, are LCFRS rewriting rules based on Nj, T;, Vs and N;,
T;, V; respectively, and

@ ~ is a bijective mapping of the non-terminals in the RHS of
to the non-terminals in the RHS of r;.
— co-indexation
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Synchronous LCFRS (SLCFRS)

A tuple G = (N, N;, Ty, T;, Vi, Vi, P, S5, Sy ) where
o N, Ty, Vi, Sg, resp. Ny, T;, V;, S, are defined as for LCFRS
— alphabets for the source and target side respectively.
@ P is a finite set of synchronous rewriting rules (rs,r;,~) where

o rs and r, are LCFRS rewriting rules based on Nj, T;, Vs and N;,
1;, V; respectively, and

@ ~ is a bijective mapping of the non-terminals in the RHS of
to the non-terminals in the RHS of r;.
— co-indexation

@ During a derivation, the yields of two co-indexed non-terminals
have to be explained from one synchronous rule. (Sy,S;) is the
start pair.

@ Fan-out v of G: vg, +vg, (Notation: v, |, )
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SCFG:

(X — ne veux plus , X — do not want to anymore)

(X — jouer , X —to play

SLCFRS:

(X (ne veux plus Y7) —>(Y1) ,  X(do not want to Z; anymore) —>(Zl))
(X (jouer) > € , X(to play) — ¢€)

je  ne veux plus jouer

/

I do not want to play  anymore
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SLCFRS Example

SCFG:

(X — ne veux plus , X — do not want to anymore)

(X — jouer , X —to play

SLCFRS:

(X (ne veux plus Y7) —>(Y1) ,  X(do not want to Z; anymore) —>(Zl))
(X (jouer) — € , X(to play) — ¢€)

(X (veux) — € , X(do, want) —¢€)

(X(ne Y; plus Y») —>X(Y1)X(Y2) , X(Z, not ZZ3 anymore) —
X1)(Z1,22)Xz)(Z3))

je  ne veux plus jouer

/

I do not want to play  anymore
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Alignment Configurations Beyond SCFG

(i) (ii)
o M /a><b\
target b d a ¢ ay by a b,
Inside-out Cross-serial disc.
alignment translation unit
Wu (1997) Sggaard & Kuhn (2009)

(iii)

ai b az

X<

b1 a b2

Bonbon
alignment
Simard et al. (2005)

= Beyond the alignment capacity of ITG/SCFG of rank 2

@ 5% of Chinese-English sentences have 10 alignments

(Wellington et al., 2006)

@ 9% of Spanish-French sentences and 5.5% of English-German
sentences are beyond 2-SCFG (Kaeshammer, 2013)
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@ Rule extraction from a word-aligned parallel corpus as for
hierarchical phrase-based MT (SCFG)
@ Extraction of initial phrase pairs
@ Creation of hierarchical rules by replacing phrase pairs which
are contained within other phrase pairs with
non-terminals/variables
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@ Creation of hierarchical rules by replacing phrase pairs which
are contained within other phrase pairs with
non-terminals/variables

o Crucial difference: a phrase is a set of word indices
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Training

@ Rule extraction from a word-aligned parallel corpus as for
hierarchical phrase-based MT (SCFG)

@ Extraction of initial phrase pairs

@ Creation of hierarchical rules by replacing phrase pairs which
are contained within other phrase pairs with
non-terminals/variables

o Crucial difference: a phrase is a set of word indices

@ Restrictions in addition to the usual ones (Chiang, 2007):

© number of words in a gap (10)

@ no unaligned blocks

© number of continuous blocks in a phrase (2), cf. (Kaeshammer,
2013)
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Training

@ Rule extraction from a word-aligned parallel corpus as for
hierarchical phrase-based MT (SCFG)

@ Extraction of initial phrase pairs

@ Creation of hierarchical rules by replacing phrase pairs which
are contained within other phrase pairs with
non-terminals/variables

o Crucial difference: a phrase is a set of word indices

@ Restrictions in addition to the usual ones (Chiang, 2007):

© number of words in a gap (10)

@ no unaligned blocks

© number of continuous blocks in a phrase (2), cf. (Kaeshammer,
2013)

@ Additional features: source gap degree and target gap degree
(number of gaps during a derivation)
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Decoder (1)

@ Same methodology as for SCFG-based decoding

@ Bottom-up CYK parser using the source side of the translation
grammar
— monolingual weighted LCFRS parsing
— parse items [A, p, V]
— Specific (2,2)-LCFRS parser because of the specific form of
the grammar (rank 2, fan-out 4,5) : p = ({i1,/1), (i, J2))
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Decoder (2)

@ Intersection of the parse hypergraph with an n-gram LM: Cube
pruning (Huang and Chiang, 2007)

— target string of a hypothesis is a tuple of continuous blocks of
target words, e.g. (do not want,anymore)
— score each block separately
— store a LM state for each block
@ Extraction of k-best translations on the hypergraph after cube
pruning
@ Implementation in C++, including code from KenLM for
language modeling
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Experimental Setup

German-to-English translation
Data from the WMT 2014 translation task (max. 30 words)
Standard preprocessing and word alignment

Filter the translation grammar w.r.t. input data set by
extracting per-sentence-grammars

3-gram LM, KenLM

@ For decoding: cube pruning buffer size 400, no limits on the

number of words a non-terminal can span

Tuning the feature weights with MERT, maximizing BLEU-4,
using 200-best translations (ZMERT, mert-moses.pl)

multi-bleu.perl for calculating BLEU scores (Ic), repeating each
experiment four times, reporting the average
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devtest  test
system  feat BLEU BLEU
sys(1,1) - 24.13 2323
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devtest  test
system  feat BLEU BLEU
sys(1,1) - 2413 23.23
sys(2,2) - 23.90  22.90
sys(2,2) s 24.06  23.17
sys(2,2) t 2420 23.35
sys(2,2) s+t 2418  23.32
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devtest  test
system  feat BLEU BLEU
sys(1,1) - 2413 23.23
sys(2,2) - 23.90  22.90
sys(2,2) s 24.06  23.17
sys(2,2) t 2420 23.35
sys(2,2) s+t 2418  23.32
sys(12) - 2339 2324
sys(2,1) - 24.17 2341
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Manual Evaluation

@ sys(1,1) vs. sys(2,1) system comparison using Appraise
@ 95 sentences where sys(2,1) uses at least one SLCFRS rule

@ two native speakers of English with basic knowledge of German
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Manual Evaluation

@ sys(1,1) vs. sys(2,1) system comparison using Appraise
@ 95 sentences where sys(2,1) uses at least one SLCFRS rule

@ two native speakers of English with basic knowledge of German

sys(1,1)  sys(2,1) =

el 43 49 3
e2 46 47 2

Table: Result of the manual system comparison
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Translation Example

Source er ware damit auch geeignet gewesen , um die ...zu fordern
Reference it would thus be suitable to assist ...
sys(1,1) it would also have to be , in order to promote the ...

sys(2,1) he also would have been appropriate to promote the ...
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Translation Example

Source er ware damit auch geeignet gewesen , um die ...zu fordern
Reference it would thus be suitable to assist ...

sys(1,1) it would also have to be , in order to promote the ...
sys(2,1) he also would have been appropriate to promote the ...

, um‘ E ‘zu f6rdern‘
‘also‘ ‘would have been‘ ‘appropriate‘ ‘to promote‘ D
X3 A

‘wéire‘ ‘damit auch ‘ ‘geeiénet ‘ ‘gewesen ‘
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Translation Example

(X (wére ,Y) gewesen Y3) —>(Y1 )X(Yz) , X(would have been Y1) —>Xm(Y1 )(Y2)>

a6l
gn
in
el
(ware]  [damit auch] [geeignet|  [gewesen| [, um| [...] [zu fordern]

‘also‘ ‘would have been‘ ‘appropriate‘ ‘to promote‘ D
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Translation Example

(X (wére ,Y) gewesen Y3) —>(Y1 )X(YZ) , X(would have been Y1) —>Xm(Y1 )(Y2)>
<X(Y1 damit auch Yz) —)X(Yl,Yz) ,X(also Yl) —)X(Y1)>

‘wéire‘ ‘damit auch‘ ‘geeignet‘ ‘gewesen‘ ‘ um‘ E ‘zu féirdern‘

‘also‘ ‘would have been‘ ‘appropriate‘ ‘to promote‘ D

X5
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Conclusions & Future Work

Extension of the hierarchical phrase-based MT approach to
discontinuous phrases

SLCFRS as the translation grammar formalism
Previous work on SCFG-based MT can be directly extended

Modest improvement in BLEU score over the SCFG baseline

Slight preference by the human evaluators for the translations
produced by the SLCFRS system
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Conclusions & Future Work

Extension of the hierarchical phrase-based MT approach to
discontinuous phrases

SLCFRS as the translation grammar formalism
Previous work on SCFG-based MT can be directly extended
Modest improvement in BLEU score over the SCFG baseline

Slight preference by the human evaluators for the translations
produced by the SLCFRS system

More detailed evaluation

Experiments with other language pairs
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devtest  test
system feat BLEU BLEU
sys(11) - 2413 2323
sys(2,2) - 23.90  22.90
sys(2,2) s 24.06  23.17
sys(2.2) 't 2420  23.35
sys(2.2) s+t 2418 2332
sys(1,2) - 2339 2324
sys(2,1) - 24.17 2341
moses 24.33 23.34
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Derivation

(X(a) e ,X(a)—¢€)

=0
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Derivation
(X(a)— € ,X(a)—¢€)
(X (Yb) = Xg(¥) , X(b,Z) — Xg(2)
K\
2‘1 b c d
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Derivation

(X(a) = , X(a) > €)
(X (Yb) —>x.(y) ,X(b,2) = X3(2))
<X(YC) —>X.(Y) s X(Z] ZQC) —)X.(Zl,Z2)>
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Derivation
(X(a)—e€ ,X(@)—¢)
(X(Yb) —>X(Y) , X(b,2) —>X(Z)>
<X(YC) —>X(Y) y X(Z],ZQC) —)X(Zl,Z2)>
uEl (X( (

X Yd) —>X(Y) , X Z]dZQ) —>X(Zl,Z2)>
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Derivation
X
/\ X X/S\X
x X A
a b C d a b aj b an
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Related Work

@ Studies addressing the alignment coverage of a formalism
w.r.t. gold alignments (Sggaard and Wu, 2009; Sggaard and Kuhn,
2009; Wellington et al., 2006; Sggaard, 2010; Kaeshammer, 2013)

— 5% of Chinese-English sentences have 10 alignments
— 9% of Spanish-French sentences and 5.5% of English-German
sentences are beyond 2-SCFG

@ SLCFRS are equivalent to Simple Range Concatenation
Transducers (Bertsch and Nederhof, 2001) and Generalized
Multitext Grammars (Melamed et al., 2004)

@ Discontinuous phrase-based SMT (Galley and Manning, 2010)

— improvement in BLEU score for Chinese-English
— this work: hierarchical, tree-based counterpart
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Features

@ Standard features: direct and inverse translation probabilities,
lexical translation probabilities, number of rules etc.

@ MLE on the distribution of the extracted rules to obtain the
translation probabilities

@ Additional: number of gaps during a derivation (source gap
degree and target gap degree of a rule)
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Experimental Setup

German-to-English translation

Data from the WMT 2014 translation task (max. 30 words)
Punctuation normalization, tokenization, truecasing,
compound splitting for German with the Moses scripts
Multi-threaded GIZA++ and grow-diag-final-and heuristics
for word-aligning the training data

Filter the translation grammar w.r.t. input data set by
extracting per-sentence-grammars

3-gram LM, KenLM

For decoding: cube pruning buffer size 400, no limits on the
number of words a non-terminal can span

Tuning the feature weights with MERT, maximizing BLEU-4,
using 200-best translations (ZMERT, mert-moses.pl)
multi-bleu.perl for calculating BLEU scores (Ic), repeating each
experiment four times, reporting the average
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Manual Evaluation

@ sys(1,1) vs. sys(2,1) system comparison using Appraise
@ 95 sentences where sys(2,1) uses at least one SLCFRS rule

@ two native speakers of English with basic knowledge of German

sys(1,1)  sys(2,1)

= e2
el 43 49 3 sys(1,1)  sys(2,1) =
e2 46 47 2 sys(l,l) 29 13 1
el sys(2,1) 15 33 1
Table: Result of the manual — ) 1 0

system comparison

Table: Confusion matrix of the decisions
of the manual evaluation, Cohen's
Kk =0.338
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Notion of Alignment Capacity

Same as in previous related work

@ A translation unit (TU) is a maximally connected subgraph
of a given alignment structure.

@ Alignment structure is divided into disjoint TUs.

I do not want to play anymore

\

je  ne veux plus jouer



Idea & Background
Training & Decoding
Experiments

Notion of Alignment Capacity

Same as in previous related work

@ A translation unit (TU) is a maximally connected subgraph
of a given alignment structure.

@ Alignment structure is divided into disjoint TUs.

I do not want to play anymore

\

je  ne veux plus jouer
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Notion of Alignment Capacity

Same as in previous related work
@ A translation unit (TU) is a maximally connected subgraph
of a given alignment structure.
@ Alignment structure is divided into disjoint TUs.

@ Synchronously recognized or generated terminals are aligned
— TU

I do not want to play anymore

\

je  ne veux plus jouer
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LCFRS (1)

(Vijay-Shanker et al., 1987; Weir, 1988)

A tuple G = (N,T,V,P,S) where
@ N: a finite set of non-terminals with a function dim: N - N
determining the fan-out of each A € N;

@ T and V: disjoint finite sets of terminals and variables;
@ S € N: start symbol with dim(S) = 1;

@ P: a finite set of rewriting rules
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LCFRS (1)

(Vijay-Shanker et al., 1987; Weir, 1988)

A tuple G = (N,T,V,P,S) where
@ N: a finite set of non-terminals with a function dim: N — N
determining the fan-out of each A € N;
@ T and V: disjoint finite sets of terminals and variables;
@ S € N: start symbol with dim(S) = 1;

@ P: a finite set of rewriting rules

A(OCI, R adim(A)) —>A1(Xl(1), . ,X(l)

dim(Al)) .. Am(XI(M)’ X(m)

o X iman)
where
o AAr,... . ApeN, X" €V for 1 <i<m, 1< j<dim(A;), and

o a; € (TUV)* for 1 <i<dim(A), for a rank m > 0.
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LCFRS (2)

1 1 m m
Al 0gima) = AL X)) A (XX )

@ Every variable X in r € P occurs exactly once in the LHS and
exactly once in the RHS of r.

@ r describes how the yield of the LHS non-terminal is computed
from the yields of the RHS non-terminals.

@ The yield of S is the language of the grammar.
@ Rank u of G: the maximal rank of any of its rules

@ Fan-out v of G: the maximal fan-out of any of its
non-terminals.
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Normal Form

Conditions:
Q ug <2
© For all r € P it holds that that the LHS arguments of r; and r,
contain either terminals or variables but not mixture of both.

NF-ITG ¢ (2,24);)-SLCFRS in normal form
ITG of rank 2 < (2,2y);)-SLCFRS

Different alignment capacity of normal form and full class
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Bitext Parsing Complexity

SLCFRS in normal form with fan-out v
ﬁ(n?’v)

(assuming that n; ~n,)
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Bitext Parsing Complexity

SLCFRS in normal form with fan-out v
ﬁ’(n?’v)

(assuming that n; ~n,)

Which fan-out v is required to cover the alignment configurations
that occur in manually aligned data?
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Graca

Martin

Pado
Mihal.
CcDT

Holmgqv.
Schoen.
Lambert
Macken

en-fr
en-pt
en-es
pt-fr
pt-es
es-fr
en-ro
en-hi
en-iu
en-de
en-fr
da-en
da-de
da-es
da-it
en-sv
en-de
en-es
en-nl
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Data & Results

NF

V=2

NF-ITG

Graca en-fr 73.00
en-pt 76.00

en-es 82.00

pt-fr 73.00

pt-es 90.00

es-fr 74.00

Martin en-ro 45.07
en-hi 82.73

en-iu 40.66

Pado en-de 73.74
Mihal. en-fr 67.56
CDT da-en 72.90
da-de 64.87

da-es 66.61

da-it 69.01

Holmgqv. en-sv 82.83
Schoen. en-de 29.15
Lambert  en-es 47.15
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