Dependency Analysis of **Scrambled References** for Better Evaluation of Japanese Translations #### Hideki ISOZAKI and Natsume KOUCHI Okayama Prefectural University, Japan WMT-2015 Isozaki+ 2014 proposed a method for regarding **SCRAMBLING** in automatic evaluation of translation quality with **RIBES**. Here, we present its improvement. What is **SCRAMBLING**? What is **RIBES**? Background 2: RIBES - 3 Our idea in WMT-2014 - MEW IDEA - 6 Conclusions For instance, a Japanese sentence: can be reordered in the following ways. indicates a verb/adjective. - 1 John-ga Tokyo-de PC-wo (katta) - 2 John-ga PC-wo Tokyo-de (katta) - 3 Tokyo-de John-ga PC-wo (katta - 4 Tokyo-de PC-wo John-ga (katta) - 5 PC-wo John-ga Tokyo-de (katta - 6 PC-wo Tokyo-de John-ga (katta This is **SCRAMBLING** and some other languages such as German also have SCRAMBLING. Japanese is known as a free word order language, but it is not completely free. John-ga Tokyo-de PC-wo (katta) #### Japanese Word Order Constraint 1: Case markers (ga=subject, de=location, wo=object) should follow corresponding noun phrases. #### Japanese Word Order Constraint 2: Japanese is a **head final** language. A head should appear after all of its modifiers (dependents). Here, the verb (katta) (bought) is the head. S1 has this dependency tree: The verb (katta) has three children. The above scrambled sentences are **permutations of the three children** (3! = 6). - 1 John-ga Tokyo-de PC-wo (katta - 2 John-ga PC-wo Tokyo-de (katta - 3 Tokyo-de John-ga PC-wo (katta - 4 Tokyo-de PC-wo John-ga (katta - 5 PC-wo John-ga Tokyo-de (katta - 6 PC-wo Tokyo-de John-ga (katta 2 Background 2: RIBES - 3 Our idea in WMT-2014 - MEW IDEA - 6 Conclusions RIBES is our new evaluation metric designed for translation between distant language pairs such as Japanese and English. (Isozaki+ EMNLP-2010, Hirao+ 2014) **RIBES** measures **word order similarity** between an MT output and a reference translation. **RIBES** shows a **strong correlation with human-judged adequacy** in EJ/JE translation. Nowadays, most papers on JE/EJ translation use both **BLEU** and **RIBES** for evaluation. #### Our meta-evaluation with NTCIR-7 JE data System-level Spearman's ρ with adequacy, Single reference, 5 MT systems | BLEU | METEOR | ROUGE-L | IMPACT | RIBES | |-------|--------|---------|--------|-------| | 0.515 | 0.490 | 0.903 | 0.826 | 0.947 | #### Meta-evaluation by NTCIR-9 PatentMT organizers. System-level Spearman's ρ with adequacy, single reference, 17 MT systems | | BLEU | NIST | RIBES | |-------------|--------|--------|-------| | NTCIR-9 JE | -0.042 | -0.114 | 0.632 | | NTCIR-9 EJ | -0.029 | -0.074 | 0.716 | | NTCIR-10 JE | 0.31 | 0.36 | 0.88 | | NTCIR-10 EJ | 0.36 | 0.22 | 0.79 | SMT tends to follow the global word order given in the source. In English \leftrightarrow Japanese translation, this tendency causes swap of Cause and Effect, but BLEU disregards the swap and overestimates SMT output. Source: <u>彼は雨に濡れた</u>ので、<u>風邪をひいた</u> Reference translation: He caught a cold because he got soaked in the rain. SMT output: BLEU=0.74 very good!? He got soaked in the rain because he caught a cold. Such an inadequate translation should be penalized much more. Therefore, we designed **RIBES** to measure word order. RIBES $$\stackrel{\text{def}}{=}$$ NKT $\times P^{\alpha} \times \mathbf{BP}^{\beta}$ where $\mathbf{NKT} \stackrel{\mathrm{def}}{=} \frac{\tau+1}{2}$ is normalized Kendall's τ which measures similarity of word order. P is unigram precision. **BP** is **BLEU**'s Brevity Penalty. α and β are parameters for these penalties. Default values are $\alpha =$ 0.25, $\beta =$ 0.10. (worst) $$0.0 \le \text{RIBES} \le 1.0 \text{ (best)}$$ http://www.kecl.ntt.co.jp/icl/lirg/ribes/ Hirao et al.: Evaluating Translation Quality with Word Order Correlations (in Japanese), Journal of Natural Language Processing, Vol. 21, No. 3, pp.421–444, 2014. **BLEU** tends to prefer bad SMT output to good RBMT output. **BLUE** is counterintuitive. #### RIBES versus SCRAMBLING However, **RIBES** underestimates scrambled sentences. Reference: John-ga Tokyo-de PC-wo (katta) MT output: PC-wo Tokyo-de John-ga (katta) This MT output is perfect for most Japanese speakers. But its **RIBES** score is very low: 0.43. Can we make the **RIBES** score higher? Background 2: RIBES - 3 Our idea in WMT-2014 - MEW IDEA - 6 Conclusions #### **Generate all scrambled sentences** from the given reference. Then, use them as reference sentences. For this generation, we need the dependency tree of the given reference. ### Scrambling by Post-Order traversal ``` S2: John-ga PC-wo (katta) ato-ni Alice-kara denwa-ga (atta). (After John (bought) a PC, there (was) a phone call from Alice.) ``` S2 has two verbs: (katta) (bought) and (atta) (was). In order to generate Japanese-like **head final** sentences, we should output words in the dependency tree in **Post Order**. But siblings can be output in any order. In this case, we can generate $2! \times 3! = 12$ permutations. # Scrambling by Post-Order traversal Now, we can generate scrambled references from the dependency tree of a reference sentence. We used <u>all scrambled sentences</u> as references (postOrder). But it damaged system-level correlation with adequacy. Perhaps, some scrambled sentences are not appropriate as references and they increases RIBES scores of bad MT outputs. ### Scrambling of a complex sentence ``` S2: John-ga PC-wo (katta) ato-ni Alice-kara denwa-ga (atta). (After John (bought) a PC, there (was) a phone call from Alice.) ``` One of S2's postOrder outputs is: ``` S2bad: Alice-kara John-ga PC-wo (katta) ato-ni denwa-ga (atta). (After John (bought) a PC from Alice, there (was) a phone call.) ``` We should inhibit such misleading sentences. #### **Scrambling of a Complex Sentence** In order to inhibit such misleading sentences, Isozaki+ 2014 introduced ### Simple Case Marker Constraint (rule2014) You should not put case-marked modifiers of a verb/adjective before a preceding verb/adjective. **System**-level correlation with adequacy was **recovered**. **Sentence**-level correlation with adequacy was **improved**. It covered only 30% of NTCIR-7 EJ reference sentences. (covered = generated alternative word orders for) - In order to cover more sentences, we will need more rules. - It requires manual correction of dependency trees. Background 2: RIBES - 3 Our idea in WMT-2014 - 4 NEW IDEA - 6 Conclusions ### **NEW IDEA for WMT-2015** If a sentence is misleading, parsers will be misled. **compDep** (compare dependency trees): If the two dependency trees are the same except sibling orders, we accept the new word order as a new reference. Otherwise, this word order is misleading and we reject it. # System-level correlation with adequacy **compDep**'s system-level correlation with adequacy is comparable to single ref's and rule2014's. ### Number of generated word orders **compDep** covers more reference sentences than rule2014. NTCIR-7 EJ | | #perms | 1 | 2-10 | 11–100 | 101-1000 | >1000 | total | |---|------------|-----|------|--------|----------|-------|-------| | | single ref | 100 | 0 | 0 | 0 | 0 | 100 | | J | rule2014 | 70 | 30 | 0 | 0 | 0 | 100 | | | compDep | 20 | 61 | 15 | 4 | 0 | 100 | | | postOrder | 1 | 41 | 41 | 13 | 4 | 100 | NTCIR-9 EJ | #perms | 1 | 2-10 | 11–100 | 101-1000 | >1000 | total | |------------|------------------------|---|---|--|--|--| | single ref | 300 | 0 | 0 | 0 | 0 | 300 | | | 267 | 25 | 7 | 1 | 0 | 300 | | compDep | 41 | 189 | 63 | 5 | 2 | 300 | | postOrder | 0 | 100 | 124 | 58 | 18 | 300 | | | single ref
rule2014 | single ref rule2014 267 compDep 41 | single ref 300 0
rule2014 267 25
compDep 41 189 | single ref 300 0 0 rule2014 267 25 7 compDep 41 189 63 | single ref 300 0 0 0 rule2014 267 25 7 1 compDep 41 189 63 5 | single ref 300 0 0 0 rule2014 267 25 7 1 0 compDep 41 189 63 5 2 | **compDep** failed to generate alternative word orders for only (20+41)/(100+300)=15.3% of reference sentences while rule2014 failed for (70+267)/(100+300)=84.3%. We proposed **compDep** method to regard scrambling in automatic evaluation of translation quality with **RIBES**. Experimental results show that - compDep improved sentence-level correlation with human-judged adequacy. - compDep does not damage the strong system-level correlation of RIBES very much. - compDep covers 100% 15.3% = 84.7% of reference sentences. - Manual correction does not change the results very much. (skipped in this talk). - Application to other evaluaion measures such as BLEU. - Application to other languages such as German.