
Extended Translation Models
in Phrase-based Decoding

Andreas Guta, Joern Wuebker, Miguel Graça,
Yunsu Kim and Hermann Ney
surname@cs.rwth-aachen.de

Tenth Workshop on Statistical Machine Translation (WMT)
Lisbon, Portugal

18.09.2015

Human Language Technology and Pattern Recognition
Chair of Computer Science 6

Computer Science Department
RWTH Aachen University, Germany

Guta et al.: Extended Translation Models in Phrase-based Decoding 1 / 17 WMT 2015: 18.09.2015

surname@cs.rwth-aachen.de


Introduction

Phrase-based translation models
[Och & Tillmann+ 99, Zens & Och+ 02, Koehn & Och+ 03]

I phrases extracted from alignments obtained using GIZA++ [Och & Ney 03]

I estimation as relative frequencies of phrase pairs

I drawbacks:

. single-word phrases translated without any context

. uncaptured dependencies beyond phrase boundaries

. difficulties with long-range reorderings
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Related Work

I bilingual language models [Niehues & Herrmann+ 11]

. atomic source phrases, no reordering context

I reordering model based on sequence labeling [Feng & Peter+ 13]

. modeling only reorderings

I operation sequence model (OSM) [Durrani & Fraser+ 13]

. n-gram model based on minimal translation units

I neural network models for extended translation context

. rescoring [Le & Allauzen+ 12, Sundermeyer & Alkhouli+ 14]

. decoding [Devlin & Zbib+ 14, Auli & Gao 14, Alkhouli & Rietig+ 15]

. stand-alone models [Sutskever & Vinyals+ 14, Bahdanau & Cho+ 15]

I joint translation and reordering models [Guta & Alkhouli+ 15]

. word-based and simpler reordering approach than OSM

. count models and neural networks (NNs)
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This Work

I develop two variants of extended translation models (ETM)

. extend IBM models by a bilingual word pair and a reordering operation

. integrated into log-linear framework of phrase-based decoding

. explicit treatment of multiple alignments and unaligned words

I benefits:

. lexical and reordering context for single-word phrases

. dependencies across phrase boundaries

. long-range source dependencies

I first step: implementation as smoothed count models

I the long-term goal:

. application as stand-alone models in decoding

. retraining the word alignments
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Extended Translation Models

I source sentence fJ
1 = f1 . . . fj . . . fJ

I target sentence eI1 = e1 . . . ei . . . eI

I inverted alignment bI1 with bi ⊆ {1 . . . J}
. unaligned source positions b0

I empty words f0, e0
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Jump Classes

I generalizing alignments to

. jump classes for source positions aligned to subsequent target positions

insert (↓) stay (•) forward (→) jump forward (y) backward (←) jump backward (x)

. jump classes source positions aligned to the same target position

forward (→) jump forward (y)
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Extended Inverse Translation Model (EiTM)

I EiTM models the inverse probability p(fJ
1 |eI1)

p(fJ
1 |e

I
1) = max

bI1

{ I∏
i=1

(
p(fbi|ei′, ei, fbi′, bi′, bi)︸ ︷︷ ︸

lexicon model

· p(bi|ei′, ei, fbi′, bi′)︸ ︷︷ ︸
alignment model

)
· p(fb0|e0)︸ ︷︷ ︸

deletion model

}

I current source words fbi and target word ei

I previous source words fbi′ and target word ei′

I generalize aligments bi′, bi to jump classes

I multiple source predecessors j′ in bi′ or bi
. average probabilities over all j′
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EiTM Example
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Extended Direct Translation Model (EdTM)

I further aim: model p(eI1|fJ
1 ) as well

I first approach by using the EiTM:

. swap source and target corpora

. invert also the alignment

I drawback:

. source words not translated in monotone order

. source word preceding a phrase might have not been translated yet

. its last aligned predecessor and corresponding aligned target words gen-
erally unknown

I dependencies beyond phrase boundaries cannot be captured

I develop the EdTM

. swap source and target corpora, but keep bI1

. incorporate dependencies beyond phrase boundaries
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Extended Direct Translation Model (EdTM)

I EdTM models the direct probability p(eI1|fJ
1 )

p(eI1|f
J
1 ) = max

bI1

{ I∏
i=1

(
p(ei|fbi′, fbi, ei′, bi′, bi)︸ ︷︷ ︸

lexicon model

· p(bi|fbi′, fbi, ei′, bi′)︸ ︷︷ ︸
alignment model

)
· p(e0|fb0)︸ ︷︷ ︸

deletion model

}

I differences to EiTM

. lexicon model: swapped ei and fbi

. alignment model: dependence on fbi (instead of ei)

. deletion model: swapped e0 and fb0
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Count Models and Smoothing

How to train the derived EdTM and EiTM models?

I estimate Viterbi alignment using GIZA++ [Och & Ney 03]

I compute relative frequencies

I apply interpolated Kneser-Ney smoothing [Chen & Goodman 98]
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Integration into Phrase-based Decoding

I phrase-based decoder Jane 2 [Wuebker & Huck+ 12]

I log-linear model combination [Och & Ney 04]

. tuning with minimum error rate training (MERT) [Och 03]

I annotation of phrase-table entries with word alignments

I extended translation models integrated as up to 4 additional features:

. EdTM and EiTM

. Source→Target and Target→Source

I search state extension:

. store the source position aligned to the last translated target word

I context beyond phrase boundaries only in Source→Target direction
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Experimental Setups

IWSLT IWSLT BOLT BOLT
German English English French Chinese English Arabic English

Sentences
full data 4.32M 26.05M 4.08M 0.92M
indomain 138K 185K 67.8K 0.92M

Run. Words 108M 109M 698M 810M 78M 86M 14M 16M
Vocabulary 836K 792K 2119K 2139K 384K 817K 285K 203K

I phrase-based systems

. phrasal and lexical models (both directions)

. word and phrase penalties

. distortion model

. 4- / 5-gram language model (LM)

. 7-gram word class LM [Wuebker & Peitz+ 13]

. hierarchical reordering model (HRM) [Galley & Manning 08]
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Results: IWSLT 2014 German→English

test2010

BLEU [%] TER [%]

phrase-based system + HRM 30.7 49.3

+ EiTM (Source↔Target) 31.4 48.3

+ EdTM (Source↔Target) 31.6 48.1

+ EiTM (Source→Target) + EdTM (Source→Target) 31.6 48.2

+ EiTM (Source↔Target) + EdTM (Source↔Target) 31.8 48.2
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Results: Comparison to OSM

I all results measured in BLEU [%]

IWSLT BOLT

De→En En→Fr Zh→En Ar→En

phrase-based system + HRM 30.7 33.1 17.0 24.0

+ ETM 31.8 33.9 17.5 24.4

+ 7-gram OSM 31.8 34.5 17.6 24.1

Guta et al.: Extended Translation Models in Phrase-based Decoding 15 / 17 WMT 2015: 18.09.2015



Conclusion

I integration of extended translation models into phrase-based decoding

. lexical and reordering context beyond phrase boundaries

. multiple and empty alignments

. relative frequencies with interpolated Kneser-Ney smoothing

I improving phrase-based systems including HRM

. by up to 1.1% BLEU and TER

. by 0.7% BLEU on average for four large-scale tasks

I competitive to a 7-gram OSM

. 0.1% BLEU less improvement on average on top of phrase-based systems
including the HRM

I long-term goals:

. retraining the alignments: joint optimization

. stand-alone decoding without phrases
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