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Introduction

The ACL 2008 Workshop on Statistical Machine Translation (WMT-08) took place on Thursday, June
19 in Columbus, Ohio, United States, immediately following the annual meeting of the Association for
Computational Linguistics, which was hosted by the Ohio State University.

This is the third time this workshop has been held. It has its root in the ACL 2005 Workshop on Building
and Using Parallel Texts In the following years the Workshop on Statistical Machine Translation was
held at HLT-NAACL 2006 in New York City, US, and at ACL 2007 in Prague, Czech Republic.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
workshop we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages and languages with partial
free word order.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation
we conducted a shared task that brought together machine translation systems for an evaluation on
previously unseen data. This year’s task resembled the shared tasks of previous years in many ways,
but also included Hungarian-English and Spanish-German as new language pairs. In addition, we
evaluated submitted systems against new test sets from the newswire domain.

The results of the shared task were announced at the workshop, and these proceedings also include an
overview paper for the shared task that summarizes the results, as well as provides information about
the data used and any procedures that were followed in conducting or scoring the task. In addition,
there are short papers from each participating team that describe their underlying system in some detail.

Due to the large number of high quality submission for the full paper track, shared task submissions
were presented as posters. The poster session was held in the afternoon and gave participants of the
shared task the opportunity to present their approaches. The rest of the day was devoted to oral paper
presentations and Daniel Marcu’s invited talk in the afternoon.

Like in previous years, we have received a far larger number of submission than we could accept for
presentation. This year we have received 18 full paper submissions and 26 shared task submissions.
In total WMT-08 featured 12 full paper oral presentations and 25 shared task poster presentations.
The invited talk was given by Daniel Marcu of the Information Sciences Institute at the University of
Southern California.

We would like to thank the members of the Program Committee for their timely reviews. We also would
like to thank the participants of the shared task and all the other volunteers who helped with the manual
evaluations. We also acknowledge the financial support of the shared task by the EuroMatrix project
funded by the European Commission (6th Framework Programme).

Chris Callison-Burch, Philipp Koehn, Christof Monz, Josh Schroeder, and Cameron Shaw Fordyce

Co-Organizers
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An Empirical Study in Source Word Deletion
for Phrase-based Statistical Machine Translation

Chi-Ho Li, Dongdong Zhang, Mu Li, Ming Zhou

Microsoft Research Asia
Beijing, China
chl, dozhang@microsoft.com

muli,

Abstract

The treatment of ‘spurious’ words of source
language is an important problem but often
ignored in the discussion on phrase-based
SMT. This paper explains why it is impor-
tant and why it is not a trivial problem, and
proposes three models to handle spurious
source words. Experiments show that any
source word deletion model can improve a
phrase-based system by at least 1.6 BLEU
points and the most sophisticated model
improves by nearly 2 BLEU points. This
paper also explores the impact of training
data size and training data domain/genre on
source word deletion.

1 Introduction

It is widely known that translation is by no
means word-to-word conversion. Not only be-
cause sometimes a word in some language trans-
lates as more than one word in another language,
also every language has some ‘spurious’ words
which do not have any counterpart in other lan-
guages. Consequently, an MT system should be
able to identify the spurious words of the source
language and not translate them, as well as to gen-
erate the spurious words of the target language.
This paper focuses on the first task and studies
how it can be handled in phrase-based SMT.

An immediate reaction to the proposal of inves-
tigating source word deletion (henceforth SWD)
is: Is SWD itself worth our attention? Isn’t it a
trivial task that can be handled easily by existing
techniques? One of the reasons why we need to
pay attention to SWD is its significant improve-
ment to translation performance, which will be

mingzhou@microsoft.com

1

Hailei Zhang

Northeastern University of China
Shenyang, China

hailei.zh@gmail.com

shown by the experiments results in section 4.2.
Another reason is that SWD is not a trivial task.
While some researchers think that the spurious
words of a language are merely function words
or grammatical particles, which can be handled
by some simple heuristics or statistical means,
there are in fact some tricky cases of SWD which
need sophisticated solution. Consider the follow-
ing example in Chinese-to-English translation: in
English we have the subordinate clause “accord-
ing to NP”, where NP refers to some source of
information. The Chinese equivalent of this
clause can sometimes be “ACCORDING-TO/fR ¥
NP EXPRESS/Z7~”; that is, in Chinese we could
have a clause rather than a noun phrase following
the preposition ACCORDING-TO/R #&. There-
fore, when translating Chinese into English, the
content word EXPRESS/% 7K should be consid-
ered spurious and not to be translated. Of course,
the verb EXPRESS/ZX 7K is not spurious in other
contexts. It is an example that SWD is not only
about a few function words, and that the solu-
tion to SWD has to take context-sensitive factors
into account. Moreover, the solution needed for
such tricky cases seems to be beyond the scope
of current phrase-based SMT, unless we have a
very large amount of training data which cov-
ers all possible variations of the Chinese pattern
“ACCORDING-TO/HR i NP EXPRESS/F7R".

Despite the obvious need for handling spuri-
ous source words, it is surprising that phrase-
based SMT, which is a major approach to SMT,
does not well address the problem. There are
two possible ways for a phrase-based system to
deal with SWD. The first one is to allow a source

Proceedings of the Third Workshop on Statistical Machine Translation, pages 1-8,
Columbus, June 2008. (©)2008 Association for Computational Linguistics



language phrase to translate to nothing. How-
ever, no existing literature has mentioned such
a possibility and discussed the modifications re-
quired by such an extension. The second way is
to capture SWD within the phrase pairs in trans-
lation table. That is, suppose there is a foreign
phrase ' = (fafpfc) and an English phrase
E = (eaec), where f4 is aligned to e4 and fo
to ec, then the phrase pair (F, E) tacitly deletes
the spurious word fg. Such a SWD mechanism
fails when data sparseness becomes a problem. If
the training data does not have any word sequence
containing fp, then the spurious fp cannot asso-
ciate with other words to form a phrase pair, and
therefore cannot be deleted tacitly in some phrase
pair. Rather, the decoder can only give a phrase
segmentation that treats fp itself as a phrase, and
this phrase cannot translate into nothing, as far
as the SMT training and decoding procedure re-
ported by existing literature are used. In sum, the
current mechanism of phrase-based SMT is not
capable of handling all cases of SWD.

In this paper, we will present, in section 3, three
SWD models and elaborate how to apply each
of them to phrase-based SMT. Experiment set-
tings are described in section 4.1, followed by the
report and analysis of experiment results, using
BLEU as evaluation metric, in section 4.2, which
also discusses the impact of training data size and
training data domain on SWD models. Before
making our conclusions, the effect of SWD on an-
other evaluation metric, viz. METEOR, is exam-
ined in section 5.

2 Literature Review

Research work in SMT seldom treats SWD as
a problem separated from other factors in trans-
lation. However, it can be found in differ-
ent SMT paradigms the mechanism of handling
SWD. As to the pioneering IBM word-based
SMT models (Brown et al., 1990), IBM mod-
els 3, 4 and 5 handle spurious source words by
considering them as corresponding to a particular
EMPTY word token on the English side, and by the
fertility model which allows the English EMPTY
to generate a certain number of foreign words.
As to the hierarchical phrase-based ap-
proach (Chiang, 2007), its hierarchical rules are
more powerful in SWD than the phrase pairs

in conventional phrase-based approach. For
instance, the “ACCORDING-TO/TR # NP EX-
PRESS/3 7R example in the last section can be
handled easily by the hierarchical rule

X —< 1R X IR, according to X > .

In general, if the deletion of a source word
depends on some context cues, then the hier-
archical approach is, at least in principle, ca-
pable of handling it correctly. However, it is
still confronted by the same problem as the con-
ventional phrase-based approach regarding those
words whose ‘spuriousness’ does not depend on
any context.

3 Source Word Deletion Models

This section presents a number of solutions to the
problem of SWD. These solutions share the same
property that a specific empty symbol € on the tar-
get language side is posited and any source word
is allowed to translate into €. This symbol is in-
visible in every module of the decoder except the
translation model. That is, € is not counted when
calculating language model score, word penalty
and any other feature values, and it is omitted in
the final output of the decoder. It is only used to
delete spurious source words and refine transla-
tion model scores accordingly.

It must be noted that in our approach phrases
comprising more than one source word are not al-
lowed to translate into e. This constraint is based
on our subjective evaluation of alignment matrix,
which indicates that the un-alignment of a con-
tinuous sequence of two or more source words is
far less accurate than the un-alignment of a sin-
gle source word lying within aligned neighbors.
Consequently, in order to treat a source word as
spurious, the decoder must give a phrase segmen-
tation that treats the word itself as a phrase.

Another important modification to the phrase-
based architecture is a new feature added to the
log-linear model. The new feature, e-penalty, rep-
resents how many source words translate into e.
The purpose of this feature is the same as that
of the feature of word penalty. As many features
used in the log-linear model have values of log-
arithm of probability, candidate translations with
more words have, in general, lower scores, and



Model 1 | P(e)
Model 2 | P(e|f)
Model 3 | Porr(e|F(f)

Table 1: Summary of the Three SWD Models

therefore the decoder has a bias towards shorter
translations. Word penalty (in fact, it should be
renamed as word reward) is used to neutralize
this bias. Similarly, the more source words trans-
late into €, the shorter the translation will be,
and therefore the higher score the translation will
have. The e-penalty is proposed to neutralize the
bias towards shorter translations.

The core of the solutions is the SWD model,
which calculates P(e|f), the probability distribu-
tion of translating some source word f to €. Three
SWD models will be elaborated in the following
subsections. They differ from each other by the
conditions of the probability distribution, as sum-
marized in Table 1. Model 1 is a uniform prob-
ability distribution that does not take the source
word f into account. Model 2 is a simple proba-
bility distribution conditioned on the lexical form
of f only. Model 3 is a more complicated distribu-
tion conditioned on a feature vector of f, and the
distribution is estimated by the method of Condi-
tional Random Field.

3.1 Model 1: Uniform Probability

The first model assumes a uniform probability
of translation to €. This model is inspired by
the HMM-based alignment model (Och and Ney,
2000a), which posits a probability Fy for align-
ment of some source word to the empty word
on the target language side, and weighs all other
alignment probabilities by the factor 1 — Fy. In
the same style, SWD model 1 posits a probability
P(e) for the translation of any source word to €.
The probabilities of normal phrase pairs should
be weighed accordingly. For a source phrase
containing only one word, its weight is simply
P(e) = 1 — P(e). As to a source phrase con-
taining more than one word, it implies that every
word in the phrase does not translate into ¢, and
therefore the weighing factor P(€) should be mul-
tiplied as many times as the number of words in
the source phrase. In sum, for any phrase pair

< F,E >,its probability is

—— P(G) ~ sz: (6)
P(E|F) —{ p(g)lF\pT(Euf’) otherwise

where Pr(E|F) is the probability of the phrase
pair as registered in the translation table, and | F|
is the length of the phrase F. The estimation of
P(e) is done by MLE:

number of unaligned source word tokens
P(e) =

number of source word tokens

3.2 Model 2: EMPTY as Normal Word

Model 1 assumes that every word is as likely to be
spurious as any other word. Definitely this is not
a reasonable assumption, since certain function
words and grammatical particles are more likely
to be spurious than other words. Therefore, in our
second SWD model the probability of translating
a source word f to € is conditioned on f itself.

This probability, P(e|f), is in the same form as
the probability of a normal phrase pair, P(E|F),
if we consider € as some special phrase of the tar-
get language and f as a source language phrase
on its own. Thus P(e|f) can be estimated and
recorded in the same way as the probability of
normal phrase pairs. During the phase of phrase
enumeration, in addition to enumerating all nor-
mal phrase pairs, we also enumerate all unaligned
source words f and add phrase pairs of the form
< (f),(e) >. These special phrase pairs, TO-
EMPTY phrase pairs, are fed to the module of
phrase scoring along with the normal phrase pairs.
Both types of phrase pairs are then stored in the
translation table with corresponding phrase trans-
lation probabilities. It can be seen that, since the
probabilities of normal phrase pairs are estimated
in the same procedure as those of TO-EMPTY
phrase pairs, they do not need re-weighing as in
the case of SWD model 1.

3.3 Model 3: Context-sensitive Model

Although model 2 is much more informative than
model 1, it is still unsatisfactory if we consider
the problem of SWD as a problem of tagging.
The decoder can be conceived as if it carries out
a tagging task over the source language sentence:
each source word is tagged either as “spurious” or
“non-spurious”. Under such a perspective, SWD



model 2 is merely a unigram tagging model, and
it uses only one feature template, viz. the lex-
ical form of the source word in hand. Such a
model can by no means encode any contextual
information, and therefore it cannot handle the
“ACCORDING-TO/fR #& NP EXPRESS/ZE R ex-
ample in section 1.

An obvious solution to this limitation is a more
powerful tagging model augmented with context-
sensitive feature templates. Inspired by research
work like (Lafferty et al., 2001) and (Sha and
Pereira, 2003), our SWD model 3 uses first-order
Conditional Random Field (CRF) to tackle the
tagging task.! The CRF model uses the follow-
ing feature templates:

1. the lexical form and the POS of the foreign
word f itself;

2. the lexical forms and the POSs of f_», f_1,
f+1,and fyo, where f_o and f_; are the two
words to the left of f, and f,; and f,o are
the two words to the right of f;

3. the lexical form and the POS of the head
word of f;

4. the lexical forms and the POSs of the depen-
dent words of f.

The lexical forms are the major source of infor-
mation whereas the POSs are employed to allevi-
ate data sparseness. The neighboring words are
used to capture local context information. For ex-
ample, in Chinese there is often a comma after
verbs like “said” or “stated”’, and such a comma
is not translated to any word or punctuation in
English. These spurious commas are therefore
identified by their immediate left neighbors. The
head and dependent words are employed to cap-
ture non-local context information found by some
dependency parser. For the “ACCORDING-TO/%
P& NP EXPRESS/3 7/R” example in section 1,
the Chinese word ACCORDING-TO/IR #& is the
head word of EXPRESS/# 7~. The spurious to-
ken of EXPRESS/Z 71N in this pattern can be dis-
tinguished from the non-spurious tokens through
the feature template of head word.

"Maximum Entropy was also tried in our experiments but
its performance is not as good as CRF.

The training data for the CRF model comprises
the alignment matrices of the bilingual training
data for the MT system. A source word (token)
in the training data is tagged as “non-spurious” if
it is aligned to some target word(s), otherwise it is
tagged as “spurious”. The sentences in the train-
ing data are also POS-tagged and parsed by some
dependency parser, so that each word can be as-
signed values for the POS-based feature templates
as well as the feature templates of head word and
dependency words.

The trained CRF model can then be used to
augment the decoder to tackle the SWD problem.
An input source sentence should first be POS-
tagged and parsed for assigning feature values.
The probability for f being spurious, P(e|f), is
then calculated by the trained CRF model as

Pcrp(spurious| E(f)).

The probability for f being non-spurious is sim-
ply 1 — P(e|f). For a normal phrase pair
< F ,E > recorded in the translation table,
its phrase translation probability and the lexical
weight should be re-weighed by the probabilities
of non-spuriousness. The weighing factor is

[T~ Pelfi)),

fieF

since the translation of F' into E' means the de-
coder considers every word in F' as non-spurious.

4 Experiments

4.1 Experiment Settings

A series of experiments were run to compare the
performance of the three SWD models against the
baseline, which is the standard phrase-based ap-
proach to SMT as elaborated in (Koehn et al.,
2003). The experiments are about Chinese-to-
English translation. The bilingual training data
is the one for NIST MT-2006. The GIGAWORD
corpus is used for training language model. The
development/test corpora are based on the test
sets for NIST MT-2005/6.

The alignment matrices of the training data are
produced by the GIZA++ (Och and Ney, 2000b)
word alignment package with its default settings.
The subsequent construction of translation table
was done in exactly the same way as explained



in (Koehn et al., 2003). For SWD model 2,
the phrase enumeration step is modified as de-
scribed in section 3.2. We used the Stanford
parser (Klein and Manning, 2003) with its default
Chinese grammar for its POS-tagging as well as
finding the head/dependent words of all source
words. The CRF toolkit used for model 3 is
CRF++2. The training data for the CRF model
should be the same as that for translation table
construction. However, since there are too many
instances (every single word in the training data
is an instance) with a huge feature space, no pub-
licly available CRF toolkit can handle the entire
training set of NIST MT-2006.> Therefore, we
can use at most only about one-third of the NIST
training set (comprising the FBIS, B1, and T10
sections) for CRF training.

The decoder in the experiments is our re-
implementation of HIERO (Chiang, 2007), aug-
mented with a 5-gram language model and a re-
ordering model based on (Zhang et al., 2007).
Note that no hierarchical rule is used with the de-
coder; the phrase pairs used are still those used
in conventional phrase-based SMT. Note also that
the decoder does not translate OOV at all even
in the baseline case, and thus the SWD models
do not improve performance simply by removing
OOVs.

In order to test the effect of training data size on
the performance of the SWD models, three varia-
tions of training data were used:

FBIS Only the FBIS section of the NIST training
set is used as training data (for both transla-
tion table and the CRF model in model 3).
This section constitutes about 10% of the en-
tire NIST training set. The purpose of this
variation is to test the performance of each
model when very small amount of data are
available.

BFT Only the B1, FBIS, and T10 sections of the
NIST training set are used as training data.
These sections are about one-third of the en-
tire NIST training set. The purpose of this

Zhttp://crfpp.sourceforge.net/

’Apart from CRF++, we also tried
CRF  (http:/flexcrfs.sourceforge.net)  and
(http://mallet.cs.umass.edu).

FLEX-
MALLET

Data | baseline | model 1 | model 2 | model 3
FBIS | 28.01 29.71 29.48 29.64
BFT | 29.82 31.55 31.61 31.75
NIST | 29.77 31.39 31.33 31.71

Table 2: BLEU scores in Experiment 1: NIST’05 as
dev and NIST’06 as test

variation is to test each model when medium
size of data are available.*

NIST All the sections of the NIST training set
are used. The purpose of this variation is to
test each model when a large amount of data
are available.

(Case-insensitive) BLEU-4 (Papineni et al.,
2002) is used as the evaluation metric. In each
test in our experiments, maximum BLEU training
were run 10 times, and thus there are 10 BLEU
scores for the test set. In the following we will
report the mean scores only.

4.2 Experiment Results and Analysis

Table 2 shows the results of the first experiment,
which uses the NIST MT-2005 test set as develop-
ment data and the NIST MT-2006 test set as test
data. The most obvious observation is that any
SWD model achieves much higher BLEU score
than the baseline, as there is at least 1.6 BLEU
point improvement in each case, and in some case
the improvement of using SWD is nearly 2 BLEU
points. This clearly proves the importance of
SWD in phrase-based SMT.

The difference between the performance of the
various SWD models is much smaller. Yet there
are still some noticeable facts. The first one is
that model 1 gives the best result in the case of
using only FBIS as training data but it fails to
do so when more training data is available. This
phenomenon is not strange since model 2 and
model 3 are conditioned on more information and
therefore they need more training data.

The second observation is about the strength of
SWD model 3, which achieves the best BLEU
score in both the BFT and NIST cases. While
its improvement over models 1 and 2 is marginal
in the case of BFT, its performance in the NIST

“Note also that the BFT data set is the largest training
data that the CRF model in model 3 can handle.



case is remarkable. A suspicion to the strength of
model 3 is that in the NIST case both models 1
and 2 use the entire NIST training set for esti-
mating P(e), while model 3 uses only the BFT
sections to train its CRF model. It may be that
the BFT sections are more consistent with the test
data set than the other NIST sections, and there-
fore a SWD model trained on BFT sections only
is better than that trained on the entire NIST. This
conjecture is supported by the fact that in all four
settings the BLEU scores in the NIST case are
lower than those in the BFT case, which suggests
that other NIST sections are noisy. While it is im-
possible to test model 3 with the entire NIST, it is
possible to restrict the data for the estimation of
P(e|f) in model 1 to the BFT sections only and
check if such a restriction helps.> We estimated
the uniform probability P(e¢) from only the BFT
sections and used it with the translation table con-
structed from the complete NIST training set. The
BLEU score thus obtained is 31.24, which is even
lower than the score (31.39) of the original case
of using the entire NIST for both translation table
and P(e|f) estimation. In sum, the strength of
model 3 is not simply due to the choice of train-
ing data.

The test set used in Experiment 1 distinguishes
itself from the development data and the training
data by its characteristics of combining text from
different genres. There are three sources of the
NIST MT-2006 test set, viz. “newswire”, “news-
group”, and “broadcast news”, while our devel-
opment data and the NIST training set comprises
only newswire text and text of similar style. It is
an interesting question whether SWD only works
for some genres (say, newswire) but not for other
genres. In fact, it is dubious whether SWD fits the
test set to the same extent as it fits the develop-
ment set. That is, perhaps SWD contributes to the
improvement in Experiment 1 simply by improv-
ing the translation of the development set which is
composed of newswire text only, and SWD may
not benefit the translation of the test data at all.
In order to test this conjecture, we ran Experi-
ment 2, in which the SWD models were still ap-
plied to the development data during training, but

>Unfortunately this way does not work for model 2 as
the estimation of P(e|f) and the construction of translation
table are tied together.

Data | model 1 | model 2 | model 3
FBIS | 29.85 29.91 29.95
BFT | 31.73 31.84 32.08
NIST | 31.70 31.82 32.05

Table 3: BLEU scores in Experiment 2, which is the
same as Experiment 1 but no word is deleted for test
corpus. Note: the baseline scores are the same as the
baselines in Experiment 1 (Table 2).

all SWD models stopped working when translat-
ing the test data with the trained parameters. The
results are shown in Table 3. These results are
very discouraging if we compare each cell in Ta-
ble 3 against the corresponding cell in Table 2: in
all cases SWD seems harmful to the translation of
the test data. It is tempting to accept the conclu-
sion that SWD works for newswire text only.

To scrutinize the problem, we split up the test
data set into two parts, viz. the newswire sec-
tion and the non-newswire section, and ran ex-
periments separately. Table 4 shows the results
of Experiment 3, in which the development data
is still the NIST MT-2005 test set and the test
data is the newswire section of NIST MT-2006
test set. It is confirmed that if test data shares
the same genre as the training/development data,
then SWD does improve translation performance
a lot. It is also observed that more sophisticated
SWD models perform better when provided with
sufficient training data, and that model 3 exhibits
remarkable improvement when it comes to the
NIST case.

Of course, the figures in Table 5, which shows
the results of Experiment 4 where the non-
newswire section of NIST MT-2006 test set is
used as test data, still leave us the doubt that SWD
is useful for a particular genre only. After all, it
is reasonable to assume that a model trained from
data of a particular domain can give good perfor-
mance only to data of the same domain. On the
other hand, the language model is another cause
of the poor performance, as the GIGAWORD cor-
pus is also of the newswire style.

While we cannot prove the value of SWD with
respect to training data of other genres in the
mean time, we could test the effect of using de-
velopment data of other genres. In our last ex-
periment, the first halves of both the newswire



apply SWD for test set no SWD for test set
Data | model 1 | model 2 | model 3 || model 1 | model 2 | model 3
FBIS | 30.81 30.81 30.68 29.23 29.61 29.46
BFT | 33.57 33.74 33.71 31.88 31.87 32.25
NIST | 33.65 34.01 34.42 32.14 32.59 32.87

Table 4: BLEU scores in Experiment 3, which is the same as Experiments 1 and 2 but only the newswire section
of NIST 06 test set is used. Note: the baseline scores are the same as the baselines in Experiment 1 (Table 2).

apply SWD for test set no SWD for test set
Data | model 1 | model 2 | model 3 || model 1 | model 2 | model 3
FBIS | 29.19 28.86 29.16 30.07 29.67 30.08
BFT | 30.62 30.64 30.86 31.66 31.83 32.00
NIST | 30.34 30.10 30.46 31.50 31.45 31.66

Table 5: BLEU scores in Experiment 4, which is the same as Experiments 1 and 2 but only the non-newswire
section of NIST’06 test set is used. Note: the baseline scores are the same as the baselines in Experiment 1

(Table 2).
Data | baseline | model 1 | model 2 | model 3
FBIS | 26.87 27.79 27.51 27.61
BFT | 29.11 30.38 30.49 30.41
NIST | 29.34 30.63 30.95 31.00

Table 6: BLEU scores in Experiment 5: which is the
same as Experiment 1 but uses half of NIST’06 as de-
velopment set and another half of NIST 06 as test set.

and non-newswire sections of NIST MT-2006 test
set are combined to form the new development
data, and the second halves of the two sections
are combined to form the new test data. The new
development data is therefore consistent with the
new test data. If SWD, or at least a SWD model
from newswire, is harmful to the non-newswire
section, which constitutes about 60% of the de-
velopment/test data, then it will be either that the
parameter training process minimizes the impact
of SWD, or that the SWD model will make the
parameter training process fail to search for good
parameter values. The consequence of either case
is that the baseline setting should produce similar
or even higher BLEU score than the settings that
employ some SWD model. Experiment results, as
shown in Table 6, illustrate that SWD is still very
useful even when both development and test sets
contain texts of different genres from the training
text. It is also observed, however, that the three
SWD models give rise to roughly the same BLEU

scores, indicating that the SWD training data do
not fit the test/development data very well as even
the more sophisticated models are not benefited
from more data.

S Experiments using METEOR

The results in the last section are all evaluated us-
ing the BLEU metric only. It is dubious whether
SWD is useful regarding recall-oriented metrics
like METEOR (Banerjee and Lavie, 2005), since
SWD removes information in source sentences.
This suspicion is to certain extent confirmed by
our application of METEOR to the translation
outputs of Experiment 1 (c.f. Table 7), which
shows that all SWD models achieve lower ME-
TEOR scores than the baseline. However, SWD is
not entirely harmful to METEOR: if SWD is ap-
plied to parameter tuning only but not for the test
set, (i.e. Experiment 2), even higher METEOR
scores can be obtained. This puzzling observa-
tion may be because the parameters of the de-
coder are optimized with respect to BLEU score,
and SWD benefits parameter tuning by improv-
ing BLEU score. In future experiments, maxi-
mum METEOR training should be used instead
of maximum BLEU training so as to examine if
SWD is really useful for parameter tuning.



Experiment 1 Experiment 2
SWD for both dev/test SWD for dev only
Data | baseline | model 1 | model 2 | model 3 || model 1 | model 2 | model 3
FBIS | 50.07 47.90 49.83 49.34 51.58 51.08 51.17
BFT || 52.47 50.55 51.89 52.10 54.72 54.43 54.30
NIST || 52.12 49.86 50.97 51.59 54.14 53.82 54.01

Table 7: METEOR scores in Experiments 1 and 2

6 Conclusion and Future Work

In this paper, we have explained why the han-
dling of spurious source words is not a trivial
problem and how important it is. Three solu-
tions, with increasing sophistication, to the prob-
lem of SWD are presented. Experiment results
show that, in our setting of using NIST MT-2006
test set, any SWD model leads to an improvement
of at least 1.6 BLEU points, and SWD model 3,
which makes use of contextual information, can
improve up to nearly 2 BLEU points. If only
the newswire section of the test set is considered,
SWD model 3 is even more superior to the other
two SWD models.

The effect of training data size on SWD has
also been examined, and it is found that more
sophisticated SWD models do not outperform
unless they are provided with sufficient amount
of data. As to the effect of training data do-
main/genre on SWD, it is clear that SWD models
trained on text of certain genre perform the best
when applied to text of the same genre. While
it is infeasible for the time being to test if SWD
works well for non-newswire style of training
data, we managed to illustrate that SWD based on
newswire text still to certain extent benefits the
training and translation of non-newswire text.

In future, two extensions of our system are
needed for further examination of SWD. The first
one is already mentioned in the last section: max-
imum METEOR training should be implemented
in order to fully test the effect of SWD regard-
ing METEOR. The second extension is about the
weighing factor in models 1 and 3. The current
implementation assumes that all source words
in a normal phrase pair need to be weighed by
1 — P(e). However, in fact some source words in
a source phrase are tacitly deleted (as explained
in the Introduction). Thus the word alignment in-

formation within phrase pairs need to be recorded
and the weighing of a normal phrase pair should
be done in accordance with such alignment infor-
mation.
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Abstract

We explore the augmentation of statistical ma-
chine translation models with features of the
context of each phrase to be translated. This
work extends several existing threads of re-
search in statistical MT, including the use of
context in example-based machine translation
(Carl and Way, 2003) and the incorporation of
word sense disambiguation into a translation
model (Chan et al., 2007). The context fea-
tures we consider use surrounding words and
part-of-speech tags, local syntactic structure,
and other properties of the source language
sentence to help predict each phrase’s transla-
tion. Our approach requires very little compu-
tation beyond the standard phrase extraction
algorithm and scales well to large data sce-
narios. We report significant improvements
in automatic evaluation scores for Chinese-
to-English and English-to-German translation,
and also describe our entry in the WMTO08
shared task based on this approach.

1 Introduction

Machine translation (MT) by statistical modeling of
bilingual phrases is one of the most successful ap-
proaches in the past few years. Phrase-based MT
systems are straightforward to train from parallel
corpora (Koehn et al., 2003) and, like the origi-
nal IBM models (Brown et al., 1990), benefit from
standard language models built on large monolin-
gual, target-language corpora (Brants et al., 2007).
Many of these systems perform well in competitive
evaluations and scale well to large-data situations
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(NIST, 2006; Callison-Burch et al., 2007). End-to-
end phrase-based MT systems can be built entirely
from freely-available tools (Koehn et al., 2007).

We follow the approach of Koehn et al. (2003),
in which we translate a source-language sentence f
into the target-language sentence € that maximizes a
linear combination of features and weights: '

(é,a) = argmaxscore(e,a, f) (1)
(e.a)
M
= argmax Amhm(e,a, f)  (2)
FHpY

where a represents the segmentation of e and f
into phrases and a correspondence between phrases,
and each h,, is a R-valued feature with learned
weight \,,. The translation is typically found us-
ing beam search (Koehn et al., 2003). The weights
(M1, ..., Aar) are typically learned to directly mini-
mize a standard evaluation criterion on development
data (e.g., the BLEU score; Papineni et al., (2002))
using numerical search (Och, 2003).

Many features are used in phrase-based MT, but
nearly ubiquitous are estimates of the conditional
translation probabilities p(ez | £%) and p(f% | eg )
for each phrase pair <e‘g , %) in the candidate sen-
tence pair.> In this paper, we add and evaluate fea-

'In the statistical MT literature, this is often referred to as a
“log-linear model,” but since the score is normalized during nei-
ther parameter training nor decoding, and is never interpreted as
alog-probability, it is essentially a linear combination of feature
functions. Since many of the features are actually probabilities,
this linear combination is closer to a mixture model.

2We will use :cf to denote the subsequence of  containing
the ¢th through jth elements of @, inclusive.

Proceedings of the Third Workshop on Statistical Machine Translation, pages 9-17,
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tures that condition on additional context features on
the source (f) side:

p(e{ | Phrase = fﬁ» Context = ( 11671’ f€F+l’ )

The advantage of considering context is well-
known and exploited in the example-based MT com-
munity (Carl and Way, 2003). Recently researchers
have begun to use source phrase context informa-
tion in statistical MT systems (Stroppa et al., 2007).
Statistical NLP researchers understand that condi-
tioning a probability model on more information is
helpful only if there are sufficient training data to ac-
curately estimate the context probabilities.> Sparse
data are often the death of elaborate models, though
this can be remedied through careful smoothing.

In this paper we leverage the existing linear
model (Equation 2) to bring source-side context into
phrase-based MT in a way that is robust to data
sparseness. We interpret the linear model as a mix-
ture of many probability estimates based on different
context features, some of which may be very sparse.
The mixture coefficients are trained in the usual way
(“minimum error-rate training,” Och, 2003), so that
the additional context is exploited when it is useful
and ignored when it isn’t.

The paper proceeds as follows. We first review re-
lated work that enriches statistical translation mod-
els using context (§2). We then propose a set
of source-side features to be incorporated into the
translation model, including the novel use of syntac-
tic context from source-side parse trees and global
position within f (§3). We explain why analogous
target-side features pose a computational challenge
(84). Specific modifications to the standard training
and evaluation paradigm are presented in §5. Exper-
imental results are reported in §6.

2 Related Work

Stroppa et al. (2007) added souce-side context fea-
tures to a phrase-based translation system, including
conditional probabilities of the same form that we
use. They consider up to two words and/or POS tags
of context on either side. Because of the aforemen-
tioned data sparseness problem, they use a decision-

3 An illustrative example is the debate over the use of bilex-
icalized grammar rules in statistical parsing (Gildea, 2001;
Bikel, 2004).
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tree classifier that implicitly smooths relative fre-
quency estimates. The method improved over a stan-
dard phrase-based baseline trained on small amounts
of data (< 50K sentence pairs) for Italian — English
and Chinese — English. We explore a significantly
larger space of context features, a smoothing method
that more naturally fits into the widely used, error-
driven linear model, and report a more comprehen-
sive experimental evaluation (including feature com-
parison and scaling up to very large datasets).

Recent research on the use of word-sense dis-
ambiguation in machine translation also points to-
ward our approach. For example, Vickrey et al.
(2005) built classifiers inspired by those used in
word sense disambiguation to fill in blanks in
a partially-completed translation. Giménez and
Marquez (2007) extended the work by considering
phrases and moved to full translation instead of fill-
ing in target-side blanks. They trained an SVM for
each source language phrase using local features of
the sentences in which the phrases appear. Carpuat
and Wu (2007) and Chan et al. (2007) embedded
state-of-the-art word sense disambiguation modules
into statistical MT systems, achieving performance
improvements under several automatic measures for
Chinese — English translation.

Our approach is also reminiscent of example-
based machine translation (Nagao, 1984; Somers,
1999; Carl and Way, 2003), which has for many
years emphasized use of the context in which source
phrases appear when translating them. Indeed, like
the example-based community, we do not begin with
any set of assumptions about which kinds of phrases
require additional disambiguation (cf. the applica-
tion of word-sense disambiguation, which is moti-
vated by lexical ambiguity). Our feature-rich ap-
proach is omnivorous and can exploit any linguistic
analysis of an input sentence.

3 Source-Side Context Features

Adding features to the linear model (Equation 2)
that consider more of the source sentence requires
changing the decoder very little, if at all. The reason
is that the source sentence is fully observed, so the
information to be predicted is the same as before—
the difference is that we are using more clues to
carry out the prediction.



We see this as an opportunity to include many
more features in phrase-based MT without increas-
ing the cost of decoding at runtime. This discussion
is reminiscent of an advantage gained by moving
from hidden Markov models to conditional random
fields for sequence labeling tasks. While the same
core algorithm is used for decoding with both mod-
els, a CRF allows inclusion of features that consider
the entire observed sequence—i.e., more of the ob-
servable context of each label to be predicted. Al-
though this same advantage was already obtained
in statistical MT through the transition from “noisy
channel” translation models to (log-)linear models,
the customary set of features used in most phrase-
based systems does not take full advantage of the
observed data.

The standard approach to estimating the phrase
translation conditional probability features is via rel-
ative frequencies (here e and f are phrases):

_ count(e, f)
ple| f) = > count(e’, f)

Our new features all take the form p(e |
I+ contest)» Where e is the target language phrase,
f is the source language phrase, and f 0.+ 1S the
context of the source language phrase in the sentence
in which it was observed. Like the context-bare con-
ditional probabilities, we estimate probability fea-
tures using relative frequencies:

Count(e> !, fcontext)

ple | £, f contest) =
context Ze’ count(e’, I, fcontext)

Since we expect that adding conditioning vari-
ables will lead to sparser counts and therefore more
zero estimates, we compute features for many dif-
ferent types of context. To combine the many
differently-conditioned features into a single model,
we provide them as features to the linear model
(Equation 2) and use minimum error-rate training
(Och, 2003) to obtain interpolation weights \,,.
This is similar to an interpolation of backed-off es-
timates, if we imagine that all of the different con-
texts are differently-backed off estimates of the com-
plete context. The error-driven weight training ef-
fectively smooths one implicit context-rich estimate
ple | F, [ ontest) SO that all of the backed-off es-
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timates are taken into account, including the orig-
inal p(e | f). Our approach is asymmetrical; we
have not, for example, estimated features of the form
p(.f7 fcontea:t | 6).

We next discuss the specific source-side context
features used in our model.

3.1 Lexical Context Features

The most obvious kind of context of a source phrase
fi is the m-length sequence before it ( f’,z::n) and
the m-length sequence after it ( fﬁ’lﬂ). We include
context features for m € {1,2}, padding sentences
with m special symbols at the beginning and at the

end. For each value of m, we include three features:
e ple| f, fg;ln), the left lexical context;

e ple| f, fﬁfln), the right lexical context;

e p(e| f, fl/i;lnv ”m), both sides.

41
3.2 Shallow Syntactic Features

Lexical context features, especially when m > 1,
are expected to be sparse. Representing the context
by part-of-speech (POS) tags is one way to over-
come that sparseness. We used the same set of the
lexical context features described above, but with
POS tags replacing words in the context. We also
include a feature which conditions on the POS tag
sequence of the actual phrase being translated.

3.3 Syntactic Features

If a robust parser is available for the source lan-
guage, we can include context features from parse
trees. We used the following parse tree features:

e Is the phrase (exactly) a constituent?

e What is the nonterminal label of the lowest node
in the parse tree that covers the phrase?

e What is the nonterminal label or POS of the high-
est nonterminal node that ends immediately be-
fore the phrase? Begins immediately after the
phrase?

e Is the phrase strictly to the left of the root word,
does it contain the root word, or is it strictly to
the right of the root word? (Requires a parse with
head annotations.)

We also used a feature that conditions on both fea-
tures in the third bullet point above.
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Positional Features:

Not at start

Not at end

Second fifth of sentence

Covers 18.5% of sentence
(quantized to 20%)

Syntactic Features:
Not a constituent
NP covers phrase
VBP to left

PP to right
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////
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In dieser Hinsicht unterstiitzen wir | den Bericht des Ausschusses fir Verkehr und Fremdenverkehr , in...

Figure 1: A (partial) sentence pair from the WMTO7 Europarl training corpus. Processing of the data (parsing, word
alignment) was done as discussed in §6. The phrase pair of interest is boxed and context features are shown in dotted
shapes. The context features help determine whether the phrase should be translated as “der Bericht des Ausschusses”
(nominative case) or “den Bericht des Ausschusses” (accusative case). See text for details.

3.4 Positional Features

We include features based on the position of the
phrase in the source sentence, the phrase length, and
the sentence length. These features use information
from the entire source sentence, but are not syntac-
tic. For a phrase fi in a sentence f of length n:

e Is the phrase at the start of the sentence (k = 1)?

e Is the phrase at the end of the sentence (£ = n)?

L A=kl .
e A quantization of r = , the relative po-

sition in (0, 1) of the phrase’s midpoint within f.
We choose the smallest ¢ € {0.2,0.4,0.6,0.8,1}
such that g > 7.

e A quantization of ¢ = £EEL  the fraction of the

words in f that are covered by the phrase We
choose the smallest g € {E’ 20" %, £ 3, 1} such
that ¢ > c.

An illustration of the context features is shown
in Fig. 1. Consider the phrase pair “the report
of the committee”/*den Bericht des Ausschusses”
extracted by our English — German baseline MT
system (described in §6.3). The German word
“Bericht” is a masculine noun; therefore, it takes the
article “der” in the nominative case, “den” in the ac-
cusative case, and “dem” in the dative case. These
three translations are indeed available in the phrase
table for “the report of the committee” (see Table 1,
“no context” column), with relatively high entropy.
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The choice between “den” and “der” must be made
by the language model alone.

Knowing that the phrase follows a verb, or ap-
pears to the right of the sentence’s root word, or
within the second fifth of the sentence should help.
Indeed, a probability distribution that conditions on
context features gives more peaked distributions that
give higher probability to the correct translation,
given this context, and lower probability given some
other contexts (see Table 1).

4 Why Not Target-Side Context?

While source context is straightforward to exploit
in a model, including target-side context features
breaks one of the key independence assumptions
made by phrase-based translation models: the trans-
lations of the source-side phrases are conditionally
independent of each other, given f, thereby requir-
ing new algorithms for decoding (Marino et al.,
2006).

We suggest that target-side context may already
be well accounted for in current MT systems. In-
deed, language models pay attention to the local
context of phrases, as do reordering models. The re-
cent emphasis on improving these components of a
translation system (Brants et al., 2007) is likely due
in part to the widespread availability of NLP tools
for the language that is most frequently the target:
English. We will demonstrate that NLP tools (tag-



Shallow: 2 POS on left Syntax: _of root | Positional: rel. pos.

g no context | *“PRP VBP” | “VBN IN” | *right left | *2nd fifth | 1st fifth

den bericht des ausschusses 0.3125 1.0000 0.3333 | 0.5000 | 0.0000 0.6000 | 0.0000
der bericht des ausschusses 0.3125 0.0000 0.0000 | 0.1000 | 0.6667 0.2000 | 0.6667
dem bericht des ausschusses 0.2500 0.0000 0.6667 | 0.3000 | 0.1667 0.0000 | 0.1667

Table 1: Phrase table entries for “the report of the committee” and their scores under different contexts. These are the
top three phrases in the baseline English — German system (“no context” column). Contexts from the source sentence
in Fig. 1 (starred) predict correctly; we show also alternative contexts that give very different distributions.

gers and parsers) for the source side can be used to
improve the translation model, exploiting analysis
tools for other languages.

5 Implementation

The additional data required to compute the context
features is extracted along with the phrase pairs dur-
ing execution of the standard phrase extraction algo-
rithm, affecting phrase extraction and scoring time
by a constant factor.

We avoid the need to modify the standard phrase-
based decoder to handle context features by append-
ing a unique identifier to each token in the sentences
to be translated. Then, we pre-compute a phrase ta-
ble for the phrases in these sentences according to
the phrase contexts. To avoid extremely long lists
of translations of common tokens, we filter the gen-
erated phrase tables, removing entries for which the
estimate of p(e | f) < ¢, for some small c. In our
experiments, we fixed ¢ = 0.0002. This filtering
reduced time for experimentation dramatically and
had no apparent effect on the translation output. We
did not perform any filtering for the baseline system.

6 Experiments

In this section we present experimental results using
our context-endowed phrase translation model with
a variety of different context features, on Chinese —

Chinese — English (UN)
Context features BLEU NIST METEOR
None 0.3426 7.740 0.6416
Lexical 0.3678 8.107 0.6627
Shallow 0.3473 7.724 0.6452
Lexical + Shallow | 0.3669 8.117 0.6609
Syntactic 0.3523 7.791 0.6481
Positional 0.3480 7.764 0.6446
All 0.3620 7.953 0.6570

Table 2: Chinese — English experiments: training and
testing on unseen UN data. Boldface marks scores signf-
icantly higher than “None.”
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English, German — English, and English — Ger-
man translation tasks. Dataset details are given in
Appendices A (Chinese) and B (German).

Baseline We use the Moses MT system (Koehn et
al., 2007) as a baseline and closely follow the ex-
ample training procedure given for the WMT2007
and 2008 shared tasks.* In particular, we perform
word alignment in each direction using GIZA++
(Och and Ney, 2003), apply the “grow-diag-final-
and” heuristic for symmetrization with maximum
phrase length of 7. In addition to the two phrase
translation conditionals p(e | f) and p(f | e), we
use lexical translation probabilities in each direction,
a word penalty, a phrase penalty, a length-based re-
ordering model, a lexicalized reordering model, and
an n-gram language model, SRILM implementation
(Stolcke, 2002) with modified Kneser-Ney smooth-
ing (Chen and Goodman, 1998). Minimum error-
rate (MER) training (Och, 2003) was applied to ob-
tain weights (), in Equation 2) for these features.
A recaser is trained on the target side of the paral-
lel corpus using the script provided with Moses. All
output is recased and detokenized prior to evalua-
tion.

Evaluation We evaluate translation output using
three automatic evaluation measures: BLEU (Pap-
ineni et al., 2002), NIST (Doddington, 2002), and
METEOR (Banerjee and Lavie, 2005, version 0.6).
All measures used were the case-sensitive, corpus-
level versions. The version of BLEU used was that
provided by NIST and was also used as the evalu-
ation measure for MER training. Significance was
tested using a paired bootstrap (Koehn, 2004) with

*nttp://www.statmt.org/wmt08

SMETEOR details: For English, we use exact matching,
Porter stemming, and WordNet synonym matching. For Ger-
man, we use exact matching and Porter stemming. These are
the same settings that were used to evaluate systems for the
WMTO7 shared task.



Chinese — English
Testing on UN Testing on News (NIST 2003)
Context features BLEU NIST METEOR BLEU NIST METEOR
Training on in-domain data only:
None 0.3426  7.740 0.6416 | 0.2686 8.085 0.5346
Training on all data:
None 0.3347 7.618 0.6352 | 0.2663 7.800 0.5213
Lexical 0.3543 7.942 0.6612 | 0.2580 7.867 0.5242
Shallow: < 1 POS tag 0.3279 7427 0.6380 | 0.2683 8.361 0.5471
Shallow: < 2 POS tags 0.3341 7.529 0.6403 | 0.2654 7.937 0.5263
Lexical + Shallow 0.3535 7.965 0.6584 | 0.2691 7.917 0.5276
Syntactic 0.3424 7.704 0.6483 | 0.2640 8.198 0.5390
Lexical + Syntactic 0.3565 7.916 0.6574 | 0.2626 7.776 0.5205
Positional 0.3300 7.473 0.6385 | 0.2682 7.869 0.5252
All 0.3457 7.932 0.6550 | 0.2641 7.793 0.5224
Feature selection (see Sec. 6.4) | 0.3536 7.878 0.6525 | 0.2779 8.147 0.5330

Table 3: Chinese — English experiments: first row shows baseline performance when training only on in-domain
data for each task; all other rows show results when training on all data (UN and News). Left half shows results when
tuning and testing on UN test sets; right half shows results when tuning on NIST 2004 News test set and testing on
NIST 2003. Boldface marks scores that are significantly higher than the first row, in-domain baseline.

1000 samples (p < 0.05).°

6.1 Chinese — English

For our Chinese — English experiments, two kinds
of data were used: UN proceedings, and newswire
as used in NIST evaluations.

UN Data UN data results are reported in Ta-
ble 2. Significant improvements are obtained on all
three evaluation measures—e.g., more than 2 BLEU
points—using lexical or lexical and shallow fea-
tures. While improvements are smaller for other fea-
tures and feature combinations, performance is not
harmed by conditioning on context features, with
one very minor exception (shallow features slighly
harm the NIST score). Note that using syntactic fea-
tures gave 1 BLEU point of improvement.

News Data In News data experiments, none of our
features obtained BLEU performance statistically
distinguishable from the baseline of 0.2686 BLEU
(neither better, nor worse). The News training cor-
pus is less than half the size of the UN training cor-
pus (in words); unsurprisingly, the context features
were too sparse to be helpful. Further, newswire are
less formulaic and repetitive than UN proceedings,
so contexts do not generalize as well from training

8Code implementing this test for these metrics can be freely
downloaded at http://www.ark.cs.cmu.edu/MT.
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to test data. Fortunately, our “error-minimizing mix-
ture” approach protects the BLEU score, which the
Am are tuned to optimize.

Combined UN + News Data Our next experi-
ment used all of the available training data (> 200M
words on each side) to train the models, in-domain
Am tuning, and testing for each domain separately;
see Table 3. Without context features, training
on mixed-domain data consistently harms perfor-
mance. With contexts that include lexical features,
the mixed-domain model significantly outperforms
the in-domain baseline for UN data. These results
suggest that context features enable better use of out-
of-domain data, an important advantage for statis-
tical MT since parallel data often arise from very
different sources than those of “real-world” transla-
tion scenarios. On News data, context features did
not give a significant advantage on the BLEU score,
though syntactic and < 1 POS contexts did give
significant NIST and METEOR improvements over
the in-domain baseline. Small sets of automatically
selected context features, discussed in Section 6.4,
were more consistently successful for these data.

6.2 German — English

We do not report full results for this task, because
the context features neither helped nor hurt perfor-
mance significantly. We believe this is due to data



English — German
Context features BLEU NIST METEOR
None 0.2018 5.874 0.2753
Lexical 0.1958 5.884 0.2703
Shallow 0.1989 5.833 0.2731
Syntactic 0.2024 5.945 0.2777
Positional 0.2008 5.860 0.2733
Lex. + Shal. + Syn. | 0.2000 5.959 0.2764
All 0.1996 5.868 0.2738
Feature selection 0.2055 5.939 0.2778

Table 4: English — German experiments: training and
testing on Europarl data. Boldface marks scores signifi-
cantly higher than “None.”

sparseness resulting from the size of the training cor-
pus (26M German words), German’s relatively rich
morphology, and the challenges of German parsing.

6.3 English — German

English — German results are shown in Table 4.
The baseline system here is highly competitive, hav-
ing scored higher on automatic evaluation mea-
sures than any other system in the WMTO7 shared
task (Callison-Burch et al., 2007). Among the fea-
ture categories, the largest improvement is achieved
when syntactic context features are included. Com-
paring with the German — English experiment, we
attribute this effect to the high accuracy of the En-
glish parser compared to the German parser.

6.4 Feature Selection

Translation performance does not always increase
when features are added to the model. This mo-
tivates the use of feature selection algorithms to
choose a subset of features to optimize perfor-
mance. We experimented with several feature se-
lection algorithms based on information-theoretic
quantities computed among the source phrase, the
target phrase, and the context, but found that a sim-
ple forward variable selection algorithm (Guyon and
Elisseeff, 2003) worked best. In this procedure, we
start with no context features and, at each iteration,
add the single feature that results in the largest in-
crease in BLEU score on the unseen development
test data after \,, tuning. The algorithm terminates
if no features are left or if none result in an increase
in BLEU. We ran this algorithm to completion for
the two Chinese — English tune/test sets (training
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on all data in each case) and the English — German
task; see Tables 3 and 4. In all cases, the algorithm
finishes after < 4 evaluations.

Feature selection for Chinese — English (UN)
first chose the lexical feature “1 word on each side,”
then the positional feature indicating which fifth of
the sentence contains the phrase, and finally the lex-
ical feature “1 word on right”” For News, the fea-
tures chosen were the shallow syntactic feature “1
POS on each side,” then the positional beginning-
of-sentence feature, then the position relative to the
root (a syntactic feature). Features selected for En-
glish — German were the shallow syntactic feature
“2 POS on left,” then the lexical feature “1 word on
right.”

This simple procedure led to the best BLEU
scores for the Chinese — English News task and
the English — German task, showing that only a
few well-chosen context features are required to give
significant improvements over the baseline zero-
context model. On Chinese News, our BLEU score
of 0.2779 is significantly better than the in-domain
baseline system score of 0.2686.

6.5 WMTO08 Shared Task: English — German

Since we began this research before the release
of the data for the WMTO8 shared task, we per-
formed the majority of our experiments using the
data released for the WMTO7 shared task (see Ap-
pendix B). To prepare our entry for the 2008 shared
task, we trained a baseline system on the 2008 data
using a nearly identical configuration.” We exper-
imented with several context feature sets, targeting
the features that performed best in our earlier exper-
iments. In addition to the devtest06 data, we trans-
lated the 2007 Europarl test set to see how our fea-
ture selection results would transfer to new data. We
found the best-performing feature set from our ear-
lier experiments to also perform competitively on
the new test data; Table 5 shows results consistent
with experiments above.

7 Future Work

In future work, we plan to apply more sophisticated
learning algorithms to rich-feature phrase table esti-
"The only differences were the use of a larger max sentence

length threshold of 55 tokens instead of 50, and the use of the
better-performing “englishFactored” Stanford parser model.



devtest06 test07 test08
System BLEU NIST METEOR | BLEU NIST METEOR | BLEU NIST METEOR
Baseline | 0.2009 5.866 0.2719 | 0.2051 5.957 0.2782 | 0.2003 5.889 0.2720
Context | 0.2039 5.941 0.2784 | 0.2088 6.036 0.2826 | 0.2016 5.956 0.2772

Table 5: English — German shared task system results using WMTO8 Europarl parallel data for training, dev06 for
tuning, and three test sets, including the final 2008 test set. The row labeled “Context” uses the top-performing feature
set {2 POS on left, 1 word on right}. Boldface marks scores that are significantly higher than the baseline.

mation. Context features can also be used as condi-
tioning variables in other components of translation
models, including the lexicalized reordering model
and the lexical translation model in the Moses MT
system, or hierarchical or syntactic models (Chiang,
2005). Additional linguistic analysis (e.g., morpho-
logical disambiguation, named entity recognition,
semantic role labeling) can be used to define new
context features.

8 Conclusion

We have described a straightforward, scalable
method for improving phrase translation models by
modeling features of a phrase’s source-side context.
Our method allows incorporation of features from
any kind of source-side annotation and barely affects
the decoding algorithm. Experiments show perfor-
mance rivaling or exceeding strong, state-of-the-art
baselines on standard translation tasks. Automatic
feature selection can be used to achieve performance
gains with just two or three context features. Per-
formance is strongest when large in-domain training
sets and high-accuracy NLP tools for the source lan-
guage are available.
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A Dataset Details (Chinese-English)

We trained on data from the NIST MT 2008
constrained Chinese-English track:  Sinorama
(LDC2005T10), FBIS (LDC2003E14), Hong
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Kong Hansards and news (LDC2004TO0S),
Xinhua (LDC2002E18), and financial news
(LDC2006E26)—total 2.5M sents., 66M Chinese
words, 68M English. The newswire portion of the
NIST 2004 test set and the full NIST 2003 test
set were used for newswire tuning and testing,
respectively (~900 sents. each). We also used
the United Nations parallel text (LDC2004E12),
divided into training (4.7M sents.; words: 136M
Chinese, 144M English), tuning (2K sents.), and test
sets (2K sents.). We removed sentence pairs where
either side was longer than 80 words, segmented all
Chinese text automatically,® and parsed using the
Stanford parser with the pre-trained “xinhuaPCFG”
model (Klein and Manning, 2003). Trigram lan-
guage models were trained on the English side
of the parallel corpus along with approximately
115M words from the Xinhua section of the English
Gigaword corpus (LDC2005T12), years 1995-2000
(total 326M words).

B Dataset Details (German-English)

For German < English experiments, we used data
provided for the WMT 2007 shared task (1.1M
sents., 26M German words, 27M English). The Eu-
roparl tuning and development test sets from the
WMT 2007 shared task were used for tuning and
testing (2K sents. each). We removed sentence
pairs where either side was longer than 50 words and
parsed the German and English data using the Stan-
ford parser (Klein and Manning, 2003) (with pre-
trained “germanFactored” and “englishPCFG” mod-
els). 5-gram language models were trained on the
entire target side of the parallel corpus (37M Ger-
man words, 38M English).

8Available at http://projectile.is.cs.cmu.
edu/research/public/tools/segmentation/
lrsegmenter/lrSegmenter.perl.
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Discriminative Word Alignment via Alignment Matrix Modeling
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Abstract

In this paper a new discriminative word align-
ment method is presented. This approach
models directly the alignment matrix by a con-
ditional random field (CRF) and so no restric-
tions to the alignments have to be made. Fur-
thermore, it is easy to add features and so all
available information can be used. Since the
structure of the CRFs can get complex, the in-
ference can only be done approximately and
the standard algorithms had to be adapted. In
addition, different methods to train the model
have been developed. Using this approach the
alignment quality could be improved by up
to 23 percent for 3 different language pairs
compared to a combination of both IBM4-
alignments. Furthermore the word alignment
was used to generate new phrase tables. These
could improve the translation quality signifi-
cantly.

1 Introduction

In machine translation parallel corpora are one very
important knowledge source. These corpora are of-
ten aligned at the sentence level, but to use them
in the systems in most cases a word alignment is
needed. Therefore, for a given source sentence f;
and a given target sentence e} a set of links (7, 4) has
to be found, which describes which source word f;
is translated into which target word e;.

Most SMT systems use the freely available
GIZA++-Toolkit to generate the word alignment.
This toolkit implements the IBM- and HMM-
models introduced in (Brown et al., 1993; Vogel et
al., 1996). They have the advantage that they are
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trained unsupervised and are well suited for a noisy-
channel approach. But it is difficult to include addi-
tional features into these models.

In recent years several authors (Moore et al.,
2006; Lacoste-Julien et al., 2006; Blunsom and
Cohn, 2006) proposed discriminative word align-
ment frameworks and showed that this leads to im-
proved alignment quality. In contrast to generative
models, these models need a small amount of hand-
aligned data. But it is easy to add features to these
models, so all available knowledge sources can be
used to find the best alignment.

The discriminative model presented in this pa-
per uses a conditional random field (CRF) to model
the alignment matrix. By modeling the matrix no
restrictions to the alignment are required and even
n:m alignments can be generated. Furthermore, this
makes the model symmetric, so the model will pro-
duce the same alignment no matter which language
is selected as source and which as target language.
In contrast, in generative models the alignment is a
function where a source word aligns to at most one
target word. So the alignment is asymmetric.

The training of this discriminative model has to be
done on hand-aligned data. Different methods were
tested. First, the common maximum-likelihood ap-
proach was used. In addition to this, a method to
optimize the weights directly towards a word align-
ment metric was developed.

The paper is structured as follows: Section 2 and
3 present the model and the training. In Section 4
the model is evaluated in the word alignment task as
well as in the translation task. The related work and
the conclusion are given in Sections 5 and 6.

Proceedings of the Third Workshop on Statistical Machine Translation, pages 18-25,
Columbus, June 2008. (©)2008 Association for Computational Linguistics
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Firstly . we have a legal framework .

2 The Model

In the approach presented here the word alignment
matrix is modeled by a conditional random field
(CRF). A CRF is an unidirectional graphical model.
It models the conditional distribution over random
variables. In most applications like (Tseng et al.,
2005; Sha and Pereira, 2003), a sequential model is
used. But to model the alignment matrix the graphi-
cal structure of the model is more complex.

The alignment matrix is described by a random
variable y;; for every source and target word pair
(fj,ei). These variables can have two values, 0
and 1, indicating whether these words are transla-
tions of each other or not. An example is shown
in Figure 1. Gray circles represent variables with
value 1, white circles stand for variables with value
0. Consequently, a word with zero fertility is indi-
rectly modeled by setting all associated random vari-
ables to a value of 0.

The structure of the CRF is described by a fac-
tored graph like it was done, for example, in (Lan
et al., 2006). In this bipartite graph there are two
different types of nodes. First, there are hidden
nodes, which correspond to the random variables.
The second type of nodes are the factored nodes c
. These are not drawn in Figure 1 to keep the pic-
ture clear, but they are shown in Figure 2. They
define a potential . on the random variables V.
they are connected to. This potential is used to
describe the probability of an alignment based on
the information encoded in the features. This po-
tential is a log-linear combination of some features
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F.(Ve) = (fi(Ve), ..., fn(Ve)) and it can be written
as:
D(Ve) = eap(© * Fe(Ve)) = eap(Y_ Ok * fu(Ve))
k
ey

with the weights ©. Then the probability of an
assignment of the random variables, which corre-
sponds to a word alignment, can be expressed as:

II @ (2)

( 7f) cEVpN

@(y|€7 f)

with Vv the set of all factored nodes in the graph,
and the normalization factor Z (e, f) defined as:

=> I] ®(V) 3)

Y ceVrn

where Y is the set of all possible alignments.

In the presented model there are four different
types of factored nodes corresponding to four groups
of features.

2.1 Features

One main advantage of the discriminative frame-
work is the ability to use all available knowledge
sources by introducing additional features. Differ-
ent features have been developed to capture different
aspects of the word-alignment.

The first group of features are those that depend
only on the source and target words and may there-
fore be called local features. Consequently, the
factored node corresponding to such a feature is
connected to one random variable only (see Figure
2(a)). The lexical features, which represent the lexi-
cal translation probability of the words belong to this
group. In our experiments the IBM4-lexica in both
directions were used. Furthermore, there are source
and target normalized lexical features for every lexi-
con. The source normalized feature, for example, is
normalized in a way, that all translation probabilities
of one source word to target words in the sentences
sum up to one as shown in equation 4.

plem(fj7 ei)
Zlgjg]plex(fj7 ei)
pleaz(fja ei)

Prargetn (> €)= d1<i<r Plex ([, €i) ©)

“)

PsourceN (fj7 ei)




Figure 2: Different features
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(a) Local features

They compare the possible translations in one sen-
tence similar to the rank feature used in the approach
presented by Moore (2006). In addition, the follow-
ing local features are used: The relative distance of
the sentence positions of both words. This should
help to aligned words that occur several times in the
sentence. The relative edit distance between source
and target word was used to improve the align-
ment of cognates. Furthermore a feature indicating
if source and target words are identical was added
to the system. This helps to align dates, numbers
and names, which are quite difficult to align using
only lexical features since they occur quite rarely.
In some of our experiments the links of the IBM4-
alignments are used as an additional local feature.
In the experiments this leads to 22 features. Lastly,
there are indicator features for every possible com-
bination of Parts-of-Speech(POS)-tags and for N,,
high frequency words. In the experiments the 50
most frequent words were used, which lead to 2500
features and around 1440 POS-based features were
used. The POS-feature can help to align words, for
which the lexical features are weak.

The next group of features are the fertility fea-
tures. They model the probability that a word trans-
lates into one, two, three or more words, or does not
have any translation at all. The corresponding fac-
tored node for a source word is connected to all |
random variables representing the links to the target
words, and the node for a target word is connected
to all the J nodes for the links to source words (s.
Figure 2(b)). In this group of features there are two
different types. First, there are indicator features for
the different fertilities. To reduce the complexity of
the calculation this is only done up to a given max-
imal fertility Ny and there is an additional indicator
feature for all fertilities larger than Ny. This is an
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(b) Fertility features

(c) First order features

extension of the empty word indicator feature used
in other discriminative word alignment models. Fur-
thermore, there is a real-valued feature, which can
use the GIZA++ probabilities for the different fer-
tilities. This has the advantage compared to the in-
dicator feature that the fertility probabilities are not
the same for all words. But here again, all fertilities
larger than a given Ny are not considered separately.
In the evaluation Ny = 3 was selected. So 12 fertil-
ity features were used in the experiments.

The first-order features model the first-order de-
pendencies between the different links. They are
grouped into different directions. The factored node
for the direction (s,t) is connected to the variable
nodes yj; and y(;y4)(i4¢). For example, the most
common direction is (1, 1), which describes the sit-
uation that if the words at positions j and 7 are
aligned, also the immediate successor words in both
sentences are aligned as shown in Figure 2(c). In
the default configuration the directions (1,1), (2, 1),
(1,2) and (1, —1) are used. So this feature is able to
explicitly model short jumps in the alignment, like
in the directions (2, 1) and (1, 2) as well as crossing
links like in the directions (1, —1). Furthermore, it
can be used to improve the fertility modeling. If a
word has got a fertility of two, it is often aligned to
two consecutive words. Therefore, for example in
the Chinese-English system the directions (1, 0) and
(0,1) were used in addition. This does not mean,
that other directions in the alignment are not possi-
ble, but other jumps in the alignment do not improve
the probability of the alignment. For every direction,
an indicator feature that both links are active and an
additional one, which also depends on the POS-pair
of the first word pair is used. For a configuration
with 4 directions this leads to 4 indicator features
and, for example, 5760 POS-based features.



The last group of features are phrase features,
which are introduced to model context dependen-
cies. First a training corpus is aligned. Then, groups
of source and target words are extracted. Words
build a group, if all source words in the group are
aligned to all target words. The relative frequency
of this alignment is used as the feature and indicator
features for 1 : 1,1 : n,n : 1 and n : m alignments.
The corresponding factored node is connected to all
links that are important for this group.

2.2 Alignment

The structure of the described CRF is quite complex
and there are many loops in the graphical structure,
so the inference cannot be done exactly. For exam-
ple, the random variables y(; 1) and y(; 2) as well as
Y(2,1) and y(o 2) are connected by the source fertil-
ity nodes of the words f; and f>. Furthermore the
variables y(; 1) and y( 1) as well as y(; ) and y(3 2)
are connected by the target fertility nodes. So these
nodes build a loop as shown in Figure 2(b). The first
order feature nodes generate loops as well. Conse-
quently an approximation algorithm has to be used.
We use the belief propagation algorithm introduced
in (Pearl, 1966). In this algorithm messages consist-
ing of a pair of two values are passed along the edges
between the factored and hidden nodes for several it-
erations. In each iterations first messages from the
hidden nodes to the connected factored nodes are
sent. These messages describe the belief about the
value of the hidden node calculated from the incom-
ing messages of the other connected factored nodes.
Afterwards the messages from the factored nodes
to the connected hidden nodes are send. They are
calculated from the potential and the other incom-
ing messages. This algorithm is not exact in loopy
graphs and it is not even possible to prove that it con-
verges, but in (Yedidia et al., 2003) it was shown,
that this algorithm leads to good results.

The algorithm cannot be used directly, since the
calculation of the message sent from a factored node
to a random variable has an exponential runtime
in the number of connected random variables. Al-
though we limit the number of considered fertili-
ties, the number of connected random variables can
still be quite large for the fertility features and the
phrase features, especially in long sentences. To re-
duce this complexity, we leverage the fact that the
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potential can only have a small number of different
values. This will be shown for the fertility feature
node. For a more detailed description we refer to
(Niehues, 2007). The message sent from a factored
node to a random variable is defined in the algorithm
as:

mc—>(j,i)(v) = Z(PC(VC) (6)

Ve/v
H n(j,i)/—w(vl)
(4,8)'€N(c)/ (5,9

where V. is the set of random variables connected
to the factored node and 3y, /, is the sum over all
possible values of V.. where the random variable y;
has the the value v. So the value for the message is
calculated by looking at every possible combination
of the other incoming messages. Then the belief for
this combination is multiplied with the potential of
this combination. This can be rewritten, since the
potential only depends on how many links are active,
not on which ones are active.

Ny

Z O (n+v)*a(n) (7

n=0

+ O (Ny+1)xa(Nf+1)

Me—(5,4) (v) =

with a(n) the belief for a fertility of n of the other
connected nodes and a(N¢+1) the belief for a fertil-
ity bigger than Ny with ®.(NNs + 1) the correspond-
ing potential. The belief for a configuration of some
random variables is calculated by the product over
all out-going messages. So «(n) is calculated by the
sum over all possible configurations that lead to a
fertility of n over these products.

am) = > ]I

Ve /v Vel=n (4.6) €Ve/ (5.)

2 11

Ve /vi|Ve| >Ny (4,9) €Ve/ (5,9)

n(j,z')’—m(v,)

Oé(Nf + 1) = 7’L(j7z')/_,c(?]/)

The values of the sums can be calculated in linear
time using dynamic programming.
3 Training

The weights of the CRFs are trained using a gradient
descent for a fixed number of iterations, since this
approach leads already to quite good results. In the



experiments 200 iterations turned out to be a good
number.

The default criteria to train CRFs is to maximize
the log-likelihood of the correct solution, which is
given by a manually created gold standard align-
ment. Therefore, the feature values of the gold stan-
dard alignment and the expectation values have to be
calculated for every factored node. This can be done
using again the belief propagation algorithm.

Often, this hand-aligned data is annotated with
sure and possible links and it would be nice, if the
training method could use this additional informa-
tion. So we developed a method to optimize the
CRFs towards the alignment error rate (AER) or the
F-score with sure and possible links as introduced
in (Fraser and Marcu, 2007). The advantage of the
F-score is, that there is an additional parameter «,
which allows to bias the metric more towards pre-
cision or more towards recall. To be able to use
a gradient descent method to optimize the weights,
the derivation of the word alignment metric with re-
spect to these weights must be computed. This can-
not be done for the mentioned metrics since they are
not smooth functions. We follow (Gao et al., 2006;
Suzuki et al., 2006) and approximate the metrics us-
ing the sigmoid function. The sigmoid function uses
the probabilities for every link calculated by the be-
lief propagation algorithm.

In our experiments we compared the maximum
likelihood method and the optimization towards the
AER. We also tested combinations of both. The best
results were obtained when the weights were first
trained using the ML method and the resulting fac-
tors were used as initial values for the AER opti-
mization. Another problem is that the POS-based
features and high frequency word features have a
lot more parameters than all other features and with
these two types of features overfitting seems to be a
bigger problem. Therefore, these features are only
used in a third optimization step, in which they are
optimized towards the AER, keeping all other fea-
ture weights constant. Initial results using a Gaus-
sian prior showed no improvement.

4 Evaluation

The word alignment quality of this approach was
tested on three different language pairs. On the
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Spanish-English task the hand-aligned data provided
by the TALP Research Center (Lambert et al., 2005)
was used. As proposed, 100 sentences were used as
development data and 400 as test data. The so called
“Final Text Edition of the European Parliament Pro-
ceedings” consisting of 1.4 million sentences and
this hand-aligned data was used as training corpus.
The POS-tags were generated by the Brill-Tagger
(Brill, 1995) and the FreeLing-Tagger (Asterias et
al., 2006) for the English and the Spanish text re-
spectively. To limit the number of different tags for
Spanish we grouped them according to the first 2
characters in the tag names.

A second group of experiments was done on
an English-French text. The data from the 2003
NAACL shared task (Mihalcea and Pedersen, 2003)
was used. This data consists of 1.1 million sen-
tences, a validation set of 37 sentences and a test
set of 447 sentences, which have been hand-aligned
(Och and Ney, 2003). For the English POS-tags
again the Brill Tagger was used. For the French side,
the TreeTagger (Schmid, 1994) was used.

Finally, to test our alignment approach with lan-
guages that differ more in structure a Chinese-
English task was selected. As hand-aligned data
3160 sentences aligned only with sure links were
used (LDC2006E93). This was split up into 2000
sentences of test data and 1160 sentences of devel-
opment data. In some experiments only the first
200 sentences of the development data were used to
speed up the training process. The FBIS-corpus was
used as training corpus and all Chinese sentences
were word segmented with the Stanford Segmenter
(Tseng et al., 2005). The POS-tags for both sides
were generated with the Stanford Parser (Klein and
Manning, 2003).

4.1 Word alignment quality

The GIZA++-toolkit was used to train a baseline
system. The models and alignment information
were then used as additional knowledge source for
the discriminative word alignment. For the first two
tasks, all heuristics of the Pharaoh-Toolkit (Koehn
et al., 2003) as well as the refined heuristic (Och and
Ney, 2003) to combine both IBM4-alignments were
tested and the best ones are shown in the tables. For
the Chinese task only the grow-diag-final heuristic
was used.



Table 1: AER-Results on EN-ES task

Name Dev | Test
IBM4 Source-Target 21.49
IBM4 Target-Source 19.23
IBM4 grow-diag 16.48
DWA IBM1 15.26 | 20.82
+ IBM4 14.23 | 18.67
+ GIZA-fert. 13.28 | 18.02
+ Link feature 12.26 | 15.97
+ POS 9.21 | 15.36
+ Phrase feature 8.84 | 14.77

Table 2: AER-Results on EN-FR task

Name Dev | Test
IBM4 Source-Target 8.6
IBM4 Target-Source 9.86
IBM4 intersection 5.38
DWA IBM1 5.54 | 6.37
+ HFRQ/POS 3.67 | 5.57
+ Link Feature 3.13 | 4.80
+ IBM4 3.60 | 4.60
+ Phrase feature 3.32 | 4.30

The results measured in AER of the discrimina-
tive word alignment for the English-Spanish task are
shown in Table 1. In the experiments systems using
different knowledge sources were evaluated. The
first system used only the IBM1-lexica of both di-
rections as well as the high frequent word features.
Then the IBM4-lexica were used instead and in
the next system the GIZA++-fertilities were added.
As next knowledge source the links of both IBM4-
alignments were added. Furthermore, the system
could be improved by using also the POS-tags. For
the last system, the whole EPPS-corpus was aligned
with the previous system and the phrases were ex-
tracted. Using them as additional features, the best
AER of 14.77 could be reached. This is an improve-
ment of 1.71 AER points or 10% relative to the best
baseline system.

Similar experiments have also been done for the
English-French task. The results measured in AER
are shown in Table 2. The IBM4 system uses
the IBM4 lexica and links instead of the IBMls
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Table 3: AER-Results on CH-EN task

Name Test
IBM4 Source-target 44.94
IBM4 Target-source 37.43
IBM4 Grow-diag-final 35.04
DWA IBM4 30.97
- similarity 30.24
+ Add. directions 27.96
+ Big dev 27.26
+ Phrase feature 27.00
+ Phrase feature(high P.) | 26.90

and adds the GIZA-++-fertilities. For the “phrase
feature”-system the corpus was aligned with the
“IBM4”-system and the phrases were extracted.
This led to the best result with an AER of 4.30. This
is 1.08 points or 20% relative improvement over the
best generative system. One reason, why less knowl-
edge sources are needed to be as good as the base-
line system, may be that there are many possible
links in the reference alignment and the discrimina-
tive framework can better adapt to this style. So a
system using only features generated by the IBM1-
model could already reach an AER of 4.80.

In Table 3 results for the Chinese-English align-
ment task are shown'. The first system was only
trained on the smaller development set and used the
same knowledge source than the “IBM4”-systems
in the last experiment. The system could be im-
proved a little bit by removing the similarity fea-
ture and adding the directions (0,1) and (1,0) to
the model. Then the same system was trained on
the bigger development set. Again the parallel cor-
pus was aligned with the discriminative word align-
ment system, once trained towards AER and once
more towards precision, and phrases were extracted.
Overall, an improvement by 8.14 points or 23% over
the baseline system could be achieved.

These experiments show, that every knowledge
source that is available should be used. For all lan-
guages pairs additional knowledge sources lead to
an improvement in the word alignment quality. A
problem of the discriminative framework is, that
hand-aligned data is needed for training. So the

'For this task no results on the development task are given
since different development sets were used



Table 4: Translation results for EN-ES

Name Dev Test
Baseline | 40.04 | 47.73
DWA 41.62 | 48.13

Table 5: Translation results for CH-EN

Name Dev Test
Baseline 27.13 | 22.56
AER 27.63 | 23.85*
F0.3 26.34 | 22.35
F0.7 26.40 | 23.52*
Phrase feature AER | 25.84 | 23.42*
Phrase feature FO.7 | 26.41 | 23.92*

French-English dev set may be too small, since the
best system on the development set does not cor-
respond to the best system on the test set. And as
shown in the Chinese-English task additional data
can improve the alignment quality.

4.2 Translation quality

Since the main application of the word alignment is
statistical machine translation, the aim was not only
to generate better alignments measured in AER, but
also to generate better translations. Therefore, the
word alignment was used to extract phrases and use
them then in the translation system. In all translation
experiments the beam decoder as described in (Vo-
gel, 2003) was used together with a 3-gram language
model and the results are reported in the BLUE met-
ric. For test set translations the statistical signifi-
cance of the results was tested using the bootstrap
technique as described in (Zhang and Vogel, 2004).
The baseline system used the phrases build with the
Pharaoh-Toolkit.

The new word alignment was tested on the
English-Spanish translation task using the TC-Star
07 development and test data. The discriminative
word alignment (DWA) used the configuration de-
noted by +POS system in Table 1. With this con-
figuration it took around 4 hours to align 100K sen-
tences. But, of course, generating the alignment can
be parallelized to speed up the process. As shown
in Table 4 the new word alignment could generate
better translations as measured in BLEU scores.

24

For the Chinese-English task some experiments
were made to study the effect of different training
schemes. Results are shown in Table 5. The sys-
tems used the MT’03 eval set as development data
and the NIST part of the MT 06 eval set was used as
test set. Scores significantly better than the baseline
system are mark by a *. The first three systems used
a discriminative word alignment generated with the
configuration as the one described as “+ big dev”-
system in Table 3. The first one was optimized to-
wards AER, the other two were trained towards the
F-score with an a-value of 0.3 (recall-biased) and
0.7 (precision-biased) respectively. A higher pre-
cision word alignment generates fewer alignment
links, but a larger phrase table. For this task, the
precision seems to be more important. So the sys-
tem trained towards the AER and the F-score with
an «-value of 0.7 performed better than the other
systems. The phrase features gave improved perfor-
mance only when optimized towards the F-score, but
not when optimized towards the AER.

S Comparison to other work

Several discriminative word alignment approaches
have been presented in recent years. The one most
similar to ours is the one presented by Blunsom
and Cohn (2006). They also used CRFs, but they
used two linear-chain CRFs, one for every direc-
tions. Consequently, they could find the optimal so-
lution for each individual CREF, but they still needed
the heuristics to combine both alignments. They
reached an AER of 5.29 using the IBM4-alignment
on the English-French task (compared to 4.30 of our
approach).

Lacoste-Julien et al. (2006) enriched the bipartite
matching problem to model also larger fertilities and
first-or der dependencies. They could reach an AER
of 3.8 on the same task, but only if they also included
the posteriors of the model of Liang et al. (2006).
Using only the IBM4-alignment they generated an
alignment with an AER of 4.5. But they did not use
any POS-based features in their experiments.

Finally, Moore et al. (2006) used a log-linear
model for the features and performed a beam search.
They could reach an AER as low as 3.7 with both
types of alignment information. But they presented
no results using only the IBM4-alignment features.



6 Conclusion

In this paper a new discriminative word alignment
model was presented. It uses a conditional random
field to model directly the alignment matrix. There-
fore, the algorithms used in the CRFs had to be
adapted to be able to model dependencies between
many random variables. Different methods to train
the model have been developed. Optimizing the F-
score allows to generate alignments focusing more
on precision or on recall. For the model a multitude
of features using the different knowledge sources
have been developed. The experiments showed that
the performance could be improved by using these
additional knowledge sources. Furthermore, the use
of a general machine learning framework like the
CRFs enables this alignment approach to benefit
from future improvements in CRFs in other areas.

Experiments on 3 different language pairs have
shown that word alignment quality as well as trans-
lation quality could be improved. In the translation
experiments it was shown that the improvement is
significant at a significance level of 5%.
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Abstract

Minimum error rate training (MERT) is a
widely used learning procedure for statistical
machine translation models. We contrast three
search strategies for MERT: Powell’s method,
the variant of coordinate descent found in the
Moses MERT utility, and a novel stochastic
method. It is shown that the stochastic method
obtains test set gains of +0.98 BLEU on MTO03
and +0.61 BLEU on MTO05. We also present
a method for regularizing the MERT objec-
tive that achieves statistically significant gains
when combined with both Powell’s method
and coordinate descent.

1 Introduction

Och (2003) introduced minimum error rate training
(MERT) as an alternative training regime to the con-
ditional likelihood objective previously used with
log-linear translation models (Och & Ney, 2002).
This approach attempts to improve translation qual-
ity by optimizing an automatic translation evalua-
tion metric, such as the BLEU score (Papineni et al.,
2002). This is accomplished by either directly walk-
ing the error surface provided by an evaluation met-
ric w.r.t. the model weights or by using gradient-
based techniques on a continuous approximation of
such a surface. While the former is piecewise con-
stant and thus cannot be optimized using gradient
techniques, Och (2003) provides an approach that
performs such training efficiently.

In this paper we explore a number of variations on
MERT. First, it is shown that performance gains can
be had by making use of a stochastic search strategy
as compare to that obtained by Powell’s method and
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coordinate descent. Subsequently, results are pre-
sented for two regularization strategies'. Both allow
coordinate descent and Powell’s method to achieve
performance that is on par with stochastic search.

In what follows, we briefly review minimum er-
ror rate training, introduce our stochastic search and
regularization strategies, and then present experi-
mental results.

2 Minimum Error Rate Training

Let F be a collection of foreign sentences to be
translated, with individual sentences fy, fi, ...,
f,. For each f;, the surface form of an indi-
vidual candidate translation is given by e; with
hidden state h; associated with the derivation of
e; from f;. [Each e; is drawn from &, which
represents all possible strings our translation sys-
tem can produce. The (e;, h;, f;) triples are con-
verted into vectors of m feature functions by
U : & xH xF — R™ whose dot product with the
weight vector w assigns a score to each triple.
The idealized translation process then is to find the
highest scoring pair (e;, h;) for each f;, or rather
(ei,h;) = argmax(ece nery W - V(e, b, ).

The aggregate argmax for the entire data set F is
given by equation (1)2. This gives E,, which repre-
sents the set of translations selected by the model for
data set F' when parameterized by the weight vec-
tor w. Let’s assume we have an automated mea-
sure of translation quality ¢ that maps the collec-

"While we prefer the term regularization, the strategies pre-
sented here could also be referred to as smoothing methods.

Here, the translation of the entire data set is treated as a
single structured prediction problem using the feature function
vector V(E, H,F) = "7 (e, hy, £)
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id | Translation log(Prm(fle)) log(Prm(e)) BLEU-2
e! | Thisis it -1.2 -0.1 29.64
e’ | This is small house -0.2 -1.2 63.59
e? | This is miniscule building -1.6 -0.9 31.79
e? | This is a small house -0.1 -0.9 100.00
ref | This is a small house

Table 1: Four hypothetical translations and their corresponding log model scores from a translation model Py (f|e)
and a language model Ppj/(e), along with their BLEU-2 scores according to the given reference translation. The
MERT error surface for these translations is given in figure 1.

tion of translations E, onto some real valued loss,
£:&" — R. For instance, in the experiments that
follow, the loss corresponds to 1 minus the BLEU
score assigned to Ey, for a given collection of refer-
ence translations.

(Ew,Hy) = argmax w-¥Y(EHF) (1)

(Eegn HeEH)

Using n-best lists produced by a decoder to ap-
proximate £" and H", MERT searches for the
weight vector w* that minimizes the loss ¢. Let-
ting E,, denote the result of the translation argmax
w.r.t. the approximate hypothesis space, the MERT
search is then expressed by equation (2). Notice the
objective function being optimized is equivalent to
the loss assigned by the automatic measure of trans-

lation quality, i.e. O(w) = ((Ey).

w* = argmin /(Ey,) 2)
w

After performing the parameter search, the de-
coder is then re-run using the weights w* to produce
a new set of n-best lists, which are then concate-
nated with the prior n-best lists in order to obtain a
better approximation of £ and H". The parameter
search given in (2) can then be performed over the
improved approximation. This process repeats un-
til either no novel entries are produced for the com-
bined n-best lists or the weights change by less than

some € across iterations.

Unlike the objective functions associated with
other popular learning algorithms, the objective O
is piecewise constant over its entire domain. That
is, while small perturbations in the weights, w, will
change the score assigned by w - U(e, h, f) to each
triple, (e, h, f), such perturbations will generally not
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change the ranking between the pair selected by the
argmax, (€*,h*) = argmaxw - ¥(e, h, f), and any
given competing pair (€', h’). However, at certain
critical points, the score assigned to some compet-
ing pair (e/,h’) will exceed that assigned to the
prior winner (ej, . hy ). At this point, the pair
returned by argmax w - U(e, h, f) will change and

loss ¢ will be evaluated using the newly selected €’

e3:0.68

Figure 1: MERT objective for the translations given

in table 1. Regions are labeled with the translation
that dominates within it, ie. argmaxw - U(e,f),
and with their corresponding objective values,

1 —{(argmaxw - ¥(e, f)).

This is illustrated in figure (1), which plots the
MERT objective function for a simple model with
two parameters, Wy, & Wy, and for which the
space of possible translations, £, consists of the four
sentences given in table 13. Here, the loss / is de-

3For this example, we ignore the latent variables, h, associ-



fined as 1.0-BLEU-2(e). That is, ¢ is the differ-
ence between a perfect BLEU score and the BLEU
score calculated for each translation using unigram
and bi-gram counts.

The surface can be visualized as a collection of
plateaus that all meet at the origin and then extend
off into infinity. The latter property illustrates that
the objective is scale invariant w.r.t. the weight vec-
tor w. That is, since any vector w = Aw V)~ will
still result in the same relative rankings of all pos-
sible translations according to w - ¥(e, h, f), such
scaling will not change the translation selected by
the argmax. At the boundaries between regions, the
objective is undefined, as 2 or more candidates are
assigned identical scores by the model. Thus, it is
unclear what should be returned by the argmax for
subsequent scoring by /.

Since the objective is piecewise constant, it can-
not be minimized using gradient descent or even the
sub-gradient method. Two applicable methods in-
clude downhill simplex and Powell’s method (Press
et al., 2007). The former attempts to find a lo-
cal minimum in an n dimensional space by itera-
tively shrinking or growing an n + 1 vertex simplex*
based on the objective values of the current vertex
points and select nearby points. In contrast, Pow-
ell’s method operates by starting with a single point
in weight space, and then performing a series of line
minimizations until no more progress can be made.
In this paper, we focus on line minimization based
techniques, such as Powell’s method.

2.1 Global minimum along a line

Even without gradient information, numerous meth-
ods can be used to find, or approximately find, local
minima along a line. However, by exploiting the fact
that the underlying scores assigned to competing hy-
potheses, w - ¥(e, h, f), vary linearly w.r.t. changes
in the weight vector, w, Och (2003) proposed a strat-
egy for finding the global minimum along any given
search direction.

The insight behind the algorithm is as follows.
Let’s assume we are examining two competing

ated with the derivation of each e from the foreign sentence f.
If included, such variables would only change the graph in that
multiple different derivations would be possible for each e’. If
present, the graph could then include disjoint regions that all
map to the same e’ and thus the same objective value.

* A simplex can be thought of as a generalization of a triangle
to arbitrary dimensional spaces.
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ifier Score A

argmax at
most
rsections

t >
Aw,

Figure 2: Illustration of how the model score assigned
to each candidate translation varies during a line search
along the coordinate direction wy,, with a starting point
of (Wem,wim) = (1.0,0.5). Each plotted line corre-
sponds to the model score for one of the translation candi-
dates. The vertical bands are labeled with the hypothesis
that dominates in that region. The transitions between
bands result from the dotted intersections between 1-best
lines.

translation/derivation pairs, (e!,h!) & (e? h?).
Further, let’s say the score assigned by the
model to (e, h') is greater than (e h?), ie.
w - ¥(e! hl f) > w- U(e? h? f). Since the
scores of the two vary linearly along any search
direction, d, we can find the point at which the
model’s relative preference for the competing
w-U(el h! f)—w-U(e? h2f)
d-¥(eZ,hZf)—d-¥(el,hI f) -
At this particular point, we have the equality
(pd + w) - W(e!, h',£) = (pd + w) - U(e?, 2, F),
or rather the point at which the scores assigned
by the model to the candidates intersect along
search direction d. Such points correspond to
the boundaries between adjacent plateaus in the
objective, as prior to the boundary the loss function
¢ is computed using the translation, e', and after the
boundary it is computed using e?.

To find the global minimum for a search direc-
tion d, we move along d and for each plateau we

pairs switches as p =

SNotice that, this point only exists if the slopes of the
candidates’ model scores along d are not equivalent, i.e. if
d-¥(e?,h? f) #d- U(e',h',f).



Translation m b 1-best
el 0.1 -1.25 (0.86,4+c0]
e? -1.2 -0.8 (-0.83,0.88)
e’ -0.9 -2.05 n/a
et 0.9 -0.55 [—00,-0.83]

Table 2: Slopes, m, intercepts, b, and 1-best ranges
for the 4 translations given in table 1 during a line
search along the coordinate wy,,, with a starting point of
(Wi, Wi ) = (1.0,0.5). This line search in illustrated
in figure(2).

identify all the points at which the score assigned
by the model to the current 1-best translation inter-
sects the score assigned to competing translations.
At the closest such intersection, we have a new 1-
best translation. Moving to the plateau associated
with this new 1-best, we then repeat the search for
the nearest subsequent intersection. This continues
until we know what the 1-best translations are for all
points along d. The global minimum can then be
found by examining ¢ once for each of these.

Let’s return briefly to our earlier example given in
table 1. Starting at position (wy,, wy,) = (1.0,0.5)
and searching along the wy, coordinate, i.e.
(dtm, dim) = (0.0,1.0), table 2 gives the line
search slopes, m =d - V(e, h,f), and intercepts,
b=w-¥(e h,f), for each of the four candidate
translations. Using the procedure just described, we
can then find what range of values along d each
candidate translation is assigned the highest rela-
tive model score. Figure 2 illustrates how the score
assigned by the model to each of the translations
changes as we move along d. Each of the banded re-
gions corresponds to a plateau in the objective, and
each of the top most line intersections represents the
transition from one plateau to the next. Note that,
while the surface that is defined by the line segments
with the highest classifier score for each region is
convex, this is not a convex optimization problem as
we are optimizing over the loss £ rather than classi-
fier score.

Pseudocode for the line search is given in algo-
rithm 1. Letting n denote the number of foreign sen-
tences, f, in a dataset, and having m denote the size
of the individual n-best lists, |{|, the time complexity
of the algorithm is given by O(nm?). This is seen
in that each time we check for the nearest intersec-
tion to the current 1-best for some n-best list [, we
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Algorithm 1 Och (2003)’s line search method to
find the global minimum in the loss, ¢, when start-
ing at the point w and searching along the direction
d using the candidate translations given in the col-
lection of n-best lists L.
Input: £, w,d, ¢
T<{}
forl € L do
fore € ldo
m{e} < e.features - d
b{e} < e.features - w
end for
best,, <= argmax,o; m{e} {b{e} breaks ties}
loop

b{bestn }—b{e} )
» m{e}—m{bestn}

b{besty }—b{bestp 41}
» m{bestny1}—m{bestn}

if intercept > O then
add(Z, intercept)
else
break
end if
end loop
end for
add(Z, max(Z) + 2¢)
ibest = argmin;ezevaly(L,w+ (i —€) - d)
return w + (ipest —€) - d

best,,+1 = argmin,c; max (O

intercept <= max (0

must calculate its intersection with all other candi-
date translations that have yet to be selected as the
1-best. And, for each of the n n-best lists, this may
have to be done up to m — 1 times.

2.2 Search Strategies

In this section, we review two search strategies that,
in conjunction with the line search just described,
can be used to drive MERT. The first, Powell’s
method, was advocated by Och (2003) when MERT
was first introduced for statistical machine transla-
tion. The second, which we call Koehn-coordinate
descent (KCD)®, is used by the MERT utility pack-
aged with the popular Moses statistical machine
translation system (Koehn et al., 2007).

®Moses uses David Chiang’s CMERT package. Within the

source file mert.c, the function that implements the overall
search strategy, optimize_koehn(), is based on Philipp Koehn’s
Perl script for MERT optimization that was distributed with
Pharaoh.



2.2.1 Powell’s Method

Powell’s method (Press et al., 2007) attempts to
efficiently search the objective by constructing a set
of mutually non-interfering search directions. The
basic procedure is as follows: (i) A collection of
search directions is initialized to be the coordinates
of the space being searched; (ii) The objective is
minimized by looping through the search directions
and performing a line minimization for each; (iii) A
new search direction is constructed that summarizes
the cumulative direction of the progress made dur-
ing step (i) (i.e., dpew = Wpre;; — Wpost;;). After
a line minimization is performed along d,.,, it is
used to replace one of the existing search directions.
(iv) The process repeats until no more progress can
be made. For a quadratic function of n variables,
this procedure comes with the guarantee that it will
reach the minimum within n iterations of the outer
loop. However, since Powell’s method is usually ap-
plied to non-quadratic optimization problems, a typ-
ical implementation will forego the quadratic con-
vergence guarantees in favor of a heuristic scheme
that allows for better navigation of complex sur-
faces.

2.2.2 Koehn’s Coordinate Descent

KCD is a variant of coordinate descent that, at
each iteration, moves along the coordinate which al-
lows for the most progress in the objective. In or-
der to determine which coordinate this is, the rou-
tine performs a trial line minimization along each. It
then updates the weight vector with the one that it
found to be most successful. While much less so-
phisticated that Powell, our results indicate that this
method may be marginally more effective at opti-
mizing the MERT objective’.

3 Extensions

In this section we present and motivate two novel
extensions to MERT. The first is a stochastic alterna-
tive to the Powell and KCD search strategies, while
the second is an efficient method for regularizing the
objective.

"While we are not aware of any previously published results
that demonstrate this, it is likely that we were not the first to
make this discovery as even though Moses’ MERT implemen-
tation includes a vestigial implementation of Powell’s method,
the code is hardwired to call optimize_koehn rather than the rou-
tine for Powell.
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3.1 Random Search Directions

One significant advantage of Powell’s algorithm
over coordinate descent is that it can optimize along
diagonal search directions in weight space. That is,
given a model with a dozen or so features, it can
explore gains that are to be had by simultaneously
varying two or more of the feature weights. In gen-
eral, the diagonals that Powell’s method constructs
allow it to walk objective functions more efficiently
than coordinate descent (Press et al., 2007). How-
ever, given that we have a line search algorithm
that will find the global minima along any given
search direction, diagonal search may be of even
more value. That is, similar to ridge phenomenon
that arise in traditional hill climbing search, it is pos-
sible that there are points in the objective that are the
global minimum along any given coordinate direc-
tion, but are not the global minimum along diagonal
directions.

However, one substantial disadvantage for Pow-
ell is that the assumptions it uses to build up the di-
agonal search directions do not hold in the present
context. Specifically, the search directions are built
up under the assumption that near a minimum the
surface looks approximately quadratic and that we
are performing local line minimizations within such
regions. However, since we are performing global
line minimizations, it is possible for the algorithm to
jump from the region around one minima to another.
If Powell’s method has already started to tune its
search directions for the prior minima, it will likely
be less effective in its efforts to search the new re-
gion. To this extent, coordinate descent will be more
robust than Powell as it has no assumptions that are
violated when such a jump occurs.

One way of salvaging Powell’s algorithm in this
context would be to incorporate additional heuris-
tics that detect when the algorithm has jumped from
the region around one minima to another. When
this occurs, the search directions could be reset to
the coordinates of the space. However, we opt for a
simpler solution, which like Powell’s algorithm per-
forms searches along diagonals in the space, but that
like coordinate descent is sufficiently simple that the
algorithm will not be confused by sudden jumps be-
tween regions.

Specifically, the search procedure chooses di-
rections at random such that each component
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Figure 3: Regularization during line search - using, from left to right: (i) the maximum loss of adjacent plateaus, (ii)
the average loss of adjacent plateaus, (iii) no regularization. Each set of bars represents adjacent plateaus along the line
being searched, with the height of the bars representing their associated loss. The vertical lines indicate the surrogate
loss values used for the center region under each of the schemes (i-iii).

is distributed according to a Gaussian®, d s.t.
d; ~ N(0,1). This allows the procedure to mini-
mize along diagonal search directions, while making
essentially no assumptions regarding the character-
istics of the objective or the relationship between a
series of sequential line minimizations. In the results
that follow, we show that, perhaps surprisingly, this
simple procedure outperforms both KCD and Pow-
ell’s method.

3.2 Regularization

One potential drawback of MERT, as it is typically
implemented, is that it attempts to find the best pos-
sible set of parameters for a training set without
making any explicit efforts to find a set of param-
eters that can be expected to generalize well. For
example, let’s say that for some objective there is
a very deep but narrow minima that is surrounded
on all sides by very bad objective values. That
is, the BLEU score at the minima might be 39.1
while all surrounding plateaus have a BLEU score
that is < 10. Intuitively, such a minima would be a
very bad solution, as the resulting parameters would
likely exhibit very poor generalization to other data
sets. This could be avoided by regularizing the sur-
face in order to eliminate such spurious minima.
One candidate for performing such regularization
is the continuous approximation of the MERT objec-
tive, O = E,, (¢). Och (2003) claimed that this ap-
proximation achieved essentially equivalent perfor-
mance to that obtained when directly using the loss
as the objective, O = £. However, Zens et al. (2007)
found that O = E,, (¢) achieved substantially better
test set performance than O = /¢, even though it per-
forms slightly worse on the data used to train the
parameters. Similarly, Smith and Eisner (2006) re-
ported test set gains for the related technique of min-
imum risk annealing, which incorporates a temper-

8However, we speculate that similar results could be ob-
tained using a uniform distribution over (—1, 1)
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ature parameter that trades off between the smooth-
ness of the objective and the degree it reflects the
underlying piecewise constant error surface. How-
ever, the most straightforward implementation of
such methods requires a loss that can be applied at
the sentence level. If the evaluation metric of inter-
est does not have this property (e.g. BLEU), the loss
must be approximated using some surrogate, with
successful learning then being tied to how well the
surrogate captures the critical properties of the un-
derlying loss.

The techniques of Zens et al. (2007) & Smith
and Eisner (2006) regularize by implicitly smooth-
ing over nearby plateaus in the error surface. We
propose an alternative scheme that operates directly
on the piecewise constant objective and that miti-
gates the problem of spurious local minima by ex-
plicitly smoothing over adjacent plateaus during the
line search. That is, when assessing the desirabil-
ity of any given plateau, we examine a fixed win-
dow w of adjacent plateaus along the direction be-
ing searched and combine their evaluation scores.
We explore two combination methods, max and
average. The former, maz, assigns each plateau an
objective value that is equal to the maximum objec-
tive value in its surrounding window, while average
assigns a plateau an objective value that is equal to
its window’s average. Figure 3 illustrates both meth-
ods for regularizing the plateaus and contrasts them
with the case where no regularization is used. No-
tice that, while both methods discount spurious pits
in the objective, average still does place some value
on isolated deep plateaus, and maz discounts them
completely.

Note that one potential weakness of this scheme
is the value assigned by the regularized objective
to any given point differs depending on the direc-
tion being searched. As such, it has the potential to
wreak havoc on methods such as Powell’s, which ef-
fectively attempt to learn about the curvature of the



objective from a sequence of line minimizations.

4 Experiments

Three sets of experiments were performed. For the
first set, we compare the performance of Powell’s
method, KCD, and our novel stochastic search strat-
egy. We then evaluate the performance of all three
methods when the objective is regularized using the
average of adjacent plateaus for window sizes vary-
ing from 3 to 7. Finally, we repeat the regularization
experiment, but using the maximum objective value
from the adjacent plateaus. These experiments were
performed using the Chinese English evaluation data
provided for NIST MT eval 2002, 2003, and 2005.
MTO02 was used as a dev set for MERT learning,
while MTO3 and MTOS5 were used as our test sets.

For all experiments, MERT training was per-
formed using n-best lists from the decoder of size
100. During each iteration, the MERT search was
performed once with a starting point of the weights
used to generate the most recent set of n-best lists
and then 5 more times using randomly selected start-
ing points”. Of these, we retain the weights from
the search that obtained the lowest objective value.
Training continued until either decoding produced
no novel entries for the combined n-best lists or none
of the parameter values changed by more than le-5
across subsequent iterations.

4.1 System

Experiments were run using a right-to-left beam
search decoder that achieves a matching BLEU
score to Moses (Koehn et al., 2007) over a variety
of data sets. Moreover, when using the same under-
lying model, the two decoders only produce transla-
tions that differ by one or more words 0.2% of the
time. We made use of a stack size of 50 as it al-
lowed for faster experiments while only performing
modestly worse than a stack of 200. The distortion
limit was set to 6. And, we retrieved 20 translation
options for each unique source phrase.

Our phrase table was built using 1, 140, 693 sen-
tence pairs sampled from the GALE Y2 training

°Only 5 random restarts were used due to time constraints.
Ideally, a sizable number of random restarts should be used in
order to minimize the degree to which the results are influenced
by some runs receiving starting points that are better in general
or perhaps better/worse w.r.t. their specific optimization strat-

egy.
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Method Dev Test Test

MT02 MTO03 MTO05
KCD 30.967 30.778 29.580
Powell 30.638 30.692 29.780
Random | 31.681 31.754 30.191

Table 3: BLEU scores obtained by models trained using
the three different parameter search strategies: Powell’s
method, KCD, and stochastic search.

data. The Chinese data was word segmented us-
ing the GALE Y2 retest release of the Stanford
CRF segmenter (Tseng et al., 2005). Phrases were
extracted using the typical approach described in
Koehn et al. (2003) of running GIZA++ (Och &
Ney, 2003) in both directions and then merging
the alignments using the grow-diag-final heuristic.
From the merged alignments we also extracted a bi-
directional lexical reordering model conditioned on
the source and the target phrases (Tillmann, 2004)
(Koehn et al., 2007). A 5-gram language model
was created using the SRI language modeling toolkit
(Stolcke, 2002) and trained using the Gigaword cor-
pus and English sentences from the parallel data.

5 Results

As illustrated in table 3, Powell’s method and KCD
achieve a very similar level of performance, with
KCD modestly outperforming Powell on the MT03
test set while Powell modestly outperforms coordi-
nate descent on the MTOS test set. Moreover, the
fact that Powell’s algorithm did not perform better
than KCD on the training data'?, and in fact actually
performed modestly worse, suggests that Powell’s
additional search machinery does not provide much
benefit for MERT objectives.

Similarly, the fact that the stochastic search ob-
tains a much higher dev set score than either Pow-
ell or KCD indicates that it is doing a better job
of optimizing the objective than either of the two
alternatives. These gains suggest that stochastic
search does make better use of the global minimum
line search than the alternative methods. Or, alter-
natively, it strengthens the claim that the method
succeeds at combining one of the critical strengths

!0This indicates that Powell failed to find a deeper minima
in the objective, since recall that the unregularized objective is
equivalent to the model’s dev set performance.



Method Window Dev Test Test | Method Window Dev Test Test
Avg MT02 MTO03 MTO05 Max MT02 MT03 MTO05

Coordinate none 30.967 30.778 29.580 || Coordinate none 30.967 30.778 29.580
3 31.665 31.675 30.266 3 31536 31.927 30.334

5 31.317 31.229 30.182 5 31484 31.702 29.687

7 31205 31.824 30.149 7 31.627 31.294 30.199

Powell none 30.638 30.692 29.780 || Powell none 30.638 30.692 29.780
3 31.333 31412 29.890 3 31.428 30944 29.598

5 31.748 31.777 30.334 5 31.407 31.596 30.090

7 31.249 31.571 30.161 7 30.870 30911 29.620

Random none 31.681 31.754 30.191 || Random none 31.681 31.754 30.191
3 31.548 31.778 30.263 3 31.179 30.898 29.529

5 31.336 31.647 30415 5 30903 31.666 29.963

7 30.501 29.336 28.372 7 31.920 31906 30.674

Table 4: BLEU scores obtained when regularizing using the average loss of adjacent plateaus, left, and the maximum
loss of adjacent plateaus, right. The none entry for each search strategy represents the baseline where no regularization
is used. Statistically significant test set gains, p < 0.01, over the respective baselines are in bold face.

of Powell’s method, diagonal search, with coordi-
nate descent’s robustness to the sudden jumps be-
tween regions that result from global line minimiza-
tion. Using an approximate randomization test for
statistical significance (Riezler & Maxwell, 2005),
and with KCD as a baseline, the gains obtained
by stochastic search on MTO3 are statistically sig-
nificant (p = 0.002), as are the gains on MTO05
(p = 0.005).

Table 4 indicates that performing regularization
by either averaging or taking the maximum of adja-
cent plateaus during the line search leads to gains for
both Powell’s method and KCD. However, no reli-
able additional gains appear to be had when stochas-
tic search is combined with regularization.

It may seem surprising that the regularization
gains for Powell & KCD are seen not only in the test
sets but on the dev set as well. That is, in typical ap-
plications, regularization slightly decreases perfor-
mance on the data used to train the model. However,
this trend can in part be accounted for by the fact that
during training, MERT is using n-best lists for objec-
tive evaluations rather than the more expensive pro-
cess of running the decoder for each point that needs
to be checked. As such, during each iteration of
training, the decoding performance of the model ac-
tually represents its generalization performance rel-
ative to what was learned from the n-best lists cre-
ated during prior iterations. Moreover, better gen-
eralization from the prior n-best lists can also help
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drive subsequent learning as there will then be more
high quality translations on the n-best lists used for
future iterations of learning. Additionally, regular-
ization can reduce search errors by reducing the risk
of getting stuck in spurious low loss pits that are in
otherwise bad regions of the space.

6 Conclusions

We have presented two methods for improving the
performance of MERT. The first is a novel stochas-
tic search strategy that appears to make better use of
Och (2003)’s algorithm for finding the global min-
imum along any given search direction than either
coordinate descent or Powell’s method. The sec-
ond is a simple regularization scheme that leads to
performance gains for both coordinate descent and
Powell’s method. However, no further gains are ob-
tained by combining the stochastic search with reg-
ularization of the objective.

One quirk of the regularization scheme presented
here is that the regularization applied to any given
point in the objective varies depending upon what
direction the point is approached from. We are
currently looking at other similar regularization
schemes that maintain consistent objective values
regardless of the search direction.
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Abstract

We present an extensive experimental study
of a Statistical Machine Translation system,
Moses (Koehn et al., 2007), from the point
of view of its learning capabilities. Very ac-
curate learning curves are obtained, by us-
ing high-performance computing, and extrap-
olations are provided of the projected perfor-
mance of the system under different condi-
tions. We provide a discussion of learning
curves, and we suggest that: 1) the represen-
tation power of the system is not currently a
limitation to its performance, 2) the inference
of its models from finite sets of i.i.d. data
is responsible for current performance limita-
tions, 3) it is unlikely that increasing dataset
sizes will result in significant improvements
(at least in traditional i.i.d. setting), 4) it is un-
likely that novel statistical estimation methods
will result in significant improvements. The
current performance wall is mostly a conse-
guence of Zipf’s law, and this should be taken
into account when designing a statistical ma-
chine translation system. A few possible re-
search directions are discussed as a result of
this investigation, most notably the integra-
tion of linguistic rules into the model inference
phase, and the development of active learning
procedures.

Introduction and Background

well the system can approximate the best element of
the hypothesis class, based on finite and noisy train-
ing information. The two effects interact, with richer
classes being better approximators of the target be-
haviour but requiring more training data to reliably
identify the best hypothesis. The resulting trade-
off, equally well known in statistics and in machine
learning, can be expressed in terms of bias variance,
capacity-control, or model selection. Various theo-
ries on learning curves have been proposed to deal
with it, where a learning curve is a plot describing
performance as a function of some parameters, typ-
ically training set size.

In the context of Statistical Machine Translation
(SMT), where large bilingual corpora are used to
train adaptive software to translate text, this task is
further complicated by the peculiar distribution un-
derlying the data, where the probability of encoun-
tering new words or expressions never vanishes. If
we want to understand the potential and limitations
of the current technology, we need to understand the
interplay between these two factors affecting perfor-
mance. In an age where the creation of intelligent
behaviour is increasingly data driven, this is a ques-
tion of great importance to all of Artificial Intelli-
gence.

These observations lead us to an analysis of learn-
ing curves in machine translation, and to a number of
related questions, including an analysis of the flexi-

The performance of every learning system is the rdility of the representation class used, an analysis of
sult of (at least) two combined effects: the reprethe stability of the models with respect to perturba-

sentation power of the hypothesis class, determifions of the parameters, and an analysis of the com-
ing how well the system can approximate the targdutational resources needed to train these systems.
behaviour; and statistical effects, determining how Using the open source package Moses (Koehn et
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al., 2007) and the Spanish-English Europarl corpu®ch and Weber, 1998; R.Zens et al., 2002; Och and
(Koehn, 2005) we have performed a complete invedNey, 2001; Koehn et al., 2003). A Markovian lan-
tigation of the influence of training set size on theguage model, based on phrases rather than words,
quality of translations and on the cost of training; theoupled with a phrase-to-phrase translation table are
influence of several design choices; the role of datat the heart of most modern systems. Translating a
sizes in training various components of the systentext amounts to computing the most likely transla-
We use this data to inform a discussion about learnion based on the available model parameters. Infer-
ing curves. An analysis of learning curves has preing the parameters of these models from bilingual
viously been proposed by (Al-Onaizan et al., 1999)orpora is a matter of statistics. By model inference
Recent advances in software, data availability ande mean the task of extracting all tables, parameters
computing power have enabled us to undertake ttand functions, from the corpus, that will be used to
present study, where very accurate curves are otranslate.
tained on a large corpus. How far can this representation take us towards
Since our goal was to obtain high accuracy learrthe target of achieving human-quality translations?
ing curves, that can be trusted both for comparAre the current limitations due to the approximation
ing different system settings, and to extrapolate peetror of this representation, or to lack of sufficient
formance under unseen conditions, we conductedti@ining data? How much space for improvement
large-scale series of tests, to reduce uncertainty is there, given new data or new statistical estima-
the estimations and to obtain the strongest possibl®n methods or given different models with differ-
signals. This was only possible, to the degree of aent complexities?
curacy needed by our analysis, by the extensive useWe investigate both the approximation and the es-
of a high performance computer cluster over severg@mation components of the error in machine transla-
weeks of computation. tion systems. After analysing the two contributions,
One of our key findings is that the current perwe focus on the role of various design choices in
formance is not limited by the representation powetletermining the statistical part of the error. We in-
of the hypothesis class, but rather by model estimaestigate learning curves, measuring both the role of
tion from data. And that increasing of the size othe training set and the optimization set size, as well
the dataset is not likely to bridge that gap (at leasis the importance of accuracy in the numeric param-
not for realistic amounts in the i.i.d. setting), nor iseters.
the development of new parameter estimation prin- We also address the trade-off between accuracy
ciples. The main limitation seems to be a direcand computational cost. We perform a complete
consequence of Zipf's law, and the introduction ofnalysis of Moses as a learning system, assessing the
constraints from linguistics seems to be an unavoidsarious contributions to its performance and where
able step, to help the system in the identification dimprovements are more likely, and assessing com-
the optimal models without resorting to massive inputational and statistical aspects of the system.
creases in training data, which would also result in A general discussion of learning curves in Moses-
significantly higher training times, and model sizeslike systems and an extrapolation of performance
are provided, showing that the estimation gap is un-
2 Statistical Machine Trandation likely to be closed by adding more data in realistic

. . _ amounts.
What is the best function class to map Spanish doc-

uments into English documents? This is a questiog Experimental Setup

of linguistic nature, and has been the subject of a

long debate. The de-facto answer came during th&e have performed a large number of detailed ex-
1990's from the research community on Statisticgberiments. In this paper we report just a few, leaving
Machine Translation, who made use of statisticahe complete account of our benchmarking to a full

tools based on a noisy channel model originally dgeurnal version (Turchi et al., In preparation). Three

veloped for speech recognition (Brown et al., 1994experiments allow us to assess the most promis-
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ing directions of research, from a machine learnin@.1 Software

point of view. _ :
Moses (Koehn et al., 2007) is a complete translation

i i ) toolkit for academic purposes. It provides all the
1. Leaming curve _showmg. translaﬂo_n Ioerfor'components needed to create a machine translation
mance as a_funcnon of training set size, Whergystem from one language to another. It contains dif-
translation is performed on unseen SentenCcegy ant modules to preprocess data, train the language

The curves, describing the statistical part of t,h?nodels and the translation models. These mod-
perfc_)rmancez are seen to grow very slowly W'thbls can be tuned using minimum error rate training
training set size. (Och, 2003). Moses uses standard external tools for
some of these tasks, such as GIZA++ (Och and Ney,

2. Learning curve showing translation perfor2003) for word alignments and SRILM (Stolcke,
mance as a function of training set size, wherg002) for language modeling. Notice that Moses is a
translation is performed on known sentencessery sophisticated system, capable of learning trans-
This was done to verify that the hypothesigation tables, language models and decoding param-

class is indeed capable of representing highters from data. We analyse the contribution of each
quality translations in the idealized case wheomponent to the overall score.

all the necessary phrases have been observedsjyen a parallel training corpus, Moses prepro-
in training phase. By limiting phrase length esges it removing long sentences, lowercasing and
to 7 words, and using test sentences mostly, anizing sentences. These sentences are used to
longer than 20 words, we have ensured that thigain the language and translation models. This
was a genuine task of decoding. We observegase requires several steps as aligning words, com-
that translation in these |d§allzed conditions ISuting the lexical translation, extracting phrases,
worse than human translation, but much bett€{cing the phrases and creating the reordering
than machine translation of unseen sentencesygqe|. When the models have been created, the de-
velopment set is used to run the minimum error rate
3. Plot of performance of a model when the nutraining algorithm to optimize their weights. We re-
meric parameters are corrupted by an increaser to that step as the optimization step in the rest of
ing amount of noise. This was done to simuthe paper. Test set is used to evaluate the quality of
late the effect of inaccurate parameter estimamodels on the data. The translated sentences are em-
tion algorithms (due either to imprecise objechedded in a sgm format, such that the quality of the
tive functions, or to lack of sufficient statistics translation can be evaluated using the most common
from the corpus). We were surprised to observenachine translation scores. Moses provides BLEU
that accurate estimation of these parameters a@.Papineni et al., 2001) and NIST (Doddington,
counts for at most 18 of the final score. Itis 2002), but Meteor (Banerjee and Lavie, 2005; Lavie
the actual list of phrases that forms the bulk otind Agarwal, 2007) and TER (Snover et al., 2006)
the knowledge in the system. can easily be used instead. NIST is used in this paper
as evaluation score after we observed its high corre-

We conclude that the availability of the right mod-lation to the other scores on the corpus (Turchi etal.,
els in the system would allow the system to have H) preparation).
much higher performance, but these models will not All experiments have been run using the default
come from increased datasets or estimation procparameter configuration of Moses. It means that
dures. Instead, they will come from the results of eiGiza++ has used IBM model 1, 2, 3, and 4 with
ther the introduction of linguistic knowledge, or thenumber of iterations for model 1 equal to 5, model
introduction of query algorithms, themselves result2 equal to 0, model 3 and 4 equal to 3; SRILM
ing necessarily from confidence estimation methhas used n-gram order equal to 3 and the Kneser-
ods. Hence these appear to be the two most pressiNgy smoothing algorithm; Mert has been run fix-
guestions in this research area. ing to 100 the number of nbest target sentence for
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each develop sentence, and it stops when none 4f Experiments

the weights changed more than 1e-05 or the nbegtl £ _ 1 role of traini :
list does not change. : xperiment 1: role of training set size on

" performance on new sentences
The training, development and test set sentences

are tokenized and lowercased. The maximum nuni? this section we analyse how performance is af-
ber of tokens for each sentence in the training palfcted Dy training set size, by creating learning
has been set to 50, whilst no limit is applied to th&urves (NIST score vs training set size).
development or test set. TMs were limited to a e have created subsets of the complete corpus

phrase-length of 7 words and LMs were limited td?Y Sub-sampling sentences from a uniform distribu-
3 tion, with replacement. We have created 10 random

subsets for each of the 20 chosen sizes, where each
size represents%, 10%, etc of the complete cor-
pus. For each subset a new instance of the SMT
The Europarl Release v3 Spanish-English corpuS stem has been created,_ f(.)r a tO‘?" of 2.00 qu-
s. These have been optimized using a fixed size

has been used for the experiments. All the pairs 0 .

. evelopment set (of 2,000 sentences, not included
sentences are extracted from the proceedings of the :
European Parliament. In any othgr phase of the experiment). Tvyo hun-

, _ _ dred experiments have then been run on an indepen-

This dataset is made of three sets of pairs of Syt test set (of 2,000 sentences, also not included in
tences. Each of them has a different raeaining, 4y other phase of the experiment). This allowed us
development andtest set. The training set contains cajculate the mean and variance of NIST scores.
1,259,914 pairs, while there are 2,000 pairs for derpjs has been done for the models with and without
velopment and test sets. the optimization step, hence producing the learning

This work contains several experiments on differeurves with error bars plotted in Figure 1, represent-
ent types and sizes of data set. To be consisteinfg translation performance versus training set size,
and to avoid anomalies due to overfitting or parin the two cases.
ticular data combinations, each set of pairs of sen- The growth of the learning curve follows a typi-
tences have been randomly sampled. The number gl pattern, growing fast at first, then slowing down
pairs is fixed and a software selects them randomiyraditional learning curves are power laws, in theo-
from the whole original training, development or testetical models). In this case it appears to be grow-
set using a uniform distribution (bootstrap). Reduning even slower than a power law, which would be
dancy of pairs is allowed inside each subset. a surprise under traditional statistical learning the-
ory models. In any case, the addition of massive
amounts of data from the same distribution will re-
sult into smaller improvements in the performance.
All the experiments have been run on a cluster maFhe small error bars that we have obtained also al-
chine, http://www.acrc.bris.ac.uk/acrc/hpc.htm. Itow us to neatly observe the benefits of the optimiza-
includes 96 nodes each with two dual-core opterotion phase, which are small but clearly significant.
processors, 8 GB of RAM memory per node (2 GB _ o ,
per core); 4 thick nodes each with four dual-cord-2 EXPeriment 2: role of training set sizeon
opteron processors, 32 GB of RAM memory per  Performanceon known sentences
node (4 GB per core); ClearSpeed accelerator boardfe performance of a learning system depends both
on the thick nodes; SilverStorm Infiniband high-on the statistical estimation issues discussed in the
speed connectivity throughout for parallel code mesgprevious subsection, and on functional approxima-
sage passing; General Parallel File System (GPF&)n issues: how well can the function class repro-
providing data access from all the nodes; storageduce the desired behaviour? In order to measure this
11 terabytes. Each experiment has been run usiogiantity, we have performed an experiment much
one core and allocating 4Gb of RAM. like the one described above, with one key differ-

3.2 Data

3.3 Hardware
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has the power of approximating the target behaviour
more accurately than we could think based on per-
formance on unseen sentences. If the right informa-
tion has been seen, the system can reconstruct the
sentences rather accurately. The NIST score com-
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puted using the reference sentences as target sen-
{ I ] tences is around 15, we identify the relative curve as

r "Human Translation”. At this point, it seems likely
LI ] that the process with which we learn the necessary
tables representing the knowledge of the system is
i | responsible for the performance limitations.

*8 2 s s 8 0 12 The gap between the "Optimized, Test on Train-
reinna Stze x10° ing Set” and the "Optimized” curves is even more in-
teresting if related to the slow growth rate in the pre-
d£§/ious learning curve: although the system can repre-
sent internally a good model of translation, it seems
unlikely that this will ever be inferred by increasing
the size of training datasets in realistic amounts.
ence: the test set was selected randomly from the The training step results in various forms of
training set (after cleaning phase). In this way wé&nowledge: translation table, language model and
are guaranteed that the system has seen all the nparameters from the optimization. The internal
essary information in training phase, and we can agaodels learnt by the system are essentially lists
sess its limitations in these very ideal conditionsof phrases, with probabilities associated to them.
We are aware this condition is extremely idealizedvhich of these components is mostly responsible
and it will never happen in real life, but we wantedfor performance limitations?
to have an upper bound on the performance achiev-
able by this architecture if access to ideal data wes3 Experiment 3: effect on performance of
not an issue. We also made sure that the perfor- increasing noiselevelsin parameters
mance on translating training sentences was not diguch research has focused on devising improved
to simple memorization of the entire sentence, veprinciples for the statistical estimation of the pa-
ifying that the vast majority of the sentences wereameters in language and translation models. The
not present in the translation table (where the maxatroduction of discriminative graphical models has
imal phrase size was 7), not even in reduced fornmarked a departure from traditional maximum like-
Under these favourable conditions, the system olfihood estimation principles, and various approaches
tained a NIST score of around 11, against a scotgave been proposed.
of about 7.5 on unseen sentences. This suggestsThe question is: how much information is con-
that the phrase-based Markov-chain representatiesined in the fine grain structure of the probabilities
is sufficiently rich to obtain a high score, if the nec-estimated by the model? Is the performance improv-
essary information is contained in the translation anighg with more data because certain parameters are
language models. estimated better, or just because the lists are grow-

For each model to be tested on known sentencesag? In the second case, it is likely that more sophis-
we have sampled ten subsets of 2,000 sentences eéichted statistical algorithms to improve the estima-
from the training set. tion of probabilities will have limited impact.

The "Optimized, Test on Training Set” learn- In order to simulate the effect of inaccurate esti-
ing curve, see figure 2, represents a possible upperation of the numeric parameters, we have added
bound on the best performance of this SMT sysincreasing amount of noise to them. This can either
tem, since it has been computed in favourable comepresent the effect of insufficient statistics in esti-
ditions. It does suggest that this hypothesis clagrating them, or the use of imperfect parameter esti-

Nist Score
~ ~
L N
T
[

~
L

o
©
T

Figure 1: "Not Optimized” has been obtained using
fixed test set and no optimization phase. "Optimize
using a fixed test set and the optimization phase.
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Figure 2: Four learning curves have been compared. "Notn@p#id” has been obtained using a fixed test set and no
optimization phase. "Optimized” using a fixed test set arddptimization phase. "Optimized Test On Training Set”
a test set selected by the training set for each trainingzetsd the optimization phase. "Human Translation” has
been obtained by computing NIST using the reference Engésltence of the test set as target sentences.

mation biases. We have corrupted the parameters in
the language and translation models, by adding in-

creasing levels of noise to them, and measured tt sss e e St s Perciniaoe o e heten
effect of this on performance.

One model trained with 62,995 pairs of sentence  «.r
has been chosen from the experiments in Sectic
4.1. A percentage of noise has been added to ea:
probability in the language model, including condi- 3
tional probability and back off, translation model,
bidirectional translation probabilities and lexical-
ized weighting. Given a probability and a percent-
age of noisepn, a value has been randomly selectec oes|
from the interval [x,+x], wherex = p * pn, and
added top. If this quantity is bigger thanoneithas | =
been approximated to one. Different values of per ° * * O a0 P 0
centage have been used. For each valyenofive

experiment have been run. The optimization stepigure 3: Each probability of the language and translation
has not been run. models has been perturbed adding a percentage of noise.

) This learning curve reports the not optimized NIST score
We see from Figure 3 that the performance doegrsys the percentage of perturbation applied. These re-
not seem to depend crucially on the fine structure @fuits have been obtained using a fixed training set size
the parameter vectors, and that even a large additiequal to 62,995 pairs of sentences.
of noise (100¢) produces a 1% decline in NIST
score. This suggests that it is the list itself, rather

6.75

ist S

"Perturbed" Ni

6.7

40



CPU Computational Time in minutes vs Training Size
T T T

algorithm and the sentences in the development set.
We can also see in figure 4 that even a small devel-
] opment set size can require a large amount of tun-
ing time. Each point of the tuning time curve has a

2500

] big variance. The tuning phase involves translating

} ) the development set many times and hence its cost
l L =7 | depends very weakly on the training set size, since a
-7 large training set leads to larger tables and these lead

=7 | to slightly longer test times.

500 P

- | | | | 6 Discussion

.
0 2 4 6 8 10 12 14
x10°

The impressive capability of current machine trans-
Figure 4. Training and tuning user time vs training setation systems is not only a testament to an incredi-
size. Time quantities are expressed in minutes. bly productive and creative research community, but
can also be seen as a paradigm for other Artificial In-

telligence tasks. Data driven approaches to all main

than the probabilities in it, that controls the perfor- _
mance. Different estimation methods can produc@reas of Al currently deliver the state of the art per-
rmance, from summarization to speech recogni-

different parameters, but this does not seem to mJP

ter very much. The creation of a more complete IiSrtlon to machine vision to information retrieval. And

of words, however, seems to be the key to improvﬁtat'sncal learning technology is central to all ap-

the score. Combined with the previous findings, thigroaches to dgta driven Al. o _
would mean that neither more data nor better statis- Understanding how sophisticated behaviour can
tics will bridge the performance gap. The solutiorP® /€amt from data is hence not just a concern for

might have to be found elsewhere, and in our Dignachine learning, or to individual applied commu-
nities, such as Statistical Machine Translation, but

cussion section we outline a few possible avenues. S '
rather a general concern for modern Artificial Intelli-
5 Computational Cost gence. The analysis of learning curves, and the iden-
tification of the various limitations to performance
The computational cost of models creation ang a crucial part of the machine learning method,
development-phase has been measured during ted one where statistics and algorithmics interact
creation of the learning curves. Despite its efficiencglosely.
in terms of data usage, the development phase has an the case of Statistical Machine Translation, the
high cost in computational terms, if compared withanalysis of Moses suggests that the current bottle-
the cost of creating the complete language and transeck is the lack of sufficient data, not the function
lation models. class used for the representation of translation sys-
For each experiment, the user CPU time is comems. The clear gap between performance on train-
puted as the sum of the user time of the main procefisg and testing set, together with the rate of the
and the user time of the children. learning curves, suggests that improvements may be
These quantities are collected for training, develpossible but not by adding more data in i.i.d. way as
opment, testing and evaluation phases. In figure dpne now. The perturbation analysis suggests that
training and tuning user times are plotted as a fundémproved statistical principles are unlikely to make
tion of the training set size. It is evident that increasa big difference either.
ing the training size causes an increase in training Since it is unlikely that sufficient data will be
time in a roughly linear fashion. available by simply sampling a distribution, one
It is hard to find a similar relationship for the tun-needs to address a few possible ways to transfer
ing time of the development phase. In fact, the tunarge amounts of knowledge into the system. All of
ing time is strictly connected with the optimizationthem lead to open problems either in machine learn-
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ing or in machine translation, most of them havingseem that more flexible versions of Markov mod-
been already identified by their respective communels would be likely to change the situation. Finally,
ties as important questions. They are actively beinig does not seem that new and different methods to
worked on. estimate probabilities would make much of a differ-
The gap between performances on training anehce. Our perturbation studies show that significant
on test sets is typically affected by model selectiommounts of noise in the parameters result into very
choices, ultimately controlling the trade off betweersmall variations in the performance. Note also that
overfitting and underfitting. In these experiments théhe current algorithm is not even working on refin-
system used phrases of length 7 or less. Changiivtg the probability estimates, as the rate of growth of
this parameter might reflect on the gap and this ithe tables suggests that new n-grams are constantly
the focus of our current work. appearing, reducing the proportion of time spent re-
A research programme naturally follows fromfining probabilities of old n-grams.
our analysis. The first obvious approach is an ef- |t does seem that the control of the performance
fort to identify or produce datasets on demand (agelies on the length of the translation and language
tive learning, where the learning system can requegibles. Ways are needed to make these tables grow
translations of specific sentences, to satisfy its infomuch faster as a function of training set size; they
mation needs). This is a classical machine learningan either involve active selection of documents to
question, that however comes with the need for futranslate, or the incorporation of linguistic rules to
ther theoretical work, since it breaks the traditionaéxpand the tables without using extra data.
Li.d. assumptions on the origin of data. Further- |t jsimportant to note that many approaches sug-
more, it would also require an effective way to dogested above are avenues currently being actively
confidence estimation on translations, as traditionglyrsued, and this analysis might be useful to decide

active learning approaches are effectively based Qfhich one of them should be given priority.
the identification (or generation) of instances where

there is low confidence in the output (Blatz et al.7  conclusions
2004; Ueffing and Ney, 2004; Ueffing and Ney,
2005b; Ueffing and Ney, 2005a). We have started a series of extensive experimental
The second natural direction involves the introeyaluations of performance of Moses, using high
duction of Significant domain knowledge inthe formperformance Computin91 with the goa| of under-
of linguistic rules, so to dramatically reduce thestanding the system from a machine learning point
amount of data needed to essentially reconstrugf view, and use this information to identify weak-
them by using statistics. These rules could take thgesses of the system that can lead to improvements.
form of generation of artificial training data, based/\/e have performed many more experimentg that
on existing training data, or a posteriori expansion ofannot be reported in this workshop paper, and will
translation and language tables. Any way to enforcge published in a longer report (Turchi et al., In
Iinguistic constraints will result in a reduced neeq)reparation). In general, our goal is to extrapolate
for data, and ultimately in more complete mOd@lSthe performance of the system under many condi-
given the same amount of data (Koehn and Hoangions, to be able to decide which directions of re-

2007). search are most likely to deliver improvements in
Obviously, it is always possible that the identifi-performance.

cation of radically different representations of lan-

guage might introduce totally different CO”StraimSAcknowledgments

on both approximation and estimation error, and this

might be worth considering. Marco Turchi is supported by the EU Project
What is not likely to work. It does not seem thatSMART. The authors thank Callum Wright, Bris-

the introduction of more data will change the situtol HPC Systems Administrator, and Moses mailing

ation significantly, as long as the data is samplelikt.

i.i.d. from the same distribution. It also does not

42



References

Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. Lafferty,
D. Melamed, F. J. Och, D. Purdy, N. A. Smith, andA
D. Yarowsky. 1999. Statistical machine translation:
Final report. Technical report, Johns Hopkins Univer-
sity 1999 Summer Workshop on Language Engineer-
ing, Center for Speech and Language Processing.

S. Banerjee and A. Lavie. 2005. Meteor: An auto-
matic metric for mt evaluation with improved correla-
tion with human judgments. IACL '05: Proceedings
of the 43rd Annual Meeting on Association for Com+
putational Linguistics, Morristown, NJ, USA. Associ-
ation for Computational Linguistics.

. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur, C. Goultt

A. Kulesza, A. Sanchis, and N. Ueffing. 2004. Confi-

dence estimation for machine translation ABLING

'04: Proceedings of the 20th international conference

on Computational Linguistics, page 315, Morristown,

NJ, USA. Association for Computational Linguistics.

F. Brown, S. Della Pietra, V.t J. Della Pietra, and R. LF

Mercer. 1994. The mathematic of statistical machine

translation: Parameter estimatidbomputational Lin-

guistics, 19(2):263—-311.

G. Doddington. 2002. Automatic evaluation of machin
translation quality using n-gram co-occurrence statis-
tics. In Proceedings of the second international con-
ference on Human Language Technology Research,

F.

pages 138-145, San Francisco, CA, USA. Morgap/I

Kaufmann Publishers Inc.
. Koehn and H. Hoang. 2007. Factored translation
models. InProceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 868—-876. A
. Koehn, F. J. Och, and D. Marcu. 2003. Statistical
phrase-based translation. MAACL ' 03: Proceedings
of the 2003 Conference of the North American Chap-
ter of the Association for Computational Linguistics
on Human Language Technology, pages 48-54, Mor-
ristown, NJ, USA. Association for Computational Lin-
guistics.
. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: Open source toolkit for
statistical machine translation. the Annual Meet- ¥
ing of the Association for Computational Linguistics,
demonstration session.
Koehn. 2005. Europarl: A parallel corpus for sta-
tistical machine translation. IMachine Trandation
Summit X, pages 79-86.
K.Papineni, S. Roukos, T. Ward, and W. J. Zhu. 2001.
Bleu: a method for automatic evaluation of machine

M

N

N

P.

43

F.

translation. InProceedings of ACL '02, pages 311—
318, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

. Lavie and A. Agarwal. 2007. Meteor: An automatic
metric for mt evaluation with high levels of correla-
tion with human judgments. IACL '07: Proceedings
of 45th Annual Meeting of the Association for Com+
putational Linguistics. Association for Computational
Linguistics.

J. Och and H. Ney. 2001. Discriminative training
and maximum entropy models for statistical machine

translation. InProceedings of ACL '02, pages 295—
302, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment model<Computational
Linguistics, 29(1):19-51.

J. Och and H. Weber. 1998. Improving statistical nat-
ural language translation with categories and rules. In
COLING-ACL, pages 985-989.

J. Och. 2003. Minimum error rate training in statis-
tical machine translation. IRroceedings of ACL '03,
pages 160-167, Morristown, NJ, USA. Association for
Computational Linguistics.

qR.Zens, F. J.0ch, and H. Ney. 2002. Phrase-based sta-

tistical machine translation. 1Kl '02: Proceedings
of the 25th Annual German Conference on Al, pages
18-32, London, UK. Springer-Verlag.

Snover, B. Dorr, R. Schwartz, L. Micciulla, and
J. Makhoul. 2006. A study of translation edit rate
with targeted human annotation. Pnoceedings of the
7th Conference of the Association for Machine Trans-
lationinthe Americas, pages 223—-231. Association for
Machine Translation in the Americas.

Stolcke. 2002. Srilm — an extensible language mod-

eling toolkit. InIntl. Conf. on Sooken Language Pro-

cessing.

. Turchi, T. De Bie, and N. Cristianini. In preparation.
Learning analysis of a machine translation system.

. Ueffing and H. Ney. 2004. Bayes decision rules
and confidence measures for statistical machine trans-
lation. InESTAL-2004, pages 70-81.

. Ueffing and H. Ney. 2005a. Application of word-level
confidence measures in interactive statistical machine
translation. INEAMT-2005, pages 262—-270.

. Ueffing and H. Ney. 2005b. Word-level confidence
estimation for machine translation using phrase-based
translation models. IRroceedings of HLT ' 05, pages
763770, Morristown, NJ, USA. Association for Com-
putational Linguistics.



Using Syntax to Improve Word Alignment Precision for Syntax-Based
Machine Translation
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Abstract ments have high precision but low reclThere are
two natural approaches to improving upon GIZA++
Word alignments that violate syntactic cor- alignments, then: deleting links from union align-
respondences interfere with the extraction ments, or adding links to intersection or refined
of string-to-tree transducer rules for syntax- alignments. In this work, we delete links from
based machine translation. We present an  G|ZA++ union alignments to improve precision.
algorithm for identifying and deleting incor- The low precision of GIZA++ union alignments

rect word alignment links, using features of .
the extracted rules. We obtain gains in both poses a particular problem for syntax-based rule ex

alignment quality and translation quality in traction algorithms such as (Quirk et al., 2005; Gal-

Chinese-English and Arabic-English transla- ~ ley et al., 2006; Huang et al., 2006; Liu et al.,

tion experiments relative to a GIZA++ union 2006): if the incorrect links violate syntactic corre-

baseline. spondences, they force the rule extraction algorithm
to extract rules that are large in size, few in number,
and poor in generalization ability.

1 Introduction Figure 1 illustrates this problem: the dotted line
o represents an incorrect link in the GIZA++ union
1.1 Motivation alignment. Using the rule extraction algorithm de-

Word alignment typically constitutes the first stagescribed in (Galley et al., 2004), we extract the rules
of the statistical machine translation pipelineShown in the leftmost column (R1-R4). Rule R1 s
GIZA++ (Och and Ney, 2003), an impIementation'arge and unlikely to generalize well. If we delete
of the IBM (Brown et al., 1993) and HMM? the incorrect link in Figure 1, we can extract the
alignment models, is the most widely-used aligntules shown in the rightmost column (R2-R9): Rule
ment system. GIZA+unionalignments have been R1, the largest rule from the initial set, disappears,
used in the state-of-the-art syntax-based statistic@d several smaller, more modular rules (R5-R9) re-
MT system described in (Galley et al., 2006) and iPlace it.
the hierarchical phrase-based system Hiero (Chiang, In this work, we present a supervised algorithm
2007). GIZA++refinedalignments have been usedthat uses these two features of the extracted rules
in state-of-the-art phrase-based statistical MT sy$size of largest rule and total number of rules), as
tems such as (Och, 2004); variations on the refinaell as a handful of structural and lexical features,
heuristic have been used by (Koehn et al., 20039 automatically identify and delete incorrect links
(diag anddiag-and and by the phrase-based Systenﬁrom GIZA++ union alignments. We show that link
Moses ¢row-diag-fina) (Koehn et al., 2007). — _ _ . -
. . . For a complete discussion of alignment symmetrization

GIZA++ union alignments have high recall butheristics, including union, intersection, and refined, refer to

low precision, whileintersectionor refined align- (Och and Ney, 2003).
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FROM OWN-COUNTRY NEEDS STARTS-OUT

Rules Extracted Using GIZA++ Union AlignmentsRules Extracted After Deleting Dotted Link

R1: VP — XOXLEE WL R2: w — &
—7
VBZ PRT PP from
PR
starts RP xO:IN NP
I /\
out NP x1:PP
/\
DIT NII\IS
the needs
R2 IN — M R3 PP — x0
| P
from Ill\l x0:NP
of
R3: o —xo R4: NP — &E
PN _—7 T~
Ill\l x0:NP PRP JJ NN
of its own country
R4 NP — XE R5 PP —x0 x1
_—7 T~ PN
PIRP JJ NIN x0:IN  x1L:NP
its kon country
R6: w» —xix
S
XO:NP  x1:PP
R7 NP — x0
/\
DIT X0:NNS

the
R8: \ns — &=
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R9: VP — x0 H:x'i
— T
VBZ PIRT x0:PP
starts RP

out

Figure 1. The impact of incorrect alignment links upon ruigraction. Using the original alignment (including all
links shown) leads to the extraction of the tree-to-strirggn$ducer rules whose left hand sides are rooted at the solid
boxed nodes in the parse tree (R1, R2, R3, and R4). Deletenddtied alignment link leads to the omission of rule
R1, the extraction of R9 in its place, the extraction of R2, &3] R4 as before, and the extraction of additional rules
whose left hand sides are rooted at the dotted boxed nodks patse tree (R5, R6, R7, R8).
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deletion improves alignment quality and translatiofor each sentence pair, while we use a fast greedy
quality in Chinese-English and Arabic-English MT,search to determine which links to delete; in con-
relative to a strong baseline. Our link deletion altrast to (May and Knight, 2007), who require 400
gorithm is easy to implement, runs quickly, and ha€PU hours to re-align 330k Chinese-English sen-
been used by a top-scoring MT system in the Chikence pairs (anonymous, p.c), link deletion requires
nese newswire track of the 2008 NIST evaluation. only 18 CPU hours to re-align such a corpus.
(Lopez and Resnik, 2005) and (Denero and Klein,
1.2 Related Work 2007) modify the distortion model of the HMM
Recently, discriminative methods for alignmentalignment model (Vogel et al., 1996) to reflect tree
have rivaled the quality of IBM Model 4 alignmentsdistance rather than string distance; (Cherry and
(Liu et al., 2005; Ittycheriah and Roukos, 2005Lin, 2006) modify an ITG aligner by introducing
Taskar et al., 2005; Moore et al., 2006; Fraser and penalty for induced parses that violate syntac-
Marcu, 2007b). However, except for (Fraser andic bracketing constraints. Similarly to these ap-
Marcu, 2007b), none of these advances in aligrproaches, we use syntactic bracketing to constrain
ment quality has improved translation quality of aalignment, but our work extends beyond improving
state-of-the-art system. We use a discriminativelglignment quality to improve translation quality as
trained model to identify and delete incorrect linkswell.
and demonstrate that these gains in alignment qual-
ity lead to gains in translation quality in a state2 Link Deletion

of-the-art syntax-based MT system. In contrast t@ye on0se an algorithm to re-align a parallel bitext
the semi-supervised LEAF allgnment algorlthm Ofthat has been aligned by GIZA++ (IBM Model 4),

(Fraser and Marcu, 2007b), which requires 1,5004on symmetrized using the union heuristic. We then
2,000 CPUdaysper iteration to align 8.4M Chinese- iy 4 syntax-based translation system on the re-
English sentences (anonymous, p.c.), link deletiogyigneq pitext, and evaluate whether the re-aligned

requires only 450 CPWoursto re-align such a cor- ey vields a better translation model than a base-

pus (after initial alignment by GIZA++, which ré- e sustem trained on the GIZA++ union aligned
quires 20-24 CPU days). bitext.

Several recent works incorporate syntactic fea-
tures into alignment. (May and Knight, 2007) use.1 Link Deletion Algorithm

syntactic constraints to re-align a parallel corpus thgj algorithm for re-alignment proceeds as follows.

has been aligned by GIZA++ as follows: they extratiye make a single pass over the corpus. For each sen-
string-to-tree transducer rules from the corpus, thﬁence pair, we initialize the alignmertt = A;,;ia;

target parse trees, and the alignment; discard the irl‘[he GIZA++ union alignment for that sentence
tial alignment; use the extracted rules to construct Bair). We represent the score df as a weighted
forest of possible string-to-tree derivations for each\,oar combination of features: of the alignment

. P (2
string/tree pair in the corpus; use EM to select th%, the target parse treerse(e) (a phrase-structure

Viterbi derlvatlgn tree for each pair; aqd fln.ally', in- syntactic representation ej, and the source string
duce a new alignment from the Viterbi derivations, .

using the re-aligned corpus to train a syntax-based

MT system. (May and Knight, 2007) differs from n

our approach in two ways: first, the set of possible score(A) = Z Ai - hi( A, parse(e), f)
re-alignments they consider for each sentence pair is =0

limited by the initial GIZA++ alignments seen over \We define aranchof links to be acontiguousl-
the training corpus, while we consider all alignment$o-many alignmen%. We define two alignments4
that can be re_ached by deleting links from_the iniTgurel the 1to-many alignment formed fsk -
tial GIZA++ alignment for that sentence pair. SeC-its, A E- own,ﬁli E-country} constitutes a branch, but the

ond, (May and Knight, 2007) use a time-intensive_to_many alignment formed by % -startst & -out,Hi % -
training algorithm to select the best re-alignmenbeed$ does not.
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and A’, to be neighborsif they differ only by the alignment can have 0, 1, or 2 neighbors, according
deletion of a link otbranchof links. We consider all to how many links are adjacent to it in the 1-to-many
alignmentsA’ in the neighborhoodof A, greedily alignment:

deleting the linkl or branch of linksb maximizing

the score of the resulting alignment = A\ [ or zeroNeighbors: In Figure 1, the linkiti 4 -needs

A’ = A\ b. We delete links until no further increasehas 0 neighbors.

in the score ofA is possible? i ) ) .
In section 2.2 we describe the featutesand in ©NeNeighbor: In Figure 1, the linkstl & -starts

section 2.4 we describe how to set the weights a”hd t Z-out each have 1 neighbor-namely, each
other.

2.2 Features

twoNeighbors: In Figure 1, in the 1-to-many

2.2.1 Syntactic Features . .
W yt feat £ the string-to-tree t alignment formed by{A HE-its, & E-own A &H-
€ use two teatures of the string-to-tree ranséountry}, the link Z E-own has 2 neighbors,
ducer rules extracted from, parse(e), and f ac-

namel -itand -country.
cording to the rule extraction algorithm described in yAH AH y

(Galley et al., 2004): 2.2.3 Lexical Features

ruleCount:  Total number of rules extracted from highestLexProbRank: A link e;-f; is “max-
A, parse(e), and f. As Figure 1 illustrates, in- probable frome; to f;” if p(fjle;) > p(fj|e:) for
correct links violating syntactic brackets tend to deall alternative wordsf;; with which e; is aligned
creaseuleCount; ruleCount increases from 4 t0 8 in A, In Figure 1,p(7F B|needs) > p(ik
after deleting the incorrect link. K|needs), so T Z-needs is max-probable for

sizeOfLargestRule: The size, measured in terms n:a_eds . The definition of ‘max-probable froff to
;" Is analogous, and a link is max-probable (nondi-

of internal nodes in the target parse tree, of the singFé . s o N
largest rule extracted from, parse(e), and f. In rectionally) if it is max-probable in either direction.

Figure 1, the largest rules in the leftmost and right:rhe value ohlghestLe>_<ProbRank|sthe_zt[otal num-
er of max-probable links. The conditional lexical

I R1 (with9i I R e .
mgst columns are (with 9 m'Ferna nodes) and probabilitiesp(e;| f;) andp( f;|e;) are estimated us-
(with 4 internal nodes), respectively. . . . o :
ing frequencies of aligned word pairs in the high-

2.2.2 Structural Features precision GIZA++intersectionalignments for the
wordsUnaligned: Total number of unaligned training corpus.
words.

2.2.4 History Features
1-to-many Links: Total number of links for which
one word is aligned to multiple words, in either di-
rection. In Figure 1, the linkg Hi & -starts{ & -
out,li % -needs represent a 1-to-many alignment.
1-to-many links appear more frequently in GIZA++

union alignments than in gold alignments, and arfyspeleted: Total number of links deleted
therefore good candidates for deletion. The cateAith thus far. At each iteration, either a link or
gory of 1-to-many links is further subdivided, de-, pranch of links is deleted.
pending on the degree obntiguitythat the link ex-
hibits with its neighboré. Each link in a 1-to-many aligned to multiple English words are aligned te@antiguous
- block of English words; similarly, 88% of the English words
SWhile using a dynamic programming algorithm would that are aligned to multiple Chinese words are aligneddora
likely improve search efficiency and allow link deletion to find tiguousblock of Chinese words. Thus, if a Chinese word is cor-
an optimal solution, in practice, the greedy search runs quicklsectly aligned to multiple English words, those English words
and improves alignment quality. are likely to be “neighbors” of each other, and if an English
4(Deng and Byrne, 2005) observe that, in a manually alignedrord is correctly aligned to multiple Chinese words, those Chi-
Chinese-English corpus, 82% of the Chinese words that arese words are likely to be “neighbors” of each other.

In addition to the above syntactic, structural,
and lexical features ofd, we also incorporate
two features of the link deletion history itself into
Score(A):
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stepsTaken: Total number of iterations thus farin  We construct a set of candidate alignments
the search; at each iteration, either a link or a brancA..,.4;q4ates fOr use in reranking as follows. Starting
is deleted. This feature serves as a constant cosith A = A;,i.i., We iteratively explore all align-

function per step taken during link deletion. ments A" in the neighborhoodof A4, adding each
neighborto A...didates, then selecting thaeigh-
2.3 Constraints bor that maximizesScore(A’). When it is no

longer possible to increasgcore(A) by deleting
any links, link deletion concludes and returns the
highest-scoring alignment}{_p;.

In general, Agolq ¢ Acandidates; following
(Collins, 2000) and (Charniak and Johnson, 2005)

Stoplist: In our Chinese-English corpora, the 10for parse reranking and (Liang et al., 2006) for trans-
most common English words (excluding punciation reranking, we definely,... as alignment in
tuation marks) include{a,in,to,of,and,thg while ~ Acandidates that is mostsimilar to Agola-® We up-

the 10 most common Chinese words includé'i'[e each fgature weight as follows: \; = A; +
(TR 7EMi0). Of these,{athe and [T f} By orecle — Ry irest 8

have no explicit translational equivalent in the other Following (Moore, 2005), after each training
language. These words are aligned with each othpass, we average all the feature weight vectors seen
frequently (and erroneously) by GIZA++ union, butduring the pass, and decode the discriminative train-
rarely in the gold standard. We delete all links ining set using the vector of averaged feature weights.
the set{a, an, thé x {f, T} from A, as a When alignment quality stops increasing on the dis-

Protecting Refined Links from Deletion: Since
GIZA++ refined links have higher precision than
union linke, we do not consider any GIZA++ re-
fined links for deletiorf.

preprocessing step. criminative training set, perceptron training erds.
The weight vector returned by perceptron training is
2.4 Perceptron Training the average over the training set of all weight vectors

seen during all iterations; averaging reduces overfit-

We set the feature weights using a modified ver- gng on the training set (Collins, 2002).

sion of averaged perceptron learning with structure
outputs (Collins, 2002). Following (Moore, 2005),
we initialize the value of our expected most infor-
mative featureruileCount) to 1.0, and initialize all 31 Data Sets

other feature weights to 0. During each pass over the ] ) )
discriminative training set, we “decode” each senYVe evaluate the effect of link deletion upon align-
tence pair by greedily deleting links from;,,;z.; in men‘F guality and translation quallt.y fortvvp Chinese-
order to maximize the score of the resulting alignENglish data sets, and one Arabic-English data set.
ment using the current settings otfor details, refer Each data set consists of newswire, and contains a
to section 2.1). small subset of manually aligned sentence pairs. We
divide the manually aligned subset into a training set
50n a 400-sentence-pair Chinese-English data set, GlzA+used to discriminatively set the feature weights for
union alignments have a precision of 77.32 while GIZA++ redink deletion) and a test set (used to evaluate the im-
fined alignments have a precision of 85.26. pact of link deletion upon alignment quality). Table

5To see how GIZA++ refined alignments compare to lists the source and the size of the manuallv alianed
GIZA++ union alignments for syntax-based translation, wel ! u 1z ually alig

compare systems trained on each set of alignments for Chinedéaining and test sets used for each alignment task.
English translation task. Union alignments result in a test set

3 Experimental Setup

BLEU score of 41.17, as compared to only 36.99 for refined. 8We discuss alignment similarity metrics in detail in Section
"The impact upon alignment f-measure of deleting thes8.2.
stoplist links is small; on Chinese-English Data Sgtthe f- ®(Liang et al., 2006) report that, for translation reranking,

measure of the baseline GIZA++ union alignments on the testuichlocal updates (towards the oracle) outperfdsoid updates
set increases from 63.44 to 63.81 after deleting stoplist linkgfowards the gold standard).

while the remaining increase in f-measure from 63.81 to 75.14 °We discuss alignment quality metrics in detail in Section
(shown in Table 3) is due to the link deletion algorithm itself. 3.2.
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Using the feature weights learned on the manually Language Train | Test
aligned training set, we then apply link deletion to Chinese-Englisid | 400 | 400
the remainder (non-manually aligned) of each bilin- Chinese-EnglistB | 1500 | 1500
gual data set, and train a full syntax-based statistical Arabic-English 1500 | 1500

MT system on these sentence pairs. After maximum

BLEU tuning (Och, 2003a) on a held-out tuning setTable 1: Size (sentence pairs) of data sets used in align-
we evaluate translation quality on a held-out test seent link deletion tasks

Table 2 lists the source and the size of the training,

tuning, and test sets used for each translation taskfrom our hypothesized alignments and a Collins-
. . style parser against the rule set extracted from gold

3.2 Evaluation Metrics alignments and gold parses.

AER (Alignment Error Rate) (Och and Ney, 2003) _

is the most widely used metric of alignment qualBLEY  For all translation tasks, we report case-

ity, but requires gold-standard alignments labelled’Sensitive NIST BLEU scores (Papineni et al.,

with “sure/possible” annotations to compute; lack2002) using 4 references per sentence.

ing such annotations, we can compute alignment %_3 Experiments

measure instead.

However, (Fraser and Marcu, 2007a) show thaStarting with GIZA++ union (IBM Model 4) align-
in phrase-based translation, improvements in AERIENtS, We use perceptron training to set the weights
or f-measure do not necessarily correlate with im®f €ach feature used in link deletion in order to opti-
provements in BLEU score. They propose two modMize weighted fully-connected alignment f-measure

ifications to f-measure: varying the precision/recal{®=0-5 for Chinese-English ana=0.1 for Arabic-
tradeoff, andfully-connectingthe alignment links English) on a manually aligned discriminative train-

before computing f-measuté. ing set. We report the (fully-connected) precision,
recall, and weighted alignment f-measure on a held-

Weighted Fully-Connected F-Measure Given a out test set after running perceptron training, relative
hypothesized set of alignment linkg and a gold- to the baseline GIZA++ union alignments. Using

standard set of alignment links, we defineH™ = the learned feature weights, we then perform link
fullyConnect(H) andG+ = fullyConnect(G), deletion over the GIZA++ union alignments for the
and then compute: entire training corpus for each translation task. Us-
ing these alignments, which we refer to as “GIZA++

f—measure(H*) _ _ 1 — un_ion +link delgtiqn”, we train a syr_wtax-based trans-
precision(HT) T recall (7Y lation system similar to that described in (Galley et

al., 2006). After extracting string-to-tree translation
For phrase-based Chinese-English and Arabicules from the aligned, parsed training corpus, the
English translation tasks, (Fraser and Marcu, 20078)stem assigns weights to each rule via frequency
obtain the closest correlation between weightedstimation with smoothing. The rule probabilities,
fully-connected alignment f-measure and BLEUas well as trigram language model probabilities and
score usinga=0.5 anda=0.1, respectively. We a handful of additional features of each rule, are used
use weighted fully-connected alignment f-measuras features during decoding. The feature weights are
as the training criterion for link deletion, and to eval-tuned using minimum error rate training (Och and
uate alignment quality on training and test sets.  Ney, 2003) to optimize BLEU score on a held-out
development set. We then compare the BLEU score

Rule F-Measure To evaluate the impact of link f yhis system against a baseline system trained us-
deletion upon rule gquality, we compare the rule prel-ng GIZA++ union alignments.

cision, recall, and f-measure of the rule set extracted To determine which value of is most effective

n Figure 1, the fully-connected version of the alignments2S & tr_aining criterion for link deletion., we SQF_O-_4
shown would include the linkiz Z-starts and&£- out. (favoring recall), 0.5, and 0.6 (favoring precision),
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Language Train Tune Testl Test2
Chinese-Englist 9.8M/newswire 25.9k/NIST02 29.0k/NISTO3 -
Chinese-EnglistB | 12.3M/newswire| 42.9k/newswire| 42.1k/newswire -
Arabic-English 174.8M/newswire| 35.8k/NIST04-05| 40.3k/NIST04-05| 53.0k/newswire

Table 2: Size (English words) and source of data sets usedrislation tasks

and compare the effect on translation quality fo
Chinese-English data sdt

-3
x

N
o)

GIZA++ union
—©&— GIZA++ union + link deletion] |

)
=}
T

4 Results

o
®

For each translation task, link deletion improves
translation quality relative to a GIZA++ union base-
line. For each alignment task, link deletion tends t
improve fully-connected alignment precision more
than it decreases fully-connected alignment recal
increasing weighted fully-connected alignment f-
measure overall.

o o o o
=] N A >
T T ST

IS
©
T

Test Set Weighted Fully-Connected Alignment F-Measure

I I I I
93 187 375 750 1500

4 l Ch|nese‘Engl|Sh Training Sentence Pairs

On Chinese-English translation tadklink deletion _. ] . - . .
. BLEU by 1.26 point tuni Figure 2: Effect of discriminative training set size on link
Increasgs SCOre by .26 points _On uning a,mgeletion accuracy for Chinese-Engligh a=0.5

0.76 points on test (Table 3); on Chinese-English

translation taskB, link deletion increases BLEU

score by 1.38 points on tuning and 0.49 points oglignment f-measure used as the training criterion

test (Table 3). for link deletion. Usingx=0.5 leads to a higher gain
_ _ in BLEU score on the test set relative to the base-
4.2 Arabic-English line (+0.76 points) than either=0.4 (+0.70 points)

On the Arabic-English translation task, link dele-or «=0.6 (+0.67 points).
tion improves BLEU score by 0.84 points on tuning, . L .
0.18 points on testl, and 0.56 points on test2 (Tzf—'4 Size of Discriminative Training Set
ble 3). Note that the training criterion for Arabic- To examine how many manually aligned sentence
English link deletion usea=0.1; because this pe- pairs are required to set the feature weights reli-
nalizes a loss in recall more heavily than it re-ably, we vary the size of the discriminative training
wards an increase in precision, it is more difficuliset from 2-1500 sentence pairs while holding test
to increase weighted fully-connected alignment fset size constant at 1500 sentence pairs; run per-
measure using link deletion for Arabic-English tharceptron training; and record the resulting weighted
for Chinese-English. This difference is reflected irfully-connected alignment f-measure on the test set.
the average number of links deleted per sentencBigure 2 illustrates that using 100-200 manually
4.19 for Chinese-Englisi (Table 3), but only 1.35 aligned sentence pairs of training data is sufficient
for Arabic-English (Table 3). Despite this differ- for Chinese-English; a similarly-sized training set is
ence, link deletion improves translation results foalso sufficient for Arabic-English.
Arabic-English as well.

4.5 Effect of Link Deletion on Extracted Rules
4.3 Varying o Link deletion increases thsize of the extracted
On Chinese-English data sdt we explore the ef- grammar. To determine how tlpuality of the ex-
fect of varying« in the weighted fully-connected tracted grammar changes, we compute the rule pre-
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Language | Alignment Prec | Rec F-measure Links Del/ | Grammar BLEU
guag 9 @ Sent Size Tune Testl Test2

Chi-EngA | GIZA++union | 54.76| 75.38| 0.5 | 63.44 - 23.4M 41.80 41.17 -

Chi-EngA | SI#AT+UNION* | 26 561 7116| 0.5 | 75.14 4.77 59.7M | 43.06 41.93 —
link deletion

Chi-EngB | GIZA++ union | 36.61] 66.28]| 0.5 | 47.16 _ 289M | 3950 41.39 -

Chi-Engp | C/ZATT UNoN+ | o0 oo | 59.28| 0.5 | 62.24 4.19 73.0M | 40.97 41.88 —
link deletion

Ara-Eng | GIZA++union | 35.34] 84.05] 0.1 | 73.87 — 524M | 54.73 509 38.16

Ara-Eng | CIZATHUNION+ o ool 29 75| 0.1 | 75.85 1.35 64.9M | 5557 51.08 38.72
link deletion

Table 3: Results of link deletion. Weighted fully-connettdignment f-measure is computed on alignment test sets
(Table 1); BLEU score is computed on translation test setbl€T2).

Alignment Parse . Rule .
Precision Recall F-measure Total Non-Uniq
gold gold | 100.00 100.00 100.00 12,809
giza++ union collins 50.49 44.23 47.15 11,021
giza++ union+link deletionpg=0.5 | collins | 47.51 53.20 50.20 13,987
giza++ refined collins | 44.20 54.06 48.64 15,182

Table 4: Rule precision, recall, and f-measure of rulesaexéd from 400 sentence pairs of Chinese-English data

cision, recall, and f-measure of the GIZA++ unionother language pairs with limited amounts (100-200
alignments and various link deletion alignments omsentence pairs) of manually aligned data available.

a held-out Chinese-English test set of 400 sentence

pairs. Table 4 indicates the total (non-unique) numAcknowledgments

ber of rules extracted for each alignment/parse pai{ye thank Steven DeNeefe and Wei Wang for assis-
ing, as well as the rule precision, recall, and fyance with experiments, and Alexander Fraser and
measure of each pair. As more links are deleteqjang Huang for helpful discussions. This research

more rules are extracted-but of those, some are @f;q supported by DARPA (contract HR0011-06-C-
good quality and others are of bad quality. '—i”k'oozz) and by a fellowship from AT&T Labs.

deleted alignments produce rule sets with higher rule
f-measure than either GIZA++ union or GIZA++ re-
fined.

5 Conclusion

We have presented a link deletion algorithm that im-
proves the precision of GIZA++ union alignments
without notably decreasing recall. In addition to lex-
ical and structural features, we use features of the ex-
tracted syntax-based translation rules. Our method
improves alignment quality and translation quality
on Chinese-English and Arabic-English translation
tasks, relative to a GIZA++ union baseline. The
algorithm runs quickly, and is easily applicable to
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Using Shallow Syntax Information
to Improve Word Alignment and Reordering for SMT
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Abstract chunk tags. Despite employing a¥-gram-based

SMT system, the methods described here can also
We describe two methods to improve SMT  be applied to any phrase-based SMT system. Align-
accuracy using shallow syntax information. ment and reordering are similarly used in both ap-
First, we use chunks to refine the set of word proaches.

gﬁ?rg;sr:tesnté?Igaelé%zztﬁsv:z;ztna%:grg%r_]t " In Section 2 we discuss previous related work. In
based SMT system with chunk tags to better Section 3, we discuss Arabic linguistic issues and
account for long-distance reorderings. Exper- motivate some of our decisions. In Section 4, we
iments are reported on an Arabic-Englishtask  describe theV-gram based SMT system which we

showing significant improvements. A human  extend in this paper. Sections 5 and 6 detail the main
error analysis indicates that long-distance re-  contributions of this work. In Section 7, we carry out

orderings are captured effectively. evaluation experiments reporting on the accuracy re-

sults and give details of a human evaluation error
1 Introduction analysis.

Much research has been done on using syntactic ip- Related Work
formation in statistical machine translation (SMT).
In this paper we usehunks (shallow syntax infor- In the SMT community, it is widely accepted that
mation) to improve arlV-gram-based SMT system. there is a need for structural information to account
We tackle both the alignment and reordering probfor differences in word order between different lan-
lems of a language pair with important differenceguage pairs. Structural information offers a greater
in word order (Arabic-English). These differencegotential to learn generalizations about relationships
lead to noisy word alignments, which lower the acbetween languages than flat-structure models. The
curacy of the derived translation table. Addition-need for thesemappings' is specially relevant when
ally, word order differences, especially those spartiandling language pairs with very different word or-
ning long distances and/or including multiple levelgler, such as Arabic-English or Chinese-English.
of reordering, are a challenge for SMT decoding. Many alternatives have been proposed on using
Two improvements are presented here. First, wgyntactic information in SMT systems. They range
reduce the number of noisy alignments by using thitEom those aiming at harmonizing (monotonizing)
idea that chunks, like raw words, have a translathe word order of the considered language pairs by
tion correspondence in the source and target semeans of a set of linguistically-motivated reorder-
tences. Hence, word links are constrained (i.eing patterns (Xia and McCord, 2004; Collins et
noisy links are pruned) using chunk informational., 2005) to others considering translation a syn-
Second, we introduce rewrite rules which can harchronous parsing process where reorderings intro-
dle both short/medium and long distance reordeduced in the overall search are syntactically moti-
ings as well as different degrees of recursive applicarated (Galley et al., 2004; Quirk et al., 2005). The
tion. We build our rules with two different linguistic work presented here follows the word order harmo-
annotations, (local) POS tags and (long-spanningjization strategy.
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Collins et al. (2005) describe a technique for prealignments employed in the system.
processing German to look more like English syn-
tactically. They used six transformations that ar@ Arabic Linguistic Issues

applied on German parsed text to reorder it before )
passing it on to a phrase-based system. They shovpEabic is a morpho-syntactically complex language

moderate statistically significant improvement. OufVith many differences from English. We describe
work differs from theirs crucially in that our pre- here three prominent syntactic _features of Arabic
processing rules are learned automatically. Xia arii}at are relevant to Arabic-English translation and
McCord (2004) describe an approach for translahat motivate some of our decisions in this work.
tion from French to English, where reordering rules First, Arabic words are morphologically complex
are acquired automatically using source and targ€Pntaining clitics whose translations are represented
parses and word alignment. The reordering rule¥eparately in English and sometimes in a different
they use are in a context-free constituency represeftder. For instance, possessive pronominal encli-
tation with marked heads. The rules are mostly lexiics are attached to the noun they modify in Ara-
calized. Xia and McCord (2004) use source and taRiC but their translation precedes the English trans-
get parses to constrain word alignments used for rul@tion of the noun: kitAbu+ hu! ‘book+his — his
extraction. Their results show that there is a positivBooK'. Other clitics include the definite articlal+
effect on reordering when the decoder is run monoth€’, the conjunctionw+ “and’ and the preposition
tonically (i.e., without additional distortion-based!t+ ‘offfor’, among others. We use the Penn Ara-
reordering). The value of reordering is diminished?ic Treebank tokenization scheme which splits three
if the decoder is run in a non-monotonic way. classes of clitics only. This scheme is compatible

Recently, Crego and Marifio (2007b) employ Poé"'tg the %Tunlfr \t/)\{e useéDlai))'et ?I" 20042)’ _
tags to automatically learn reorderings in train- econdly, Arabic verb Subjects may be. pro-

; ; ; d (verb conjugated), pre-verbal (SVO), or
ing. They allow all possible learned reordermggrololoe . X
to be used to create a lattice that is input to thgost-verbal (VS0). The VSO order is quite challeng-

decoder, which further improves translation accung in the context of translation to English. For small

racy. Similarly, Costa-jussa and Fonollosa (ZOOi%oun phrases (NP), small phrase pairs in a phrase ta-
t

use statistical word classes to generalize reord le and some degree of distortion can easily move

ings, which are learned/introduced in a transla- € v_erb to f.O”OW the NP. But this becomes mu_ch
tion process that transforms the source Iangu%} 5s likely V.V'th very long NPs that exceed the size
into the target language word order. Zhang et ak phrases in a_phra:se Fable. . _

(2007) describe a similar approach using unlexi- Flnal_ly, Arabic a_djectlval modlfler§ typically fol-
calized context-free chunk tags (XPs) to learn rd®W their nouns (with a small exception of some su-
ordering rules for Chinese-English SMT. Crego anferiative adjectives). For examplejul Tawiy! (it
Marifio (2007c) extend their previous work usingan tall) translates as tall man'. _ _
syntax trees (dependency parsing) to learn reorder-TheS_e three syn_tactlc features of Arabic-English
ings on a Chinese-English task. Habash (200-;5anslat|on are not independent of each other. As we
applies automatically-learned syntactic reorderinfgorder the verP and the subject NP, we also have to
rules (for Arabic-English SMT) to preprocess the infeorder the NP’s adjectival components. This brings

put before passing it to a phrase-based SMT decod8fW Cga”eggsef/l_ﬁ_o pr:?‘ﬂoﬁ‘sdimp'imc?m?ﬂolnw
As in (Zhang et al., 2007), (Costa-jussa an?ram ase which had worked with ‘anguage
e

o airs that are more similar than Arabic and English,
Fonollosa, 2006) and (Crego anq Mario, .2007b .0., Spanish and English. Although Spanish is like
we employ a word graph for a tight coupling be-

tween reordering and decoding. However, we diffe'ra‘rablc in terms of its noun-adjective order; Spanish

. ) : is similar to English in terms of its subject-verb or-
on the language pair (Arabic-English) and the ruleaer. Spanish m%rphology is more comeIex than En-

employed to learn reorderings. Rules are built usin i . c

. sh but not as complex as Arabic: Spanish is like
both POS tags and chunk tags in order to balanc% I . X
the higher generalization power of chunks with the rabic in terms of being pro-drop but has a smaller

higher accuracy of POS tags. Additiona_lly, we in- 1A Arabic transliterations in this paper are provided i th
troduce a method to use chunks for refining wor@uckwalter transliteration scheme (Buckwalter, 2004).
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number of clitics. We do not focus on morphologyis specially relevant for languages with very dif-
issues in this work. Table 1 illustrates these dimerferent word order. On the other hand, the unfold
sions of variations. The more variations, the hardenethod needs the input source words to be reordered
the translation. during decoding similarly to how source words were
reordered in training. If monotonic decoding were

AR Mﬁ;fdh' VSOSg\t;J(-Jveprrt())-drOp NI\?_Zn':_dI\JI used with unfolded units, translation hypotheses
ES  medium SVO, pro-drop N-A would follow the source language word order.
EN simple SVO A-N

4.2 Reordering Framework

Table 1: Arabic (AR), Spanish (ES) and English (EN)In training time, a set of reordering rules are au-
linguistic features. tomatically learned from word alignments. These
rules are used in decoding time to provide the de-

coder with a set of reordering hypotheses in the form
4 N-gram-based SMT System of a reordering input graph.

The baseline translation system described in this .
paper implements a log-linear combination of siyRuI€ EXtraction

models: atranslation model, a surface target lan- Following theunfold technique, source side re-
guage model, atarget tag language model, aword orderings are introduced into the training corpus in
bonus model, a source-to-target lexicon model, and order to harmonize the word order of the source and
atarget-to-source lexicon model. In contrast to stan- target sentences. For each reordering produced in
dard phrase-based approaches, the translation mothis step a record is taken in the form of a reorder-
is expressed inuples, bilingual translation units, ing rule: sy, ...,s, — i1,...,%,’, where ‘s, ..., s’

and is estimated as ai-gram language model is a sequence of of source words, and ., 7, is

(Marifio et al., 2006). a sequence of index positions into which the source
. _ words (left-hand side of the rule) are reordered. It is
4.1 Translation Units worth noticing that translation units and reordering

Translation units (or tuples) are extracted after rerules are tightly coupled.

ordering source words following thenfold method The reordering rules described so far can only
for monotonizing word alignments (Crego et al.handle reorderings of word sequences already seen
2005). Figure 1 shows an example of tuple extradn training. In order to improve the generalization
tion with the original source-side word order resultpower of these rules, linguistic classes (POS tags,
ing in one tuple (egular); and after reordering the chunks, syntax treesic.) can be used instead of raw

source words resulting in three tuplesifold). words in the left-hand side of the rules. For example,
the reordering introduced to unfold the alignments
regular of the regular tuple AEIn Almdyr AlEAm —

AlEAm Almdyr AFEIn’ in Figure 1 can produce

AEIn Almdyr AIEAM
the rule: VBD NN JJ — 2 1 0, where

the general director announced |... the left-hand side of the rule contains the sequence
o of POS tags {ferb noun adjective’) belonging to the
unfold  — -~ "=~ source words involved in reordering.

AIEAm Almdyr AEIn .
Search Graph Extension

the general | director | announced |... In decoding, the input sentence is handled as a
word graph. A monotonic search graph contains
a single path, composed of arcs covering the input
Figure 1:Regular Vs. Unfold translation units. words in the original word order. To allow for re-

ordering, the graph is extended with new arcs, cov-

In general, the unfold extraction method out-ering the source words in the desired word order. For

performs the regular method because it producesgiven test sentence, any sequence of input tags ful-
smaller, less sparse and more reusable units, whifiling a left-hand side reordering rule leads to the

55



POS .. VBD NN J IN NN 1l IN NN 1) NNP NNP NN NN

words ... AEIn Almdyr AIEAm | AlwkAip Aldwilyp | AlTAgp Af*ryp mHmd AlbrAdEy Alywm AlAvnyn ...
chunks ..\ VP NP PP PP NP NP NP
[ Arryp AlTAgp VPNPPPPPNP->12340

lyp KAlp NN]J->10
NNJJINNNJ) ->12430
IwkAlp Aldwlyp | AlTAqp AP mHmd AlbrAdey

AlEAm Almdyr APryp AITAqp Ein

AEln /Almadyr A.’EAm\I AlwkAlp Aldwlyp 1/AITAqp Al*ryp\,[nHmd AlbrAdEw Alywm AlAvnyn

Aldwi Alw,
P { APryp AlTAqp

Figure 2:Linguistic information, reordering graph and translation composition of an Arabic sentence.

addition of a reordering path. Figure 2 shows an ex- cl c2 c3
ample of an input search graph extension (middle). Pl p2 p3 p4 p5 pb
The monotonic search graph is expanded following [51 s2] [53 s4 55]

three different reordering rules.

5 Rules with Chunk Information M

tl t2 t3 t4 t5

The generalization power of POS-based reordering
rules is somehow limited to short rules (less sparse)
which fail to capture many real examples. Longer
rgles are needed to quel reorderings _between full p2 p3 pd p5 p6->41230
(I!ngU|st|c) phrases, which are not re_:strlcted to any p2c2p6->210
size. In order to capture such long-distance reorder-
ings, we introduce rules with tags referring to arbi-

. igure 3: POS-based and chunk-based Rule extrac-
trary large sequences of words: chunk tags. Chungon: word-alignments, chunk and POSinformation (top),

based rules a”‘.JW the introduction of (_:hunk tags N anglation units (middle) and reordering rules (bottom)
the left-hand side of the rule. For instance, thg,q ghown.

rule: 'VP NP — 1 (0 indicates that a verb
phrase V P’ preceding a noun phrasév'P’ are to
be swapped. That is, the sequence of words comule is applied over the sequence ‘sz s4 S5 sg',
posing the verb phrase are reordered at the end which is transformed intossss s4 s5 so’. As
the sequence of words composing the noun phraséer the chunk rule, the POS taggs‘ ps ps’ of the
In training, like POS-based rules, arecord is takeROS rule are replaced by the corresponding chunk
in the form of a rule whenever a source reordering igag ‘co’ since words within the phrase remain con-
introduced by theunfold technique. To account for secutive after being reordered. The vocabulary of
chunk-based rules, a chunk tag is used instead of tbaunk tags is typically smaller than that of POS tags.
corresponding POS tags when the words compositfence, in order to increase the accuracy of the rules,
the phrase remain consecutive (not necessarily in tiée always use the POS tag instead of the chunk tag
same order) after reordering. Notice that rules arf@r single word chunks. In the example in Figure 3,
built using POS tags as well as chunk tags. Sinage resulting chunk rule contains the POS tag
both approaches are based on the same reorderirigstead of the corresponding chunk tag’:
introduced in training, both POS-based and chunk- Any sequence of input POS/chunk tags fulfilling
based rules collect the same number of training rule left-hand side reordering rule entails the exten-
instances. sion of the permutation graph with a new reorder-
Figure 3 illustrates the process of POS-based amdg path. Figure 2 shows the permutation graph
chunk-based rule extraction. Here, the reorderinfmiddle) computed for an Arabic sentence (top) af-

sl
NULL

s6
tl

s3
t2

s4
t3

s5
t4

s2
t5
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ter applying three reordering rules. The best patdistant chunks. Since limiting alignments to one-to-
is drawn in bold arcs. It is important to notice thatone chunk links is perhaps too strict, we extend the
rules arerecursively applied on top of sequences ofnumber of allowed alignments by permitting words
already reordered words. Chunk rules are applieid a chunk to be aligned to words in a target range of
over phrases (sequences of words) which may ne&rds. This target range is computed as a projection
additional reorderings. Larger rules are applied besf the source chunk under consideration. The re-
fore shorter ones in order to allow for an easy imsulting refined set contains all the Intersection align-
plementation of recursive reordering. Rules are aments and some of the Union.

lowed to match any path of the permutation graph
consisting of a sequence of words in the original or: cl c2 c3 c4

der. For example, the sequenddrhdyr AIEANT is [51 sz] [53 s4 35] [57 S8 59]
reordered into AIEAmM Almdyr’ following the rule
‘NN JJ — 1 0’ on top of the monotonic path as
well as on top of the path previously reordered by
rule'VP NP PP PP NP —12340. InFig-
ure 2, the best reordering path (bold arcs) could ng
be hypothesized without recursive reorderings.

6 Refinement of Word Alignments

As stated earlier, the Arabic-English language pai
presents important word order disparities. These L . ,
strong differences make word alignment a very diflfIgjljlre 4: Chunk projection: solid link are Intersection

. ) . inks and all links (solid and dashed) are Union links.

ficult task, typically producing a large number of

noisy (wrong) alignments. Th&-gram-based SMT

approach suffers highly from the presence of noisy We outline the algorithm next. The method can
alignments since translation units are extracted ok decomposed in two steps. In the first step, using
of single alignment-based segmentations of trainingpe Intersection set of alignments and source-side
sentences. Noisy alignments lead to large translatigfiunks, each chunk is projected into the target side.
units, which cause a loss of translation informatiorrigure 4 shows an example of word alignment re-
and add to sparseness problems. finement. The projectiodk of the chunkg;, is com-

We propose an alignment refinement method tBosed of the sequence of consecutive target words
reduce the number of wrong alignments. Théliest, trignt] Which can be determined as follows:
method employs two initial alignment sets: one with
high precision, the other with high recall. We use
the Intersection and Union (Och and Ney, 2000)
of both alignment directiosas the high precision
and high recall alignment sets, respectively. We
will study the effect of various initial alignment sets
(such asgrow-diag-final instead ofUnion) in the
future. The method is based on the fact that linguis-
tic phrases (chunks), like raw words, have transla- e For each source chunl, t;c:/t.ign: IS Set by
tion correspondences and can therefore be aligned. extending its leftmost/rightmost anchor in the
We use chunk information to reduce the number left/right direction up to the word before the

e All target wordst; contained in Intersection
links (s;,t;) with source words; within ¢, are
considered projection anchors. In the exam-
ple in Figure 4, source words of chunk) are
aligned into the target side by means of two In-
tersection alignmentgss, t3) and(sy, t5), and
producing two anchorg{ andts).

of allowed alignments for a given word. The sim-
ple idea that words in a source chunk are typically
aligned to words in a single possible target chunk is
used to discard alignments which link words from

2\We use IBM-1 to IBM-5 models (Brown et al., 1993) im-
plemented with GIZA++ (Och and Ney, 2003).
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next anchor (or the first/last word if at sentence
edge). In the example in Figure 4&,, ¢, ¢,
and ¢, are respectively[ty, ta], [to, te], [t1, t2]
and[tﬁ,tg].

In the second step, for every alignment of the
Union set, the alignment is discarded if it links a



source words; to a target word; that falls out of the ~ We use the standard four-reference NIST MTE-
projection of the chunk containing the source wordval data sets for the years 2003, 2004 and 2005
Notice that all the Intersection links are containeqdhenceforth MT03, MT04 and MTO5, respectively)
in the resulting refined set. In the example in Figfor testing and the 2002 data set for tunfnBLEU-
ure 4, the link(s1, t2) is discarded as, falls out of 4 (Papineni et al., 2002), METEOR (Banerjee and
the projection of chunk; ([t4, t4]). Lavie, 2005) and multiple-reference Word Error
A further refinement can be done using the chunkBate scores are reported. SMT decoding is done us-
of the target side. The same technique is applied bpg MARIE,” a freely availableN-gram-based de-
switching the role of source and target words/chunksoder implementing a beam search strategy with dis-
in the algorithm described above and using the outertion/reordering capabilities (Crego and Marifio,
put of the basic source-based refinement (describ@®07a). Optimization is done with an in-house im-
above) as the high-recall alignment set, i.e., instegglementation of the SIMPLEX (Nelder and Mead,

of Union. 1965) algorithm.
7 Evaluation 7.2 Results

) In this section we assess the accuracy results of the
7.1 Experimental Framework techniques introduced in this paper for alignment re-

All of the training data used here is available fronfinement and word reordering.
the Linguistic Data Consortium (LDG)We use an
Arabic-English parallel corpdsconsisting of 131K ] )
sentence pairs, with approximately 4.1M Arabic to- We contrast three systems built from different
kens and 4.4M English tokens. Word alignment igvord alignments: (a.) the Union alignment set
done with GIZA++ (Och and Ney, 2003). All evalu- of. both translation _dlreptlons (U); (b.) the .reflned
ated systems use the same surface trigram languadjignment set, detailed in Section 6, employing only
model, trained on approximately 340 million wordsSource-side chunks (rS); (c.) the refined alignment
of English newswire text from the English Giga-Set employlr_\g source as well as target-side chunks
word corpus (LDC2003T05). Additionally, we use(rST)- Forthis experiment, the system employs.an

a 5-gram language model computed over the POgam bilingual translation model (TM) with = 3
tagged English side of the training corpus. Languag@d” = 4. We also vary the use ofiagram target-

models are implemented using the SRILM toolkit@d language model (ttLM). The reordering graph is
(Stolcke, 2002). built using POS-based rules restricted to a maximum

For Arabic tokenization, we use the Arabic TreeS1Z€ 0f6 tokens (POS tags in the left-hand side of the
ule). The results are shown in Table 2.

Bank tokenization scheme: 4-way normalized sed ) i
ments into conjunction, particle, word and pronom- Results from the refined alignment (rS) system
inal clitic. For POS tagging, we use the collapse§!€arly outperform the results from the alignment
tagset for PATB (24 tags). Tokenization and poghion (U) system. All measures agree in all test s_ets.
tagging are done using the publicly available MorResults further improve when we employ target-side
phological Analysis and Disambiguation of Arabicchunks to refine the alignments (rST), although not
(MADA) tool (Habash and Rambow, 2005). For_statlstlcally significantly. BLEUS_)E)% confidence
chunking Arabic, we use the AMIRA (ASVMT) intervals for the best conflguratlo'n (last row) are
toolkit (Diab et al., 2004). English preprocessingjomz* +.0210 and=+.0135 respectively foMTO03,
simply included down-casing, separating punctua¥l 104 andMTO5.
tion from words and splitting off “s”. The English AS anticipated, theV-gram system suffers un-
side is POS-tagged with TNT(Brants, 2000) and@er high reordering needs when noisy alignments
chunked with the freely available OpenRipols. ~ Produce long (sparse) tuples. This can be seen by
the increase in translation unit counts when refined
3nttp:/www.Idc.upenn.edu links are used to alleviate the sparseness problem.

“The parallel text includes Arabic News (LDC2004T17), The number of links of each alignment set over all
eTIRR (LDC2004E72), English translation of Arabic Treekan
(LDC2005E46), and Ummah (LDC2004T18). Shttp://www.nist.gov/speech/tests/mt/
®http://opennlp.sourceforge.net/ "http://gps-tsc.upc.es/veu/soft/soft/marie/
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Align | TMttLM | BLEU mWER METEOR

Table 4 measures the impact of introducing re-

MTO03 ordering rules limited to a given size (Y axis) on
:{5, g 'jggg gé'gi 'gigi the permutation graphs of input sentences from the
ST 3 . 4600 50: 64 .é 116 MTO3 data set (composed 663 sentences contain-
ST 4 - | 4610 50.20 6401 ing 18,325 words). ColumnTotal shows the num-
ST 4 5 | 4689 4936 .6411 ber of additional (extended) paths introduced into
MTO4 the test set permutation graphe( 2,971 additional
u 3 - |.4244 50.12 .6055 paths of size POS tags were introduced). Columns
rs 3 - 4317  49.89 .6085 3 to 8 show the number of moves made in thbest
rST 3 - | .4375 49.69  .6109 translation output according to the size of the move
rST 4 - | 4370 49.07  .6093 in words {.e., 1, 652 moves of siz& words appeared
ST | 4 5 | 4366 4870 .6092 when considering POS rules of up to sizeords).
U MT%S - 13665040 5306 The_ rows in Table 4.correspond to_the columns as-
' ' ' sociated with MTO3 in Table 3. Notice that a chunk
rS 3 - | .4447 4977 .6353 ) : :
ST 3 . 4484 49.09 6386 _tag may refer to multiple w_ords, which e>_<p|a|ns, for
ST 4 - 4521 48.69 6377 instance, how2 moves of sizel appear using chunk
ST 4 5 | 4561 48.07 6401 rules of size2. Overall, short-size reorderings are far

Table 2: Evaluation results for experiments on tranda-

more abundant than larger ones.

tion units, alignment and modeling. Size| Total | 2 3 4 [56 [78] [9.14]
POS rules
2 8,142 [2,129 - - - - -
- . 3| 42,971 | 1,652 707 - - - -
training o!ata 185.5 M (U), 49 M (rS) and4.6 M 4 | +1,628|1,563 631 230 - ) )
(rST). Using the previous sets, the number of unique 5 +964 | 1,531 615 210 82 - -
extracted translation units #65.5 K (U), 346.3 K 6 +730 | 1,510 604 200 123 - -
(rS) and407.8 K (rST). Extending the TM to order ; I‘gg 11‘3; ggg }g} gé 3‘61 -
4 and introducing the ttLM seems to further boost —snunkTaies —

the accuracy results for all sets in terms of mMWER™ 9,201 [2,036 118 42 20 1 0
and for MTO3 and MTO5 only in terms of BLEU. 3 +4,977 | 1,603 651 71 42 5 2
4 | +1,855 | 1,542 593 200 73 7 0
- - 5 | +1,172 | 1,514 578 187 118 15 1
Chunk Reordering Experiment 6 +760 | 1495 573 178 130 20 5
We compare POS-based reordering rules with 7 +393 | 1,488 568 173 129 27 10
; : 8 +112 [ 1,488 568 173 129 27 10
chunk-based reordering rules under different max +303 | 1405 546 170 152 54 5

imum rule-size constraints. Results are obtained us-
ing TM n = 4, ttLM n=5 and rST refinement align-
ment. BLEU scores are shown in Table 3 for all tes
sets and rule sizes. Rule sizB indicates that chunk
rules are used with recursive reorderings.

BLEU‘ 2 3 4 5 6 7 8 TR

able 4:

Reorderings hypothesized and employed in the
-best trang ation output according to their size.

Differences in BLEU (Table 3) are very small
across the alternative configurations (POS/chunk). It
seems that larger reorderings, sizéo 14, (shown

MTO03 . . L
POS | 4364 4581 .46564690.4689 4686 4685 - in Table 4) introduce very small accuracy variations
Chunk .4426 .4637 .4680 .4698 .4703 .4714 474725 When measured using BLEU. POS rules are able to

MTO04 account for most of the necessary moves (gize

POS | .4105 .4276 .4332 .4355 .4366 .438368 -

Chunk .4125 .4316 .43584381.4373 .4372 .4373 .4364
MTO5

POS | .4206 .4465 .4532 .4549 .4561 .458B65 -

6). However, the presence of the larger moves when
considering chunk-based rules (together with accu-
racy improvements) show that long-size reorderings

Chunk| 4236 4507 .4561 .4571 4574 4575 454579 ~ Ccan only be captured by chunk rules. The largest

moves taken by the decoder using POS rules con-

Table 3:BLEU scores according to the maximumsize of ~ sist of 2 sequences o words (Table 4, column 7,

rules employed.
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row 9 minus row 8). The increase in the number of



long moves when considering recursive churik®)( features to constrain the reordering model may be
means that longer chunk rules provide only valid reneeded. In the future, we plan to introduce weights
ordering paths if further (recursive) reorderings arato the permutations graph to more accurately drive
also considered. The corresponding BLEU scorthe search process as well as extend the rules with
(Table 3, last column) indicates that the new set dull syntactic information (parse trees).

moves improves the resulting accuracy. The gen-

eral lower scores and inconsistent behavior of MToACknowledgments

compared to MTO3/MTO5 may be a result of MTOZ

bei i of . h q 'he first author has been partially funded by the
toerlira]l?s)a mix of genres (newswire, speeches and e panish Government under the AVIVAVOZ project

(TEC2006-13694-C03) the Catalan Government un-
7.3 Error Analysis der BE-2007 grant and the Universitat Politecnica de
Catalunya under UPC-RECERCA grant. The sec-

We conducted a human error analysis by compagi,y 5 thor was funded under the DARPA GALE
ing the best results from the POS system to tho ogram, contract HR0011-06-C-0023
of the best chunk system. We used a sample of 155 ’ '

sentences from MTO03. In this sample, 25 sentences

(16%) were actually different between the two anReferences
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Abstract

We propose three enhancements to the tree-
to-string (TTS) transducer for machine trans-
lation: first-level expansion-based normaliza-
tion for TTS templates, a syntactic align-
ment framework integrating the insertion of
unaligned target words, and subtree-based n-
gram model addressing the tree decomposi-
tion probability. Empirical results show that
these methods improve the performance of a
TTS transducer based on the standard BLEU-
4 metric. We also experiment with semantic
labels in a TTS transducer, and achieve im-
provement over our baseline system.

1 Introduction

Syntax-based statistical machine translation
(SSMT) has achieved significant progress during
recent years, with two threads developing simul-
taneously: the synchronous parsing-based SSMT
(Galley et al., 2006; May and Knight, 2007) and
the tree-to-string (TTS) transducer (Liu et al.,
2006; Huang et al., 2006). Synchronous SSMT
here denotes the systems which accept a source
sentence as the input and generate the translation
and the syntactic structure for both the source and
the translation simultaneously. Such systems are
sometimes also called TTS transducers, but in this
paper, TTS transducer refers to the system which
starts with the syntax tree of a source sentence and
recursively transforms the tree to the target language
based on TTS templates.

In synchronous SSMT, TTS templates are used
similar to the context free grammar used in the stan-
dard CYK parser, thus the syntax is part of the output
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and can be thought of as a constraint on the transla-
tion process. In the TTS transducer, since the parse
tree is given, syntax can be thought of as an addi-
tional feature of the input to be used in the transla-
tion. The idea of synchronous SSMT can be traced
back to Wu (1997)’s Stochastic Inversion Transduc-
tion Grammars. A systematic method for extract-
ing TTS templates from parallel corpora was pro-
posed by Galley et al. (2004), and later binarized
by Zhang et al. (2006) for high efficiency and ac-
curacy. In the other track, the TTS transducer orig-
inated from the tree transducer proposed by Rounds
(1970) and Thatcher (1970) independently. Graehl
and Knight (2004) generalized the tree transducer
to the TTS transducer and introduced an EM al-
gorithm to estimate the probability of TTS tem-
plates based on a bilingual corpus with one side
parsed. Liu et al. (2006) and Huang et al. (2006)
then used the TTS transducer on the task of Chinese-
to-English and English-to-Chinese translation, re-
spectively, and achieved decent performance.
Despite the progress SSMT has achieved, it is
still a developing field with many problems un-
solved. For example, the word alignment com-
puted by GIZA++ and used as a basis to extract
the TTS templates in most SSMT systems has been
observed to be a problem for SSMT (DeNero and
Klein, 2007; May and Knight, 2007), due to the
fact that the word-based alignment models are not
aware of the syntactic structure of the sentences and
could produce many syntax-violating word align-
ments. Approaches have been proposed recently to-
wards getting better word alignment and thus bet-
ter TTS templates, such as encoding syntactic struc-
ture information into the HMM-based word align-
ment model DeNero and Klein (2007), and build-
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ing a syntax-based word alignment model May
and Knight (2007) with TTS templates. Unfortu-
nately, neither approach reports end-to-end MT per-
formance based on the syntactic alignment. DeN-
ero and Klein (2007) focus on alignment and do not
present MT results, while May and Knight (2007)
takes the syntactic re-alignment as an input to an EM
algorithm where the unaligned target words are in-
serted into the templates and minimum templates are
combined into bigger templates (Galley et al., 2006).
Thus the improvement they reported is rather indi-
rect, leading us to wonder how much improvement
the syntactic alignment model can directly bring to a
SSMT system. Some other issues of SSMT not fully
addressed before are highlighted below:

1. Normalization of TTS templates. Galley et
al. (2006) mentioned that with only the mini-
mum templates extracted from GHKM (Galley
et al., 2004), normalizing the template proba-
bility based on its tree pattern “can become ex-
tremely biased”, due to the fact that bigger tem-
plates easily get high probabilities. They in-
stead use a joint model where the templates are
normalized based on the root of their tree pat-
terns and show empirical results for that. There
is no systematic comparison of different nor-
malization methods.

2. Decomposition model of a TTS transducer
(or syntactic language model in synchronous
SSMT). There is no explicit modeling for the
decomposition of a syntax tree in the TTS
transducer (or the probability of the syntactic
tree in a synchronous SSMT). Most systems
simply use a uniform model (Liu et al., 2006;
Huang et al., 2006) or implicitly consider it
with a joint model producing both syntax trees
and the translations (Galley et al., 2006).

3. Use of semantics. Using semantic features in
a SSMT is a natural step along the way to-
wards generating more refined models across
languages. The statistical approach to semantic
role labeling has been well studied (Xue and
Palmer, 2004; Ward et al., 2004; Toutanova et
al., 2005), but there is no work attempting to
use such information in SSMT, to our limited
knowledge.
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This paper proposes novel methods towards solv-
ing these problems. Specifically, we compare three
ways of normalizing the TTS templates based on the
tree pattern, the root of the tree pattern, and the first-
level expansion of the tree pattern respectively, in
the context of hard counting and EM estimation; we
present a syntactic alignment framework integrating
both the template re-estimation and insertion of un-
aligned target words; we use a subtree-based n-gram
model to address the decomposition of the syntax
trees in TTS transducer (or the syntactic language
model for synchronous SSMT); we use a statistical
classifier to label the semantic roles defined by Prop-
Bank (Palmer et al., 2005) and try different ways of
using the semantic features in a TTS transducer.

We chose the TTS transducer instead of syn-
chronous SSMT for two reasons. First, the decoding
algorithm for the TTS transducer has lower compu-
tational complexity, which makes it easier to inte-
grate a complex decomposition model. Second, the
TTS Transducer can be easily integrated with se-
mantic role features since the syntax tree is present,
and it’s not clear how to do this in a synchronous
SSMT system. The remainder of the paper will
focus on introducing the improved TTS transducer
and is organized as follows: Section 2 describes the
implementation of a basic TTS transducer; Section
3 describes the components of the improved TTS
transducer; Section 4 presents the empirical results
and Section 5 gives the conclusion.

2 A Basic Tree-to-string Transducer for
Machine Translation

The TTS transducer, as a generalization to the finite
state transducer, receives a tree structure as its input
and recursively applies TTS templates to generate
the target string. For simplicity, usually only one
state is used in the TTS transducer, i.e., a TTS tem-
plate will always lead to the same outcome wher-
ever it is used. A TTS template is composed of a
left-hand side (LHS) and a right-hand side (RHS),
where LHS is a subtree pattern and RHS is a se-
quence of the variables and translated words. The
variables in the RHS of a template correspond to the
bottom level non-terminals in the LHS’s subtree pat-
tern, and their relative order indicates the permuta-
tion desired at the point where the template is ap-
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Is not

Figure 1: A TTS Template Example

SQ

%N

AUX NP RB VP ?

A\

DT NN VBN

/N

Is the job  not finished ?
TIE&E M 7
(SQ (AUX is) NP' (RB not) VP? ?%) => NP' & H VP? ?°
(NP (DT the) (NN job)) => T {F
(VP VBN'") => VBN'
(VBN finished) => 5%
??)=>7

Figure 2: Derivation Example

plied to translate one language to another. The vari-
ables are further transformed and the recursive pro-
cess goes on until there are no variables left. The
formal description of a TTS transducer is described
in Graehl and Knight (2004), and our baseline ap-
proach follows the Extended Tree-to-String Trans-
ducer defined in (Huang et al., 2006). Figure 1 gives
an example of the English-to-Chinese TTS template,
which shows how to translate a skeleton YES/NO
question from English to Chinese. N P! and V P?
are the variables whose relative position in the trans-
lation are determined by the template while their ac-
tual translations are still unknown and dependent on
the subtrees rooted at them; and the English words Is
and not are translated into the Chinese word MeiYou
in the context of the template. The superscripts at-
tached on the variables are used to distinguish the
non-terminals with identical names (if there is any).
Figure 2 shows the steps of transforming the English
sentence “Is the job not finished ?” to the corre-
sponding Chinese.

For a given derivation (decomposition) of a syn-
tax tree, the translation probability is computed as
the product of the templates which generate both
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the source syntax trees and the target translations.
In theory, the translation model should sum over
all possible derivations generating the target transla-
tion, but in practice, usually only the best derivation
is considered:

Pr(S|T,D*) = [] Weight()
teD*

Here, S denotes the target translation, 7" denotes the
source syntax tree, and D* denotes the best deriva-
tion of 7. The implementation of a TTS trans-
ducer can be done either top down with memoiza-
tion to the visited subtrees (Huang et al., 2006), or
with a bottom-up dynamic programming (DP) algo-
rithm (Liu et al., 2006). This paper uses the lat-
ter approach, and the algorithm is sketched in Fig-
ure 3. For the baseline approach, only the translation
model and n-gram model for the target language are
used:

S* = argmax Pr(T|S) = argmax Pr(S)Pr(S|T)
S S

Since the n-gram model tends to favor short transla-
tions, a penalty is added to the translation templates
with fewer RHS symbols than LHS leaf symbols:

Penalty(t) = exp(|t. RHS| — [t.LHS Lea f|)

where |t.RH S| denotes the number of symbols in
the RHS of ¢, and |t.LH SLeaf| denotes the num-
ber of leaves in the LHS of ¢. The length penalty is
analogous to the length feature widely used in log-
linear models for MT (Huang et al., 2006; Liu et al.,
2006; Och and Ney, 2004). Here we distribute the
penalty into TTS templates for the convenience of
DP, so that we don’t have to generate the N-best list
and do re-ranking. To speed up the decoding, stan-
dard beam search is used.

In Figure 3, BinaryCombine denotes the target-
size binarization (Huang et al., 2006) combination.
The translation candidates of the template’s vari-
ables, as well as its terminals, are combined pair-
wise in the order they appear in the RHS of the
template. f; denotes a combined translation, whose
probability is equal to the product of the probabili-
ties of the component translations, the probability of
the rule, the n-gram probability of connecting the
component translations, and the length penalty of



Match(v, t): the descendant tree nodes of v, which match the variables in template ¢

v.sk: the stack associated with tree node v

In(c;, f;): the translation candidate of c¢; which is chosen to combine f;

for all tree node v in bottom-up order do
for all template 7 applicable at v do
{c1, ¢, ..., ¢ }=Match(v, t);

{f1, f2, .-y fm} = BinaryCombine(c; .sk, c3.8k, ..., ¢p. Sk, 1);

for i=1:m do

Pr(f;) = H;zlPr(In(cj, fi)) - Weight(t)®- Lang(v, t, f;)?- Penalty(t)*;

Add (f;, Pr(f:)) tov.sk;
Prune v.sk;

Figure 3: Decoding Algorithm

the template. «, 3 and y are the weights of the length
penalty, the translation model, and the n-gram lan-
guage model, respectively. Each state in the DP
chart denotes the best translation of a tree node with
a certain prefix and suffix. The length of the pre-
fix and the suffix is equal to the length of the n-gram
model minus one. Without the beam pruning, the de-
coding algorithm runs in O(N*"~VRPQ), where
N is the vocabulary size of the target language, 7 is
the length of the n-gram model, R is the maximum
number of templates applicable to one tree node, P
is the maximum number of variables in a template,
and @ is the number of tree nodes in the syntax tree.
The DP algorithm works for most systems in the pa-
per, and only needs to be slightly modified to en-
code the subtree-based n-gram model described in
Section 3.3.

3 Improved Tree-to-string Transducer for
Machine Translation

3.1 Normalization of TTS Templates

Given the story that translations are generated based
on the source syntax trees, the weight of the template
is computed as the probability of the target strings
given the source subtree:

#(t)
#(t': LHS(') = LHS(t))

Weight(t) =

Such normalization, denoted here as TREE, is used
in most tree-to-string template-based MT systems
(Liu et al., 2007; Liu et al., 2006; Huang et al.,
2006). Galley et al. (2006) proposed an alteration
in synchronous SSMT which addresses the proba-
bility of both the source subtree and the target string
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given the root of the source subtree:

#(t)

Weight(t) = #(t' : root(t') = root(t))

This method is denoted as ROOT. Here, we propose
another modification:
#(t)

(" cfg(t') = cfg(t))
cfg in Equation 1 denotes the first level expansion
of the source subtree and the method is denoted as
CFG. CFG can be thought of as generating both the
source subtree and the target string given the first
level expansion of the source subtree. TREE focuses
on the conditional probability of the target string
given the source subtree, ROOT focuses on the joint
probability of both the source subtree and the target
string, while CFG, as something of a compromise
between TREE and ROOT, hopefully can achieve a
combined effect of both of them. Compared with
TREE, CFG favors the one-level context-free gram-
mar like templates and gives penalty to the templates
bigger (in terms of the depth of the source subtree)
than that. It makes sense considering that the big
templates, due to their sparseness in the corpus, are
often assigned unduly large probabilities by TREE.

Weight(t) = 7 (1)

3.2 Syntactic Word Alignment

The idea of building a syntax-based word alignment
model has been explored by May and Knight (2007),
with an algorithm working from the root tree node
down to the leaves, recursively replacing the vari-
ables in the matched tree-to-string templates until
there are no such variables left. The TTS tem-
plates they use are initially gathered using GHKM



1. Run GIZA++ to get the initial word alignment, use
GHKM to gather translation templates, and com-
pute the initial probability as their normalized fre-
quency.

2. Collect all the one-level subtrees in the training cor-
pus containing only non-terminals and create TTS
templates addressing all the permutations of the
subtrees’ leaves if its spanning factor is not greater
than four, or only the monotonic translation tem-
plate if its spanning factor is greater than four. Col-
lect all the terminal rules in the form of A — B
where A is one source word, B is the consecutive
target word sequence up to three words long, and
A, B occurs in some sentence pairs. These extra
templates are assigned a small probability 10~6.

3. Run the EM algorithm described in (Graehl and
Knight, 2004) with templates obtained in step 1 and
step 2 to re-estimate their probabilities.

4. Use the templates from step 3 to compute the viterbi
word alignment.

5. The templates not occurring in the viterbi deriva-
tion are ignored and the probability of the remain-
ing ones are re-normalized based on their frequency
in the viterbi derivation.

Figure 4: Steps generating the refined TTS templates

(Galley et al., 2004) with the word alignment com-
puted by GIZA++ and re-estimated using EM, ig-
noring the alignment from Giza++. The refined
word alignment is then fed to the expanded GHKM
(Galley et al., 2006), where the TTS templates will
be combined with the unaligned target words and
re-estimated in another EM framework. The syn-
tactic alignment proposed here shares the essence of
May and Knight’s approach, but combines the re-
estimation of the TTS templates and insertion of the
unaligned target words into a single EM framework.
The process is described in Figure 4. The inser-
tion of the unaligned target words is done implicitly
as we include the extra terminal templates in Fig-
ure 4, and the extra non-terminal templates ensure
that we can get a complete derivation forest in the
EM training. The last viterbi alignment step may
seem unnecessary given that we already have the
EM-estimated templates, but in experiments we find
that it produces better result by cutting off the noisy
(usually very big) templates resulting from the poor
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alignments of GIZA++.

3.3 Tree Decomposition Model

A deficiency of the translation model for tree-to-
string transducer is that it cannot fully address
the decomposition probability of the source syntax
trees. Though we can say that ROOT/CFG implic-
itly includes the decomposition model, a more di-
rect and explicit modeling of the decomposition is
still desired. Here we propose a novel n-gram-like
model to solve this problem. The probability of a
decomposition (derivation) of a syntax tree is com-
puted as the product of the n-gram probability of
the decomposed subtrees conditioned on their ascen-
dant subtrees. The formal description of the model
is in Equation 2, where D denotes the derivation and
PT(st) denotes the direct parent subtree of st.

Pr(DIT)= T[] Pr(st|PT(st), PT(PT(st)),..

subtrees
steD

2
Now, with the decomposition model added in, the
probability of the target string given the source syn-
tax tree is computed as:

Pr(S|T) = Pr(D*|T) x Pr(S|T, D*)

To encode this n-gram probability of the subtrees
in the decoding process, we need to expand the
state space of the dynamic programming algorithm
in Figure 3, so that each state represents not only
the prefix/suffix of the partial translation, but also
the decomposition history of a tree node. For ex-
ample, with a bigram tree model, the states should
include the different subtrees in the LHS of the tem-
plates used to translate a tree node. With bigger n-
grams, more complex history information should be
encoded in the states, and this leads to higher com-
putational complexity. In this paper, we only con-
sider the tree n-gram up to size 2. It is not practi-
cal to search the full state space; instead, we mod-
ify the beam search algorithm in Figure 3 to encode
the decomposition history information. The mod-
ified algorithm for the tree bigram creates a stack
for each tree pattern occurring in the templates ap-
plicable to a tree node. This ensures that for each
tree node, the decompositions headed with differ-
ent subtrees have equal number of translation can-
didates surviving to the upper phase. The function
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Figure 5: Flow graph of the system with all components
integrated
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BinaryCombine is almost the same as in Figure 3,
except that the translation candidates (states) of each
tree node are grouped according to their associated
subtrees. The bigram probabilities of the subtrees
can be easily computed with the viterbi derivation in
last subsection. Also, a weight should be assigned
to this component. This tree n-gram model can be
easily adapted and used in synchronous SSMT sys-
tems such as May and Knight (2007), Galley et al.
(2006). The flow graph of the final system with all
the components integrated is shown in Figure 5.

3.4 Use of Semantic Roles

Statistical approaches to MT have gone through
word-based systems, phrase-based systems, and
syntax-based systems. The next generation would
seem to be semantic-based systems. We use Prop-
Bank (Palmer et al., 2005) as the semantic driver in
our TTS transducer because it is built upon the same
corpus (the Penn Treebank) used to train the statisti-
cal parser, and its shallow semantic roles are more
easily integrated into a TTS transducer. A Max-
Entropy classifier, with features following Xue and
Palmer (2004) and Ward et al. (2004), is used to gen-
erate the semantic roles for each verb in the syntax
trees. We then replace the syntactic labels with the
semantic roles so that we have more general tree la-
bels, or combine the semantic roles with the syntac-
tic labels to generate more refined tree node labels.
Though semantic roles are associated with the verbs,
it is not feasible to differentiate the roles of different
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| NP VP | VP NP
(S NP-agent VP) | 0.983 0.017
(S NP-patient VP) | 0.857 0.143

Table 1: The TREE-based weights of the skeleton tem-
plates with NP in different roles

verbs due to the data sparseness problem. If some
tree nodes are labeled different roles for different
verbs, those semantic roles will be ignored.

A simple example demonstrating the need for se-
mantics in the TTS transducer is that in English-
Chinese translation, the NP VP skeleton phrase is
more likely to be inverted when NP is in a patient
role than when it is in an agent role. Table 1 shows
the TREE-based weights of the 4 translation tem-
plates, computed based on our training corpus. This
shows that the difference caused by the roles of NP
is significant.

4 Experiment

We used 74,597 pairs of English and Chinese sen-
tences in the FBIS data set as our experimental
data, which are further divided into 500 test sen-
tence pairs, 500 development sentence pairs and
73597 training sentence pairs. The test set and de-
velopment set are selected as those sentences hav-
ing fewer than 25 words on the Chinese side. The
translation is from English to Chinese, and Char-
niak (2000)’s parser, trained on the Penn Treebank,
is used to generate the syntax trees for the English
side. The weights of the MT components are op-
timized based on the development set using a grid-
based line search. The Chinese sentence from the se-
lected pair is used as the single reference to tune and
evaluate the MT system with word-based BLEU-4
(Papineni et al., 2002). Huang et al. (2006) used
character-based BLEU as a way of normalizing in-
consistent Chinese word segmentation, but we avoid
this problem as the training, development, and test
data are from the same source.

4.1 Syntax-Based System

The decoding algorithm described in Figure 3 is
used with the different normalization methods de-
scribed in Section 3.1 and the results are summa-
rized in Table 2. The TTS templates are extracted
using GHKM based on the many-to-one alignment



Baseline Syntactic Alignment | Subtree bigram

dev  test dev test dev test

TREE | 12.29 8.90 | 13.25 9.65 | 1484 10.61

ROOT | 12.41 9.66 | 13.72 10.16 | 14.24  10.66

CFG | 13.27 9.69 | 14.32 10.29 | 15.30  10.99
PHARAOH | 9.04 7.84

Table 2: BLEU-4 scores of various systems with the syntactic alignment and subtree bigram improvements added

incrementally.

from Chinese to English obtained from GIZA++.
We have tried using alignment in the reverse direc-
tion and the union of both directions, but neither
of them is better than the Chinese-to-English align-
ment. The reason, based on the empirical result,
is simply that the Chinese-to-English alignments
lead to the maximum number of templates using
GHKM. A modified Kneser-Ney bigram model of
the Chinese sentence is trained using SRILM (Stol-
cke, 2002) using the training set. For comparison,
results for Pharaoh (Koehn, 2004), trained and tuned
under the same condition, are also shown in Table 2.
The phrases used in Pharaoh are extracted as the pair
of longest continuous spans in English and Chinese
based on the union of the alignments in both direc-
tion. We tried using alignments of different direc-
tions with Pharaoh, and find that the union gives
the maximum number of phrase pairs and the best
BLEU scores. The results show that the TTS trans-
ducers all outperform Pharaoh, and among them, the
one with CFG normalization works better than the
other two.

We tried the three normalization methods in the
syntactic alignment process in Figure 4, and found
that the initialization (step 1) and viterbi alignment
(step 3 and 4) based on the least biased model
ROOT gave the best performance. Table 2 shows
the results with the final template probability re-
normalized (step 5) using TREE, ROOT and CFG
respectively. We can see that the syntactic align-
ment brings a reasonable improvement for the TTS
transducer no matter what normalization method is
used. To test the effect of the subtree-based n-
gram model, SRILM is used to compute a modi-
fied Kneser-Ney bigram model for the subtree pat-
terns used in the viterbi alignment. The last 3 lines
in Table 2 show the improved results by further in-
corporating the subtree-based bigram model. We
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can see that the difference of the three normaliza-
tion methods is lessened and TREE, the weakest nor-
malization in terms of addressing the decomposition
probability, gets the biggest improvement with the
subtree-based bigram model added in.

4.2 Semantic-Based System

Following the standard division, our max-entropy
based SRL classifier is trained and tuned using sec-
tions 2-21 and section 24 of PropBank, respectively.
The F-score we achieved on section 23 is 88.70%.
We repeated the experiments in last section with
the semantic labels generated by the SRL classi-
fier. Table 3 shows the results, comparing the non-
semantic-based systems with similar systems us-
ing the refined and general semantic labels, respec-
tively. Unfortunately, semantic based systems do
not always outperform the syntactic based systems.
We can see that for the baseline systems based on
TREE and ROOT, semantic labels improve the re-
sults, while for the other systems, they are not re-
ally better than the syntactic labels. Our approach
to semantic roles is preliminary; possible improve-
ments include associating role labels with verbs and
backing off to the syntactic-label based models from
semantic-label based TTS templates. In light of our
results, we are optimistic that more sophisticated
use of semantic features can further improve a TTS
transducer’s performance.

5 Conclusion

This paper first proposes three enhancements to the
TTS transducer: first-level expansion-based normal-
ization for TTS templates, a syntactic alignment
framework integrating the insertion of unaligned tar-
get words, and a subtree-based n-gram model ad-
dressing the tree decomposition probability. The ex-
periments show that the first-level expansion-based



No Semantic Labels Refined Labels General Labels
Syntactic  Subtree Syntactic ~ Subtree Syntactic ~ Subtree
Baseline Alignment Bigram | Baseline Alignment Bigram | Baseline Alignment Bigram
TREE 8.90 9.65 10.61 9.40 10.25 10.42 9.40 10.02 10.47
ROOT 9.66 10.16 10.66 9.89 10.32 10.43 9.82 10.17 10.42
CFG 9.69 10.29 10.99 9.66 10.16 10.33 9.58 10.25 10.59

Table 3: BLEU-4 scores of semantic-based systems on test data. As in Table 2, the syntactic alignment and subtree
bigram improvements are added incrementally within each condition.

normalization for TTS templates is better than the
root-based one and the tree-based one; the syntactic
alignment framework and the n-gram based tree de-
composition model both improve a TTS transducer’s
performance. Our experiments using PropBank se-
mantic roles in the TTS transducer show that the ap-
proach has potential, improving on our baseline sys-
tem. However, adding semantic roles does not im-
prove our best TTS system.
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Abstract

This paper analyzes the translation qual-
ity of machine translation systems for 10
language pairs translating between Czech,
English, French, German, Hungarian, and
Spanish. We report the translation quality
of over 30 diverse translation systems based
on a large-scale manual evaluation involv-
ing hundreds of hours of effort. We use the
human judgments of the systems to analyze
automatic evaluation metrics for translation
quality, and we report the strength of the cor-
relation with human judgments at both the
system-level and at the sentence-level. We
validate our manual evaluation methodol-
ogy by measuring intra- and inter-annotator
agreement, and collecting timing informa-
tion.

1 Introduction

This paper presents the results the shared tasks of the
2008 ACL Workshop on Statistical Machine Trans-
lation, which builds on two past workshops (Koehn
and Monz, 2006; Callison-Burch et al., 2007). There
were two shared tasks this year: a translation task
which evaluated translation between 10 pairs of Eu-
ropean languages, and an evaluation task which ex-
amines automatic evaluation metrics.

There were a number of differences between this
year’s workshop and last year’s workshop:

o Test set selection — Instead of creating our test
set by reserving a portion of the training data,
we instead hired translators to translate a set of
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newspaper articles from a number of different
sources. This out-of-domain test set contrasts
with the in-domain Europarl test set.

New language pairs — We evaluated the qual-
ity of Hungarian-English machine translation.
Hungarian is a challenging language because it
is agglutinative, has many cases and verb con-
jugations, and has freer word order. German-
Spanish was our first language pair that did not
include English, but was not manually evalu-
ated since it attracted minimal participation.

System combination — Saarland University
entered a system combination over a number
of rule-based MT systems, and provided their
output, which were also treated as fully fledged
entries in the manual evaluation. Three addi-
tional groups were invited to apply their system
combination algorithms to all systems.

Refined manual evaluation — Because last
year’s study indicated that fluency and ade-
quacy judgments were slow and unreliable, we
dropped them from manual evaluation. We re-
placed them with yes/no judgments about the
acceptability of translations of shorter phrases.

Sentence-level correlation — In addition to
measuring the correlation of automatic evalu-
ation metrics with human judgments at the sys-
tem level, we also measured how consistent
they were with the human rankings of individ-
ual sentences.

The remainder of this paper is organized as fol-
lows: Section 2 gives an overview of the shared
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translation task, describing the test sets, the mate-
rials that were provided to participants, and a list of
the groups who participated. Section 3 describes the
manual evaluation of the translations, including in-
formation about the different types of judgments that
were solicited and how much data was collected.
Section 4 presents the results of the manual eval-
uation. Section 5 gives an overview of the shared
evaluation task, describes which automatic metrics
were submitted, and tells how they were evaluated.
Section 6 presents the results of the evaluation task.
Section 7 validates the manual evaluation methodol-

ogy.
2 Overview of the shared translation task

The shared translation task consisted of 10 language
pairs: English to German, German to English, En-
glish to Spanish, Spanish to English, English to
French, French to English, English to Czech, Czech
to English, Hungarian to English, and German to
Spanish. Each language pair had two test sets drawn
from the proceedings of the European parliament, or
from newspaper articles.'

2.1 Test data

The test data for this year’s task differed from previ-
ous years’ data. Instead of only reserving a portion
of the training data as the test set, we hired people
to translate news articles that were drawn from a va-
riety of sources during November and December of
2007. We refer to this as the News test set. A total
of 90 articles were selected, 15 each from a variety
of Czech-, English-, French-, German-, Hungarian-
and Spanish-language news sites:?

Hungarian: Napi (3 documents), Index (2),
Origo (5), Népszabadsig (2), HVG (2),
Uniospez (1)

Czech: Aktudlné (1), iHNed (4), Lidovky (7),
Novinky (3)

French: Liberation (4), Le Figaro (4), Dernieres
Nouvelles (2), Les Echos (3), Canoe (2)

"For Czech news editorials replaced the European parlia-
ment transcripts as the second test set, and for Hungarian the
newspaper articles was the only test set.

2For more details see the XML test files. The docid tag
gives the source and the date for each document in the test set,
and the origlang tag indicates the original source language.
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Original source language | avg. BLEU
Hungarian 8.8
German 11.0
Czech 15.2
Spanish 17.3
English 17.7
French 18.6

Table 1: Difficulty of the test set parts based on the
original language. For each part, we average BLEU
scores from the Edinburgh systems for 12 language
pairs of the shared task.

Spanish: Cinco Dias (7), ABC.es (3), El Mundo (5)

English: BBC (3), Scotsman (3), Economist (3),
Times (3), New York Times (3)

German: Financial Times Deutschland (3), Siid-
deutsche Zeitung (3), Welt (3), Frankfurter All-
gemeine Zeitung (3), Spiegel (3)

The translations were created by the members of
EuroMatrix consortium who hired a mix of profes-
sional and non-professional translators. All trans-
lators were fluent or native speakers of both lan-
guages, and all translations were proofread by a na-
tive speaker of the target language. All of the trans-
lations were done directly, and not via an intermedi-
ate language. So for instance, each of the 15 Hun-
garian articles were translated into Czech, English,
French, German and Spanish. The total cost of cre-
ating the 6 test sets consisting of 2,051 sentences
in each language was approximately 17,200 euros
(around 26,500 dollars at current exchange rates, at
slightly more than 10c/word).

Having a test set that is balanced in six differ-
ent source languages and translated across six lan-
guages raises some interesting questions. For in-
stance, is it easier, when the machine translation sys-
tem translates in the same direction as the human
translator? We found no conclusive evidence that
shows this. What is striking, however, that the parts
differ dramatically in difficulty, based on the orig-
inal source language. For instance the Edinburgh
French-English system has a BLEU score of 26.8 on
the part that was originally Spanish, but a score of on
9.7 on the part that was originally Hungarian. For
average scores for each original language, see Ta-
ble 1.



In order to remain consistent with previous eval-
uations, we also created a Europarl test set. The
Europarl test data was again drawn from the tran-
scripts of EU parliamentary proceedings from the
fourth quarter of 2000, which is excluded from the
Europarl training data. Our rationale behind invest-
ing a considerable sum to create the News test set
was that we believe that it more accurately repre-
sents the quality of systems’ translations than when
we simply hold out a portion of the training data
as the test set, as with the Europarl set. For in-
stance, statistical systems are heavily optimized to
their training data, and do not perform as well on
out-of-domain data (Koehn and Schroeder, 2007).
Having both the News test set and the Europar] test
set allows us to contrast the performance of systems
on in-domain and out-of-domain data, and provides
a fairer comparison between systems trained on the
Europarl corpus and systems that were developed
without it.

2.2 Provided materials

To lower the barrier of entry for newcomers to the
field, we provided a complete baseline MT system,
along with data resources. We provided:

e sentence-aligned training corpora

e language model data

o development and dev-test sets

e Moses open source toolkit for phrase-based sta-
tistical translation (Koehn et al., 2007)

The performance of this baseline system is similar
to the best submissions in last year’s shared task.
The training materials are described in Figure 1.

2.3 Submitted systems

We received submissions from 23 groups from 18
institutions, as listed in Table 2. We also eval-
uated seven additional commercial rule-based MT
systems, bringing the total to 30 systems. This is
a significant increase over last year’s shared task,
where there were submissions from 15 groups from
14 institutions. Of the 15 groups that participated in
last year’s shared task, 11 groups returned this year.
One of the goals of the workshop was to attract sub-
missions from newcomers to the field, and we are
please to have attracted many smaller groups, some
as small as a single graduate student and her adviser.
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The 30 submitted systems represent a broad
range of approaches to statistical machine transla-
tion. These include statistical phrase-based and rule-
based (RBMT) systems (which together made up the
bulk of the entries), and also hybrid machine trans-
lation, and statistical tree-based systems. For most
language pairs, we assembled a solid representation
of the state of the art in machine translation.

In addition to individual systems being entered,
this year we also solicited a number of entries which
combined the results of other systems. We invited
researchers at BBN, Carnegie Mellon University,
and the University of Edinburgh to apply their sys-
tem combination algorithms to all of the systems
submitted to shared translation task. We designated
the translations of the Europarl set as the develop-
ment data for combination techniques which weight
each system.> CMU combined the French-English
systems, BBN combined the French-English and
German-English systems, and Edinburgh submitted
combinations for the French-English and German-
English systems as well as a multi-source system
combination which combined all systems which
translated from any language pair into English for
the News test set. The University of Saarland also
produced a system combination over six commercial
RBMT systems (FEisele et al., 2008). Saarland gra-
ciously provided the output of these systems, which
we manually evaluated alongside all other entries.

For more on the participating systems, please re-
fer to the respective system descriptions in the pro-
ceedings of the workshop.

3 Human evaluation

As with last year’s workshop, we placed greater em-
phasis on the human evaluation than on the auto-
matic evaluation metric scores. It is our contention
that automatic measures are an imperfect substitute
for human assessment of translation quality. There-
fore, rather than select an official automatic eval-
uation metric like the NIST Machine Translation
Workshop does (Przybocki and Peterson, 2008), we
define the manual evaluation to be primary, and use

3Since the performance of systems varied significantly be-
tween the Europarl and News test sets, such weighting might
not be optimal. However this was a level playing field, since
none of the individual systems had development data for the
News set either.



Europarl Training Corpus

Spanish < English French — English German «— English German < Spanish
Sentences 1,258,778 1,288,074 1,266,520 1,237,537
Words 36,424,186 | 35,060,653 | 38,784,144 | 36,046,219 | 33,404,503 | 35,259,758 | 32,652,649 | 35,780,165
Distinct words 149,159 96,746 119,437 97,571 301,006 96,802 298,040 148,206

News Commentary Training Corpus

Spanish < English French < English German « English German < Spanish
Sentences 64,308 55,030 72,291 63,312
Words 1,759,972 | 1,544,633 | 1,528,159 | 1,329,940 | 1,784,456 | 1,718,561 | 1,597,152 | 1,751,215
Distinct words 52,832 38,787 42,385 36,032 84,700 40,553 78,658 52,397
Hunglish Training Corpus CzEng Training Corpus
Hungarian < English Czech — English
Sentences 1,517,584 Sentences 1,096,940
Words 26,082,667 | 31,458,540 Words 15,336,783 | 17,909,979
Distinct words 717,198 192,901 Distinct words 339,683 129,176
Europarl Language Model Data
English Spanish French German
Sentence 1,412,546 1,426,427 1,438,435 1,467,291
Words 34,501,453 | 36,147,902 | 35,680,827 | 32,069,151
Distinct words 100,826 155,579 124,149 314,990

Europarl test set

English | Spanish | French | German

Sentences 2,000
Words 60,185 61,790 64,378 56,624
Distinct words 6,050 7,814 7,361 8,844

News Commentary test set

English | Czech
Sentences 2,028
Words 45,520 | 39,384
Distinct words 7,163 12,570
News Test Set
English | Spanish | French | German | Czech | Hungarian
Sentences 2,051
Words 43,482 47,155 46,183 41,175 36,359 35,513
Distinct words 7,807 8,973 8,898 10,569 12,732 13,144

Figure 1: Properties of the training and test sets used in the shared task. The training data is drawn from the
Europarl corpus and from the Project Syndicate, a web site which collects political commentary in multiple
languages. For Czech and Hungarian we use other available parallel corpora. Note that the number of
words is computed based on the provided tokenizer and that the number of distinct words is the based on

lowercased tokens.
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ID

Participant

BBN-COMBO BBN system combination (Rosti et al., 2008)
CMU-COMBO | Carnegie Mellon University system combination (Jayaraman and Lavie, 2005)
CMU-GIMPEL | Carnegie Mellon University Gimpel (Gimpel and Smith, 2008)

CMU-SMT Carnegie Mellon University SMT (Bach et al., 2008)

CMU-STATXFER

Carnegie Mellon University Stat-XFER (Hanneman et al., 2008)

CU-TECTOMT

Charles University TectoMT (Zabokrtsky et al., 2008)

CU-BOJAR Charles University Bojar (Bojar and Hajic, 2008)
CUED Cambridge University (Blackwood et al., 2008)
DCU Dublin City University (Tinsley et al., 2008)
LIMSI LIMSI (Déchelotte et al., 2008)
LIU Linkoping University (Stymne et al., 2008)
LIUM-SYSTRAN | LIUM / Systran (Schwenk et al., 2008)
MLOGIC Morphologic (Novék et al., 2008)
PCT a commercial MT provider from the Czech Republic
RBMT1-6 Babelfish, Lingenio, Lucy, OpenLogos, ProMT, SDL (ordering anonymized)
SAAR University of Saarbruecken (Eisele et al., 2008)
SYSTRAN Systran (Dugast et al., 2008)
UCB University of California at Berkeley (Nakov, 2008)
UCL University College London (Wang and Shawe-Taylor, 2008)
UEDIN University of Edinburgh (Koehn et al., 2008)
UEDIN-COMBO | University of Edinburgh system combination (Josh Schroeder)
UMD University of Maryland (Dyer, 2007)
UPC Universitat Politecnica de Catalunya, Barcelona (Khalilov et al., 2008)
uw University of Washington (Axelrod et al., 2008)
XEROX Xerox Research Centre Europe (Nikoulina and Dymetman, 2008)

Table 2: Participants in the shared translation task. Not all groups participated in all language pairs.
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the human judgments to validate automatic metrics.

Manual evaluation is time consuming, and it re-
quires a monumental effort to conduct it on the
scale of our workshop. We distributed the work-
load across a number of people, including shared
task participants, interested volunteers, and a small
number of paid annotators. More than 100 people
participated in the manual evaluation, with 75 peo-
ple putting in more than an hour’s worth of effort,
and 25 putting in more than four hours. A collective
total of 266 hours of labor was invested.

We wanted to ensure that we were using our anno-
tators’ time effectively, so we carefully designed the
manual evaluation process. In our analysis of last
year’s manual evaluation we found that the NIST-
style fluency and adequacy scores (LDC, 2005) were
overly time consuming and inconsistent.* We there-
fore abandoned this method of evaluating the trans-
lations.

We asked people to evaluate the systems’ output
in three different ways:

e Ranking translated sentences relative to each
other

e Ranking the translations of syntactic con-
stituents drawn from the source sentence

e Assigning absolute yes or no judgments to the
translations of the syntactic constituents.

The manual evaluation software asked for re-
peated judgments from the same individual, and had
multiple people judge the same item, and logged the
time it took to complete each judgment. This al-
lowed us to measure intra- and inter-annotator agree-
ment, and to analyze the average amount of time it
takes to collect the different kinds of judgments. Our
analysis is presented in Section 7.

3.1 Ranking translations of sentences

Ranking translations relative to each other is a rela-
tively intuitive and straightforward task. We there-
fore kept the instructions simple. The instructions
for this task were:

*1t took 26 seconds on average to assign fluency and ade-
quacy scores to a single sentence, and the inter-annotator agree-
ment had a Kappa of between .225-.25, meaning that annotators

assigned the same scores to identical sentences less than 40% of
the time.
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Rank each whole sentence translation
from Best to Worst relative to the other
choices (ties are allowed).

Ranking several translations at a time is a variant
of force choice judgments where a pair of systems
is presented and an annotator is asked “Is A better
than B, worse than B, or equal to B.” In our exper-
iments, annotators were shown five translations at a
time, except for the Hungarian and Czech language
pairs where there were fewer than five system sub-
missions. In most cases there were more than 5 sys-
tems submissions. We did not attempt to get a com-
plete ordering over the systems, and instead relied
on random selection and a reasonably large sample
size to make the comparisons fair.
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Figure 2: In constituent-based evaluation, the source
sentence was parsed, and automatically aligned with
the reference translation and systems’ translations



Language Pair Test Set Constituent Rank  Yes/No Judgments Sentence Ranking
English-German Europarl 2,032 2,034 1,004
News 2,170 2,221 1,115

German-English Europarl 1,705 1,674 819
News 1,938 1,881 1,944

English-Spanish Europarl 1,200 1,247 615
News 1,396 1,398 700

Spanish-English Europarl 1,855 1,921 948
News 2,063 1,939 1,896

English-French Europarl 1,248 1,265 674
News 1,741 1,734 843

French-English Europarl 1,829 1,841 909
News 2,467 2,500 2,671

English-Czech News 2,069 2,070 1,045
Commentary 1,840 1,815 932

Czech-English News 0 0 1,400
Commentary 0 0 1,731

Hungarian-English  News 0 0 937
All-English News 0 0 4,868
Totals 25,553 25,540 25,051

Table 3: The number of items that were judged for each task during the manual evaluation. The All-English
judgments were reused in the News task for individual language pairs.

3.2 Ranking translations of syntactic
constituents

We continued the constituent-based evaluation that
we piloted last year, wherein we solicited judgments
about the translations of short phrases within sen-
tences rather than whole sentences. We parsed the
source language sentence, selected syntactic con-
stituents from the tree, and had people judge the
translations of those syntactic phrases. In order to
draw judges’ attention to these regions, we high-
lighted the selected source phrases and the corre-
sponding phrases in the translations. The corre-
sponding phrases in the translations were located via
automatic word alignments.

Figure 2 illustrates how the source and reference
phrases are highlighted via automatic word align-
ments. The same is done for sentence and each
of the system translations. The English, French,
German and Spanish test sets were automatically
parsed using high quality parsers for those languages
(Bikel, 2002; Arun and Keller, 2005; Dubey, 2005;
Bick, 2006).

The word alignments were created with Giza++
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(Och and Ney, 2003) applied to a parallel corpus
containing the complete Europarl training data, plus
sets of 4,051 sentence pairs created by pairing the
test sentences with the reference translations, and
the test sentences paired with each of the system
translations. The phrases in the translations were
located using standard phrase extraction techniques
(Koehn et al., 2003). Because the word-alignments
were created automatically, and because the phrase
extraction is heuristic, the phrases that were selected
may not exactly correspond to the translations of the
selected source phrase. We noted this in the instruc-
tions to judges:

Rank each constituent translation from
Best to Worst relative to the other choices
(ties are allowed). Grade only the high-
lighted part of each translation.

Please note that segments are selected au-
tomatically, and they should be taken as
an approximate guide. They might in-
clude extra words that are not in the actual
alignment, or miss words on either end.



The criteria that we used to select which con-
stituents to evaluate were:

e The constituent could not be the whole source
sentence

e The constituent had to be longer three words,
and be no longer than 15 words

e The constituent had to have a corresponding
phrase with a consistent word alignment in
each of the translations

The final criterion helped reduce the number of
alignment errors, but may have biased the sample
to phrases that are more easily aligned.

3.3 Yes/No judgments for the translations of
syntactic constituents

This year we introduced a variant on the constituent-
based evaluation, where instead of asking judges
to rank the translations of phrases relative to each
other, we asked them to indicate which phrasal trans-
lations were acceptable and which were not.

Decide if the highlighted part of each
translation is acceptable, given the refer-
ence. This should not be a relative judg-
ment against the other system translations.

The instructions also contained the same caveat
about the automatic alignments as above. For each
phrase the judges could click on “Yes”, “No”, or
“Not Sure.” The number of times people clicked on
“Not Sure” varied by language pair and task. It was
selected as few as 5% of the time for the English-
Spanish News task to as many as 12.5% for the
Czech-English News task.

3.4 Collecting judgments

We collected judgments using a web-based tool that
presented judges with batches of each type of eval-
uation. We presented them with five screens of sen-
tence rankings, ten screens of constituent rankings,
and ten screen of yes/no judgments. The order of the
types of evaluation were randomized.

In order to measure intra-annotator agreement
10% of the items were repeated and evaluated twice
by each judge. In order to measure inter-annotator
agreement 40% of the items were randomly drawn
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from a common pool that was shared across all
annotators so that we would have items that were
judged by multiple annotators.

Judges were allowed to select whichever data set
they wanted, and to evaluate translations into what-
ever languages they were proficient in. Shared task
participants were excluded from judging their own
systems.

In addition to evaluation each language pair indi-
vidually, we also combined all system translations
into English for the News test set, taking advantage
of the fact that our test sets were parallel across all
languages. This allowed us to gather interesting data
about the difficulty of translating from different lan-
guages into English.

Table 3 gives a summary of the number of judg-
ments that we collected for translations of individ-
ual sentences. We evaluated 14 translation tasks
with three different types of judgments for most of
them, for a total of 46 different conditions. In to-
tal we collected over 75,000 judgments. Despite the
large number of conditions we managed to collect
between 1,000-2,000 judgments for the constituent-
based evaluation, and several hundred to several
thousand judgments for the sentence ranking tasks.

4 Translation task results

Tables 4, 5, and 6 summarize the results of the hu-
man evaluation of the quality of the machine trans-
lation systems. Table 4 gives the results for the man-
ual evaluation which ranked the translations of sen-
tences. It shows the average number of times that
systems were judged to be better than or equal to
any other system. Table 5 similarly summarizes
the results for the manual evaluation which ranked
the translations of syntactic constituents. Table 6
shows how many times on average a system’s trans-
lated constituents were judged to be acceptable in
the Yes/No evaluation. The bolded items indicate
the system that performed the best for each task un-
der that particular evaluate metric.

Table 7 summaries the results for the All-English
task that we introduced this year. Appendix C gives
an extremely detailed pairwise comparison between
each of the systems, along with an indication of
whether the differences are statistically significant.

The highest ranking entry for the All-English task



was the University of Edinburgh’s system combina-
tion entry. It uses a technique similar to Rosti et
al. (2007) to perform system combination. Like the
other system combination entrants, it was tuned on
the Europarl test set and tested on the News test set,
using systems that submitted entries to both tasks.

The University of Edinburgh’s system combi-
nation went beyond other approaches by combin-
ing output from multiple languages pairs (French-
English, German-English and Spanish-English),
resulting in 37 component systems. Rather
than weighting individual systems, it incorporated
weighted features that indicated which language the
system was originally translating from. This entry
was part of ongoing research in multi-lingual, multi-
source translation. Since there was no official multi-
lingual system combination track, this entry should
be viewed only as a contrastive data point.

We analyzed the All-English judgments to see
which source languages were preferred more often,
thinking that this might be a good indication of how
challenging it is for current MT systems to trans-
late from each of the languages into English. For
this analysis we collapsed all of the entries derived
from one source language into an equivalence class,
and judged them against the others. Therefore, all
French systems were judged against all German sys-
tems, and so on. We found that French systems were
judged to be better than or equal to other systems
69% of the time, Spanish systems 64% of the time,
German systems 47% of the time, Czech systems
39% of the time, and Hungarian systems 29% of the
time.

We performed a similar analysis by collapsing the
RBMT systems into one equivalence class, and the
other systems into another. We evaluated how well
these two classes did on the sentence ranking task
for each language pair and test set, and found that
RBMT was a surprisingly good approach in many
of the conditions. RBMT generally did better on the
News test set and for translations into German, sug-
gesting that SMT’s forte is in test sets where it has
appropriate tuning data and for language pairs with
less reordering than between German and English.
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BBN-COMBO
CMU-COMBO
CMU-GIMPEL
CMU-SMT
CMU-STATXFER
CU-BOJAR
CU-TECTOMT
CUED
CUED-CONTR
DCU

LIMSI

LIU
LIUM-SYSTRAN
LIUM-SYS-CONTR
MORPHOLOGIC
PC-TRANSLATOR
RBMT2

RBMT3

RBMT4

RBMTS

RBMT6

SAAR
SAAR-CONTR
SYSTRAN

UCB

UCL

UEDIN
UEDIN-COMBO
UMD

UPC

uw

XEROX



Czech-English Commentary
Czech-English News
English-Czech Commentary
English-Czech News
English-French Europarl
English-French News
English-German Europarl
English-German News
English-Spanish Europarl
English-Spanish News
French-English Europarl
French-English News
German-English Europarl
German-English News
Hungarian-English News
Spanish-English Europarl
Spanish-English News

BBN-COMBO

CMU-COMBO

CMU-GIMPEL

822

CMU-SMT

.804
459

.882
.635

CMU-STATXFER

612
554
534
470

CU-BOJAR
CU-TECTOMT

594 427
540 422

CUED-CONTR

CUED
DCU
LIMSI

745
730
7194
.559
872
532
.876 .886
805
.803
125

.833
736 .788

.857
.638 .694

.853.902
.675

LIU

788
494

.831
.638

LIUM-SYSTRAN
LIUM-SYS-CONTR

843
748

.891

.789 .696

MORPHOLOGIC

PC-TRANSLATOR

RBMT2
RBMT3
RBMT4
RBMTS

.506
518

490 .504 442 .
.589.593.640 .
.692 571 .665 .447 .
.689 .689 .750 .553 .
.582.598 .635 .
.638.759 .599 .
.535.620.712.

.628 .640.762 .
759 744 .667 .633 .
717.731.738 .589 .

.648 .562 .590 .
.610.651 .594 .

RBMT6
SAAR

SAAR-CONTR
SYSTRAN
UCB

351
576
466
598
600
623
540
663
630
684

701

591 .586
774

544

.806

.639

717 .860 .811
.638 701
.823

.669 .716

.568

550
635

.869

.697 .635

UCL
UEDIN

409
441
.596 .750
.633
.611.849
518
714 888
493
734 .910
718
492 .856
.632

.730.879
.622

UEDIN-COMBO

UMD

UPC
uw

903 .785
.366

.857
707

Table 6: Summary results for the Yes/No judgments for constituent translations judgments. The numbers report the percent of each system’s transla-
tions that were judged to be acceptable. Bold indicates the highest score for that task.

Czech-English Commentary
Czech-English News
English-Czech Commentary
English-Czech News
English-French Europarl
English-French News
English-German Europarl
English-German News
English-Spanish Europarl
English-Spanish News
French-English Europarl
French-English News
German-English Europarl
German-English News
Hungarian-English News
Spanish-English Europarl
Spanish-English News

174

825
721

.847
15

.626
.506
554
502

732 .538
.663 .615

.876
.649
750
.649
855
.694
.854..906
801
152
715

.907
745 787

.846
.760 .818

.868 .854
739

812
570

795
.674

881
760

917
.765 .780

.609
674
.561 .675 .546 .
716 .768 .763 .
577 .585 .582 .508 .
720 .682.748 .602 .
.561.592 458 .
.694.754 570 .
.523.648 .697 .
.652 .655.726 .
.580.640 .643 .579..
772 7755 740 .674 .

455 .561 .469.
.644 .608 .699 .

561.807
671.725 .746
518.770

563 .610

573 .849

644 .696

517 .783 .865.713
615 .640 .735

587 .843

640 .757.775

.653

567 .893

700 .760 706

.614
.610
.656 .870
.661
.690 .822
.556
592 818
.625
741 .894
173
.601 .832
744

.646 .865
758

775790
595

.870
763

Table 5: Summary results for the constituent ranking judgments. The numbers report the percent of time that each system was judged to be greater
than or equal to any other system. Bold indicates the highest score for that task.

XEROX
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UEDIN-COMBOg, .717
LIUM-SYSTRAN-Cy,  .708
RBMTS. 706
UEDIN-COMBOy, .704
LIUM-SYSTRAN,. .702
RBMT4cs .699

LIMSIy.  .699
BBN-COMBOy,  .695
SAARes 678
CUED-CONTRASTes .674
CMU-COMBOy, .661
UEDINgs  .654

CUEDyf, .652
CUED-CONTRASTf,  .638
RBMT4 ;. .637

UPCs .633

RBMT3.s .628

RBMT24. .627
SAAR-CONTRASTf,  .624
UEDINy, .616

RBMT6;,  .615

RBMT6.s .615

RBMT3f,. .612

SAARyf,. 584
SAAR-Cgq. .574
RBMT44. 573
CUED.s .572
RBMT34. .552
CMU-SMT.s .548
UCBes .547

LIMSI.s .537
RBMT64. .509
RBMTS54. .493
LIMSIge .469

LlUge .447

SAARge 445
CMU-STATXFRy, 444
UMD., .429
BBN-COMBOg. .407
UEDINg. .402
MORPHOLOGICp,  .387
DCU., .380
UEDIN-COMBOg.  .327
UEDIN., .293
CMU-STATXFERgz. .280
UEDINp,, .188

Table 7: The average number of times that each
system was judged to be better than or equal to all
other systems in the sentence ranking task for the
All-English condition. The subscript indicates the
source language of the system.

5 Shared evaluation task overview

The manual evaluation data provides a rich source
of information beyond simply analyzing the qual-
ity of translations produced by different systems. In
particular, it is especially useful for validating the
automatic metrics which are frequently used by the
machine translation research community. We con-
tinued the shared task which we debuted last year,
by examining how well various automatic metrics
correlate with human judgments.

In addition to examining how well the automatic
evaluation metrics predict human judgments at the
system-level, this year we have also started to mea-
sure their ability to predict sentence-level judg-
ments.

The automatic metrics that were evaluated in this
year’s shared task were the following:

e Bleu (Papineni et al., 2002)—Bleu remains the
de facto standard in machine translation eval-
uation. It calculates n-gram precision and a
brevity penalty, and can make use of multi-
ple reference translations as a way of capturing
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some of the allowable variation in translation.
We use a single reference translation in our ex-
periments.

e Meteor (Agarwal and Lavie, 2008)—Meteor
measures precision and recall for unigrams and
applies a fragmentation penalty. It uses flex-
ible word matching based on stemming and
WordNet-synonymy. A number of variants are
investigated here: meteor-baseline and meteor-
ranking are optimized for correlation with ad-
equacy and ranking judgments respectively.
mbleu and mter are Bleu and TER computed
using the flexible matching used in Meteor.

e Gimenez and Marquez (2008) measure over-
lapping grammatical dependency relationships
(DP), semantic roles (SR), and discourse repre-
sentations (DR). The authors further investigate
combining these with other metrics including
TER, Bleu, GTM, Rouge, and Meteor (ULC
and ULCh).

e Popovic and Ney (2007) automatically eval-
uate translation quality by examining se-
quences of parts of speech, rather than
words. They calculate Bleu (posbleu) and
F-measure (pos4gramFmeasure) by matching
part of speech 4grams in a hypothesis transla-
tion against the reference translation.

In addition to the above metrics, which scored
the translations on both the system-level’ and the
sentence-level, there were a number of metrics
which focused on the sentence-level:

e Albrecht and Hwa (2008) use support vector re-
gression to score translations using past WMT
manual assessment data as training examples.
The metric uses features derived from target-
side language models and machine-generated
translations (svm-pseudo-ref) as well as refer-
ence human translations (svm-human-ref).

e Duh (2008) similarly used support vector ma-
chines to predict an ordering over a set of

SWe provide the scores assigned to each system by these
metrics in Appendix A.



system translations (svm-rank). Features in-
cluded in Duh (2008)’s training were sentence-
level BLEU scores and intra-set ranks com-
puted from the entire set of translations.

e USaar’s evaluation metric (alignment-prob)
uses Giza++ to align outputs of multiple sys-
tems with the corresponding reference transla-
tions, with a bias towards identical one-to-one
alignments through a suitably augmented cor-
pus. The Model4 log probabilities in both di-
rections are added and normalized to a scale
between 0 and 1.

5.1 Measuring system-level correlation

To measure the correlation of the automatic metrics
with the human judgments of translation quality at
the system-level we used Spearman’s rank correla-
tion coefficient p. We converted the raw scores as-
signed each system into ranks. We assigned a rank-
ing to the systems for each of the three types of man-
ual evaluation based on:

e The percent of time that the sentences it pro-
duced were judged to be better than or equal to
the translations of any other system.

e The percent of time that its constituent transla-
tions were judged to be better than or equal to
the translations of any other system.

e The percent of time that its constituent transla-
tions were judged to be acceptable.

We calculated p three times for each automatic met-
ric, comparing it to each type of human evaluation.
Since there were no ties p can be calculated using
the simplified equation:

6 d?

—1—
P n(n? —1)

where d; is the difference between the rank for
system; and n is the number of systems. The pos-
sible values of p range between 1 (where all systems
are ranked in the same order) and —1 (where the sys-
tems are ranked in the reverse order). Thus an auto-
matic evaluation metric with a higher value for p is
making predictions that are more similar to the hu-
man judgments than an automatic evaluation metric
with a lower p.
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meteor-ranking .81 .72 .77 .76
ULCh .68 .79 .82 .76
meteor-baseline .77 .75 .74 .75
posbleu .77 .8 .66 .74

93
w

pos4gramFmeasure .75 .62 .82
ULC .66 .67 .84 .72

DR 79 55 .76 .70

SR .79 53 .76 .69

Dp 57 .79 .65 .67

mbleu .61 .77 .56 .65

mter .47 72 .68 .62

bleu .61 .59 44 54

svm-rank .21 24 .35 .27

Table 8: Average system-level correlations for the
automatic evaluation metrics on translations into En-
glish

5.2 Measuring consistency at the sentence-level

Measuring sentence-level correlation under our hu-
man evaluation framework was made complicated
by the fact that we abandoned the fluency and ad-
equacy judgments which are intended to be abso-
lute scales. Some previous work has focused on
developing automatic metrics which predict human
ranking at the sentence-level (Kulesza and Shieber,
2004; Albrecht and Hwa, 2007a; Albrecht and Hwa,
2007b). Such work generally used the 5-point flu-
ency and adequacy scales to combine the transla-
tions of all sentences into a single ranked list. This
list could be compared against the scores assigned
by automatic metrics and used to calculate corre-
lation coefficients. We did not gather any absolute
scores and thus cannot compare translations across
different sentences. Given the seemingly unreliable
fluency and adequacy assignments that people make
even for translations of the same sentences, it may
be dubious to assume that their scoring will be reli-
able across sentences.

The data points that we have available consist of a
set of 6,400 human judgments each ranking the out-
put of 5 systems. It’s straightforward to construct a
ranking of each of those 5 systems using the scores
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posbleu .57 .78 .80 .72

bleu 54 .79 6 .64
meteor-ranking .55 .74 .55 .61
meteor-baseline .42 .78 .57 .59

pos4gramFmeasure .37 49 .79 .55
mter .54 .50 55 .53

svm-rank .55 .56 .46 .52

mbleu .63 47 43 .51

Table 9: Average system-level correlations for the
automatic evaluation metrics on translations into
French, German and Spanish

assigned to their translations of that sentence by the
automatic evaluation metrics. When the automatic
scores have been retrieved, we have 6,400 pairs of
ranked lists containing 5 items. How best to treat
these is an open discussion, and certainly warrants
further thought. It does not seem like a good idea
to calculate p for each pair of ranked list, because
5 items is an insufficient number to get a reliable
correlation coefficient and its unclear if averaging
over all 6,400 lists would make sense. Furthermore,
many of the human judgments of 5 contained ties,
further complicating matters.

Therefore rather than calculating a correlation co-
efficient at the sentence-level we instead ascertained
how consistent the automatic metrics were with the
human judgments. The way that we calculated con-
sistency was the following: for every pairwise com-
parison of two systems on a single sentence by a per-
son, we counted the automatic metric as being con-
sistent if the relative scores were the same (i.e. the
metric assigned a higher score to the higher ranked
system). We divided this by the total number of pair-
wise comparisons to get a percentage. Because the
systems generally assign real numbers as scores, we
excluded pairs that the human annotators ranked as
ties.

6 Evaluation task results

Tables 8 and 9 report the system-level p for each au-
tomatic evaluation metric, averaged over all trans-
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DP 514 527 .536
DR .500 .511 .530
SR 498 489 511
ULC 559 .554 .561
ULCh .562 .542 .542
alignment-prob 517 538 .535
mbleu 505 .516 .544
meteor-baseline 512 .520 .542
meteor-ranking 512 517 .539
mter 436 471 480

posdgramFmeasure .495 517 .52

posbleu 435 .43 454
svm-human-ref .542 541 552
svm-pseudo-ref .538 .538 .543
svm-rank .493 499 497

Table 10: The percent of time that each automatic
metric was consistent with human judgments for
translations into English

lations directions into English and out of English®
For the into English direction the Meteor score with
its parameters tuned on adequacy judgments had
the strongest correlation with ranking the transla-
tions of whole sentences. It was tied with the com-
bined method of Gimenez and Marquez (2008) for
the highest correlation over all three types of human
judgments. Bleu was the second to lowest ranked
overall, though this may have been due in part to the
fact that we were using test sets which had only a
single reference translation, since the cost of creat-
ing multiple references was prohibitively expensive
(see Section 2.1).

In the reverse direction, for translations out of En-
glish into the other languages, Bleu does consider-
ably better, placing second overall after the part-of-
speech variant on it proposed by Popovic and Ney
(2007). Yet another variant of Bleu which utilizes
Meteor’s flexible matching has the strongest corre-
lation for sentence-level ranking. Appendix B gives
a break down of the correlations for each of the lan-

STables 8 and 9 exclude the Spanish-English News Task,
since it had a negative correlation with most of the automatic
metrics. See Tables 19 and 20.
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mbleu 0.520 0.521 0.52
meteor-baseline  0.514 0.494 0.520
meteor-ranking 0.522 0.501 0.534
mter 0.454 0.441 0.457
posdgramFmeasure 0.515 0.525 0.512
posbleu 0.436 0.446 0.416
svm-rank 0.514 0.531 0.51

Table 11: The percent of time that each automatic
metric was consistent with human judgments for
translations into other languages

guage pairs and test sets.

Tables 10 and 11 report the consistency of the au-
tomatic evaluation metrics with human judgments
on a sentence-by-sentence basis, rather than on the
system level. For the translations into English the
ULC metric (which itself combines many other met-
rics) had the strongest correlation with human judg-
ments, correctly predicting the human ranking of a
each pair of system translations of a sentence more
than half the time. This is dramatically higher than
the chance baseline, which is not .5, since it must
correctly rank a list of systems rather than a pair. For
the reverse direction meteor-ranking performs very
strongly. The svn-rank which had the lowest over-
all correlation at the system level does the best at
consistently predicting the translations of syntactic
constituents into other languages.

7 Validation and analysis of the manual
evaluation

In addition to scoring the shared task entries, we also
continued on our campaign for improving the pro-
cess of manual evaluation.

7.1 Inter- and Intra-annotator agreement

We measured pairwise agreement among annotators
using the kappa coefficient (X') which is widely used
in computational linguistics for measuring agree-
ment in category judgments (Carletta, 1996). It is
defined as

W PA) = P(B)
1—-P(E)
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Evaluation type P(A) P(E) K

Sentence ranking S78 0 333 367
Constituent ranking 671 333 506
Constituent (w/identicals)  .678 333 517
Yes/No judgments 821 .5 .642
Yes/No (w/identicals) .825 S5 .649

Table 12: Kappa coefficient values representing the
inter-annotator agreement for the different types of
manual evaluation

Evaluation type P(A) P(E) K

Sentence ranking .691 333 537
Constituent ranking 825 333 737
Constituent (w/identicals)  .832 333 748
Yes/No judgments 928 5 .855
Yes/No (w/identicals) 930 ) .861

Table 13: Kappa coefficient values for intra-
annotator agreement for the different types of man-
ual evaluation

where P(A) is the proportion of times that the an-
notators agree, and P(F) is the proportion of time
that they would agree by chance. We define chance
agreement for ranking tasks as % since there are
three possible outcomes when ranking the output of
a pair of systems: A > B, A = B, A < B, and for
the Yes/No judgments as % since we ignored those

items marked “Not Sure”.

For inter-annotator agreement we calculated
P(A) for the yes/no judgments by examining all
items that were annotated by two or more annota-
tors, and calculating the proportion of time they as-
signed identical scores to the same items. For the
ranking tasks we calculated P(A) by examining all
pairs of systems which had been judged by two or
more judges, and calculated the proportion of time
that they agreed that A > B, A = B,or A < B.
For intra-annotator agreement we did similarly, but
gathered items that were annotated on multiple oc-
casions by a single annotator.

Table 12 gives K values for inter-annotator agree-
ment, and Table 13 gives K values for intra-
annotator agreement. These give an indication of
how often different judges agree, and how often sin-
gle judges are consistent for repeated judgments, re-



spectively. The interpretation of Kappa varies, but
according to Landis and Koch (1977), 0—.2 is slight,
.2 — .4 1is fair, .4 — .6 is moderate, .6 — .8 is substan-
tial and the rest almost perfect. The inter-annotator
agreement for the sentence ranking task was fair, for
the constituent ranking it was moderate and for the
yes/no judgments it was substantial.” For the intra-
annotator agreement K indicated that people had
moderate consistency with their previous judgments
on the sentence ranking task, substantial consistency
with their previous constituent ranking judgments,
and nearly perfect consistency with their previous
yes/no judgments.

These K values indicate that people are able to
more reliably make simple yes/no judgments about
the translations of short phrases than they are to
rank phrases or whole sentences. While this is an
interesting observation, we do not recommend do-
ing away with the sentence ranking judgments. The
higher agreement on the constituent-based evalua-
tion may be influenced based on the selection cri-
teria for which phrases were selected for evalua-
tion (see Section 3.2). Additionally, the judgments
of the short phrases are not a great substitute for
sentence-level rankings, at least in the way we col-
lected them. The average correlation coefficient be-
tween the constituent-based judgments with the sen-
tence ranking judgments is only p = 0.51. Tables
19 and 20 give a detailed break down of the cor-
relation of the different types of human judgments
with each other on each translation task. It may
be possible to select phrases in such a way that the
constituent-based evaluations are a better substitute
for the sentence-based ranking, for instance by se-
lecting more of constituents from each sentence, or
attempting to cover most of the words in each sen-
tence in a phrase-by-phrase manner. This warrants
further investigation. It might also be worthwhile to
refine the instructions given to annotators about how
to rank the translations of sentences to try to improve
their agreement, which is currently lower than we
would like it to be (although it is substantially bet-
ter than the previous fluency and adequacy scores,

"Note that for the constituent-based evaluations we verified
that the high K was not trivially due to identical phrasal trans-
lations. We excluded screens where all five phrasal translations
presented to the annotator were identical, and report both num-
bers.
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Figure 3: Distributions of the amount of time it took
to judge single sentences for the three types of man-
ual evaluation

which had a K < .25 in last year’s evaluation).

7.2 Timing

We used the web interface to collect timing infor-
mation. The server recorded the time when a set of
sentences was given to a judge and the time when
the judge returned the sentences. It took annotators
an average of 18 seconds per sentence to rank a list
of sentences.® It took an average of 10 seconds per
sentence for them to rank constituents, and an av-
erage of 8.5 seconds per sentence for them to make
yes/no judgments. Figure 3 shows the distribution
of times for these tasks.

These timing figures indicate that the tasks which
the annotators were the most reliable on (yes/no
judgments and constituent ranking) were also much
quicker to complete than the ones they were less re-
liable on (ranking sentences). Given that they are
faster at judging short phrases, they can do propor-
tionally more of them. For instance, we could collect
211 yes/no judgments in the same amount of time
that it would take us to collect 100 sentence ranking
judgments. However, this is partially offset by the
fact that many of the translations of shorter phrases
are identical, which means that we have to collect
more judgments in order to distinguish between two
systems.

8Sets which took longer than 5 minutes were excluded from
these calculations, because there was a strong chance that anno-
tators were interrupted while completing the task.



7.3 The potential for re-usability of human
judgments

One strong advantage of the yes/no judgments over
the ranking judgments is their potential for reuse.
We have invested hundreds of hours worth of effort
evaluating the output of the translation systems sub-
mitted to this year’s workshop and last year’s work-
shop. While the judgments that we collected pro-
vide a wealth of information for developing auto-
matic evaluation metrics, we cannot not re-use them
to evaluate our translation systems after we update
their parameters or change their behavior in anyway.
The reason for this is that altered systems will pro-
duce different translations than the ones that we have
judged, so our relative rankings of sentences will no
longer be applicable. However, the translations of
short phrases are more likely to be repeated than the
translations of whole sentences.

Therefore if we collect a large number of yes/no
judgments for short phrases, we could build up a
database that contains information about what frag-
mentary translations are acceptable for each sen-
tence in our test corpus. When we change our sys-
tem and want to evaluate it, we do not need to man-
ually evaluate those segments that match against the
database, and could instead have people evaluate
only those phrasal translations which are new. Ac-
cumulating these judgments over time would give
a very reliable idea of what alternative translations
were allowable. This would be useful because it
could alleviate the problems associated with Bleu
failing to recognize allowable variation in translation
when multiple reference translations are not avail-
able (Callison-Burch et al., 2006). A large database
of human judgments might also be useful as an
objective function for minimum error rate training
(Och, 2003) or in other system development tasks.

8 Conclusions

Similar to previous editions of this workshop we car-
ried out an extensive manual and automatic evalua-
tion of machine translation performance for trans-
lating from European languages into English, and
vice versa. One important aspect in which this year’s
shared task differed from previous years was the in-
troduction of an additional newswire test set that
was different in nature to the training data. We
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also added new language pairs to our evaluation:
Hungarian-English and German-Spanish.

As in previous years we were pleased to notice an
increase in the number of participants. This year we
received submissions from 23 groups from 18 insti-
tutions. In addition, we evaluated seven commercial
rule-based MT systems.

The goal of this shared-task is two-fold: First we
want to compare state-of-the-art machine translation
systems, and secondly we aim to measure to what
extent different evaluation metrics can be used to as-
sess MT quality.

With respect to MT quality we noticed that the in-
troduction of test sets from a different domain did
have an impact on the ranking of systems. We ob-
served that rule-based systems generally did better
on the News test set. Overall, it cannot be con-
cluded that one approach clearly outperforms other
approaches, as systems performed differently on the
various translation tasks. One general observation is
that for the tasks where statistical combination ap-
proaches participated, they tended to score relatively
high, in particular with respect to Bleu.

With respect to measuring the correlation between
automated evaluation metrics and human judgments
we found that using Meteor and ULCh (which uti-
lizes a variety of metrics, including Meteor) resulted
in the highest Spearman correlation scores on aver-
age, when translating into English. When translat-
ing from English into French, German, and Spanish,
Bleu and posbleu resulted in the highest correlations
with human judgments.

Finally, we investigated inter- and intra-annotator
agreement of human judgments using Kappa coef-
ficients. We noticed that ranking whole sentences
results in relatively low Kappa coefficients, mean-
ing that there is only fair agreement between the as-
sessors. Constituent ranking and acceptability judg-
ments on the other hand show moderate and substan-
tial inter-annotator agreement, respectively. Intra-
annotator agreement was substantial to almost per-
fect, except for the sentence ranking assessment
where agreement was only moderate. Although it
is difficult to draw exact conclusions from this, one
might wonder whether the sentence ranking task is
simply too complex, involving too many aspects ac-
cording to which translations can be ranked.

The huge wealth of the data generated by this



workshop, including the human judgments, system
translations and automatic scores, is available at
http://www.statmt.org/wmt08/ for other
researchers to analyze.
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English-Czech News Commentary Task |
CU-BOJAR 0.15 0.21 043 035 0.28 4.57
CU-BOJAR-CONTRAST-1 0.04 0.11 032 025 0.18 0.90
CU-BOJAR-CONTRAST-2 0.14 0.2 042 034 027 286
cu-TectoMT 0.09 0.15 037 029 023 213
PC-TRANSLATOR 0.08 0.14 035 0.28 0.19 2.09
UEDIN 0.12 0.18 04 0.32 025 228
English-Czech News Task ]

CU-BOJAR 0.11 0.18 037 0.3 0.18 4.72
CU-BOJAR-CONTRAST-1 0.02 0.10 0.26 0.2 0.12 0.80
CU-BOJAR-CONTRAST-2 0.09 0.16 035 028 0.15 2.65
cu-TECcTOMT 0.06 0.13 032 025 0.16 2.14
PC-TRANSLATOR 0.08 0.14 033 026 0.14 240
UEDIN 0.08 0.15 034 027 0.15 213

Table 14: Automatic evaluation metric for translations into Czech
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English-French News Task
LiMsI 0.2 026 0.16 034 033 048 044 043 9.74
LIUM-SYSTRAN 0.20 026 0.16 035 034 049 044 044 738
LIUM-SYSTRAN-CONTRAST 0.20 026 0.16 035 034 048 044 044 7.02
RBMTI 0.13 0.19 0.12 028 024 042 037 035 546
RBMT3 0.17 023 0.14 031 031 045 04 0.40 5.60
RBMT4 0.19 024 0.15 033 032 048 043 043 6.80
RBMTS 0.17 023 0.14 032 031 047 042 042 6.15
RBMT6 0.16 0.22 0.13 032 0.3 046 040 041 5.60
SAAR 0.15 022 0.15 033 028 046 041 042 6.12
SAAR-CONTRAST 0.17 0.23 0.15 033 030 047 042 041 5.50
UEDIN 0.16 023 0.14 032 032 044 039 038 479
XEROX 0.13 0.2 0.12 029 029 041 034 034 391
XEROX-CONTRAST 0.13 0.2 0.12 029 029 041 035 035 3.86
English-French Europarl Task

LiMst 032 036 024 042 044 056 053 053 8.84
LIUM-SYSTRAN 032 036 024 042 045 056 053 053 7.46
LIUM-SYSTRAN-CONTRAST 031 036 023 042 044 056 052 053 6.69
RBMTI 0.15 020 0.13 029 026 044 04 0.37 3.89
RBMT3 0.18 024 0.15 034 033 047 042 043 4.13
RBMT4 0.2 025 0.17 035 035 05 045 045 4.70
RBMTS 0.12 0.16 0.09 022 0.06 037 032 032 3.01
RBMT6 0.17 023 0.14 033 032 047 042 042 393
SAAR 026 029 021 041 034 053 049 048 1775
SAAR-CONTRAST 028 032 023 041 039 055 051 052 645
ucL 024 028 0.19 037 041 049 044 042 4.16
UEDIN 030 035 023 042 043 054 051 051 6.56

Table 15: Automatic evaluation metric for translations into French
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BLEU
MBLEU
METEOR-BASELINE
METEOR-RANKING
POSF4GRAM-AM
POSF4GRAM-GM
POSBLEU
SVM-RANK

English-German News Task ]
LiMst  0.11 0.18 0.19 045 022 036 029 028 7.83
L 0.10 0.17 0.18 044 024 036 028 0.27 4.03
RBMT1 0.12 0.18 0.18 044 022 039 033 032 542
RBMT2 0.13 0.19 020 046 024 04 033 033 576
RBMT3 0.12 0.18 0.19 044 024 039 032 032 470
RBMT4 0.14 0.19 0.2 046 025 041 035 034 558
RBMTS5 0.11 0.17 0.17 043 021 038 031 031 449
RBMT6 0.10 0.16 0.17 043 02 037 03 029 4381
SAAR 0.13 0.19 0.19 044 027 038 031 03 4.04
SAAR-CONTRAST 0.12 0.18 0.18 043 026 037 03 0.28 3.71
UEDIN 0.12 0.17 0.18 045 023 037 030 029 437
English-German Europarl Task |
CMU-GIMPEL  0.20 024 027 054 032 043 037 037 9.54
LiMsr 020 024 027 053 032 043 037 037 697
Liv 02 024 027 053 032 043 038 037 695
rRBMT1 0.11 0.16 0.16 042 0.19 038 032 032 5.01
RBMT2 0.12 0.17 0.19 046 021 039 032 031 5093
RBMT3 0.11 0.16 0.17 043 021 038 031 030 475
RBMT4 0.12 0.17 0.18 045 022 041 034 033 542
RBMTS 0.1 0.14 0.16 042 0.19 039 032 031 442
RBMT6 0.09 0.14 0.15 042 0.18 038 030 029 440
SAAR 020 025 026 053 032 043 038 037 6.67
SAAR-CONTRAST 02 024 026 052 031 043 037 037 6.35
vc 016 020 023 049 031 04 033 031 512
UEDIN 0.21 0.25 027 054 032 044 038 038 7.02
English-Spanish News Task ]
cMu-sMT  0.19 024 025 034 032 032 025 026 8.34
LiMsI  0.19 025 026 034 034 033 026 026 592
RBMT]l 0.16 022 0.23 032 030 031 023 023 536
RBMT3 0.19 024 025 033 034 033 026 026 542
RBMT4 021 026 026 034 035 034 028 028 6.36
RBMTS5 0.18 024 025 033 032 033 026 026 5.84
RBMT6 0.19 024 024 033 033 032 025 026 542
SAAR 020 0.27 026 034 037 034 028 028 504
SAAR-CONTRAST 0.2 026 0.25 034 037 034 027 027 4.86
ucs 020 026 026 034 034 033 026 027 5.70
UEDIN 0.18 025 025 033 035 033 026 026 430
upc 0.18 023 024 032 035 032 025 024 397
English-Spanish Europarl Task ]
CMU-SMT 032 036 033 042 045 040 035 036 0.10
LimMsr 031 036 033 042 045 04 035 035 7.80
RBMTl 0.16 022 024 032 031 032 025 025 447
RBMT3 020 025 025 034 035 033 027 027 4.66
RBMT4 021 025 026 034 036 034 028 028 4385
RBMTS5 0.18 024 025 034 033 034 027 027 5.03
RBMT6 0.18 023 025 033 033 033 026 026 457
SAAR 031 035 033 041 044 040 035 035 759
SAAR-CONTRAST 0.30 0.34 033 041 044 04 034 035 742
ucL 025 029 029 037 043 036 029 029 4.67
UEDIN 032 036 033 042 045 040 035 035 725
upc 030 034 032 040 046 04 035 034 6.18
uw 032 036 033 042 045 040 035 035 736
UW-CONTRAST 0.32 035 033 042 045 040 035 036 7.21

Table 16: Automatic evaluation metric for translations into German and Spanish
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Spanish-English Europarl Task

cmMu-sMT 034 044 026 029 033 033 039 059 048 051 052 048 048 9.72

CUED 033 043 025 029 033 032 038 059 048 050 051 047 047 741
CUED-CONTRAST 034 044 026 029 033 033 039 059 048 051 052 048 048 7.00
pcu 034 043 025 029 033 032 038 059 048 050 051 047 048 6.78

LiMsI 034 044 026 029 033 033 039 059 048 051 052 048 048 6.73

RBMT3 026 037 019 022 027 019 026 051 041 036 045 04 039 546

RBMT4 026 037 0.19 022 027 0.18 026 052 042 036 045 039 038 557

RBMTS 025 036 018 022 027 0.18 025 051 041 036 044 039 038 474

RBMT6 0.24 034 0.18 021 026 0.17 025 051 041 036 044 038 037 471

SAAR 034 044 026 029 033 032 039 059 048 051 052 049 048 6.30
SAAR-CONTRAST 033 043 025 028 033 030 037 059 048 047 051 047 046 733
vc 029 04 021 025 029 025 032 055 043 047 047 042 04 402

UEDIN 034 044 026 029 033 033 039 059 048 050 052 048 048 6.61

upc 033 043 025 028 033 032 038 059 048 0.5 052 048 048 6.82

French-English News Task

BBN-COMBO 0.27 037 0.2 023 028 021 n/a n/a n/a n/a n/a n/a n/a n/a
CMU-COMBO 0.26 036 0.18 022 0.27 0.19 n/a n/a n/a n/a n/a n/a n/a n/a
CMU-COMBO-CONTRAST n/a n/a n/a n/a n/a 0.19 n/a n/a n/a n/a n/a n/a n/a n/a
CMU-STATXFER 0.21 0.32 0.14 0.19 023 0.14 022 048 039 028 038 032 030 991
CMU-STATXFER-CONTRAST 0.21 030 0.14 0.18 023 0.14 021 047 038 026 038 031 029 647
CUED 025 035 0.17 021 026 0.18 027 051 041 037 041 035 034 6.34
CUED-CONTRAST 0.26 037 0.18 022 027 019 028 052 042 038 042 037 036 629
LiMst 026 037 0.18 022 027 020 028 051 040 040 043 038 037 575
LIUM-SYSTRAN 027 038 0.19 023 027 021 029 051 041 041 044 039 038 632
LIUM-SYSTRAN-CONTRAST 027 038 0.19 023 028 021 029 051 041 041 044 039 038 593
RBMT3 024 036 0.17 021 026 0.16 024 049 040 029 042 036 034 7.61
RBMT4 025 0.37 0.17 021 026 0.17 025 049 04 033 042 036 035 6.17
RBMTS 0.25 037 0.18 022 027 0.18 025 051 041 033 043 037 036 697
RBMT6 024 036 0.17 021 026 0.16 024 049 039 030 041 035 034 6.51
SAAR 024 0.14 0.17 0.19 022 0.15 024 047 037 039 039 032 031 322
SAAR-CONTRAST 026 0.36 0.18 022 027 0.17 027 051 041 036 041 035 035 6.01
UEDIN 025 036 0.17 021 026 0.18 026 051 041 035 042 036 035 597
UEDIN-COMBO 0.26 036 0.18 023 027 n/a n/a n/a n/a n/a n/a n/a n/a n/a

French-English Europarl Task

CMU-STATXFER 0.24 034 0.18 022 026 02 026 052 042 037 042 036 035 985
CMU-STATXFER-CONTRAST 0.25 034 0.19 022 026 0.2 026 053 042 038 042 036 035 7.10
CUED 034 044 026 029 033 032 038 059 048 050 051 047 047 0.11

CUED-CONTRAST 0.34 044 026 029 034 032 039 059 048 051 051 047 047 934

pcu 033 043 025 028 033 031 037 058 047 049 050 046 046 9.16

LiMsT 034 044 026 029 034 033 039 059 048 051 052 048 048 9.59

LIUM-SYSTRAN 0.35 045 0.27 0.3 034 033 039 059 048 051 052 048 049 9.75
LIUM-SYSTRAN-CONTRAST 034 044 026 029 034 033 039 059 048 050 052 048 048 9.23
RBMT3 025 036 0.10 020 024 0.17 025 051 041 035 043 037 036 7.36

RBMT4 027 036 0.19 022 027 0.18 026 051 041 037 043 038 037 592

RBMT5 027 038 021 023 028 020 028 053 043 04 045 04 039 7.20

RBMT6 024 0.35 0.18 021 026 0.16 024 0.5 040 035 042 036 035 5096

SAAR 032 041 023 027 031 027 033 054 043 049 049 044 041 476

SAAR-CONTRAST 033 043 025 028 033 03 036 058 048 047 051 047 046 0.10
SYSTRAN 0.3 0.4 023 026 030 026 034 055 045 046 048 043 043 7.01

ucL 0.3 040 022 026 03 026 032 055 044 047 047 042 041 6.35

UEDIN 034 044 026 029 033 033 039 059 048 050 052 048 048 941

Table 17: Automatic evaluation metric for translations into English
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Czech-English News Commentary Task
pcu 025 034 0.18 022 027 021 029 054 044 042 042 036 036 245
SYSTRAN 0.19 028 0.12 0.17 021 0.15 023 045 036 034 036 029 029 0.76
UEDIN 024 031 0.16 021 025 022 030 054 044 043 041 035 035 137
uMD 026 034 019 023 028 024 033 056 045 049 044 039 038 141
Czech-English News Task
pcu 0.19 030 013 0.17 022 0.12 022 045 035 032 036 028 028 1.78
UEDIN 0.19 028 0.12 0.17 021 0.12 021 044 034 032 035 027 027 0.65
umMp 02 029 0.12 018 022 013 022 044 034 036 036 029 027 052
German-English News Task
BBN-cOMBO 023 034 0.14 021 025 0.8 n/a n/a n/a n/a n/a n/a n/a n/a
CMU-STATXFER 0.16 027 0.09 0.15 0.19 0.11 0.18 043 034 025 033 025 024 784
LmMst 022 033 013 0.19 023 0.17 025 047 037 036 04 033 032 558
Liv 021 032 006 0.18 022 0.15 024 048 038 033 038 031 031 551
RBMT! 022 033 0.14 0.19 023 0.14 022 044 035 028 037 031 030 6.13
RBMT2 024 037 0.17 021 026 0.15 024 05 040 031 04 033 032 7.14
RBMT3 024 037 0.16 021 026 0.16 024 049 04 032 041 034 034 697
RBMT4 025 038 0.17 021 027 0.16 025 050 040 034 041 035 034 7.03
RBMTS 023 036 0.15 020 025 0.15 023 048 039 032 04 033 032 594
RBMT6 022 034 0.14 019 024 0.14 022 047 038 031 039 032 031 565
SAAR 022 033 014 02 024 015 024 047 037 036 039 032 031 467
SAAR-CONTRAST 024 035 0.16 021 025 0.17 026 05 04 036 04 033 033 580
SAAR-CONTRAST-2 021 033 0.14 0.19 023 0.15 024 047 037 036 039 032 031 4280
UEDIN 023 034 009 0.19 023 0.16 025 048 039 035 04 033 033 572
German-English Europarl Task
CMU-STATXFER 0.2 031 0.12 0.19 022 0.17 023 049 039 034 039 032 031 7.11
LiMsI 028 038 0.18 024 028 027 033 055 044 043 047 042 042 8.04
Liv 028 039 0.09 023 026 027 033 055 044 044 047 043 043 746
RBMT1l 021 0.3 0.14 0.18 022 0.12 019 042 033 027 036 030 028 4.6l
RBMT2 024 035 0.16 020 025 0.14 023 049 039 032 039 033 032 542
RBMT3 024 035 0.16 020 025 0.15 023 048 039 032 040 034 033 543
RBMT4 024 036 0.15 020 025 0.14 023 049 039 034 041 034 034 5.11
RBMTS5 023 034 0.15 02 024 0.14 022 048 038 033 04 033 032 455
RBMT6 022 033 0.13 0.18 023 0.13 021 047 037 031 038 031 031 4.08
SAAR 029 039 0.19 025 028 027 033 055 044 043 047 042 042 732
SAAR-CONTRAST 0.28 0.37 0.18 024 028 026 032 054 043 043 047 042 042 6.77
ucL 024 036 0.16 022 025 02 025 049 039 041 042 035 032 426
UEDIN 030 041 020 026 03 028 034 056 045 045 048 044 044 7.96
Spanish-English News Task
cMu-sMT 024 035 0.17 021 025 0.18 026 048 038 039 041 035 034 8.00
CUED 025 036 0.17 021 026 0.19 028 050 040 038 042 036 036 6.03
CUED-CONTRAST 026 037 0.18 022 027 021 03 052 042 039 044 038 038 06.27
LiMsI 026 037 0.18 022 027 020 028 050 04 041 043 038 037 493
RBMT3 025 038 0.17 022 027 0.18 026 050 041 032 043 038 036 7.54
RBMT4 026 038 0.18 022 027 0.18 026 051 042 032 044 039 037 7.81
RBMTS 026 038 008 020 025 02 027 051 042 033 044 038 037 6.89
RBMT6 025 036 0.17 021 026 0.18 025 051 041 033 043 037 036 6.83
SAAR 026 037 019 022 027 019 029 051 041 039 043 037 037 523
SAAR-CONTRAST 0.26 037 0.18 022 027 0.19 028 051 041 037 042 037 036 595
ucB 025 035 0.17 021 026 0.19 027 05 039 039 042 036 035 440
UEDIN 024 035 0.17 021 026 0.18 027 050 040 036 041 035 034 5.07
UEDIN-cOMBO 0.27 036 0.19 023 0.27 n/a n/a n/a n/a  n/a n/a n/a n/a n/a
upc 025 036 0.17 021 026 0.19 026 049 039 04 043 037 036 438

Table 18: Automatic evaluation metric for translations into English
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B Break down of correlation for each task
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[ All-English News Task ]
RANK 1 na n/a 083 073 083 083 087 0.71 0.7 0.82 0.79 041 0.79 0.8 0.80 0.25
[ French-English News Task ]
RANK 1 0.69 063 092 083 08 090 09 081 0.80 0.88 0.80 057 087 09 09 -
0.21
CONST — 1 0.81 083 052 081 08 081 093 09 076 0.64 0.73 069 072 085 -
0.52
YES/No — — 1 0.71 057 076 077 074 079 0.75 0.67 059 0.62 0.66 0.67 079 -
0.26
[ French-English Europarl Task |
RANK 1 095 09 094 095 093 095 093 092 090 0.88 087 092 094 094 091 0.50
CONST — 1 091 097 097 098 098 097 097 096 097 095 096 097 097 096 0.56
YES/No — — 1 094 094 094 096 096 096 097 092 093 092 095 095 097 047
[ German-English News Task |
RANK 1 0.56 056 085 093 092 085 095 0.12 0.09 0.83 0.89 - 0.63 0.60 0.58 0.36
0.11
CONST — 1 048 054 048 059 066 057 064 065 0.61 055 051 057 063 056 -
0.02
YES/NO — — 1 0.68 0.61 0.69 073 067 060 041 054 056 033 0.79 083 0.70 0.08
[ German-English Europarl Task ]
RANK 1 0.63 081 0.76 059 046 057 0.60 030 039 040 0.66 025 053 053 064 035
CONST — 1 0.78 0.87 092 051 083 086 0.69 0.69 0.76 0.80 0.69 0.88 0.88 0.88 0.61
YES/NoO — — 1 0.88 0.77 048 0.77 0.78 0.66 0.67 0.64 0.86 0.58 0.74 074 085 0.78
[ Spanish-English News Task ]
RANK 1 - 044 0.75 076 068 071 0.81 0.19 001 0.66 0.63 - 0.73 0.76 0.66 0.36
0.07 0.12
CONST — 1 0.66 - - 029 029 0.14 045 066 - - 0.77 - - 0.16 -
0.03 044 0.11 033 0.37 0.34 0.58
YES/NO — — 1 029 0.05 073 064 055 048 047 0.09 - 0.71 0.06 0.1 039 -
0.11 0.43
[ Spanish-English Europarl Task |
RANK 1 0.69 0.76 078 0.73 073 0.8 0.77 078 0.79 0.83 0.84 0.77 073 0.73 0.80 0.87
CONST — 1 0.68 0.76 0.77 0.75 069 073 0.64 0.67 0.64 0.68 0.73 0.78 0.78 0.73 0.56
YES/NO — — 1 094 093 095 096 095 098 097 091 091 095 094 094 098 0.69

Table 19: Correlation of automatic evaluation metrics with the three types of human judgments for transla-

tion into English
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[ English-French News Task |
RANK 1 055 048 0.73 0.62 0.3 047 0.56 0.69 0.69 0.66 0.72
CONST — 1 035 049 047 039 049 024 059 0.59 058 045

YES/NO — — 1 0.81 092 071 0.73 078 0.73 0.73 0.76 0.76
[ English-French Europarl Task

RANK 1 098 088 0.95 095 095 095 090 097 097 093 093
CONST — 1 094 098 098 098 098 093 1 1 097 091
YES/NO — — 1 097 097 097 097 092 095 095 092 0.83

[ English-German News Task ]
RANK 1 0.57 0.71 058 042 043 0.13 025 090 090 090 0.32
CONST — 1 0.78 0.75 083 082 055 060 072 0.72 0.72 0.58
YES/NO — — 1 0.62 054 051 036 023 075 075 0.75 0.76

[ English-German Europarl Task |
RANK 1 028 0.57 036 036 042 039 026 038 038 0.50 0.56

CONST — 1 0.87 0.88 0.88 091 090 093 0.88 0.88 0.80 0.85
YES/NoO — — 1 0.89 0.89 096 096 084 086 086 0.87 0.98
[ English-Spanish News Task |
RANK 1 - 049 - - - - - - - - 0.02
0.30 0.04 047 025 0.29 033 019 019 0.07
CONST — 1 043 0.79 061 064 056 02 059 059 055 0.56
YES/NO — — 1 0.55 041 043 031 013 065 065 0.72 0.16

[ English-Spanish Europarl Task |
RANK 1 090 0.63 08 083 084 083 073 0.79 0.79 0.76 0.80
CONST — 1 0.73 084 086 081 08 074 0.84 0.83 0.84 0.86
YES/NoO — — 1 0.68 0.75 0.66 0.67 090 0.67 0.66 0.73 0.68

Table 20: Correlation of automatic evaluation metrics with the three types of human judgments for transla-
tion into other languages
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C Pairwise system comparisons by human judges

The following tables show pairwise comparisons between systems for each language pair, test set, and
manual evaluation type. The numbers in each of the tables’ cells indicate the percent of that the system in
that column was judged to be better than the system in that row. Bolding indicates the winner of the two
systems. The difference between 100 and the sum of the complimentary cells is the percent of time that the
two systems were judged to be equal.
Because there were so many systems and data conditions the significance of each pairwise comparison
needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine differ-
ences (rather than differences that are attributable to chance). In the following tables * indicates statistical
significance at p <= 0.05 and { indicates statistical significance at p <= 0.01, according to the Sign Test.

b g
g g & g 2 3
E. it x a Z 3 ; E c T Z € « Z Z g
% = E £ £ z 5 5 z z z g 3 p: g 8
m @] @] @] @] - - - -4 -4 o -4 %] %] =} =}
BBN-CMB 0.32 0.18" 0.21 0.42 0.37 0.29 0.24 0.33 0.48 0.48 0.32 0.29 0.44 0.48 0.21
CMU-CMB 0.50 0.26 0.29 0.42 0.4 0.44 0.48 0.49 0.38 0.45 0.55 0.32 0.34 0.34 0.46
CMU-XFR  0.677  0.44 0.60* 0757 058 073" 0.62 0.59 054 0777 048 0.54 0.65* 0717 058
CUED 0.46 0.41 0.20* 0.47 0.56 0.47 0.51* 0.41 0.54 0.57 0.37 0.43 0.61 0.39 0.15
CUED-C 0.27 0.22 0.08" 0.20 0.31 0.54 0.52* 0.32 0.52 0.50 0.31 0.40 0.38 0.30 0.52
LIMSI 0.34 0.4 0.29 0.31 0.41 0.23* 0.52 0.38 0.50 0.39 0.49 0.42 0.32 0.26 0.30
LIUM-SYS 0.37 0.32 0.137 0.39 0.27 0.60* 0.24 0.44 0.46 0.46 0.33 0.24* 0.25 0.30 0.19
LI-SYS-C 0.40 0.26 0.24 0.20* 0.13* 0.30 0.24 0.44 0.42 0.43 0.35 0.21* 0.30 0.30 0.31
RBMT3 0.46 0.43 0.26 0.38 0.46 0.48 0.39 0.39 041 0.44 0.26 0.36 0.50 0.68* 0.44
RBMT4 0.36 0.33 0.31 0.36 0.39 0.35 0.50 0.45 0.45 0.49 0.40 0.35 0.57 0.51 0.53
RBMTS 0.37 0.33 0.12f 0.32 0.33 0.33 0.39 0.46 0.25 0.22 0.21 0.37 0.44 0.49 0.57
RBMT6 0.50 0.33 0.37 0.34 0.50 0.39 0.44 0.50 0.48 0.37 0.55 0.42 0.48 0.41 0.41
SAAR 0.50 0.46 0.37 0.38 0.44 0.52 0.6* 0.54* 0.44 0.53 0.44 0.29 0.34 0.52 0.50
SAAR-C 0.31 0.47 0.23* 0.30 0.24 0.51 0.50 0.47 0.25 0.31 0.33 0.35 0.26 0.47 0.38
UED 0.35 0.37 0.137 0.39 0.55 0.50 0.50 0.43 0.24* 0.37 0.36 0.41 0.31 0.47 0.36
UED-CMB 0.57 0.36 0.16 0.46 0.38 0.30 0.63 0.39 0.39 0.37 0.35 0.53 0.27 0.48 0.36
> OTHERS 0.43 0.37 0.22 0.34 0.41 0.44 0.45 0.45 0.4 0.42 0.47 0.37 0.34 0.43 0.44 0.42
> OTHERS 0.66 0.59 0.38 0.55 0.64 0.63 0.66 0.69 0.58 0.58 0.65 0.57 0.54 0.64 0.61 0.61
Table 21: Sentence-level ranking for the French-English News Task.
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CMU-XFR 0.53 050 0.74" 0.79* 055 046 050 036 073 092 036 044 0.77*
CUED 0.29 042 029 048 0.167 053 016" 018" 018 055 006" 021 038
pcu 046  0.29 038 047 037 027 024 029 035 055 018 025 0.50
LiMst - 0.117 021 044 011 o012t 017 020 0055 030 032 019 029 033
LIUM-SYS 0.14* 0.16 024 032 006" 013 022 0.12F 014" 033 020 026 032
RBMT3 036  0.79" 0.58 0.88" 0.72f 040 057 021 0.7 072F 050 054 0.67
RBMT4 050 040 0.64 0.67 056 0.40 042 021" 052 067 033 047 0.75
RBMT5 038 0797 0.60 057 056 024 042 026 048 0.72F 050 0.46 0.60
RBMT6 054 0797 0.67 0777 0.82F 047 0.79" 0.3 0.71* 083" 056 047 077
SAAR 027 059 057 047 071t 022 029 048 0.18* 0.50 035 023 0.50
SAAR-C  0.04" 015 031 039 048 0.147 024 021" 008" 021 0.17" 020 0.57
SYSTRAN 0.50 0.817 0.65 0.52 0.64* 038 0.62 033 032 041 071 0.56 0.55
ucL 031 0.64 056 0.57 047 046 040 039 027 055 060 044 0.47
UED 0.24* 043 035 033 042 028 025 033 015" 029 026 025 027
> OTHERS 032 050 05 054 055 028 04 035 021 041 059 032 035 055
> OTHERS 042 0.7 064 078 079 040 050 048 032 058 075 047 052 071

Table 22: Sentence-level ranking for the French-English Europarl Task.
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LIMSI 029 025 0.60F 052 048 013 030 0.13* 0.17*
LIUM-SYSTRAN  0.36 0.41 0.51 0.41 0.53 0.22 0.26 0.27 0.041
RBMT3 0.56 0.34 048 052 040 031 053 037 o.11f
rBMT4 0.131 036 031 029 0.19* 026 015" 017" 0.09f
RBMTS 033 035 029 042 026 0.17F 032 017" o0.12f
RBMT6 042 038 037 043" 0.44 032 032 028 0.11f
SAAR 056 0.52 051 056 0.697 0.41 033 046 03
SAAR-CONTRAST  0.55 0.44 0.33 0.63"  0.56 0.46 0.21 0.41 0.22*
UEDIN 0.48* 048 041 0.60" 0.657 053 041 043 0.09f
XEROX 0.63* 0.747 0.787 0.747 071" 0757 044  0.64* 0.63
> OTHERS 044 043 041 0.54 053 043 028 037 032 0.13
> OTHERS 0.67 066 060 078 073 066 051 057 055 032
Table 23: Sentence-level ranking for the English-French News Task.
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LIMSI 023 021 032 010" o0.15" 035 027 0157 017
LIUM-SYSTRAN 028 039 011" 021 022 040 0.197 0.5
RBMT3  0.75* 0.59 038 039 049 070" 0817 047 0.81F
RBMT4 0.64 036 0.8 0.24* 018 061 048 042 0.0
rRBMT5 0857  0.807 049  0.62* 0.67* 078" 091" 0.63* 093"
RBMT6 0.857  0.62* 026 042 0.24* 0.83"  0.82" 047  0.68'
SAAR 041 052 0170 030 o0.11"  0.06 041 0.117 041
SAAR-CONTRAST 047 040 0.11" 026 0.03" 006" 032 027 026
ucL 0807 070" 042 047 022 044 0717 0.61 0.78"
UEDIN 046 041 0.11Y 033 004" 0157 032 036 003"
> OTHERS 0.62 054 026 04 0.17 027 056 06 032 054
> OTHERS 0.79 078 042 061 026 044 074 079 044  0.77
Table 24: Sentence-level ranking for the English-French Europarl Task.
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BBN-COMBO o1t 022 037 062 069 0.74% 0.66" 041 0.63* 0.60* 035 0.40
CMU-STATXFER  0.711 044 054 076" 0.797 0.737 074" 080" 0.62F 0.657 0547 037
LIMSI 044  0.24 041  0.67 0.65° 0697 054 050 050 063 038 022
LIU 037 027 034 0.55* 056 0.61' 050 045 048 056 032 034
RBMT2 0.21* 0.147 031 0.20* 027 043 029 034 030 013" 025" 0.24*
rBMT3 0.18"  0.137 0.197 027  0.56 037 033 032 029 029 019" 0.17f
RBMT4 0.22* 0.12F 0177 0.18" 046 0.51 0.3 031 o0.18" 026~ 028 0.7
rBMT5 0227 0.12F 032 036 058 051 040 029 023 037 03 0.28
RBMT6 0.55  0.08"7 040 04 051 051 047 0.51 049 052 022* 043
saaR  023* 0217 040 039 052 050 0.617 0.53 0.38 0.50* 026 0.13*
SAAR-CONTRAST 0.23* 0.197 03 037 071t 037 0.60* 037 033 017" 048  0.13*
UEDIN 023  0.13Y 038 03 0.68" 0.65" 055 059 0.64~ 0.67* 0.38 0.42
UEDIN-COMBO 035 041 059 050 072 0.66° 0.837 0.56 0.52  0.50* 0.67° 0.38
> OTHERS 0.32 0.17 034 035 0.61 056 057 049 045 041 046 033 028
>OTHERS 0.51 035 052 056 074 073 073 067 059 061 065 055 044

Table 25: Sentence-level ranking for the German-English News Task.
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CMU-STATXFER 057 077" 053 0717 0.69" 050 0.58 0.82F 046 0.75
LIMST  0.17* 035 071" 0.63 076+ 050 059 052 023 067
Liu  0.147 035 050 029 067 03 042 035 027 057
RBMT2 027  024* 0.6 039 033 036 042 050 033 046
RBMT3 023" 03 0.57 045 040 031 038 056 032 055
RBMT4 0227 0.19* 029 050 048 039 048 041 032  0.61
RBMT5 040 040 0.56 054 057 0.52 03 048 029 0.54
RBMT6 027 032 048 046 053 044  0.51 0.55 036  0.61
SAAR  0.12F 019 030 044 041 048 032 042 0.207  0.40
ucL 035 054 046 063 0.61 0.68 0.68* 0.61 0.63 0.65"
vepiIN  022F 017t 032 042 042 036 041 027 040 0231
> OTHERS 0.24 032 046 051 051 053 043 043 053 030 0.58
> OTHERS 0.36 049 061 063 0.6 0.61 054 054 068 042  0.68
Table 26: Sentence-level ranking for the German-English Europarl Task.
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LIMSI 044 08" 067" 081" 076" 0637 053 047"
Liu  0.29 0.80" 0.68" 0.81" 0.627 063" 025 031
reMT2 0.137 007 0.35 033  032% 0200 0.17"  0.09f
RBMT3 0.187 0277  0.50 052 045 0297 026 0211
rRBMT4 0.09"  0.127 047 030 042 022 o015t o017t
RBMT5 0.12" 0267 0.59* 042 040 033 028 0.24f
rRBMT6 0257 022 06"  0.617 0.637 050 0.36 033
SAAR 028 0.63 0.66° 056 07" 0.62 046 0.45
UEDIN 024* 042 0757 0.66" 0.73" 0.68° 051 0.36
> OTHERS 0.19 028 0.64 054 061 054 040 03 0.27
> OTHERS 036 043 079 066 075 067 056 046 044
Table 27: Sentence-level ranking for the English-German News Task.
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CMU-GIMPEL 029 028 041 049 056 044 024" 009 024* 0.52
LIMST  0.45 031 048 045 054 040 035 040 029 047
Liv 034 047 0.56 044  0.65* 037 030 031 019" 050
RBMT2 051 048 041 041 048 022 024* 0.62 026° 043
RBMT3 040 050 047 047 0.60 033 03 011 026 0.50
RBMT4 039 037 027° 041 035 022" 0.14" 025 033 046
RBMT5 049 047 054 0.64° 060 0.64' 032 047 045  0.64"
RBMT6 0717  0.50 0.58 0.57* 0.65* 0.74" 0.46 041 036  0.60
SAAR  0.73* 040 039 039 078 058 047 035 0.31  0.50
ucL 0.61* 0.6~ 0.677 0.59* 0.68* 0.64 0.53 051 0.62 0.70"
UEDIN 025 027 030 052 041 049 026" 031 025 0231
> OTHERS 047 043 043 051 051 059 036 03 037 03 0.54
> OTHERS 0.61 058 058 062 058 068 047 043 053 039 067

Table 28: Sentence-level ranking for the English-German Europarl Task.

97



[
s
17} 7 _ o <t e} No) z
=) 8 a g E E E E % m a 3
= =) =) = m m m m < O = =
@] Q Q - o~ 7 24 o~ 7} j=) =) =)
CMU-SMT 041 0.62* 033 054 0577 042 046 046 029 034 037
CUED 0.29 024 027 054 076" 0.61% 050 039 046 026  0.42
CUED-CONTRAST 0.19* 0.24 023 047 048 028 041 037 026 026 033
LiMsI 033 030  0.51 041 056" 047 041 046 033 037 043
RBMT3 0.19* 023* 037 043 039 028 03 033 039 030 049
rBMT4  0.197  0.147 027 021t 027 021" 030 027 017f 029 0.23*
RBMT5 037  0.19* 0.56 035 047 057 0.56 043 024 035  0.52
RBMT6 041 030 029 039 043 050 025 046 034 044  0.46
SAAR 029 025 043 032 050 042 033 031 02* 026 03
ucB 029 036 052 049 046 0617 0.6© 041 0.56 039 028
UEDIN 039 037 052 030 050 061 058 039 046 024 0.44
upc 026 036 047 035 040 059 032 042 046 033 041
> OTHERS 0.29 028 043 034 045 055 039 040 042 029 034 039
> OTHERS 0.57 056 067 058 067 077 058 061 067 054 056 0.60
Table 29: Sentence-level ranking for the Spanish-English News Task.
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CMU-SMT 036 038 037 0107 020" o014t 032 039 022 025 038
CUED  0.40 038 053 033 030 030 0200 032 008 036 029
pcu 034  0.38 046 032  0.19* 026* 021* 032 033 025 046
LIMsI  0.31 030 021 005t 009" 0157 018 024 0107 019 048
rRBMT3 0.83" 062 058 073 056 025 037 060" 031 066* 0.78
rRBMT4 073" 054 076 0.747 0.8 038 024 053 029 056 0.65*
RBMT5 079" 055  0.67* 0757 058  0.57 0.59* 070" 044 071 0.67
RBMT6 052  0.777  0.66* 0.68* 042 049 0.18* 0.55 041 054 0.71
SAAR 043 042 041 047 0200 032 0.177 030 0.22* 035  0.32
vcL 056 0717 056 0.70F 042 057 033 044  0.59* 0.81"  0.67
UEDIN 028 046 039 031 029* 042 025 039 035 015 0.40
upc 044 039 043 036 0077 023 024 029 027 020 040
> OTHERS 050 0.5 049 053 028 036 024 032 044 026 045 051
> OTHERS 0.71 068 068 078 043 049 035 047 067 043 066 0.69
Table 30: Sentence-level ranking for the Spanish-English Europarl Task.
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CMU-SMT 039 057 052 0.62F 056 050 041 042 056
LIMSI  0.42 0.56 053 0.63* 058 032 039 035 035
RBMT3 023 03 034 046 050 039 017 021" 0.06*
RBMT4 0.25* 030 047 031 035 038 036 032 019
RBMT5 0217 020% 028 042 042 029 024 0177 023
RBMT6 0.23* 023 031 041 042 023* 0.19 024* 024
SAAR 036 052 039 043  0.67° 0.54* 036 029 042
UCB 037 039 052 039 049 052 046 027 025
UEDIN 035 048 0.62F 048 0.647 0.61* 050 047 0.53*
vpc  0.11" 041 0.63* 048 050 057 042 0.63 0.06*
> OTHERS 0.28 036 047 045 052 051 038 034 027 033
> OTHERS 049 054 068 067 072 072 055 059 048  0.60

Table 31: Sentence-level ranking for the English-Spanish News Task.

98



=
5 ., ¢ T g g . 2
= ¢z :z : 2 ¥ 3 & g =
@) 3 ~ ~ x ~ “ =) =) =) =
CMU-SMT 0.28 0.47 033 0.177 026 0.50 0.25 048 044 028
Limst - 0.38 0.19* 0.33 0.16* 0.23 0.33 0.14"  0.14 0.35 0.32
RBMT3 0.42 0.62* 042 0.36 0.29 0.54 0.28 0.39 0.50 0.75"
RBMT4  0.46 0.47 0.42 0.19 0.31 0.61 0.50 0.40 0.50 0.57
RBMT5 0.707  0.64* 0.59 0.48 0.35 0.65* 0.52 0.64 0.61 0.63"
RBMT6  0.63 0.58 0.47 0.56 0.50 0.78"  0.32 0.58 0.33  0.71"
SAAR 0.33 0.40 0.33 030 023* 0.19f 0.20 0.27 024 0.33
ucL  0.46 0.64" 041 046 0.36 0.41 0.60 0.65* 042 0.57"
UEDIN  0.09* 0.29 0.48 045 0.28 0.27 0.41 0.19* 025 0.17
upc 0.22 0.40 0.50 043 0.28 0.40 0.52 0.26 0.56 0.58
uw  0.44 0.32 0.06" 029 017* 021* 033 0.14*  0.33 0.33
> OTHERS 0.43 0.46 0.4 0.4 0.26 0.28 0.53 0.28 0.46 0.4 0.49
> OTHERS 0.67 0.74 0.55 0.56 0.41 0.44 0.72 0.50 0.71 0.59 0.74

Table 32: Sentence-level ranking for the English-Spanish Europarl Task.

DCU UEDIN UMD
DCU 026" 04
UEDIN  0.37' 0.46"
UMD 0.4 0311
> OTHERS 0.38 0.28 0.43
> OTHERS 0.68 0.58 0.65

Table 33: Sentence-level ranking for the Czech-English News Task.

DCU SYSTRAN UEDIN UMD

DCU 0.21f 0.19"  0.37

SYSTRAN  0.597 047t 0.611

UEDIN 0.42F 0277 0.50"
ump  0.38  0.18F 0.29f

> OTHERS 0.46  0.22 0.31 0.49

> OTHERS 0.75 0.45 0.60 0.72

Table 34: Sentence-level ranking for the Czech-English Commentary Task.

CU-BOJAR CU-TECTOMT PC-TRANSLATOR UEDIN
CU-BOJAR 0.32 0.51 0.27°
CcU-TEcTOMT  0.52% 0.581 0.42
PC-TRANSLATOR  0.35" 0.25% 0.261
UEDIN  0.5f 0.40 0.59°
> OTHERS 0.45 0.32 0.56 0.32
> OTHERS 0.63 0.49 0.72 0.50

Table 35: Sentence-level ranking for the English-Czech News Task.

CU-BOJAR CU-TECTOMT PC-TRANSLATOR UEDIN
CU-BOJAR 0.28" 0.38 0.19°
CU-TECTOMT  0.58' 0.53" 0.43
PC-TRANSLATOR  0.45 0.3f 0.26'
UEDIN  0.60° 0.37 0.56
> OTHERS 0.54 0.32 0.49 0.29
> OTHERS 0.71 0.49 0.66 0.49

Table 36: Sentence-level ranking for the English-Czech Commentary Task.
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MLOGIC  UEDIN
MORPHOLOGIC 0.15"
UEDIN  0.68"
> OTHERS (.68 0.15
> OTHERS 0.85 0.32

Table 37: Sentence-level ranking for the Hungarian-English News Task.
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CMU-XFR 0.37 0497 062" 0577 0617 049 049 048 041 056" 039  0.46*
CUED 0.28 021 030 030 0.13 028 018 027 028 031 034 018
cuED-c 027 0.11 0.30* 0.19 033 0.18" 021 024 02F 02 017" 0.24
LiMst 0.13F 020 0.13* 027 022 023 024 02 020  0.16* 023 022
LIUM-SYS 0.18" 0.17 027 0.17 020 018 041 029 024 026 022 026
LI-sys-c  0.187  0.28 024 025 007 033 02 027 018" 023 025 019
RBMT3 028 034 052" 028 040 037 027 046" 027 030 039 0.34
RBMT4 029 040 034 031 039 043 033 034 034 027 041 031
RBMT5 0.22* 024 034 03 027 043 0147 024 0.13* 032 032  0.32
RBMT6 0.3 041 0.507 039 033 058 03 0.33  0.37* 033 052 037
SAAR 0277 033 043* 037" 04 042 041 036 032 041 023 041
SAAR-C 028 032 038 027 027 045 023 021 020 023 0.8 0.19
UED 0.19* 0.5 020 025 029 0.19 028 027 019 024 021 0.26
> OTHERS 0.24 027 033 032 032 037 029 028 030 027 029 031 029
>OTHERS 051 075 079 080 077 078 065 066 073 062 064 074 077
Table 38: Constituent ranking for the French-English News Task
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CMU-XFR 042" 04t 0377 054" 016* 021 041 023 049" 042" 034 045  0.50"
CUED  0.03f 013 008 0.14 013" 0.13" 008" 005" 008 004 015 011 0.07
pcu  0.09"  0.08 0.10 012 0.06" 020 031 016" 014 022 013 010 0.16
LIMsI  0.1*  0.05  0.19 0.05 004" 008 019 011" 018 009 005" 005
LIUM-sYs 0.03"  0.14 019  0.07 0 0.08* 0.03" 005" 003" 009 015 014 0.08
RBMT3 0.44* 0.617 0.507 0.58" 0.56" 041* 038 032 037 053 044  0.50* 0.581
RBMT4 039 0447 043 0457 035 0.12* 031 023 042 039 033 032 035
RBMT5 0.19 0477 029 035 0377 018 017 023 035 033 019 046 0.40
RBMT6 036  0.657 0.547 048" 0557 026 040 050 0.50" 0.52f 047 0.60" 0.44
saaR 0077 025 024 018 0377 023 036 023 0.12f 0.12 023 013 037"
SAAR-C  0.097 018 012 016 016 0.09" 018 02 0.06"  0.12 009 014 0.5
SYSTRAN 034 040 021 038" 023 025 036 022 015 023 0.28 031 0.30*
ucL 025 034 028 0317 019 0.11* 024 023 0117 024 031 0.34 0.37*
uep 0.10°F 010 016 0.05 008 003 015 014 018 007* 0.13 007" 0.11*
> OTHERS 0.2 032 027 028 028 012 022 025 0.5 026 027 022 025 028
> OTHERS 0.63 091 085 091 092 052 065 07 052 078 087 071 074 0.89

Table 39: Constituent ranking for the French-English Europarl Task
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LIMSI 027 043 043 029 053 032 037 030 0.14f
LIUM-SYSTRAN  0.09 033 036 0.18 035 016 025 022 013
RBMT3 036  0.33 022 031 028 04 026  026* 0.20f
RBMT4 025 026  0.30 023 0.16" 028 026 024 013"
RBMT5 031 033 022 0.8 0.17 027 025 023 0.3
RBMT6 026* 030 031 038" 032 033 036 039 025"
SAAR 032 041 035 038 032 028 014 023 o.a1f
SAAR-CONTRAST 025 026 036 030 033 036 0.05 022  0.13f
UEDIN 029 034 045 04 033 040 031 035 0.13f
xErox 0.66" 0.557  0.617 0.657 0.58" 051 0.53"7  0.577  0.45°
> OTHERS 031 034 038 0.38 033 033 03 031 029 0.15
>OTHERS 0.65 076 072 077 076 067 073 075 066 044
Table 40: Constituent ranking for the English-French News Task
w
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LIMSI 0.14 0.09" o0.10f 024 011" 013 008" 0.12
LIUM-SYSTRAN 0.19"  0.19* 015 012" 006 006" 0.09
RBMT3  0.657  0.591 033 043 032 050 039 046
rRBMT4 0.53" 047" 0.19 027 0.18% 033 038 039
RBMT5 048 038 032 048 047 0557 044 0517
RBMT6 0.54" 049" 032 041 026 0.52" 045  0.58f
SAAR 021 017 023* 025 0217 0177 0.19 0.3
ucL 0377 033" 038 035 036 032 034 0.31°
UEDIN 0.12 011 0.17" 023 013" 0.13" 007 0.07"
> OTHERS 0.38 036 025 030 026 024 033 027 034
> OTHERS 088 0.88 056 068 055 056 081 066 087
Table 41: Constituent ranking for the English-French Europarl Task
a4
2 N o < ") ¥e) O
E = = = = e = o o =
= 2 2 Z % 2 2 =2 $ 3 &8
&) 3 3 o~ o o~ a4 o %) %2} o)
CMU-STATXFER 047" 044 0527 053" 0577 049 041 049 058  0.49°
LiMsI  0.17° 0.18 035 034 040 033 043 019 028 0.19
Liv 025 03 037 035 044 028 040 021 033 032"
RBMT2 0.19"7 026 030 0.19 032 0.16* 020 026 023 021
rBMT3 0227 036 026 023 024 023 014" 015 028 029
rRBMT4 0207 035 023 021 024 022  0.19* 036 032 0.31
RBMT5 026 028 038 034 031 035 026 03 043" 035
RBMT6 038 037 039 034 0447 04 030 028 026 038
SAAR 029 022 037 029 010 028 019 022 0.26 0.18
SAAR-CONTRAST 0.187 033 029 019 022 024 0157 026 0.18 0.23
UEDIN 0.11T 0.3 0.13* 023 035 03 0.2 037 030 0.31
S OTHERS 0.22 033 03 031 032 035 025 029 028 033 030
> OTHERS 0.50 072 067 077 076 074 067 064 076 078 0.74

Table 42: Constituent ranking for the German-English News Task
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CMU-STATXFER 0517 0517 038 038 041 037 044 048 039 0.6
LiMst  0.18F 022 03 030 023 022F 032 027 018 029
Lo 0.14t 022 026* 032 022 0.16" 031 020 008" 0.12
RBMT2 038 051  0.52* 040 032 025 031 051 040 0.7
RBMT3 032 042 045 028 046 016 020 0567 038 043
RBMT4 032 045 052 031 0.24 0.137 030 049" 044  0.48*
RBMT5 044 0577 0537 034 031 0437 0.19 054" 039  0.54"
RBMT6 033 051 048 033 047 033 033 047 042  0.51*
SAAR  0.12F 0.1 0.15 026 009" 019" o017t 0.23* 0.11"  0.14
ucL 030  043* 049" 040 040 030 041 039 038 0.51"
vebin  0.11Y 016 012 018" 025 02 018" 023 0.14 o0.12f
> OTHERS 0.27 040 041 031 032 032 025 03 041 030 0.44
> OTHERS 0.55 075 08 058 064 064 058 059 084 060 083
Table 43: Constituent ranking for the German-English Europarl Task
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LIMSI 029 046 045 037 036 0297 033 022
Liu  0.32 0.53"  045* o051t 05 038 031  0.36
RBMT2 033  0.32% 029 029 020" 0257 028 0.28f
RBMT3 034 03* 04 033 03 034 020 027
rRBMT4 026 025" 031 03 0.23* 023" 020 o0.21f
RBMT5 046  0.33* 0.557  0.46* 0.40* 032 032 029F
rBMT6 0521 040 047" 044  0.537  0.40 027 037
SAAR 038 0.3 039 042" 044 040 0.44 0.34
UEDIN 030 024 0.537  0.52F 0517 056" 045 036
> OTHERS 0.36 0.31 046 041 042 037 033 028 029
> OTHERS 0.65 057 072 068 075 060 056 061 056
Table 44: Constituent ranking for the English-German News Task
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CMU-GIMPEL 012 027 021" 030 021" 027 021" 022 022 0.23
LM 0.22 022 034 029" 0290 023" 029" 02 021 019
LU 018 02 020" 025* 017" 016" 012" 028 021 0.8
RBMT2  0.547 041  0.621 028 033 035 028 0.61" 043 047"
RBMT3 047 047" 047 04 033 032 028 0.56 047 048
rRBMT4 0527 0577 052 042 032 027 028 047 045 039
RBMT5 0.49* 0577 0657 042 038  0.48* 031 076" 051  0.52f
rBMT6 0517 0.547 0.60°7 041 039 040 041 0.51*  0.53* 0.51
SAAR 024 029 017 026 022 025 0207 o0.21* 031 012
ucL 028 032 029 033 038 032 032 029" 0.19 0.30
UEDIN 0.1 013 022 02" o018 022 021" 018 015 017
> OTHERS 037 037 042 032 030 031 028 025 039 035 0235
>OTHERS 0.77 075 081 058 059 058 051 052 077 069 0.82

Table 45: Constituent ranking for the English-German Europarl Task
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CMU-SMT 0.19 0.17 026 038 027 045 032 035 027 026 02
CUED 0.21 021 024 024 02 034 025 027 018 026 021
CUED-CONTRAST 0.17  0.08 0.12 024 023 027 025 021 012 0.11 026
LiMsT  0.17 025 0.26 034 018" 033 033 031 017 026 0.3
RBMT3 029 031 035 037 021 04 031 032 043 042 0.52*
RBMT4 038 034 0.54* 047" 035 024 032 046" 037 040 0.53
RBMT5 024 031 040 033 025 0.18 031 033 032 028 0.38
RBMT6 033 029 028 033 026 027 0.6 026 03 039 041
SAAR 026 027 033 026 021 0.12F 025 024 020 028 0.20
UcB 025 030 023 027 031 027 040 034 0.28 032 026
UEDIN 0.19 020 019 024 027 033 031 027 021 021 0.25
upc 0.1 021 017 02 022 028 04 024 029 030 02
> OTHERS 024 025 028 028 028 023 033 029 03 026 0.3 032
> OTHERS 0.72 076 082 074 064 061 07 070 076 071 076 0.76
Table 46: Constituent ranking for the Spanish-English News Task
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CMU-SMT 0.2 020 0.1 o1t 018" 004" 018" 016 017 019 0.19
CUED 0.18 013 019 o014t o012f 01t 02 013 012 022 0.2
pcu 0.15 0.13 0.11  0.09" 0.0t 013" 009t 019 015 014 0.15
LIMSI  0.03 0.15 0.6 o.19t 0.18" 0.157 0.19" 019 008" 007 022
rBMT3 077 0737 0.597  0.49° 019 036 022 062" 055 0.68" 0.73
rBMT4 0557 0.62F 0.517  0.557  0.23 022 0.17 056" 043 0.56"  0.44*
RBMT5 0.60" 0.617 0.53"7 0.617 032 038 028 0.63" 053 077 0.597
rRBMT6 0.527 048 0.517 0497 023 026 0.19 049" 053 0.52F  0.50"
SAAR  0.14 0.10 0.12 015 o.10" 012" 0.05" 0.07° 0.14* 005 0.8
ucL 038 037 046 045" 028 032 029 024* 0.38 0.38*  0.36
UEDIN 006 014 0.14 018 0.15" 016" 005" 016" 015 0.10* 0.21
upc 0.19 012 020 012 007t o0.17¢ 0.09" 014" 004 017 014
> OTHERS 0.32 033 032 032 0.17 02 015 0.17 033 028 034 035
> OTHERS 0.85 085 087 085 046 056 047 057 089 065 087 0.87
Table 47: Constituent ranking for the Spanish-English Europarl Task
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CMU-SMT 020 036 037 0247 036 032 021 017 027
LIMSI 023 0.4 046 033 039 031 023 017 0.8
RBMT3 033 035 022 0197 03 031 049 034 022
RBMT4 030 025 0.25 0.17* 017 024 0.19" 034 030
RBMT5 053" 042  0.50"7 0.41* 035 050 044 037 029
RBMT6 036 035 034 039 032 035 036 037 038
SAAR 033 036 038 028 024 0.38 029 022 024
uce 032 029 035 0547 033 045 031 0.19  0.29
UEDIN 029 033 036 042 042 039 045 0.30 0.44
upc 036 042 050 049 042 044 051 021 026
> OTHERS 0.34 033 038 039 029 035 036 031 027 029
>OTHERS 072 0.69 069 075 057 064 07 065 063 06

Table 48: Constituent ranking for the English-Spanish News Task
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CMU-SMT 0.13 0.10" 021 02f  02f 026 022 013 016 0.14
LiMsT  0.17 024 o0.16' 020" 013" 021 006" 009 014 0.08
RBMT3 0.64"  0.45 024 030 021 0577 056 058 032 0.8
RBMT4 0.54* 0.52F  0.42 026 024 050 035 043 047 044
RBMT5 0.617  0.68° 046  0.44 037 0.64" 050 063" 0.62F 0.54
RBMT6 0577 048 039 033 025 0.52" 033 054" 046 046
SAAR  0.19  0.14 007" 0.19* 0.09" 0.14" 013t 017 026 018
ucL 043 046" 029 037 038 042 049" 037 048  0.40
UEDIN 0.15 0.1 024* 020 013" 017" 030 0.14* 020 020
upc 026 005 035 025 0167 023 034 021 023 0.10
uw 014 014 0.177 022 023 02 032 020 020 035
> OTHERS 037 032 028 026 022 023 042 027 035 035 033
>OTHERS 083 086 056 059 046 057 085 059 082 078 079

Table 49: Constituent ranking for the English-Spanish Europarl Task

CU-BOJAR CU-TECTOMT PC-TRANSLATOR UEDIN
CU-BOJAR 0.33 0.41 0.28*
CU-TECTOMT  0.37 0.42° 0.36
PC-TRANSLATOR  0.34 0.311 0.321
UEDIN  0.37* 0.37 0.43"
> OTHERS 0.36 0.34 0.42 0.32
> OTHERS 0.66 0.62 0.67 0.61

Table 50: Constituent ranking for the English-Czech News Task

CU-BOJAR CU-TECTOMT PC-TRANSLATOR UEDIN
CU-BOJAR 0.25" 0.331 0.221
CU-TECTOMT  0.50" 0.44" 0.45
PC-TRANSLATOR  0.47% 0.3t 0.40
UEDIN  0.39f 0.37 0.39
> OTHERS 0.45 0.31 0.39 0.36
> OTHERS 0.73 0.54 0.61 0.61

Table 51: Constituent ranking for the English-Czech Commentary Task
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French—English English-French

Europarl YEs No News YES No
CMU-XFR 0.61 0.39 CMU-XFR 0.55 045
CUED 0.83 0.17 CUED 0.74 0.26 Europarl YEs No News YES No
DCU 0.88 0.12 CUED-Cc 0.79 0.21 LimMsr - 0.75 0.26 LiMsr - 0.73  0.27
LIMSI  0.89 0.11 LimMst 0.81 0.2 LIUM-SYS 0.84 0.16 LIUM-SYS 0.75 0.25
LIUM-SYS 0.89 0.11 LIUM-SYS 0.79 0.21 RBMT3 049 0.51 RBMT3 0.59 041
RBMT3 0.54 047 LI-SYs-c 0.7 0.30 RBMT4 050 0.5 RBMT4 0.59 0.41
RBMT4 0.62 0.38 RBMT3 0.63 0.37 RBMTS 044 0.56 RBMTS 0.64 0.36
RBMTS 0.71 0.29 RBMT4 0.64 0.36 RBMT6 0.35 0.65 RBMT6 0.58 0.42
RBMT6 0.54 0.46 RBMTS 0.76 0.24 SAAR  0.70 0.3 SAAR 0.59 041
SAAR 0.72 0.28 RBMT6 0.66 0.34 ucL 0.6 0.40 SAAR-C 0.59 041
SAAR-C 0.86 0.14 SAAR 0.64 0.36 UEDIN 0.75 0.25 UEDIN 0.63 0.37
SYSTRAN 0.81 0.19 SAAR-C  0.70 0.3 XEROX 0.30 0.7
ucL  0.73  0.27 UEDIN 0.72 0.28
UEDIN 091 0.09
German—English English-German
Europarl YEs No News YES No Europarl  YES No News YEs No
CMU-XFER 033 047  CMU-XFER 047 053 CMU-GIMPEL  0.827  0.18 LIMST0.56 - 0.44
LIMST  0.80 0.2 LiMs 073 028 LiMst - 079" 021 LIU 049 0.51
LU 083 0.17 LU 064 036 Liv 079" 021 RBMT2  0.69 0'31
RBMT2 076 0.4 RBMT2 072 028 RBMT2  0.69"  0.31 RBMTi 8'32 8';5
RBMT3 074 0.6 RBMT3 073 027 RBMT3 057  0.43 Eﬁﬁ% 05 04s
RBMT4 0.67 0.33 RBMT4 0.74 0.26 rRBMT4 0677  0.34 REMT6 0' 6 0' 40
RBMTS 0.63 0.37 RBMTS 059 041 RBMTS 045 0.55 SAAR 0'54 0.46
RBMT6 0.63 0.37 RBMT6 0.68 0.32 RBMT6 047 0.53 UEDIN 0'52 0'48
SAAR 0.82 0.18 SAAR 0.67 0.33 SAAR 0777 023 ’ ’
ucL 049 0.51 SAAR-C  0.72 0.28 ucL 0617 039
UEDIN 0.86 0.14 UEDIN 0.63 0.37 UEDIN  0.85T  0.15
Spanish-English English—Spanish
Europarl YEs No News YES No Eurovarl YEs No News YES NO
CMU-SMT _ 0.88 0.12 CMU-SMT _ 0.64 0.37 CMU_IS’MT e TR
CUED 0.86 0.14 CUED 0.64 0.36
bcu 085 015 CUED-C 069 031 LimMst - 0.87  0.13 LiMst  0.53 047
LIMSI 090 0.1 LIMSI 068 033 RBMT3 0.58 042 RBMT3 0.64 0.36
RBMT3  0.65 0.35 RBMT3 0.61  0.39 Eﬁﬁig 8‘2 . 8"3‘(7) ngig 8'26 g'ig
RBMT4 0.56 0.44 RBMT4 0.65 0.35 ’ ’ ’ ’
RBMTS 0.59  0.41 RBMTS 0.59  0.41 RBMT6 060 0.40 RBMT6 062 0.38
RBMT6  0.55  0.45 RBMT6  0.64  0.37 SAAR 8'?1 8';3 SAAR 8'2‘7‘ 8'22
SAAR  0.87 0.13 SAAR 0.7 030 ucL . : ucs 0. :
UcL 073 027 UCB  0.64 037 UEDIN 0.89 0.11 UEDIN 0.49 0.51
UEDIN 088  0.12 UEDIN 062 038 ure g'gg g;z upc 0.37 063
upc 0.86 0.14 upc 0.71 0.29 ’ ’
English—Czech
Commentary YES NoO News YES NoO
CU-BOJAR 0.59 041 CU-BOJAR 0.54 0.46
CU-TECTO 043 0.57 CU-TECTO 042 0.58
PC-TRANS 0.51 0.49 PC-TRANS 0.52 0.48
UEDIN 041 0.59 UEDIN 044 0.56

Table 52: Yes/No Acceptability of Constituents
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BBN-CMB-DE S0 401 20 50 17 .64 1 .73 31 69*.71 38 .70 .60 .60 .80 .77*.60 .63 .89*1 .57 .62 .83 .60 .17 .57 .55 41 .70 .58 .71 .82 .75 40 33 1 25 .36 .85*.50 40 .60
BBN-CMB-FR .38 14 38 .09*.13*.33 .63 20 25 .13 .13 .60 .31 .46 .43 27 .13 .67 25 .46 33 38 22 .43 .07*.33 42 .50 36 .25 .46 .40 .067 .30 33 .50 80 .14*.20 .67 33 .25 .13 .42
CMU-CMB-FR .60 .71 .54 .09*.60 .29 .13 .57 .33 23 .33 33 .46 .44 .58 .40 20 .54 27 .50 .67 .11 .14 .44 .11 25 .60 .09* .40 29 25 .56 .20 .56 .25 .14 .38 .11*.11 .22 36 44
CMU-SMT-ES S50 31 50 .17 75 46 .64 43 25 .54 .60 .83* .40 .50 .17 .14 .46 .50 .64 .73 .80 .67 .64 .33 .33 .67 .46 .50 50 .39 36 .64 .70 .17 50 33 .14 25 33 .13 38 43
CMU-XFR-DE .60 .82*.91* .50 .78 .56 .89* .42 .73*.55 27 .33 .88*.57 .737 921 .75 807 .82 .75*.67 .75 .86 .78 .91*.89*.79* 817 .80 .67 907 .64 73780 64 33 1 .83 .11 .20 1T 907 33 50 .85*
CMU-XFR-FR 50 .75 67 .11 .70 .80*.88*.71 .50 75 .50 .60 .71 .67 .50 .67 .60 40 .43 .60 .67 .29 .25 .64 .75 .38 50 .67 .18 .57 .44 .73 33 .50 .75 80 .69 .64 50 33 1
CUED-C-ES 0 .56 .59 22 .20 18 21 .19 0 29 .15 .47 .14 39 .50 .25 .39 36 .43 46 33 .31 .56 .50 .077.73* 31 43 50 42 40 27 .18 50 .38 .29 .10*.22 .33 43 .33
CUED-C-FR 29 .13 .38 .39 .11*.10*.73 50 25 36 .57 40 36 .11*.70*.60 .40 .58 .36 .56 .20 .39 .50 .60 .10*.50 .50 .30 46 33 0 .17 .20 .39 .13 .88 0 .29 39 36 0 .40 .50
CUED-ES 80 29 .18 25 0 .29 38 .64 25 20 .14 .78 25 .36 .88 .25 .36 .39 .69 .71 .58 .83*.67 .30 .50 .60 .47 40 20 .38 .50 .50 .57 25 .50 .50 .08T0 .57 20 .50 .67
CUED-FR 18 .25 22 43 .09%.29 .69 .38 .27 11 .10*.47 33 .64 .15 50 .38 .57 50 42 .43 33 .50 22 .46 .46 .33 50 .56 .18 .44 25 .38 20 250 33 .13 44 0 .10*.50
DCU-CZ 44 22 91*.56 .60 .85*1 .77*.78 .86 .75 .62 .57 .83*.30 .55 .80 .67 .79*.50 .33 .80*.897.73 .17 .50 .60 .50 .54 .78 .80 .13 .38 .39
LIMSI-DE . .38 33 .57 .50 7771 .29 50 .78 .50 .67 .71 .88 .71* .33 .57 .89 .30 43 78527 36 .17 44 1 1 .13 .50 .67 .50 .40 .30 43
LIMSI-ES .08*.40 .67 .30 .17 .25 .54 .60 .57 .80*.56 .50 .50 43 .55 .50 33 .43 .10*.67 .50 .63 .39 .69 .29 .75 .50 .29 63 20 22 55 33 29 251 .75 .17 25 .57 .50 .64 .50
LIMSI-FR .14 38 .18 080 .40 .27 .36 .11 .35 .09*.29 .25 23 .63 .30 .25 .38 .56 36 .44 22 .25 .50 .10*.31 .20 .20 17 20 38 50 36 33 1 .33 .50 25 .087.27 24 25 29 .50
LIU-DE .50 .55 .33 .60 40 .86 .89*.38 .44 22 25 .57 54 7380 1 .22 .55 .86 .83 .67 .67 .67 .25 .89*.71 .50 .60 .60 .60 .75 .71 .67 33 1 1 22 22 43 .67 40 .69
LIUM-S-C-FR 20 29 17 50 0 .14 46 0 .43 21 .20 .08*.18 .13 .09* 25 .11*.18 .39 50 .27 27 46 .50 .13*.31 .55 .33 42 25 33 .59*.33 33 33 .50 25 22 18 0 .44 .60
LIUM-S-FR 20 .36 .20 .67 .08T.11 .50 20 .13 .62 .15*0 .38 .50 .20 .25 14 42 36 .17 43 .13 .60 .30 .25 33 .52 25 39 29 20 44 .16* .44 50 .60 .08*.17*.23 .17 0 .16 .46
MLOGIC-HU 40 75 .60 .71 25 .50 .63 .60 .75 .50 43 .67 .50 .89*.71 88 .67 .44 .86* 1* .50 .75 .67 .83 .63 63 67 50 86 33 63 33 751 401 1 44 25 .80
RBMT2-DE 33 39 46 07733 46 33 .64 38 .08*.50 .36 .50 .33 .55 .58 .13 17 .67 38 .38 .70 .55 22 .46 .46 .46 10 42 43 67 29 33 40 40 1 .10*.31 .54 .36 .14 .077.56
RBMT3-DE .08*.75 .64 .50 .18 20 .64 .64 .31 43 22 .11 .80* .44 36 .62 .64 .33 .67 55 46 35 .90*.40 .14 .80* .40 .38 25 .53 44 31 .56 .63 .17 .80 .60 22 .55 .60 .17 .20 .67
RBMT3-ES 40 .55 50 .18 .13*.50 36 .22 .23 50 .14 .42 .33 .50 .14 .50 .83 44 33 27 39 .64 .50 .50 36 .33 .31 33 .09 43 23 50 46 29 75 75 25 25 36 50 0 .20 .78
RBMT3-FR 25 .58 22 .27 .33 29 27 40 29 .33 .13 33 43 .50 .17 .55 50 0 .56 .31 .62 J75 .63 33 .13 44 38 .27 57 .63 .17 .50 .38 40 1 .11 25 .73 50 25 .53
RBMT4-DE .11*.50 .78 .20 40 .67 .62 25 .14 .15 29 .13 .78 25 .73 .75 50 55 .18 22 43 50 .57 29 25 42 33 25 .67 .58 50 .60 .67 .14 38 50 .75 0 .22 .63
RBMT4-ES 44 57 22 .14 .17 38 .38 .08*.56 .14 .13 .31 .50 .33 46 .30 0 .10 .10*.50 .38 .56 29 43 25 33 38 46 33 14 09 25 33 111 1 0 .09%39 .50 0 .38 .38
RBMT4-FR 43 29 22 27 .11 .57 22 27 .33 33 .08%.14*.23 33 22 .25 .60 .50 .46 .30 .50 .47 .57 .41 .67 46 .58 .54 36 .63 .14 .86 .36 25 .60 .39 .50 .50 .33 .20 .mm%
RBMT5-DE 23 .71*.67 .50 .09*.50 .38 .80*.40 .56 .60 .44 .57 .80*.63 .75*.75 .25 .67 .43 .83 .75 29 .57 .17 50 17 .13 40 71 20 .67 47 .38 .86 25 27 25 .70 .67 20 .38 .50
RBMTS5-ES 17 67 .75 27 .11*27 73750 .13 46 27 43 62 117,62 .50 22 36 .10*.43 44 43 .63 .46 .36 50 .29 57 27 29 25 .60 .11 33 .60 .67 44 0 30 43 .17 .25 .58
RBMTS5-FR 30 42 .10 .11 .14*.17 .09*.42 .30 .39 .20 .11*.33 .50 21 .27 .29 15 40 .67 38 .71 33 17 0 40 .50 25 .56 .077.50 31 .14 50 22 40 .57 54 29
RBMT6-DE 67 25 91* 36 .067.50 .54 70 47 .53 33 .50 .57 .70 40 .67 .58 .25 .39 38 .69 .73 .50 .50 .46 .50 .43 .50 46 .62 50 46 .50 46 .40 33 .80 .29 .20 .57 .50 29 .86
RBMTO-ES 29 .55 .60 .50 25 25 .46 22 33 .08%.40 20 .44 55 .64 38 29 .63 .40 30 .30 .25 .57 33 22 .60 .63 64 42 38 .67 .71 46 O S50 22 25 50 33 0 .13 .67
RBMTO6-FR 36 .63 .57 43 20*.63 .50 .83 43 36 .10* 18 40 .17 43 .50 .39 .67 .30 .39 .73*.38 .63 .38 27 .83 .50 .38 29 .67 22 40 .33 .38 33 .50 .13 .25 .63 .33 14 25
SAAR-C-DE 41 .55 .67 30 .25 .50 .50 .54 .60 .40 .14*.57 25 .83 .30 .50 .62 25 .70 .50 .47 .36 .50 .46 .55 .33 .14 .75 .36 21 .13 .50 36 42 33 1 .20 .33 .54 .88 .69 0 44
SAAR-C-FR 20 40 50 54 0 .33 50 .33 .60 44 38 0 .60 .60 40 .42 .43 .17 .50 .33 .64 .13 .67 .67 .25 46 .22 31 .79 .18 .56 .18 .17 .60 .25 .09 .86 .50 .18 44 .44
SAAR-DE 33 777.63 43 .14 .64 50 91T .44 82 .58 73 .67 .50 40 .67 .70 33 43 44 36 .67 .67 .86 .86 .60 .50 .867.29 53 .73 .33 .83*.31 .67 .86* .43 .33 .83*.56 .17 .78 .55
SAAR-ES 29 .60 44 .18 07729 40 .67 .17 .44 .10*.46 27 50 .13 .12*.50 .14 33 .46 .62 .36 .25 .55 .14 .17 25 40 .39 42 44 47 50 .11 33 11733 39 .18 .08 .33
SAAR-FR .18 .44 .60 .30 20 .56 .73 .60 .50 .58 0 .50 .33 .64 .29 .42 .63*.67 .57 .33 25 38 .42 .58 43 41 .30 .54 .50 36 .36 .17*.43 33 .40 .60 .33 27 .20 .64™ .31 25 .58
UCB-ES 33 44 33 .18 .18 .55 .62 .14 .63 .18 .44 .57 44 33 .67 44 25 .56 .25 46 .60 .50 .56 .83 .63 .56 .57 .36 50 .75 .50 .56 .58 88 .71 57 .14 42 .67 44 31
UED-CMB-DE 20 67 751 67 331 88 .751 .83 .71 .75 67 671 44 60 67 S71 1 781 .67 441 .60 67 1 831 40 .13 .67 75%25 50 40 1 .50 .75 .50
UED-CMB-FR 67 1 .57 50 50 .13 .50 .40 .33 .50 25 .40 20 .25 .50 .40 50 .14 20 33 33 40 .33 .33 29 38 33 .33 .50
UED-CMB-XX 50 .67 25 .13 1 .50 .50 .40 25 20 40 .13 33 40 75 33 1 60 50 0 .67 .56 .14 0 .38 0 33 25
UED-cZ .75 .79*.89*.86 .56 .83 .71 77792717 20 .88 .67 .63 .67 1 .69*.60 .80*.80 .75 .67 .86 .75*.62 .46 .56 .67 .71 67 64 43 78773 86 50 1 1* 55 17 80*0 .46 .90*
UED-DE 27 80 .78 1 20 .80*.71 1t .67 31 25 .75 92T.56 .67 .83* 62 44 .67 .67 .63 .82* 25 75 1T 40 40 231 .67 .67 .60 .57 .50 1 .36 .64 .67 .11 25 .67
UED-ES 1517 56 42 0 31 .56 46 .50 .88 .11 .33 29 .46 .29 .67 .69 31 .36 46 .27 .50 .54 .33 .30 .60 .43 .29 A3 .14 17723 0 .17 40 .83 80 0 .27 46 0 .13
UED-FR .50 .56 .75 67 0 .18 .56 .50 .14 .44 20 .17 42 .53 22 .64 .58 44 .57 .30 .50 .38 .17 42 .50 .22 .57 .31 .38 23 40 33 .46 .39 33 751 107 .11 .46 31 .38
UED-HU 1 .75 .67 .88 .67 50 .75 1* .80 1* .38 .60 .83 .75 1 1* .86*.50 .86 .75 11 .80 1* 1* .80 .80 .83 1 1 80 82 67 1 1 .83 50 .33 .67 .86*.67 1" 1 .83 .40
umMD-cZ .40 .50 .64 .50 .50 .67 29 .50 .50 .80*.25 .40 27 .71 .60 44 .79% 79770 .80 .63 .67 .50 .63 .44 .63 .60 .43 917.56 11 .54 67 44 25 67 1 27 .50 .88 .69 .17 .62
UPC-ES .40 42 44 21 .15* .44 38 25 38 .54 43 30 .50 .23 .40 .55 33 33 22 47 .13 .50 .50 .38 25 43 .14 56 44 36 .53 25 .39 50 .50 .50 .10*.33 .63 .50 40 31
> OTHERS 29 54 51 41 .15 35 .51 .52 43 51 25 34 39 55 33 57 57 3 .5 44 52 49 48 56 .50 35 46 .57 39 50 49 46 49 32 51 45 4 22 56 .58 .19 28 .53 48 .11 3 .52
> OTHERS 41 .7 .66 55 28 44 67 .64 57 .65 38 47 54 .7 45 71 .70 39 .63 55 .63 .61 57 7 .64 49 .60 .71 .51 .62 .62 .57 .62 45 .68 .58 .55 33 .70 .72 29 40 .65 .62 .19 43 63

Table 53: Sentence-level ranking for the All-English News Task.
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Abstract

This paper describes our statistical machine
translation systems based on the Moses toolkit
for the WMTO8 shared task. We address the
Europarl and News conditions for the follow-
ing language pairs: English with French, Ger-
man and Spanish. For Europarl, n-best rescor-
ing is performed using an enhanced n-gram
or a neuronal language model; for the News
condition, language models incorporate extra
training data. We also report unconvincing re-
sults of experiments with factored models.

1 Introduction

This paper describes our statistical machine trans-
lation systems based on the Moses toolkit for the
WMT 08 shared task. We address the Europarl and
News conditions for the following language pairs:
English with French, German and Spanish. For Eu-
roparl, n-best rescoring is performed using an en-
hanced n-gram or a neuronal language model, and
for the News condition, language models are trained
with extra training data. We also report unconvinc-
ing results of experiments with factored models.

2 Base System architecture

L1iMsI took part in the evaluations on Europarl data
and on News data, translating French, German and
Spanish from and to English, amounting a total
of twelve evaluation conditions. Figure 1 presents
the generic overall architecture of LIMSI’s transla-
tion systems. They are fairly standard phrase-based

Univ. Montréal, felipe @iro.umontreal.ca
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Figure 1: Generic architecture of LIMSI’s SMT systems.
Depending on the condition, the decoder generates ei-
ther the final output or n-best lists. In the latter case,
the rescoring incorporates the same translation features,
except for a better target language model (see text).

translation systems (Och and Ney, 2004; Koehn et
al., 2003) and use Moses (Koehn et al., 2007) to
search for the best target sentence. The search uses
the following models: a phrase table, providing 4
scores and a phrase penalty, a lexicalized reordering
model (7 scores), a language model score and a word
penalty. These fourteen scores are weighted and lin-
early combined (Och and Ney, 2002; Och, 2003);
their respective weights are learned on development
data so as to maximize the BLEU score. In the fol-
lowing, we detail several aspects of our systems.

2.1 Translation models

The translation models deployed in our systems for
the europarl condition were trained on the provided
Europarl parallel data only. For the news condition,
they were trained on the Europarl data merged with

Proceedings of the Third Workshop on Statistical Machine Translation, pages 107-110,
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the news-commentary parallel data, as depicted on
Figure 1. This setup was found to be more favor-
able than training on Europarl data only (for obvious
mismatching domain reasons) and than training on
news-commentary data only, most probably because
of a lack of coverage. Another, alternative way of
benefitting from the coverage of the Europarl corpus
and the relevance of the news-commentary corpus
is to use two phrase-tables in parallel, an interest-
ing feature of Moses. (Koehn and Schroeder, 2007)
found that this was the best way to “adapt” a transla-
tion system to the news-commentary task. These re-
sults are corroborated in (Déchelotte, 2007)! , which
adapts a “European Parliament” system using a “Eu-
ropean and Spanish Parliaments” development set.
However, we were not able to reproduce those find-
ings for this evaluation. This might be caused by the
increase of the number of feature functions, from 14
to 26, due to the duplication of the phrase table and
the lexicalized reordering model.

2.2 Language Models

2.2.1 Europarl language models

The training of Europarl language models (LMs)
was rather conventional: for all languages used in
our systems, we used a 4-gram LM based on the
entire Europarl vocabulary and trained only on the
available Europarl training data. For French, for
instance, this yielded a model with a 0.2 out-of-
vocabulary (OOV) rate on our LM development set,
and a perplexity of 44.9 on the development data.
For French also, a more accurate n-gram LM was
used to rescore the first pass translation; this larger
model includes both Europarl and giga word corpus
of newswire text, lowering the perplexity to 41.9 on
the development data.

2.2.2 News language models

For this condition, we took advantage of the a
priori information that the test text would be of
newspaper/newswire genre and from the November-
december 2007 period. We consequently built much
larger LMs for translating both to French and to En-
glish, and optimized their combination on appropri-

!(Déchelotte, 2007) further found that giving an increased
weight to the small in-domain data could out-perform the setup
with two phrase-tables in parallel. We haven’t evaluated this
idea for this evaluation.
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ate source of data. For French, we interpolated five
different LMs trained on corpus containing respec-
tively newspapers, newswire, news commentary and
Europarl data, and tuned their combination with text
downloaded from the Internet. Our best LM had an
OOV rate of about 2.1% and a perplexity of 111.26
on the testset. English LMs were built in a similar
manner, our largest model combining 4 LMs from
various sources, which, altogether, represent about
850M words. Its perplexity on the 2008 test set was
approximately 160, with an OOV rate of 2.7%.

2.2.3 Neural network language models

Neural-Network (NN) based continuous space
LMs similar to the ones in (Schwenk, 2007) were
also trained on Europarl data. These networks com-
pute the probabilities of all the words in a 8192 word
output vocabulary given a context in a larger, 65000-
word vocabulary. Each word in the context is first
associated with a numerical vector of dimension 500
by the input layer. The activity of the 500 neurons in
the hidden layer is computed as the hyperbolic tan-
gent of the weighted sum of these vectors, projecting
the context into a [—1, 1] hypercube of dimension
500. Final projection on a set of 8192 output neurons
yields the final probabilities through a softmax-ed,
weighted sum of the coordinates in the hypercube.
The final NN-based model is interpolated with the
main LM model in a 0.4-0.6 ratio, and yields a per-
plexity reduction of 9% relative with respect to the
n-gram LM on development data.

2.3 Tuning procedure

We use MERT, distributed with the Moses decoder,
to tune the first pass of the system. The weights
were adjusted to maximize BLEU on the develop-
ment data. For the baseline system, a dozen Moses
runs are necessary for each MERT optimization, and
several optimization runs were started and compared
during the system’s development. Tuning was per-
formed using dev2006 for the Europarl task and on
News commentary dev2007 for the news task.

2.4 Rescoring and post processing

For the Europarl condition, distinct 100 best trans-
lations from Moses were rescored with improved
LMs: when translating to French, we used the
French model described in section 2.2.1; when



‘ Es-En ‘ En-Es ‘ Fr-En ‘ En-Fr
3221 | 31.62 | 32.41 | 29.31
32.49 | 31.23 | 32.62 | 30.27

baseline
Limsi

Table 1: Comparison of two tokenization policies
All results on Europarl test2007

CI system CS system
27.23 27.55
30.96 30.98

En—Fr
Fr—En

Table 2: Effect of training on true case texts, for English
to French (case INsensitive BLEU scores, untuned sys-
tems, results on test2006 dataset)

translating to English, we used the neuronal LM de-
scribed in section 2.2.3.

For all the “lowcase” systems (see below), recase-
ing was finally performed using our own recaseing
tool. Case is restored by creating a word graph al-
lowing all possible forms of caseing for each word
and each component of a compound word. This
word graph is then decoded using a cased 4-gram
LM to obtain the most likely form. In a final step,
OOV words (with respect to the source language
word list) are recased to match their original form.

3 Experiments with the base system

3.1 Word tokenization and case

We developed our own tokenizer for English, French
and Spanish, and used the baseline tokenizer for
German. Experiments on the 2007 test dataset for
Europarl task show the impact of the tokenization
on the BLEU scores, with 3-gram LMs. Results are
always improved with our own tokenizer, except for
English to Spanish (Table 1).

Our systems were initially trained on lowercase
texts, similarly to the proposed baseline system.
However, training on true case texts proved bene-
ficial when translating from English to French, even
when scoring in a case insensitive manner. Table 2
shows an approximate gain of 0.3 BLEU for that di-
rection, and no impact on French to English perfor-
mance. Our English-French systems are therefore
case sensitive.
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3.2 Language Models

For Europarl, we experimented with LMs of increas-
ing orders: we found that using a 5-gram LM only
yields an insignificant improvement over a 4-gram
LM. As a result, we used 4-gram LMs for all our
first pass decodings. For the second pass, the use
of the Neural Network LMs, if used with an appro-
priate (tuned) weight, yields a small, yet consistent
improvement of BLEU for all pairs.

Performance on the news task are harder to ana-
lyze, due to the lack of development data. Throwing
in large set of in-domain data was obviously helpful,
even though we are currently unable to adequately
measure this effect.

4 Experiments with factored models

Even though these models were not used in our sub-
missions, we feel it useful to comment here our (neg-
ative) experiments with factored models.

4.1 Overview

In this work, factored models (Koehn and Hoang,
2007) are experimented with three factors : the sur-
face form, the lemma and the part of speech (POS).
The translation process is composed of different
mapping steps, which either translate input factors
into output factors, or generate additional output fac-
tors from existing output factors. In this work, four
mapping steps are used with two decoding paths.
The first path corresponds to the standard and di-
rect mapping of surface forms. The second decod-
ing path consists in two translation steps for respec-
tively POS tag and the lemmas, followed by a gener-
ation step which produces the surface form given the
POS-lemma couple. The system also includes three
reordering models.

4.2 Training

Factored models have been built to translate from
English to French for the news task. To estimate the
phrase and generation tables, the training texts are
first processed in order to compute the lemmas and
POS information. The English texts are tagged and
lemmatized using the English version of the Tree-
tagger’. For French, POS-tagging is carried out
with a French version of the Brill’s tagger trained

“http://www.ims.uni-stuttgart.de/projekte/corplex/Tree Tagger



on the MULTITAG corpus (Allauzen and Bonneau-
Maynard, 2008). Lemmatization is performed with
a French version of the Treetagger.

Three phrase tables are estimated with the Moses
utilities, one per factor. For the surface forms, the
parallel corpus is the concatenation of the official
training data for the tasks Europarl and News com-
mentary, whereas only the parallel data of news
commentary are used for lemmas and POS. For the
generation step, the table built on the parallel texts of
news commentary is augmented with a French dic-
tionary of 280 000 forms. The LM is the largest LM
available for French (see section 2.2.2).

4.3 Results and lessons learned

On the news test set of 2008, this system obtains a
BLEU score of 20.2, which is worse than our “stan-
dard” system (20.9). A similar experiment on the
Europarl task proved equally unsuccessful.

Using only models which ignore the surface form
of input words yields a poor system. Therefore, in-
cluding a model based on surface forms, as sug-
gested (Koehn and Hoang, 2007), is also neces-
sary. This indeed improved (+1.6 BLEU for Eu-
roparl) over using one single decoding path, but not
enough to match our baseline system performance.
These results may be explained by the use of auto-
matic tools (POS tagger and lemmatizer) that are not
entirely error free, and also, to a lesser extend, by the
noise in the test data. We also think that more effort
has to be put into the generation step.

Tuning is also a major issue for factored trans-
lation models. Dealing with 38 weights is an op-
timization challenge, which took MERT 129 itera-
tions to converge. The necessary tradeoff between
the huge memory requirements of these techniques
and computation time is also detrimental to their use.

Although quantitative results were unsatisfactory,
it is finally worth mentioning that a manual exami-
nation of the output revealed that the explicit usage
of gender and number in our models (via POS tags)
may actually be helpful when translating to French.

5 Conclusion

In this paper, we presented our statistical MT sys-
tems developed for the WMT 08 shared task. As ex-
pected, regarding the Europarl condition, our BLEU
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improvements over the best 2007 results are limited:
paying attention to tokenization and caseing issues
brought us a small pay-off; rescoring with better
language models gave also some reward. The news
condition was new, and more challenging: our satis-
factory results can be attributed to the use of large,
well tuned, language models. In comparison, our ex-
periments with factored models proved disappoint-
ing, for reasons that remain to be clarified. On a
more general note, we feel that the performance of
MT systems for these tasks are somewhat shadowed
by normalization issues (tokenization errors, incon-
sistent use of caseing, typos, etc), making it difficult
to clearly analyze our systems’ performance.

References

A. Allauzen and H. Bonneau-Maynard. 2008. Training
and evaluation of POS taggers on the French multitag
corpus. In Proc. LREC’08, To appear.

D. Déchelotte. 2007. Traduction automatique de la pa-
role par méthodes statistiques. Ph.D. thesis, Univ.
Paris XI, December.

P. Koehn and H. Hoang. 2007. Factored translation mod-
els. In Proc. EMNLP-CoNLL, pages 868—876.

P. Koehn and J. Schroeder. 2007. Experiments in domain
adaptation for statistical machine translation. In Proc.
of the Workshop on Statistical Machine Translation,
pages 224-227, Prague, Czech Republic.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical
phrase-based translation. In Proc. HLT-NAACL, pages
127-133, Edmonton, Canada, May.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: Open source toolkit for
statistical machine translation. In ACL, demonstration
session, Prague, Czech Republic.

FJ. Och and H. Ney. 2002. Discriminative training
and maximum entropy models for statistical machine
translation. In Proc. ACL, pages 295-302.

Franz J. Och and Hermann Ney. 2004. The alignment
template approach to statistical machine translation.
Computational Linguistics, 30(4):417-449.

F.J. Och. 2003. Minimum error rate training in statistical
machine translation. In Proc. ACL, Sapporo, Japan.
H. Schwenk. 2007. Continuous space language models.

Computer Speech and Language, 21:492-518.



The MetaMorpho translation system

Attila Novak, Laszlé Tihanyi and Gabor Proszéky
MorphoLogic
Orbanhegyi Ut 5, Budapest 1126, Hungary

{novak, tihanyi, proszeky}@morphologic.hu

Abstract

In this article, we present MetaMorpho, a rule
based machine translation system that was
used to create MorphoLogic’s submission to
the WMTO8 shared Hungarian to English
translation task. The architecture of Meta-
Morpho does not fit easily into traditional
categories of rule based systems: the building
blocks of its grammar are pairs of rules that
describe source and target language structures
in a parallel fashion and translated structures
are created while parsing the input.

1 Introduction

Three rule-based approaches to MT are tradition-
ally distinguished: direct, interlingua and transfer.
The direct method uses a primitive one-stage proc-
ess in which words in the source language are re-
placed with words in the target language and then
some rearrangement is done. The main idea behind
the interlingua method is that the analysis of any
source language should result in a language-
independent representation. The target language is
then generated from that language-neutral repre-
sentation. The transfer method first parses the sen-
tence of the source language. It then applies rules
that map the lexical and grammatical segments of
the source sentence to a representation in the target
language.

The MetaMorpho machine translation system de-
veloped at MorphoLogic (Prészéky and Tihanyi,
2002), cannot be directly classified in either of the
above categories, although it has the most in com-
mon with the transfer type architecture.
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2 Translation via immediate transfer

In the MetaMorpho system, both productive
rules of grammar and lexical entries are stored in
the form of patterns, which are like context-free
rules enriched with features. Patterns may contain
more-or-less underspecified slots, ranging from
general productive rules of grammar through more-
or-less idiomatic phrases to fully lexicalized items.
The majority of the patterns (a couple of hundreds
of thousands in the case of our English grammar)
represent partially lexicalized items.

The grammar operates with pairs of patterns
that consist of one source pattern used during bot-
tom-up parsing and one or more target patterns that
are applied during top-down generation of the
translation. While traditional transfer and interlin-
gua based systems consist of separate parsing and
generating rules, in a MetaMorpho grammar, each
parsing rule has its associated generating counter-
part. The translation of the parsed structures is al-
ready determined during parsing the source
language input. The actual generation of the target
language representations does not involve any ad-
ditional transfer operations: target language struc-
tures corresponding to substructures of the source
language parse tree are combined and the leaves of
the resulting tree are interpreted by a morphologi-
cal generator. We call this solution “immediate
transfer” as it uses no separate transfer steps or
target transformations.

The idea behind this architecture has much in
common with the way semantic compositionality
was formalized by Bach (1976) in the from of his
rule-to-rule hypothesis, stating that to every rule of
syntax that combines constituents into a phrase
pertains a corresponding rule of semantics that
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combines the meanings of the constituents. In the
case of phrases with compositional meaning, the
pair of rules of syntax and semantics are of a gen-
eral nature, while in the case of idioms, the pair of
rules is specific and arbitrary. The architecture im-
plemented in the MetaMorpho system is based on
essentially the same idea, except that the represen-
tation built during analysis of the input sentence is
not expressed in a formal language of some seman-
tic representation but directly in the human target
language of the translation system.

3 System architecture

The analysis of the input is performed in three
stages. First the text to be translated is segmented
into sentences, and each sentence is broken up into
a sequence of tokens. This token sequence is the
actual input of the parser. Morphosyntactic annota-
tion of the input word forms is performed by a
morphological analyzer: it assigns morphosyntactic
attribute vectors to word forms. We use the Humor
morphological system (Proszéky and Kis, 1999;
Proszéky and Novak, 2005) that performs an item-
and-arrangement style morphological analysis.
Morphological synthesis of the target language
word forms is performed by the same morphologi-
cal engine.

The system also accepts unknown elements:
they are treated as strings to be inflected at the tar-
get side. The (potentially ambiguous) output of the
morphological analyzer is fed into the syntactic
parser called Moose (Proszéky, Tihanyi and Ugray,
2004), which analyzes this input sequence using
the source language patterns and if it is recognized
as a correct sentence, comes up with one or more
root symbols on the source side.

Every terminal and non-terminal symbol in the
syntactic tree under construction has a set of fea-
tures. The number of features is normally up to a
few dozen, depending on the category. These fea-
tures can either take their values from a finite set of
symbolic items (e.g., values of case can be INS,
ACC, DAT, etc.), or represent a string (e.g.,
lex="approach", the lexical form of a token).
The formalism does not contain embedded feature
structures. It is important to note that no structural
or semantic information is amassed in the features
of symbols: the interpretation of the input is con-
tained in the syntactic tree itself, and not in the fea-
tures of the node on the topmost level. Features are
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used to express constraints on the applicability of
patterns and to store morphosyntactic valence and
lexical information concerning the parsed input.

More specific patterns (e.g. approach to) can
override more general ones (e.g. approach), in that
case subtrees containing symbols that were created
by the general pattern are deleted. Every symbol
that is created and is not eliminated by an overrid-
ing pattern is retained even if it does not form part
of a correct sentence's syntactic tree. Each pattern
can explicitly override other rules: if the overriding
rule covers a specific range of the input, it blocks
the overridden ones over the same range. This
method can be used to eliminate spurious ambigui-
ties early during analysis.

When the whole input is processed and no ap-
plicable patterns remain, translation is generated in
a top-down fashion by combining the target struc-
tures corresponding to the source patterns consti-
tuting the source language parse tree.

A source language pattern may have more than
one associated target pattern. The selection of the
target structure to apply relies on constraints on the
actual values of features in the source pattern: the
first target pattern whose conditions are satisfied is
used for target structure generation. To handle
complicated word-order changes, the target struc-
ture may need rearrangement of its elements within
the scope of a single node and its children. There is
another technique that can be used to handle word
order differences between the source and the target
language. A pointer to a subtree can be stored in a
feature when applying a rule at parse time, and
because this feature’s value can percolate up the
parse-tree and down the target tree, just like any
other feature, a phrase swallowed somewhere in
the source side can be expanded at a different loca-
tion in the target tree. This technique can be used
to handle both systematic word order differences
(such as the different but fixed order of constitu-
ents in possessive constructions: possession of pos-
sessor in English versus possessor possession +
possessive suffix in Hungarian) and accidental ones
(such as the fixed order of subject verb and object
in English, versus the “free” order of these con-
stituents in Hungarian').

Unlike in classical transfer-based systems,
however, these rearrangement operations are al-

! In fact the order is determined by various factors other than
grammatical function.



ready determined during parsing the source lan-
guage input. During generation, the already deter-
mined rearranged structures are simply spelled out.
The morphosyntactic feature vectors on the termi-
nal level of the generated tree are interpreted by
the morphological generator that synthesizes the
corresponding target language word forms.

The morphological generator is not a simple in-
verse of the corresponding analyzer. It accepts
many alternative equivalent morphological de-
scriptions of each word form it can generate beside
the one that the corresponding analyzer outputs.

4 The rule database

The rules used by the parser explicitly contain
all the features of the daughter nodes to check, all
the features to percolate to the mother node, all the
features to set in the corresponding target struc-
tures and those to be checked on the source lan-
guage structure to decide on the applicability of a
target structure. The fact that all this redundant
information is present in the run-time rule database
makes the operation of the parser efficient in terms
of speed. However, it would be very difficult for
humans to create and maintain the rule database in
this redundant format.

There is a high level version of the language:
although it is not really different in terms of its
syntax from the low-level one, it does not require
default values and default correspondences to be
explicitly listed. The rule database is maintained
using this high level formalism. There is a rule
converter for each language pair that extends the
high-level rules with default information and may
also create transformed rules (such as the passive
version of verbal subcategorization frames) creat-
ing the rule database used by the parser.

Rule conversion is also necessary because in
order to be able to parse a free word order lan-
guage like Hungarian with a parser that uses con-
text free rules, you need to use run time rules that
essentially differ in the way they operate from
what would be suggested by the rules they are de-
rived from in the high level database. In Hungar-
ian, arguments of a predicate may appear in many
different orders in actual sentences and they also
freely mix with sentence level adjuncts. This
means that a verbal argument structure of the high
level rule database with its normal context free rule
interpretation would only cover a fraction of its
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real world realizations. Rule conversion effectively
handles this problem by converting rules describ-
ing lexical items with argument structures ex-
pressed using a context free rule formalism into
run time rules that do not actually combine con-
stituents, but only check the saturation of valency
frames. Constituents are combined by other more
generic rules that take care of saturating the argu-
ment slots. This means that while the high level
and the run time rules have a similar syntax, the
semantics of some high level rules may be very
different from similar rules in the low level rule
database.

5 Handling sentences with no full parse

The system must not break down if the input
sentence happens not to have a full parse (this in-
evitably happens in the case of real life texts). In
that case, it reverts to using a heuristic process that
constructs an output by combining the output of a
selected set of partial structures covering the whole
sentence stored during parsing the input. In the
MetaMorpho terminology, this is called a “mosaic
translation”. Mosaic translations are usually subop-
timal, because in the absence of a full parse some
structural information such as agreement is usually
lost. There is much to improve on the current algo-
rithm used to create mosaic translations: e.g. it
does not currently utilize a statistical model of the
target language, which has a negative effect on the
fluency of the output. Augmenting the system with
such a component would probably improve its per-
formance considerably.

6 Motivation for the MetaMorpho archi-
tecture

An obvious drawback of the architecture de-
scribed above compared to the interlingua and
transfer based systems is that the grammar compo-
nents of the system cannot be simply reused to
build translation systems to new target languages
without a major revision of the grammar. While in
a classical transfer based system, the source lan-
guage grammar may cover phenomena that the
transfer component does not cover, in the Meta-
Morpho architecture, this is not possible. In a
transfer based system, there is a relatively cheaper
way to handle coverage issues partially by aug-
menting only the source grammar (and postponing



creation of the corresponding transfer rules). This
is not an option in the MetaMorpho architecture.

The main motivation for this system architec-
ture was that it makes it possible to integrate ma-
chine translation and translation memories in a
natural way and to make the system easily extensi-
ble by the user. There is a grammar writer’s work-
bench component of MetaMorpho called Rule
Builder. This makes it possible for users to add
new, lexical or even syntactic patterns to the
grammar in a controlled manner without the need
to recompile the rest, using an SQL database for
user added entries. The technology used in Rule-
Builder can also be applied to create a special
combination of the MetaMorpho machine transla-
tion tool and translation memories (Hodasz,
Grébler and Kis 2004).

Moreover, existing bilingual lexical databases
(dictionaries of idioms and collocations) are rela-
tively easy to convert to the high level rule format
of the system. The bulk of the grammar of the sys-
tem was created based on such resources. Another
rationale for developing language pair specific
grammars directly is that this way distinctions in
the grammar of the source language not relevant
for the translation to the target language at hand
need not be addressed.

7 Performance in the translation task

During development of the system and its grammar
components, regression testing has been performed
using a test set unknown to the developers measur-
ing case insensitive BLEU with three human refer-
ence translations. Our usual test set for the system
translating from Hungarian to English contains 274
sentences of newswire text. We had never used
single reference BLEU before, because, although
creating multiple translations is expensive, single
reference BLEU is quite unreliable usually produc-
ing very low scores especially if the target lan-
guage is morphologically rich, like Hungarian.

The current version of the MetaMorpho system
translating from Hungarian to English has a BLEU
score of 22.14 on our usual newswire test set with
three references. Obtaining a BLEU score of 7.8 on
the WMTO08 shared Hungarian to English transla-
tion task test set was rather surprising, so we
checked single reference BLEU on our usual test
set: the scores are 13.02, 14.15 and 16.83 with the
three reference translations respectively.
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In the end, we decided to submit our results to the
WMTOS shared translation task in spite of the low
score. But we think, that these figures cast doubts
on the quality of the texts and reference transla-
tions in the test set, especially in cases where both
the English and the Hungarian text were translated
from a third language, so we think that the scores
on the WMTOS test set should be evaluated only
relative to other systems’ performance on the same
data and the same language pair.
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Abstract

This paper describes our submissions to the
machine translation evaluation shared task in
ACL WMT-08. Our primary submission is the
METEOR metric tuned for optimizing correla-
tion with human rankings of translation hy-
potheses. We show significant improvement
in correlation as compared to the earlier ver-
sion of metric which was tuned to optimized
correlation with traditional adequacy and flu-
ency judgments. We also describe M-BLEU and
M-TER, enhanced versions of two other widely
used metrics BLEU and TER respectively, which
extend the exact word matching used in these
metrics with the flexible matching based on
stemming and Wordnet in METEOR .

1 Introduction

Automatic Metrics for MT evaluation have been re-
ceiving significant attention in recent years. Evalu-
ating an MT system using such automatic metrics is
much faster, easier and cheaper compared to human
evaluations, which require trained bilingual evalua-
tors. The most commonly used MT evaluation met-
ric in recent years has been IBM’s BLEU metric (Pa-
pineni et al., 2002). BLEU is fast and easy to run,
and it can be used as a target function in parameter
optimization training procedures that are commonly
used in state-of-the-art statistical MT systems (Och,
2003). Various researchers have noted, however, var-
ious weaknesses in the metric. Most notably, BLEU
does not produce very reliable sentence-level scores.
METEOR , as well as several other proposed metrics
such as GTM (Melamed et al., 2003), TER (Snover
et al., 2006) and CDER (Leusch et al., 2006) aim to
address some of these weaknesses.

METEOR , initially proposed and released in 2004
(Lavie et al., 2004) was explicitly designed to im-
prove correlation with human judgments of MT qual-
ity at the segment level. Previous publications on
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METEOR (Lavie et al., 2004; Banerjee and Lavie,
2005; Lavie and Agarwal, 2007) have described the
details underlying the metric and have extensively
compared its performance with BLEU and several
other MT evaluation metrics. In (Lavie and Agar-
wal, 2007), we described the process of tuning free
parameters within the metric to optimize the corre-
lation with human judgments and the extension of
the metric for evaluating translations in languages
other than English.

This paper provides a brief technical description of
METEOR and describes our experiments in re-tuning
the metric for improving correlation with the human
rankings of translation hypotheses corresponding to
a single source sentence. Our experiments show sig-
nificant improvement in correlation as a result of re-
tuning which shows the importance of having a met-
ric tunable to different testing conditions. Also, in
order to establish the usefulness of the flexible match-
ing based on stemming and Wordnet, we extend two
other widely used metrics BLEU and TER which use
exact word matching, with the matcher module of
METEOR .

2 The METEOR Metric

METEOR evaluates a translation by computing a
score based on explicit word-to-word matches be-
tween the translation and a given reference trans-
lation. If more than one reference translation is
available, the translation is scored against each refer-
ence independently, and the best scoring pair is used.
Given a pair of strings to be compared, METEOR cre-
ates a word alignment between the two strings. An
alignment is mapping between words, such that ev-
ery word in each string maps to at most one word
in the other string. This alignment is incrementally
produced by a sequence of word-mapping modules.
The “exact” module maps two words if they are ex-
actly the same. The “porter stem” module maps two
words if they are the same after they are stemmed us-
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ing the Porter stemmer. The “WN synonymy” mod-
ule maps two words if they are considered synonyms,
based on the fact that they both belong to the same
“synset” in WordNet.

The word-mapping modules initially identify all
possible word matches between the pair of strings.
We then identify the largest subset of these word
mappings such that the resulting set constitutes an
alignment as defined above. If more than one maxi-
mal cardinality alignment is found, METEOR selects
the alignment for which the word order in the two
strings is most similar (the mapping that has the
least number of “crossing” unigram mappings). The
order in which the modules are run reflects word-
matching preferences. The default ordering is to
first apply the “exact” mapping module, followed by
“porter stemming” and then “WN synonymy”.

Once a final alignment has been produced between
the system translation and the reference translation,
the METEOR score for this pairing is computed as
follows. Based on the number of mapped unigrams
found between the two strings (m), the total num-
ber of unigrams in the translation (¢) and the total
number of unigrams in the reference (1), we calcu-
late unigram precision P = m/t and unigram recall
R = m/r. We then compute a parametrized har-
monic mean of P and R (van Rijsbergen, 1979):

P-R
a-P+(1-a)-R

Fmean =

Precision, recall and Fmean are based on single-
word matches. To take into account the extent to
which the matched unigrams in the two strings are
in the same word order, METEOR computes a penalty
for a given alignment as follows. First, the sequence
of matched unigrams between the two strings is di-
vided into the fewest possible number of “chunks”
such that the matched unigrams in each chunk are
adjacent (in both strings) and in identical word or-
der. The number of chunks (ch) and the number of
matches (m) is then used to calculate a fragmenta-
tion fraction: frag = ch/m. The penalty is then
computed as:

Pen =~ - frag®
The value of v determines the maximum penalty
(0 < v < 1). The value of § determines the
functional relation between fragmentation and the

penalty. Finally, the METEOR score for the align-
ment between the two strings is calculated as:

score = (1 — Pen) - Frean
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The free parameters in the metric, a;, § and v are
tuned to achieve maximum correlation with the hu-
man judgments as described in (Lavie and Agarwal,
2007).

3 Extending BLEU and TER with
Flexible Matching

Many widely used metrics like BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006) are based on
measuring string level similarity between the refer-
ence translation and translation hypothesis, just like
METEOR . Most of them, however, depend on find-
ing exact matches between the words in two strings.
Many researchers (Banerjee and Lavie, 2005; Liu and
Gildea, 2006), have observed consistent gains by us-
ing more flexible matching criteria. In the following
experiments, we extend the BLEU and TER metrics
to use the stemming and Wordnet based word map-
ping modules from METEOR .

Given a translation hypothesis and reference pair,
we first align them using the word mapping modules
from METEOR . We then rewrite the reference trans-
lation by replacing the matched words with the cor-
responding words in the translation hypothesis. We
now compute BLEU and TER with these new refer-
ences without changing anything inside the metrics.

To get meaningful BLEU scores at segment level,
we compute smoothed BLEU as described in (Lin and
Och, 2004).

4 Re-tuning METEOR for Rankings

(Callison-Burch et al., 2007) reported that the inter-
coder agreement on the task of assigning ranks to
a given set of candidate hypotheses is much better
than the intercoder agreement on the task of assign-
ing a score to a hypothesis in isolation. Based on
that finding, in WMT-08, only ranking judgments
are being collected from the human judges.

The current version of METEOR uses parameters
optimized towards maximizing the Pearson’s corre-
lation with human judgments of adequacy scores. It
is not clear that the same parameters would be op-
timal for correlation with human rankings. So we
would like to re-tune the parameters in the metric
for maximizing the correlation with ranking judg-
ments instead. This requires computing full rankings
according to the metric and the humans and then
computing a suitable correlation measure on those
rankings.

4.1 Computing Full Rankings

METEOR assigns a score between 0 and 1 to every
translation hypothesis. This score can be converted



Language Judgments
Binary | Sentences
English 3978 365
German 2971 334
French 1903 208
Spanish 2588 284

Table 1: Corpus Statistics for Various Languages

to rankings trivially by assuming that a higher score
indicates a better hypothesis.

In development data, human rankings are avail-
able as binary judgments indicating the preferred hy-
pothesis between a given pair. There are also cases
where both the hypotheses in the pair are judged to
be equal. In order to convert these binary judgments
into full rankings, we do the following:

1. Throw out all the equal judgments.

2. Construct a directed graph where nodes corre-
spond to the translation hypotheses and every
binary judgment is represented by a directed
edge between the corresponding nodes.

3. Do a topological sort on the resulting graph and
assign ranks in the sort order. The cycles in the
graph are broken by assigning same rank to all
the nodes in the cycle.

4.2 Measuring Correlation

Following (Ye et al., 2007), we first compute the
Spearman correlation between the human rankings
and METEOR rankings of the translation hypotheses
corresponding to a single source sentence. Let N be
the number of translation hypotheses and D be the
difference in ranks assigned to a hypothesis by two
rankings, then Spearman correlation is given by:

63 D2

:1—7
" N(N2 1)

The final score for the metric is the average of the
Spearman correlations for individual sentences.

5 Experiments

5.1 Data

We use the human judgment data from WMT-07
which was released as development data for the eval-
uation shared task. Amount of data available for
various languages is shown in Table 1. Development
data contains the majority judgments (not every hy-
potheses pair was judged by same number of judges)
which means that in the cases where multiple judges
judged the same pair of hypotheses, the judgment
given by majority of the judges was considered.
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’ \ English \ German \ French \ Spanish ‘

o 0.95 0.9 0.9 0.9
B8 0.5 3 0.5 0.5
vy 0.45 0.15 0.55 0.55

Table 2: Optimal Values of Tuned Parameters for Various
Languages

’ \ Original \ Re-tuned

English 0.3813 0.4020
German | 0.2166 0.2838
French 0.2992 0.3640
Spanish | 0.2021 0.2186

Table 3: Average Spearman Correlation with Human
Rankings for METEOR on Development Data

5.2 Methodology

We do an exhaustive grid search in the feasible ranges
of parameter values, looking for parameters that
maximize the average Spearman correlation over the
training data. To get a fair estimate of performance,
we use 3-fold cross validation on the development
data. Final parameter values are chosen as the best
performing set on the data pooled from all the folds.

5.3 Results

5.3.1 Re-tuning METEOR for Rankings

The re-tuned parameter values are shown in Ta-
ble 2 while the average Spearman correlations for
various languages with original and re-tuned param-
eters are shown in Table 3. We get significant im-
provements for all the languages. Gains are specially
pronounced for German and French.

Interestingly, weight for recall becomes even higher
than earlier parameters where it was already high.
So it seems that ranking judgments are almost en-
tirely driven by the recall in all the languages. Also
the re-tuned parameters for all the languages except
German are quite similar.

5.3.2 M-BLEU and M-TER

Table 4 shows the average Spearman correlations
of M-BLEU and M-TER with human rankings. For
English, both M-BLEU and M-TER show considerable
improvements. For other languages, improvements
in M-TER are smaller but consistent. M-BLEU , how-
ever, doesn’t shows any improvements in this case.
A possible reason for this behavior can be the lack of
a “WN synonymy” module for languages other than
English which results in fewer extra matches over the
exact matching baseline. Additionally, French, Ger-
man and Spanish have a richer morphology as com-
pared to English. The morphemes in these languages



Exact Match | Flexible Match

English: BLEU 0.2486 0.2747
TER 0.1598 0.2033
French: BLEU 0.2906 0.2889
TER 0.2472 0.2604
German: BLEU 0.1829 0.1806
TER 0.1509 0.1668
Spanish: BLEU 0.1804 0.1847
TER 0.1787 0.1839

Table 4: Average Spearman Correlation with Human
Rankings for M-BLEU and M-TER

carry much more information and different forms of
the same word may not be as freely replaceable as in
English. A more fine grained strategy for matching
words in these languages remains an area of further
investigation.

6 Conclusions

In this paper, we described the re-tuning of ME-
TEOR parameters to better correlate with human
rankings of translation hypotheses. Results on the
development data indicate that the re-tuned ver-
sion is significantly better at predicting ranking than
the earlier version. We also presented enhanced
BLEU and TER that use the flexible word match-
ing module from Meteor and show that this re-
sults in better correlations as compared to the de-
fault exact matching versions. The new version of
METEOR will be soon available on our website at:
http://www.cs.cmu.edu/ alavie/METEOR/ . This
release will also include the flexible word matcher
module which can be used to extend any metric with
the flexible matching.
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Abstract will not only be trained on all available mono- and

bilingual data, but also will include additional re-
general purpose French/English statistical ma- sou_rces from SYS.TRAN m.(e hl.gh quality dictio-
chine translation system. The main features naries, .named entity Fransll_teratlon and rule-based
of this system are the open-source Moses de-  translation of expressions like numbers and dates.
coder, the integration of a bilingual dictionary Our ultimate goal is to combine the power of data-
and a continuous space target language model.  driven approaches and the concentrated knowledge
We analyze the performance of this systemon  present in RBMT resources. In this paper, we de-
the test data of the WMT'08 evaluation. scribe an initial version of an French/English sys-

tem and analyze its performance on the test corpora
1 Introduction of the WMT’'08 workshop.

This paper describes an initial version of a

Statistical machine translation (SMT) is today cony A rchitecture of the system
sidered as a serious alternative to rule-based ma-
chine translation (RBMT). While RBMT systems The goal of statistical machine translation (SMT) is
rely on rules and linguistic resources built for that0 produce a target senteneefrom a source sen-
purpose, SMT systems can be developed withotgncef. Itis today common practice to use phrases
the need of any language knowledge and are OnBS translation units (Koehn et al., 2003; Och and
based on bilingual sentence-aligned and large monbley, 2003) and a log linear framework in order to
lingual data. However, while the monolingual datdntroduce several models explaining the translation
is usually available in large amounts, bilingual text$rocess:
are a sparse resource for most of the language pairs. .
The largest SMT systems are currently build for the ¢
translation of Mandarin and Arabic to English, us- = arg mgx{exp(z Aihi(e,f))} (1)
ing more than 170M words of bitexts that are eas- !
ily available from the LDC. Recent human evalua-The feature functiong, are the system models and
tions of these systems seem to indicate that they hatree \; weights are typically optimized to maximize
reached a level of performance allowing a human bex scoring function on a development set (Och and
ing to understand the automatic translations and fdey, 2002). In our system fourteen features func-
answer complicated questions on its content (Jondins were used, namely phrase and lexical transla-
2008). tion probabilities in both directions, seven features
In a joint project between the University of Lefor the lexicalized distortion model, a word and a
Mans and the company SYSTRAN, we try to buildphrase penalty and a target language model (LM).
similar general purpose SMT systems for Euro- The system is based on the Moses SMT toolkit
pean languages. In the final version, these systerftsoehn et al., 2007) and constructed as follows.

= argmax p(elf)
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First, Giza++ is used to perform word alignmentg¢o mind: add the entries directly to the phrase ta-
in both directions. Second, phrases and lexical rdsle or add the words and their translations to the bi-
orderings are extracted using the default settings ¢éxts. With the first solution one can be sure that the
the Moses SMT toolkit. A 4-gram target LM is entries are added like there are and that they won't
then constructed as detailed in section 2.2. Thsuffer any deformation due to imperfect alignment
translation itself is performed in two passes: firstpf multi-word expressions. However, it is not obvi-
Moses is run and a 1000-best list is generatedus how to obtain the phrase translation and lexical
for each sentence. The parameters of Moses gpeobabilities for each new phrase. The second solu-
tuned on devtest2006 for the Europarl task antlon has the potential advantage that the dictionary
nc-devtest2007 for the news task, using the cmewords could improve the alignments of these words
tool. These 1000-best lists are then rescored withwehen they also appear in the other bitexts. The cal-
continuous space 5-gram LM and the weights of theulation of the various scores of the phrase table is
feature functions are optimized again using the nwsimplified too, since we can use the standard phrase
merical optimization toolkit Condor (Berghen andextraction procedure. However, one has to be aware
Bersini, 2005). Note that this step operates onlyhat all the translations that appear only in the dictio-
on the 1000-best lists, no re-decoding is performedhary will be equally likely which certainly does not
This basic architecture of the system is identical taorrespond to the reality. In future work will try to
the one used in the 2007 WMT evaluation(Schwenkmprove these estimates using monolingual data.
2007a). For now, we used about ten thousand verbs and
] hundred thousand nouns from the dictionary. For

21 Trandation model each verb, we generated all the conjugations in the
In the frame work of the 2008 WMT sharedpast, present, future and conditional tense; and for
task, two parallel corpora were provided: the Eueach noun the singular and plural form were gener-
roparl corpus (about 33M words) and the newsated. In total this resulted in 512k “new sentences”
commentary corpus (about 1.2M words). Itis knowrin the bitexts.
that the minutes of the debates of the European
parliament use a particular jargon and these texfs2 Language model
alone do not seem to be the appropriate to build ln comparison to bilingual texts which are needed
French/English SMT system for other texts. Thedor the translation model, it is much easier to find
more general news-commentary corpus is unfortuarge quantities of monolingual data, in English as
nately rather small in size. Therefore, with thewell as in French. In this work, the following re-
goal to build a general purpose system, we invesources were used for the language model:
tigated whether more bilingual resources are avail-
able. Two corpora were identified: the proceedings ® the monolingual parts of the Europarl, Hansard,
of the Canadian parliament, also known as Hansard UN and the news commentary corpus,
corpus (about 61M words), and data from the United
nations (105M French and 89M English words). In
the current version of our system only the Hansard
bitexts are used.

In addition to these human generated bitexts, we o apout 33M words of newspaper texts crawled
investigated whether the translations of a high qual-  from the WEB (French only)
ity bilingual dictionary could be integrated into a
SMT system. SYSTRAN provided this resource Separate LMs were build on each data source with
with more than 200 thousand entries, different formshe SRI LM toolkit (Stolcke, 2002) and then linearly
of a verb or genres of an noun or adjective beingnterpolated, optimizing the coefficients with an EM
counted as one entry. It is still an open researcprocedure. Note that we build two sets of LMs: a
guestion how to best integrate a bilingual dictionarfirst set tuned on devtest2006, and a second one on
into a SMT system. At least two possibilities comenc-devtest2007. The perplexities of these LMs are

e the Gigaword corpus in French and English as
provided by LDC (770M and 3261M words re-
spectively),
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French English 3 Experimental Evaluation
Data| Eparl News| Eparl News
Back-off 4-gram LM:
Eparl+news| 52.6 184.0) 42.0 105.8
All | 50.0 136.1| 39.7 854
Continuous space 5-gram LM:
All | 420 1189 341 75.0

The shared evaluation task of the third workshop

on statistical machine translation features two dif-
ferent test sets: test2008 and newstest2008. The

first one contains data from the European parlia-
ment of the same type than the provided training and
development data. Therefore good generalization
Table 1: Perplexities on devtest2006 (Europarl) an@erformance can be expected. The second test set,
nc-devtest2007 (news commentary) for various LMs.  however, is news type data from unknown sources.
Scanning some of the sentences after the evaluation
seems to indicate that this data is more general than

the provided news-commentary training and devel-

given in Table 1. We were not able to obtain signifi-opment data — it contains for instance financial and

cantly better results with 5-gram back-off LMs. public health news.

N Given the particular jargon of the European par-

It can be clearly seen that the additional LM datajgment, we decided to build two different systems,
despite its considerable size, achieves only a smajhe rather general system tuned in nc-devtest2007
decrease in perplexity for the Europarl data. Thigng an Europarl system tuned on devtest2006. Both
task is so particular that other out-of-domain dat%ystems use the tokenization proposed by the Moses
does not seem to be very useful. The system opls\T (oolkit and the case was preserved in the trans-
mized on the more general news-commentary tasfgtion and language model. Therefore, in contrast to
however, seems to benefit from the additional mongye official BLEU scores, we report here case sensi-

lingual resources. Note however, that the test da{ﬂ,e BLEU scores as calculated by the NIST tool.
newstest2008 is not of the same type and we may

have a mismatch between development and test dafal Europar| system

We also used a so-called continuous space |aﬁ-h$ rslsugs qlfr‘][hetEur(l)ptgrl SySthI are s;m-ma:jnzed

guage model (CSLM). The basic idea of this ap'E?1 aE €z | ed ;ﬂnsamn mode V\;as ;a'?e on

proach is to project the word indices onto a contin- € =uropart an € hews-commentary data, aug-
ented by parts of the dictionary. The LM was

e <hefane on al he Gata, b th adiional outof
resulting probability functions are smooth functions omain data has prpbably “tﬂe impact given the
of the word representation, better generalization tgmall improvements in perplexity (see Table 1).
unknownn-grams can pe expected. A neural nets French/English| English/French
yvor_k can be used to S|multaneou'sly learn the pro- Model | 2007 2008 | 2007 2008
jection of the words onto the continuous space a
to estimate thex-gram probabilities. This is still a
n-gram approach, but the LM probabilities are "in-
terpolated” for any possible context of lengthl
instead of backing-off to shorter contexts. This ap*
proach was successfully used in large vocabularyapie 2: Case sensitive BLEU scores for the Europarl
continuous speech recognition (Schwenk, 2007ystem (test data)

and in a phrase-based SMT systems (Schwenk et al.,

2006; Déchelotte et al., 2007). Here, it is the first When translating from French to English the
time trained on large amounts of data, more than 3GSLM achieves a improvement of about 0.4 points
words for the English LM. This approach achieve8LEU. Adding the dictionary had no significant im-
an average perplexity reduction of almost 14% relapact, probably due to the jargon of the parliament
tive (see Table 1). proceedings. For the opposite translation direction,

[N

baseline| 32.64 32.61| 31.15 31.80
base+CSLM| 32.98 33.08| 31.63 32.37
base+dict| 32.69 32.75| 30.97 31.59
+CSLM | 33.11 33.13| 31.54 32.34
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the dictionary even seems to worsen the perfor- This work has been partially funded by the
mance. One reason for this observation could be tHgench Government under the projessiTAR (ANR
fact that the dictionary adds many French transla3CJC06143038).

tions for one English word. These translation are

not correctly weighted and we have to rely comReferences

pletely on the target LM to select the correct one

hi lain the | . hi Joshua Bengio, Rejean Ducharme, Pascal Vincent, and
This may explain the large improvement achieved cpyisiian Jauvin. 2003. A neural probabilistic lan-

by the CSLM in this case (+0.75 BLEU). guage modelJMLR, 3(2):1137-1155.

Frank Vanden Berghen and Hugues Bersini. 2005. CON-
DOR, a new parallel, constrained extension of powell’s

The results of the more generic news system are UOBYQA algorithm: Experimental results and com-

summarized in Table 3. The translation model parisonwith the DFO algorithmlournal of Computa-

was trained on the news-commentary, Europarl and tiona and Applied Mathematics, 181:157-175.

Hansard bitexts as well as parts of the dictionar)Paniel Déchelotte, Holger Schwenk, Héléne Bonneau-
The LM was again trained on all data Maynard, Alexandre Allauzen, and Gilles Adda.

2007. A state-of-the-art statistical machine translation

French/English English/French system based on moses. M Summit, pages 127—
133.

Model/bitexts| 2007 2008 | 2007 2008 D. Jones. 2008. DLPT* MT comprehension test re-

news| 29.31 17.98| 28.60 17.51 sults, Oral presentation at the 2008 Nist MT Evalua-
news+dict| 30.09 18.78| 28.92 18.01 tion workshop, March 27.
news+eparl 30.53 20.39| 28.55 19.70 Philipp Koehn, Franz Josef Och, and Daniel Marcu.
+dict | 30.94 2063| 28.46 19.96 2003. Statistical phrased-based machine translation.

In HLT/NACL, pages 127-133.
+Hansard| 31.48 21.10| 28.97 20.21 - _ :
+CSLM | 31.98 2102|2964 2051 Philipp Koehn et al. 2007. Moses: Open source toolkit

for statistical machine translation. ACL, demonstra-
tion session.

E]ranz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for statis-
tical machine translation. IACL, pages 295-302.

First of all, we realize that the BLEU scores on :
. . Franz Josef Och and Hermann Ney. 2003. A systematic
the out-of-domain generic 2008 news data are much ) . I X
comparison of various statistical alignement models.

lower than on the nc-test2007 data. Adding more cy tational Linguistics, 29(1):19-51.

than 60M words of the Hansard bitexts gives an imyaja Popovic and Hermann Ney. 2006. Statistical
provement of the BLEU score of about 0.5 for most machine translation with a small amount of bilingual
of the test sets and translation directions. The dictio- training data. InLREC workshop on Minority Lan-
nary is very interesting when only a limited amount guage, pages 25-29.

of resources is available — a gain of up to 0.8 BLEU0lger Schwenk, Marta R. Costa-jussa, and José A. R.
when only the news-commentary bitexts are used — Fonollosa. 2006. Continuous space language models

. ; . for the IWSLT 2006 task. InWSLT, 166-173,
but still useful when more data is available. As far ,\?gve;ber as pages

as we know, this is the first time that adding a dictyg|ger Schwenk. 2007a. Building a statistical machine
tionary improved the translation quality of a very translation system for French using the Europarl cor-
strong baseline. In previous works, results were only pus. InSecond Workshop on SMT, pages 189-192.
reported in a setting with limited resources (Vogel etolger Schwenk. 2007b. Continuous space language
al., 2003; Popovit and Ney, 2006). However, we be- models. Computer Speech and Language, 21:492—
lieve that he integration of the dictionary is not yet 518. _
optimal, in particular with respect to the estimatiorf 0762 Stolcke. 2002. SRILM - an extensible language
. - . modeling toolkit. InICSLP, pages II: 901-904.
of the f[ranslatlon probabilities. The only surprlsmgStephan Vogel, Ying Zhang, Fei Huang, Alicia Trib-
result is the bad performance of the CSLM on the pje ashish Venugopal, Bing Zhao, and Alex Waibel.
newstest2008 data for the translation from French to 2003. The CMU statistical machine translation sys-

English. We are currently investigating this. tem. InMT Summit, pages 402—-4009.

3.2 Newssystem

Table 3: Case sensitive BLEU scores of the news syste
(nc-test2007 and newstest2008)
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Abstract 2 Data and Basic Preprocessing

We used the Europarl data as provided (version 3b,
1.25 million sentence pairs) for training the transla-

This paper present the University of Washinglion model for use in the shared task. The data was

ton’s submission to the 2008 ACL SMT shared malowercased and tokenized with the auxiliary scripts
chine translation task. Two systems, for English-toProvided, and filtered according to the ratio of the

Spanish and German-to-Spanish translation are dfentence lengths in order to eliminate mismatched
scribed.  Our main focus was on testing a noveientence pairs. This resulted in about 965k paral-

boosting framework for N-best list reranking and®! sentences for English-Spanish and 950k sentence
on handling German morphology in the German-toPairs for German-Spanish. Additional preprocess-

Spanish system. While boosted N-best list rerankint§9 Was applied to the German corpus, as described
did not yield any improvements for this task, simpli-N S&ction 5. For language modeling, we addition-

fying German morphology as part of the preproceséjl”y used about 82M words of Spanish newswire text
ing step did result in significant gains. from the Linguistic Data Consortium (LDC), dating

from 1995 to 1998.
1 Introduction

The University of Washington submitted systems System Overview

to two data tracks in the WMT 2008 shared task

competition, English-to-Spanish and German-to3.1 Translation model

Spanish. In both cases, we focused on the in-domain

test set only. Our main interest this year was on inFhe system developed for this year's shared task
vestigating an improved weight training scheme fois a state-of-the-art, two-pass phrase-based statisti-
N-best list reranking that had previously shown imcal machine translation system based on a log-linear
provements on a smaller machine translation taskanslation model (Koehn et al, 2003). The trans-
For German-to-Spanish translation we additionalljation models and training method follow the stan-
investigated simplifications of German morphologydard Moses (Koehn et al, 2007) setup distributed as
which is known to be fairly complex due to a largepart of the shared task. We used the training method
number of compounds and inflections. In the folsuggested in the Moses documentation, with lexical-
lowing sections we first describe the data, baselinged reordering (thensd-bidirectional-fe

system and postprocessing steps before describiogtion) enabled. The system was tuned via Mini-
boosted N-best list reranking and morphology-basasum Error Rate Training (MERT) on the first 500
preprocessing for German. sentences of theéevtest2006  dataset.
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3.2 Decoding tences with greater than average perplexity. This

Our system used the Moses decoder to genera[f%duced the size of the training set from 5.8M sen-
2000 output hypotheses per input sentence duriﬁﬁnces and 166M tokens to 2._8M sentences and 82M
the first translation pass. For the second pass, thaens- We then further restricted the vocabulary to
N-best lists were rescored with the additional lantN€ Union of the vocabulary lists of the Spanish sides
guage models described below. We re-optimized tHy the de-es and en-es parallel training corpora. The
model combination weights with a parallelized im-€Maining text was used to train the language model.
plementation of MERT over 16 model scores on the 1h€ second language model used for rescoring
test2007 dataset. Two of these model scores fofVas & 5-gram model over part-of-speech (POS) tags.
each hypothesis were from the two language modefdis model was built using the Spanish side of the
used in our second-pass system, and the rest corfe9lish-Spanish parallel training corpus. The POS
spond to the 14 Moses model weights (for reordef@gS were obtained from the corpus using Freeling
ing, language model, translation model, and worf2-0 (Atserias et al, 2006).

penalty). We selected the language models for our transla-
tion system were selected based on performance on
3.3 Language models the English-to-Spanish task, and reused them for the

We built all of our language models using theGerman-to-Spanish task.

SRILM toolkit (Stolcke, 2002) with modified K
Kneser-Ney discounting and interpolating all n-4 Boosted Reranking

gram estimates of order 1. For first-pass de- \ye g pmitted an alternative system, based on a

coding we used a 4-gram language model tra'ne&}lﬁerent re-ranking method, called BoostedMERT

on _the Spanish side of the Europar-l v3b data. ThFDuh and Kirchhoff, 2008), for each task. Boosted-
optimal n-gram ordgr was _determlned by testingERT is a novel boosting algorithm that uses Mini-
language mod(.als with varying ordgrs @ t_o 5) OTum Error Rate Training (MERT) as a weak learner
devtest2006 ; BLEU scores obtained using they, g a re-ranker that is richer than the standard

various language models are shown in Table 1. Tr]Sg-Iinear models. This is motivated by the obser-
4-gram model performed best. vation that log-linear models, as trained by MERT,
often do not attain the oracle BLEU scores of the N-
Table 1: LM ngram size vs. output BLEU on the dev setsbest lists in the development set. While this may be
’ order ‘ devtestZOOd test2007 due to allocal optimum in MERT, we hypoth.esize
3gram 3054 30.69 that log-linear models bz_:\s_ed on OHr re—_ranklng
features are also not sufficiently expressive.
4-gram 31.03 30.94 C . .
5. 30.85 30.84 BoostedMERT is inspired by the idea of Boosting
gram . ) :
(for classification), which has been shown to achieve
low training (and generalization) error due to classi-
Two additional language models were used fofier combination. In BoostedMERT, we maintain a
second pass rescoring. First, we trained a large owtreight for each N-best list in the development set.
of-domain language model on Spanish newswirtn each iteration, MERT is performed to find the best
text obtained from the LDC, dating from 1995 toranker on weighted data. Then, the weights are up-
1998. dated based on whether the current ranker achieves
We used a perplexity-filtering method to filter outoracle BLEU. For N-best lists that achieve BLEU
the least relevant half of the out-of-domain text, irscores far lower than the oracle, the weights are in-
order to significantly reduce the training time ofcreased so that they become the emphasis of next
the large language model and accelerate the rescaeration’s MERT. We currently use the facter”
ing process. This was done by computing the pete update the N-best list distribution, wherés the
plexity of an in-domain language model on eachatio of the oracle hypothesis’ BLEU to the BLEU
newswire sentence, and then discarding all sewf the selected hypothesis. The final ranker is a
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weighted combination of many such rankers. phrases were then extracted using the standard pro-
More precisely, letw; be the weights trained by cedure. Stemming is only used during the training

MERT at iterationi. Given anyw;, we can gener- Stage, in order to simplify word alignment. During

ate a rankingy; over an N-best list wherg; is an the evaluation phase, only the compound-splitter is

N-dimensional vector of predicted ranks. The fina@pplied to the German input.

ranking vector is a weighted suny; = ZiTzl ;Y

whereq; are parameters estimated during the boos@ Results

ing process. These parameters are optimized fgr1 English— Spanish

maximum BLEL_J, score on the development set. Th%he unofficial results of our 2nd-pass system for the

only L_Jser_—spec_|f|ed parameter s the numb_er of 2008 test set are shown in Table 2, for recased, unto-
Poos“”g |terat|o_ns. Here, we choogeby d'_v'd' kenized output. We note that the basic second-pass
ing the dev set in half: devl and dev2. First, Wemodel was better than the first-pass system on the

train BoostedMERT on devl for 50 iterations, ther2008 task. but not on the 2007 task. whereas Boost-

pick theT" with the best BLEU score on dev2. SeC'edMERT provided a minor improvement in the 2007

Ond_’ WT tr?in BoostedMEI:?T on dﬁvz T:?Id chor(])se ]Eh[%sk but not the 2008 task. This is contrary to previ-

opt|m_g T from _de\(l. Following t e'p Hosopny of 4,5 results in the Arabic-English IWSLT 2007 task,

classifier combination, we sum the final rank VECIOrg i are boosted MERT gave an appreciable improve-

y from each OT the de_vl- and 'dev2-tra|ned BOOStedrﬁent. This result is perhaps due to the difference in

MERT to obtain our final ranking result. magnitude between the IWSLT and WMT transla-
, , tion tasks.

5 German— Spanish Preprocessing

German is a morphologically complex IanguageTable 2. En~Es system on the test2007 and test2008

characterized by a high number of noun compounc%sas'

and rich inflectional paradigms. Simplification of | System | test2007] test2008§
morphology can produce better word alignment, and First-Pass 30.95| 31.83
thus better phrasal translations, and can also signifi- | Second-Pass 30.94| 32.72
cantly reduce the out-of-vocabulary rate. We there- BoostedMERT|  31.05| 32.62

fore applied two operations: (a) splitting of com-
pound words and (b) stemming.

After basic preprocessing, the German half of th€-2 German— Spanish
training corpus was first tagged by the German ves previously described, we trained two German-
sion of TreeTagger (Schmid, 1994), to identify partSpanish translation systems: one via the default
of-speech tags. All nouns were then collected inttnethod provided in the Moses scripts, and an-
a noun list, which was used by a simple compoundther using word stems to train the word align-
splitter, as described in (Yang and Kirchhoff, 2006)ments and then projecting these alignments onto
This splitter scans the compound word, hypothesizhe unstemmed corpus and finishing the training
ing segmentations, and selects the first segmentatiprocess in the standard manner. Table 3 demon-
that produces two nouns that occur individually instrates that the word alignments generated with
the corpus. After splitting the compound nouns irword-stems markedly improved first-pass transla-
the filtered corpus, we used the TreeTagger agaition performance on thdev2006 dataset. How-
only this time to lemmatize the (filtered) trainingever, during the evaluation period, the worse of the
corpus. two systems was accidentally used, resulting in a

The stemmed version of the German text was usddrger number of out-of-vocabulary words in the
to train the translation system’s word alignmentsystem output and hence a poorer score. Rerun-
(through the end of step 3 in the Moses trainingning our German-Spanish translation system cor-
script). After training the alignments, they were protectly yielded significantly better system results,
jected back onto the unstemmed corpus. The paraliglso shown in Table 3.
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Table 3: De-Es first-pass system on the developmen? Conclusion

and 2008 test set. We have presented the University of Washing-
] System \ dev2006\ test2008\ ton systems for English-to-Spanish and German-to-
Baseline 23.9 21.2 Spanish for the 2008 WMT shared translation task.
Stemmed Alignments 26.3 24.4 A novel method for reranking N-best lists based on

boosted MERT training was tested, as was morpho-
logical simplification in the preprocessing compo-

6.3 Boosted MERT nent for the German-to-Spanish system. Our con-
clusions are that boosted MERT, though successful

BoostedMERT is sitill in an early stage of experi-op giher translation tasks, did not yield any improve-

mentation, and we were interesf[ed to see Wheth?rrﬁent here. Morphological simplification, however,
improved over traditional MERT in re-ranking. As it i result in significant improvements in translation
turns out, the BLEU scores on test2008 and testZOQﬁJa”ty.

data for the En-Es track are very similar for both re-

rankers. In our post-evaluation analysis, we attem@cknowledgements

tq understanq the reasons for similar BLEU SCOreSihis work was funded by NSF grants 11S-0308297
since the weightsu; for both re-rankers are quali- 54 115-0326276.

tatively different. We found that out of 2000 En-Es

N-best lists, BoostedMERT and MERT differed onReferences

1478 lists in terms of the final hypothesis that was Atserias, J. et al. 2006. FreeLing 1.3: Syntactic
chosen. However, although the rankers are choosingand semantic services in an open-source NLP library.
different hypotheses, the chosen strings appear veryProceedings of the 5th International Conference on
similar. The PER of BoostedMERT vs. MERT re- Language Resources and Evaluation (LREC 2006)
sults is only 0.077, and manual observation indicates ©€noa, ltaly.

that the differences between the two are often singl@Uh: K., and Kirchhoff, K. 2008. Beyond Log-Linear
. . Models: Boosted Minimum Error Rate Training for
phrase differences in a sentence.

MT Re-ranking. To appeaProceedings of the Associ-
We also computed the sentence-level BLEU for o for computational Linguistics (ACLEolumbus,
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improvements and degradations occur in the samelLanguage Technology Conference of the North Ameri-
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ity of the 2000 sentences, the sentence-level BLEU . | Machine T latio® di FMT S .
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Abstract In each case, we used only the supplied data for each lan-
guage pair for models training and optimization.
This paper reports on the participation of the TALP This paper is organized as follows. Section 2 briefly
Research Center of the UPC (Universitat Politecnica  outlines the 2008 system, including tuple definition and
de Catalunya) to the ACL WMT 2008 evaluation extraction, translation model and additional feature mod-
campaign. els, decoding tool and optimization procedure. Section 3

This year's system is the evolution of the one we em-  describes the word reordering problem and presents the
ployed for the 2007 campaign. Main updates and  proposed technique of reordering patterns learning and
extensions involve linguistically motivated word re- application. Later on, Section 4 reports on the experi-
ordering based on the reordering patters technique.  mental setups of the WMT 2008 evaluation campaign. In

In addition, this system introduces a target language Section 5 we sum up the main conclusions from the pa-
model, based on linguistic classes (Part-of-Speech), per

morphology reduction for an inflectional language
(Spanish) and an improved optimization procedure.

2 Ngram-based SMT System

Results obtained over the development and test sets

on Spanish to English (and the other way round) Our translation system implements a log-linear model in
translations for both the traditional Europarl and which a foreign language senten¢g¢ = fi, f2, ..., fs

a challenging News stories tasks are analyzed and s translated into another Iangua@{e: fi, fa,...,er by
commented. searching for the translation hypothe&{smaximizing a
log-linear combination of several feature models (Brown

i I, 1 :
1 Introduction etal., 1990)

€] = argmax

tion (SMT) group of the TALP-UPC has been develop- el
ing the Ngram-based SMT system (Matrifio et al., 2006).
In previous evaluation campaigns the Ngram-based aptere the feature functiorts,, refer to the system models
proach has proved to be comparable with the state-o&nd the set o\, refers to the weights corresponding to
the-art phrase-based systems, as shown in Koehn atmése models.
Monz(2006), Callison-Burch et al. (2007). The core part of the system constructed in that way
We present a summary of the TALP-UPC Ngramis a translation model, which is based on bilingual
based SMT system used for this shared task. We digrams. It actually constitutes an Ngram-based LM of
cuss the system configuration and novel features, nameijlingual units (called tuples), which approximates the
linguistically motivated reordering technique, which isjoint probability between the languages under consider-
applied on the decoding step. Additionally, the reorderation. The procedure of tuples extraction from a word-
ing procedure is supported by an Ngram language modtd-word alignment according to certain constraints is ex-
(LM) of reordered source Part-of-Speech tags (POS). plained in detail in Marifio et al. (2006).
In this year’s evaluation we submitted systems for The Ngram-based approach differs from the phrase-
Spanish-English and English-Spanish language pairs foased SMT mainly by distinct representating of the bilin-
the traditional Europarl) and challengingNews) tasks. gual units defined by word alignment and using a higher

. . . M
Over the past few years, the Statistical Machine Transla- AT { Z Amhim (el 1) }
m=1
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order HMM of the translation process. While regular Apart from that, tuples were extracted by an unfold-
phrase-based SMT considers context only for phrase raig technique: this means that the tuples are broken into
ordering but not for translation, the N-gram based apsmaller tuples, and these are sequenced in the order of the
proach conditions translation decisions on previous trangarget words.
lation decisions. )

The TALP-UPC 2008 translation system, besides tha-1 Reordering patterns
bilingual translation model, which consists oftagram  Word movements are realized according to the reordering
LM of tuples with Kneser-Ney discounting (estimated rewrite rules, which have the form of:
with SRI Language Modeling ToolK)}, implements a
log-linear combination of five additional feature models:

fl, ,tn — ’L'l, ,Zn

« atargetlanguage mode(a 4-grammodel of words, wherety, ..., t, is a sequence of POS tags (relating a

estimated wittKneser-Ney smoothing);

e aPOS target language mode(a 4-gram model of
tags withGood-Turing discounting (TPOS));

sequence of source words), and..., i,, indicates which
order of the source words generate monotonically the tar-
get words.

Patterns are extracted in training from the crossed links

found in the word alignment, in other words, found in
e aword bonus mode| which is used to compensate translation tuples (as no word within a tuple can be linked
the system’s preference for short output sentencesto a word out of it (Crego and Marifio, 2006)).
Having all the instances of rewrite patterns, a score for

e asource-to-target lexicon modeland atarget-to-  each pattern on the basis of relative frequency is calcu-
source lexicon model these models use word-to- |ated as shown below:

word IBM Model 1 probabilities (Och and Ney,
2004) to estimate the lexical weights for each tuple ;¢ s iy,
in the translation table.

N(tl, ...,tn — il, ceey in)
NN (1, ... tn)

Decisions on the particular LM configuration and?"2 Search graph extension and source POS model

smoothing technique were taken on the minimalThe monotone search graph is extended with reorderings

perplexity and maximal-BLEU bases. following the patterns found in training. Once the search
The decoder (called MARIE), an open source fpol graph is built, the decoder traverses the graph looking for

implementing a beam search strategy with distortion cghe best translation. Hence, the winning hypothesis is

pabilities was used in the translation system. computed using all the available information (the whole
Given the development set and references, the lo§MT models).

linear combination of weights was adjusted using a sim-

yin) =

plex optimization method (with the optimization criteria NC AQ CC AQ

of the highest BLEU score ) and an n-best re-ranking programa ambicioso y realista
just as described imttp://mwww.statmt.org/jhuws/. This

strategy aIIovys for a faster and more efficient adju§tment NCAQ->10

qf mode_l welght.s by means of a douple—loop optimiza- NCAQCCAQ->1230

tion, which provides significant reduction of the number

of translations that should be carried out. y realista

3 Reordering framework ambicioso Wﬁ”ma programa
For a great number of translation tasks a certain reorder- — —p g

ing strategy is required. This is especially important prog ambicioso ¥

when the translation is performed between pairs of lan-

guages with non-monotonic word order. There are valFigure 1: Search graph extensioNC, CC and AQ stand re-
ious types of distortion models, simplifying bilingual spectively for name, conjunction and adjective.

translation. In our system we use an extended monotone
reordering model based on automatically learned reorder-
ing rules. A detailed description can be found in Creg(?n
and Marifio (2006).

The procedure identifies first the sequences of words
the input sentence that match any available pattern.
Then, each of the matchings implies the addition of an arc

Ihttp://www.speech.sri.com/projects/srilm/
2http://gps-tsc.upc.es/veu/soft/soft/marie/
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into the search graph (encoding the reordering learned in
the pattern). However, this addition of a new arc is not



| Task | BL | BL+SPOS | | | Spanish | English |

Europarl| News | Europarl| News Train
es2en| 32.79 | 36.09| 32.88 | 36.36 Sentences 1.3M 1.3M
en2es| 32.05 | 33.91| 32.10 | 33.63 Words 38.2M 35.8K
Vocabulary 156 K 120K
Table 1: _ BLEU comparison demonstrating the impact of the Development Europarl
source-side POS tags model. Sentences 5000 5000
Words 61.8K 58.7 K
performed if a translation unit with the same source-side Vocabulary 8K 6.5K
words already exists in the training. Figure 1 shows how Development News Commentary
two rewrite rules applied over an input sentence extend Sentences| 1057 1057
the search graph given the reordering patterns that match Words 29.8K 25.8K
the source POS tag sequence. Vocabulary|  5.4K 49K
The reordering strategy is additionally supported by
a 4-gram language model (estimated withGood-Turing Table 2: Basic statistics of ACL WMT 2008 corpus.

smoothing) of reorderedsource POS tags(SPOS). In

training, POS tags are reordered according with the & S b ing detail
tracted reordering patterns and word-to-word links. The" rocessing details

resulting sequence of source POS tags is used to train thbe training data was preprocessed by using provided
Ngram LM. tools for tokenizing and filtering.

Table 1 presents the effect of the source POS LM "50s tagging. POS information for the source and the

troduction to the reordering module of the Ngram-base : :
SMT. As it can be seen, the impactya le h of the Sourc(?fjarget languages was considered for both translation tasks

side POS LM is minimal, however we decided to conside]{(r;‘;jIt \(Ievreforr]ri\i/r? pgglggztedih T\?\/Zrzolf‘—t\r/(\;aerlfn to?ésaﬁ\é?!‘zb;f
the model aiming at improving it in future. The reported P g 99ing g

al., 2004) for Spanish and TnT (Brants, 2000) for En-
results are related to thieuropar| and News Commen- lish. The number of classes for English is 44, while

tary (N.e“.“s) deve_lopme_n_t sets. BLEU cglculatlon IS Cas%panish is considered as a more inflectional language,
insensitive and insensitive to tokenizatidL (baseline) : .
and the tag set contains 376 different tags.

refers to the presented Ngram-based system considering
all the features, apart from the target and source POford Alignment. The word alignment is automati-

models. cally computed by using GIZA+%Och and Ney, 2000)
in both directions, which are symmetrized by using the
4 WMT 2008 Evaluation Framework union operation. Instead of aligning words themselves,
stems are used for aligning. Afterwards case sensitive
4.1 Corpus words are recovered.

An extraction of the official transcriptions of the 3rd re-Spanish Morphology Reduction. We implemented a
Ieas<_e of the European Parliament Plenary Sesg"ms morphology reduction of the Spanish language as a pre-
provided for the ACL WMT 2008 shared translation taSkprocessing step. As a consequence, training data sparse-
About 40 times smaller corpus from news domain (calle¢hass due to Spanish morphology was reduced improving
News Commentary) was also available. For both taskgze performance of the overall translation system. In par-
our training corpus was the catenation of the Europarl angty|ar, the pronouns attached to the verb were separated
News Commentary corpora. and contractions adel or al were splitted intade el or
TALP UPC participated in the constraint to theg . As a post-processing, in the En2Es direction we
provided training data track for Spanish-English andised a POS target LM as a feature (instead of the target
English-Spanish translation tasks. We used the samghguage model based on classes) that allowed to recover
training material for the traditional and challenging taisk the segmentations (de Gispert, 2006).
while the development sets used to tune the system were
distinct (2000 sentences foEuroparl task and 1057 4.3 Experiments and Results

for News Commentary one reference translationfor |, contrast to the last year's system where statistical
each of them). A brief training and development corporg|asses were used to train the target-side tags LM, this

statistics is presented in Table 2. year we usedinguistically motivated word classes

Shttp://www.statmt.org/wmt08/shared-task.html “4http://code.google.com/plgiza-pp/
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Task BL+SPOS BL+SPOS+TPOY 5 Conclusions
(UPC 2008) , ,

Europarl | News | Europarl| News In this paper we |nt-rc-)duc_:ed t-he TALP UPC Ngram—bgsed
esoen 3288 13636 3289 | 3631 SMT system participating in the WMTO8 evaluation.
en2es 3152 | 3413| 3072 | 32.72 Apart_from briefly summarizing the decoding and opti-

en2es "clear? | 32.10 | 33.63| 32.00 | 35.04 | Mization processes, we have presented the feature mod-

els that were taken into account, along with the bilingual

Table 3: BLEU scores for Spanish-English and English-Sgrani Ngram translation model. A reordering strategy based on
2008 development corpora (Europarl and News Commentary)linguistically-motivated reordering patterns to harrmami
the source and target word order has been presented in

Task UPC 2008 the framework of the Ngram-based system.
Europarl | News
eszen 32.80 | 19.61 6 Acknowledgments
en2es 31.31 | 19.28 This work has been funded by the Spanish Government
en2es "clear’ | 32.34 | 20.05 under grant TEC2006-13964-C03 (AVIVAVOZ project).
The authors want to thank Adria de Gispert (Cambridge
Table 4: BLEU scores for official tests 2008. University) for his contribution to this work.

(POS)which were considered to train the POS target LMReferences
and extract the reordering patterns. Other charactesisti

. q‘ Brants. 2000. TnT — a statistical part-of-speech tagder.
of this year’s system are: P P gge

Proceedings of the 6th Applied Natural Language Processing

. . (ANLP-2000).

e reordering patterns technique; P. Brown, J. Cocke, S. Della Pietra, V. Della Pietra, F. &\jn

J. D. Lafferty, R. Mercer, and P. S. Roossin. 1990. A sta-

tistical approach to machine translatid®omputational Lin-

° no_LM interpolation . For this year's evalua_tion,Wg_c_gg:hc:(’)féﬁa'cﬁ ?:5 Fordyce, P. Koehn, C. Monz, and
trained two separate LMs for each domain-specific j gchroeder. 2007. (Meta-) evaluation of machine trans-
corpus (i.e., Europarl and News Commentary tasks). |ation. InProceedings of the ACL 2007 Workshop on Statis-

o ) o ~ tical and Hybrid methods for Machine Translation (\WMT),
Itis important to mention that 2008 training material is  pages 136-158.

identical to the one provided for the 2007 shared transla¢. Carreras, I. Chao, L. Padro, and M. Padr6. 2004. Freeling:

tion task. An open-source suite of language analyzersPrioceedings
Table 3 presents thHeL EU score obtained for the 2008  of the 4th Int. Conf. on Language Resources and Evaluation

development data sets and shows the impact of the target{LREC'04).

side POS LM introduction, which can be characterized a5 M- Crego and J. B. Marifio. 2006. Improving statistical MT

highly corpus- and language-dependent featBterefers % é‘;f‘gg‘gzrle;rde””g and decodiniflachine Translation,

to the same system configuration as described in SUbS%'de Gispert 2006 Introducing linguistic knowledge into

tion 3.2. The computeBLEU scores are case insensitive, .. s - - o

h - e ’ statistical machine trandation. Ph.D. thesis, Universitat

insensitive to tokenization and use one translation refer- pgjitacnica de Catalunya, December.

ence. P. Koehn and C. Monz. 2006. Manual and automatic eval-
After submitting the systems we discovered a bug re- uation of machine translation between european languages.

lated to incorrect implementation of the target LMs of In Proceedings of the ACL 2006 Workshop on Statistical and

words and tags for Spanish, it caused serious reductionHybrid methods for Machine Trandlation (WMT), pages 102~

of translation quality (1.4 BLEU points for development 121.

set in case of English-to-Spanish Europarl task and 23 B- Marifio, R. E. Banchs, J. M. Crego, A. de Gispert, P. Lam-

points in case of the corresponding News Commentary 2™ J- A. R. Fonollosa, and M. R. Costa-jussa. 2006. N-

task). The last raw of table 3(2es "clean") repre- gram based machine translatid®omputational Linguistics,

. 32(4):527-549, December.
sents the results corresponding to the UPC 2008 po%_t_—l Och and H. Ney. 2000. Improved statistical alignment

e source POS modelsupporting word reordering;

evaluation system, while the previous oeades) r(_efers models. InProceedings of the the 38th Annual Meeting

to the "bugged" system submitted to the evaluation. on Association for Computational Linguistics (ACL), pages
The experiments presented in Table 4 correspond to the 440-447.

2008 test evaluation sets. F. Och and H. Ney. 2004. The alignment template approach to

_— ) ) statistical machine translation. 30(4):417 — 449, Decembe
5Corrected post-evaluation results (see subsection 4.3.)
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1

Abstract

We describe the Cambridge University En-
gineering Department phrase-based statisti-
cal machine translation system for Spanish-
English and French-English translation in the
ACL 2008 Third Workshop on Statistical Ma-
chine Translation Shared Task. The CUED
system follows a generative model of trans-
lation and is implemented by composition of
component models realised as Weighted Fi-
nite State Transducers, without the use of a
special-purpose decoder. Details of system
tuning for both Europarl and News translation
tasks are provided.

Introduction

which input ASR lattices can be translated in the
same way as for text (Mathias and Byrne, 2006).

This paper reviews the first participation of CUED
in the ACL Workshop on Statistical Machine Trans-
lation in 2008. It is organised as follows. Firstly,
section 2 describes the system architecture and its
main components. Section 3 gives details of the de-
velopment work conducted for this shared task and
results are reported and discussed in section 4. Fi-
nally, in section 5 we summarise our participation in
the task and outline directions for future work.

2 The Transducer Translation Model

Under the Transducer Translation Model, the gen-
eration of a target language sentem¢estarts with
the generation of a source language sentefiday

The Cambridge University Engineering Departmenthe source language modek(s!). Next, the source
statistical machine translation system follows théanguage sentence is segmented into phrases accord-
Transducer Translation Model (Kumar and Byrneing to the unweighted uniform phrasal segmenta-
2005; Kumar et al., 2006), a phrase-based generatitien model Py (uf<, K|s!). This source phrase se-
model of translation that applies a series of transfoquence generates a reordered target language phrase
mations specified by conditional probability distri-sequence according to the phrase translation and re-
butions and encoded as Weighted Finite State Trangrdering modelPg (x4 |uf€). Next, target language
ducers (Mohri et al., 2002).

The main advantages of this approach are its mothe insertion modelPy (v1?|x1<, uiS).

phrases are inserted into this sequence according to
Finally, the

ularity, which facilitates the development and evalsequence of reordered and inserted target language
uation of each component individually, and its im{hrases are transformed to word sequemg¢asmder
plementation simplicity which allows us to focus onthe target phrasal segmentation modRel(¢{ [vft).
modeling issues rather than complex decoding anthese component distributions together form a joint
search algorithms. In addition, no special-purposdistribution over the source and target language sen-
decoder is required since standard WFST operatiotsnces and their possible intermediate phrase se-

J R

can be used to obtain the 1-best translation or a laguences a®(t{, v, & uf s]).
tice of alternative hypotheses. Finally, the system In translation under the generative model, we start
architecture readily extends to speech translatigg, imith the target sentencq in the foreign language

Proceedings of the Third Workshop on Statistical Machine Translation, pages 131-134,
Columbus, June 2008. (©)2008 Association for Computational Linguistics



and search for the best source sentetfceEncod- Spanish and French parallel texts each contain ap-
ing each distribution as a WFST leads to a model giroximately 5% News Commentary data; the rest
translation as the series of compositions is Europarl data. Various single-reference develop-
ment and test sets were provided for each of the
tracks. However, the 2008 evaluation included a new
in which T is an acceptor for the target languagéVews task, for which no corresponding development
sentence and is the word lattice of translations ob- Set was available.

tained during decoding. The most likely translation ‘
31 is the path inL with least cost.

L=GoWoRo®oQoT D)

| sentenceg words | vocab |

FR 1.33M 39.9M | 124k
2.1 TTM Reordering Model EN ' 36.4M | 106k
The TTM reordering model associates a jump se- ES 1.30M 38.2M | 140k
quence with each phrase pair. For the experi- EN 35.7M | 106k

ments described in this paper, the jump sequence
is restricted such that only adjacent phrases can be

swapped; this is the MJ1 reordering model of (Ku- All of the training and system tuning was per-

mar an_o_l Byme, 2005)_' Although the reorOIerinq‘ormed using lower-cased data. Word alignments
probability for each_ pair of phrases could be estiy, ..o generated using GIZA++ (Och and Ney, 2003)
mated from Word-al|gn§d parallel _o_lata, we here aBver a stemmed version of the parallel text. Stems
sumea F‘”'for”.‘ reorderlqg probabiliptuned as de- for each language were obtained using the Snowball
scrlbed_ln section 3.1. Flg_ure 1 shows how the_ MILicmmet  After unioning the Viterbi alignments,
reordermg model for a pair of phrase$ andx2is e stems were replaced with their original words,
implemented as a WFST. and phrase-pairs of up to five foreign words in length

XX were extracted in the usual fashion (Koehn et al.,
2003).

Table 1:Parallel corpora statistics.

3.1 System Tuning

Minimum error training (Och, 2003) under
BLEU (Papineni et al., 2001) was used to optimise
the feature weights of the decoder with respect
to the dev2006 development set. The following
features are optimized:

X2 :x1

Figure 1:The uniform MJ1 reordering transducer.
e Language model scale factor

3 System Development e Word and phrase insertion penalties

CUED participated in two of the WMT shared task
tracks: French-English and SpanishEnglish. For
both tracks, primary and contrast systems were sub- e Insertion scale factor
mitted. The primary submission was restricted
to only the parallel and language model data dis-
tributed for the shared task. The contrast submission
incorporates large additional quantities of English
monolingual training text for building the second- e Three phrase pair count features

pass language model described in section 3.2. The bh . ; K wheth h
Table 1 summarises the parallel training data, in- € phrase-pair count features frack whether eac

cluding the total number of sentences, total num[_)hrase-palr occurred once, twice, or more than twice

ber of words, and lower-cased vocabulary size.; e *Available at http:/snowball.tartarus.org

e Reordering scale factor

e Translation model scale factou-to-v

e Translation model scale factar:to-u



in the parallel text (Bender et al., 2007). All de-rescoring step is out-of-domain and so does not sub-
coding and minimum error training operations aretantially improve the scores. Rescoring yields an
performed with WFSTs and implemented using thaverage gain of just0.5 BLEU points.

OpenFST libraries (Allauzen et al., 2007). Translation quality is significantly lower in both
_ language pairs for the nemews2008 set. Two fac-
3.2 English Language Models tors may account for this. The first is the change

Separate language models are used when translatiligdomain and the fact that no training or devel-
the Europarl and News sets. The models are esgPment set was available for the News translation
mated using SRILM (Stolcke, 2002) and converted@sk. Secondly, the use of a much freer translation
to WFSTs for use in TTM translation. We use the ofin the single News reference, which makes it dif-
fline approximation in which failure transitions areficult to obtain a good BLEU score. However, the
replaced with epsilons (Allauzen et al., 2003). second-pass 5-gram language model rescoring gains
The Europarl language model is a Kneserd'® larger than those observed in the Europarl sets,
Ney (Kneser and Ney, 1995) smoothed defaultwith approximately +1.7 BLEU points for each lan-
cutoff 5-gram back-off language model estimate@uage pair. The additional in-domain newswire data
over the concatenation of the Europarl and New&early helps to improve translation quality.
language model training data. The News language Finally, we use a simple 3-gram casing model
model is created by optimising the interpolatiorirained on the true-case workshop distributed
weights of two component models with respect tédnguage model data, and apply the SRILM
the News Commentary development sets since w sambi g tool to restore true-case for our final
believe these more closely match thavstest2008 ~ submissions. With respect to the lower-cased scores,
domain. The optimised interpolation weights werdrue-casing drops around 1.0 BLEU in the Europarl
0.44 for the Europarl corpus anel56 for the much task, and around 1.7 BLEU in the News Commen-
smaller News Commentary corpus. For our contrad@ry and News tasks.
submission, we rescore the first-pass translation lat-
tices with a large zero-cutoff stupid-backoff (Brants®> Summary
et al., 2007) language model estimated over appro

imately five billion words of newswire text. 6\/6 have reviewed the Cambridge University Engi-

neering Department first participation in the work-
shop on machine translation using a phrase-based
SMT system implemented with a simple WFST ar-
Table 2 reports lower-cased BLEU scores for thehitecture. Results are largely competitive with the
French—English and SpanishEnglish Europarl state-of-the-art in this task.
and News translation tasks. The NIST scores are Future work will examine whether further im-
also provided in parentheses. The row labelledgrovements can be obtained by incorporating addi-
“TTM+MET"” shows results obtained after TTM tional features into MET, such as the word-to-word
translation and minimum error training, i.e. our pri-Model 1 scores or phrasal segmentation models. The
mary submission constrained to use only the datdJ1 reordering model could also be extended to al-
distributed for the task. The row labelled “+5gram”low for longer-span phrase movement. Minimum
shows translation results obtained after rescorinBayes Risk decoding, which has been applied suc-
with the large zero-cutoff 5-gram language modetessfully in other tasks, could also be included.
described in section 3.2. Since this includes addi- The difference in the gains from 5-gram lattice
tional language model data, it represents the CUERscoring suggests that, particularly for Europarl
contrast submission. translation, it is important to ensure the language
Translation quality for the ESEN task is model data is in-domain. Some form of count mix-
slightly higher than that of FR-EN. For Europarl ing or alternative language model adaptation tech-
translation, most of the additional English languageiques may prove useful for unconstrained Europarl
model training data incorporated into the 5-gyggtranslation.

4 Results and Discussion



Task |

dev2006 | devtest2006 |

test2007 H

test2008 | newstest2008|

FR-EN | TTM+MET || 31.92 (7.650)] 32.51 (7.719)] 32.94 (7.805)] 32.83 (7.799) 19.58 (6.108)
+5gram || 32.51 (7.744)| 32.96 (7.797)| 33.33 (7.880)| 33.03 (7.856) 21.22 (6.311)
ES-EN | TTM+MET || 33.11 (7.799)| 32.25 (7.649)| 32.90 (7.766)|| 33.11 (7.859) 20.99 (6.308)
+5gram || 33.30 (7.835)| 32.96 (7.740)| 33.55 (7.857)| 33.47 (7.893)| 22.83 (6.513)

Table 2:Trandation results for the Europar| and News tasks for various dev sets and the 2008 test sets.
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Abstract German is much richer in morphology than English,
we wanted to test the effects of using a sequence
model for German based on morphologically sub-
mitted to the Shared Task of the Third Work- categorized parts-of-speech. All systems have been
shop of Statistical Machine Translation. The  SPecified as extensions of the Moses system pro-
main features of the systems, as compared Vided for the Shared Task.

with the baseline, is the use of morphologi-

cal pre- and post-processing, and a sequence 2 Part-of-speech and M or phology
model for German using morphologically rich

We describe the LIU systems for German-
English and English-German translation sub-

parts-of-speech. It is shown that these addi-  For both English and German we used the part-of-

tions lead to improved translations. speech tagger TreeTagger (Schmid, 1994) to obtain
POS-tags.

1 Introduction The German POS-tags from TreeTagger were re-

fined by adding morphological information from

Research in statistical machine translation (SMT) ~ommercial dependency parser, including case,
increasingly makes use of linguistic analysis in Ordeﬁumber, gender, definiteness, and person for nouns,
to improve performance. By including abstract caty onouns, verbs, adjectives and determiners in the
egories, such as lemmas and parts-of-speech (POg)ses where both tools agreed on the POS-tag. If
in the models, it is argued that systems can becor@ﬁey did not agree, the POS-tag from TreeTagger
better at handling sentences for which training datd o5 chosen. This tag set seemed more suitable for
at the word level is sparse. Such categories can lgqm-’ with tags for proper names and foreign words

integrated in the statistical framework using factored,hich the commercial parser does not have.
models (Koehn et al., 2007). Furthermore, by pars-

ing input sentences and restructuring based on the Compound Analysis

result to narrow the structural difference between

source and target language, the current phrase-bagedmpounding is common in many languages, in-

models can be used more effectively (Collins et algluding German. Since compounding is highly pro-

2005). ductive it increases vocabulary size and leads to
German differs structurally from English in sev-sparse data problems.

eral respects (see e.g. Collins et al., 2005). In this Compounds in German are formed by joining

work we wanted to look at one particular aspectvords, and in addition filler letters can be inserted

of restructuring, namely splitting of German come-or letters can be removed from the end of all but the

pounds, and evaluate its effect in both translation dlast word of the compound (Langer, 1998). We have

rections, thus extending the initial experiments reehosen to allow simple additions of letter(s},(-n,

ported in Holmgvist et al. (2007). In addition, since-en, -nen, -es, -er, -igrand simple truncations¢,
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-en, -n. Example of compounds with additions and3.2 M erging compounds

truncations can be seen in (1). For translation into German, the translation output
contains split compounds, which need to be merged.

(1) a. Staatsfeind (Staat + Feind) An algorithm for merging has been proposed by
public enemy Popovic et al. (2006) using lists of compounds and

their parts. This method cannot merge unseen com-
pounds, however, so instead we base merging on
POS. If a word has a compound-POS, and the fol-
o lowing word has a matching POS, they are merged.
3.1 Splitting compounds If the next POS does not match, a hyphen is added

Noun and adjective compounds are split by a moo_tp the word, allowing for coordinated compounds as

ified version of the corpus-based method presentéﬁ (2).

by Koehn and Knig.ht (2003). First the German lan- (2) Wasser- und Bodenqualitat

guage modelldata is POS-tagged and u.seo! to calcu- water and soil quality

late frequencies of all nouns, verbs, adjectives, ad-

verbs and the negative particle. Then, for each nous System Descriptions

and adjective all splits into these known words from o ) _

the corpus, allowing filler additions and truncations,] '€ main difference of our system in relation to the

are considered, choosing the splitting option witfaseline system of the Shared Taigkthe pre- and

the highest arithmetic mehrof the frequencies of POSt-processing described above, the use of a POS

its parts. factor, and an additional sequence model on POS.

A length limit of each part was set to 4 charac-We a_Iso modified the tuning to include compound

ters. For adjectives we restrict the number of partrsr?ergmg, and used a smaller corpus, 600 sente_znces
cked evenly from the dev2006 corpus, for tuning.

to maximum two, since they do not tend to havcg\'/
' use the Moses decoder (Koehn et al., 2007) and

: i, e
multiple parts as often as nouns. In addition w
added a stop list with 14 parts, often mistagged, th(;%RILM language models (Stolcke, 2002).

gave rise to wrong adjective splits, suchasche 41 German = English

(Aryan) in konsular!sche( consular.). We used POS as an output factor, as can be seen in
As Koehn and Knight (2003) points out, parts O,fFigure 1. Using additional factors only on the tar-
compounds do not always have the sam1e m?am@%t side means that only the training data need to be
as when they stand_alone, e@rundrechte(basic POS-tagged, not the tuning data or translation input.

rights’), where t-he f'rSt_ par_tGrund, ugually trans- However, POS-tagging is still performed for Ger-
lates asfoundation which is wrong in this com- man as input to the pre-processing step. As Figure 1

pound. To overcome this we marked all compounghOWS we have two sequence models. A 5-gram lan-
parts but the last, with the symbol '#. Thus they ar?P
I

b. Kirchhof (Kirche + Hof)
graveyard

handled 4o P £ spl 4 uage model based on surface form using Kneser-
andled as separate words. Parts of split words a ey smoothing and in addition a 7-gram sequence

receive a special POS-tag, based on the POS O_f tPr‘FodeI based on POS using Witten-Bedmoothing.
last word of the compound, and the last part receives The training corpus was filtered to sentences with

the same PO$ as the ful wo_r(_j. 2-40 words, resulting in a total of 1054688 sen-
We also split words containing hyphens based ognces. Training was done purely on Europarl data,

the same algorithm. Their parts receive a differenyt results were submitted both on Europarl and
POS-tag, and the hyphens are left at the end of

but the last part. 2htt p: // www. st at nt . or g/ wnt 08/ basel i ne.

ht mi
*Kneser-Ney smoothing can not be used for the POS se-
We choose the arithmetic mean over the geometric meajuence model, since there were counts-of-counts of zera- Ho
used by Koehn and Knight (2003) in order to increase the nunever, Witten-Bell smoothing gives good results when theabac
ber of splits. ulary is small.
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Factors Sequen | | De-En] En-De]

Source Target models Baseline 26.95 | 20.16
Factored baseling 27.43 | 20.27

word \ Word\ pord Submitted s
5-gram ystem 27.63 | 20.46
POS POS Table 1: Bleu scores for Europarl (test2007)
7—gram
| | De-En| En-De]|
Baseline 19.54 | 14.31

Figure 1: Architecture of the factored system

Factored baseline 20.16 | 14.37
Submitted system 20.61 | 14.77

News data. The news data were submitted to see
how well a pure out-of-domain system could per-T able 2: Bleu scores for News Commentary (nc-test2007)
form.

In the pre-processing step compounds were spli, Results
This was done for training, tuning and translation. N o
In addition German contracted prepositions and déase-sensitive Bleu scofegPapineni et al., 2002)
terminers, such asumfrom zu den(’to the’), when for the Europarl devtest set (test2007) are shown in

|dent|f|ed as SUCh by the taggen were Sp“t table 1. We can see that the Submitted SyStem per—
forms best, and that the factored baseline is better
4.2 English = German than the pure baseline, especially for translation into

All features of the German to English system wergng:'Sh' ; C 5 200
used, and in addition more fine-grained German Bleu scores for News Commentarfne-test2007)

POS-tags that were sub-categorized for morpholoé‘-ri showdn In Table_ 2.hHet:e we can also sede thlat the
ical features. This was done for training, tuningSu mitted system is the best. As expected, Bleu is

and sequence models. At translation time no prémJCh IO\I’V:r Orll out-of-domain news text than on the
processing was needed for the English input, but Iauropar evelopment test set.

po_st-prqcessipg step for th_e German output is res 4 Compounds

quired, including the merging of compounds and ) )

contracted prepositions and determiners. The lattd'® duality of compound translations were analysed
was done in connection with uppercasing, by trainhanually. The first 100 compounds that could be
ing an instance of Moses on a lower cased coergund by the splitting algorithm were extracted from

with split contractions and an upper-cased corpu@e Europarl reference text, test2007, together with

with untouched contractions. The tuning step wal1eir English translatiorts
System translations were compared to the an-

modified so that merging of compounds were done oHive

as part of the tuning. notated compounds and classified into seven cate-
gories: correct, alternative good translation, correct

4.3 Basdine but different form, part of the compound translated,

. . Qo direct equivalent, wrong and untranslated. Out
For comparison, we constructed a baseline accord: : . .
: o : of these the first three categories can be considered
ing to the shared-task description, but with smaller

. L ood translations.
tuning corpus, and the same sentence filtering for t . ,
: ) ) .~ We performed the error analysis for the submitted
translation model as in the submitted system, usi

ngn ) .
d the baseline system. The result can be seen in
only sentences of length 2-40. y

In addition we constructed a factored baseline “The %Bleu notation is used in this report

system, with POS as an output factor and a se- °No development test set for News test were provided, so we

. present result for the News commentary, which can be exgecte
guence model for POS. Here we only used the orlgfa give similar results,

inal POS-tags from TreeTagger, no additional mor- ‘sthe gngiish translations need not be compounds. Com-
phology was added for German. pounds without a clear English translation were skipped.
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De= En En=-De dicates that the morphologically rich POS-based se-
Subm [ Base| Subm | Base quence model for German also had a positive effect.
Correct 50 46 40 39
Alternative 36| 26 32| 29 Acknowledgement
Form 5 7 6 8
Part > 5 10| 15 We would like to thank Joe Steinhauer for help with
No equivalent 6 2 8 5 the evaluation of German output.
Wrong 1 7 1 1
Untranslated 7 3 3 References

Table 3: Results of the error analysis of compound trandvl. Collins, P. Koehn, and I. Ku¢erova. 2005. Clause re-
lations structuring for statistical machine translation. Rro-
ceedings of the 43rd Annual Meeting of the A@ages
531-540, Ann Arbor, Michigan.

Table 3. For translation into English the submittec“ Holmauist, S. Stymne, and L. Ahrenberg. 2007. Get-
system handles compound translations considerablyting to know Moses: Initial experiments on German-

better than the baseline with 91% good translations English factored translation. IRroceedings of the
compared to 79%. In the submitted system all com- Second Workshop on Statistical Machine Translation
pounds have a translation, compared to the baselinepages 181-184, Prague, Czech Republic. Association
system which has 7% of the compounds untrans- for Computational Linguistics.

lated. In the other translation direction the differencé Koehn and K. Knight. 2003. Empirical methods for

: : : : . compound splitting. IrProceedings of the tenth con-
is smaller, the biggest difference is that the s.ubmlt ference of EACLpages 187193, Budapest, Hungary.
ted system has fewer cases of partial translation.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,

To study the effects of using fine-grained POS-tags and E. Herbst. 2007. Moses: Open source toolkit for

in the German sequence model, a similar close study statistical machine translation. Froceedings of the

of German NPs was performed. 100 English NPs 45th Annual Meeting of the ACL, demonstration ses-
having at least two dependents of the head noun S Prague, Czech Republic.

were selected from a randomly chosen subsectio%‘ Langer. 1998. Zur Morphologie und Semantik von
Nominalkomposita. ImMagungsband der 4. Konferenz

of the deyelopment te_st set. Their translatiolns in_ zur Verarbeitung natrlicher Sprache (KONVENS)
the baseline and submitted system were then identi- p5ges 83-97.

fied. Translations that were not NPs were discardeg. papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.
In about two thirds (62 out of 99) of the cases, the BLEU: a method for automatic evaluation of machine
translations were identical. For the remainder, 12 translation. InProceedings of the 40th Annual Meet-

translations were of equal quality, the submitted sys- ing of the ACL pages 311318, Philadelphia, Pennsyl-
tem had a better translation in 17 cases (46%), and avana. . o

worse one in 8 cases (22%). In the majority of caség" Popovit, D. Stein, and H. Ney. 2006. Statistical ma-

where the baseline was better, this was due to word chine translation of German compound wordsPho-
' ceedings of FINTAL - 5th International Conference on

5.2 Agreement in German NPs

selection, not agreement. Natural Language Processingages 616—624, Turku,
. Finland.
6 Conclusions H. Schmid. 1994. Probabilistic part-of-speech tagging

Addina moroholoaical brocessing improved trans using decision trees. IRreoceedings of the Interna-
9 P g P g 1mp tional Conference on New Methods in Language Pro-

lation results in both directions for both text types. cessingManchester, UK.

Splitting compounds gave a bigger effect for transa_ stolcke. 2002. SRILM - an extensible language
lation from German. Marking of compound parts modeling toolkit. InProceedings of the International
worked well, with no untranslated parts left in the Conference on Spoken Language Processing (ICSLP)
sample used for evaluation. The mini-evaluation Pages 901-904, Denver, Colorado.

of German NPs in English-German translation in-
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Abstract

The Edinburgh submissions to the shared task
of the Third Workshop on Statistical Machine
Translation (WMT-2008) incorporate recent
advances to the open source Moses system.
We made a special effort on the German—
English and English-German language pairs,
leading to substantial improvements.

1 Introduction

Edinburgh University participated in the shared task
of the Third Workshop on Statistical Machine Trans-
lation (WMT-2008), which is partly funded by the
EUROMATRIX project, which also funds our work.
In this project, we set out to build machine trans-
lation systems for all language pairs of official EU
languages. Hence, we also participated in the shared
task in all language pairs.

For all language pairs, we used the Moses decoder
(Koehn et al., 2007), which follows the phrase-based
statistical machine translation approach (Koehn
et al., 2003), with default settings as a starting
point. We recently added minimum Bayes risk de-
coding and reordering constraints to the decoder. We
achieved consistent increase in BLEU scores with
these improvements, showing gains of up to 0.9%
BLEU on the 2008 news test set.

Most of our efforts were focused on the language
pairs German—English and English-German. For
both language pairs, we explored language-specific
and more general improvements, resulting in gains
of up to 1.5% BLEU for German—English and 1.4%
BLEU for English—-German.

2 Recent Improvements

Over the last months, we added minimum Bayes risk
decoding and additional reordering constraints to the
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Moses decoder. The WMT-2008 shared task offered
the opportunity to assess these components over a
large range of language pairs and tasks.

For all our experiments, we trained solely on the
Europarl corpus, which allowed us to treat the 2007
news commentary test set (nc-test2007) as a stand-
in for the 2008 news test set (news-2008), for which
we have no in-domain training data. This may have
resulted in lower performance due to less (and very
relevant) training data, but it also allowed us to opti-
mize for a true out-of-domain test set.

The baseline training uses Moses default param-
eters. We use a maximum sentence length of 80, a
phrase translation table with the five traditional fea-
tures, lexicalized reordering, and lowercase training
and test data. All reported BLEU scores are not case-
sensitive, computed using the NIST tool.

2.1

Minimum Bayes risk decoding was proposed by Ku-
mar and Byrne (2004). Instead of selecting the trans-
lation with the highest probability, minimum Bayes
risk decoding selects the translation that is most sim-
ilar to the highest scoring translations. Intuitively,
this avoid the selection of an outlier as the best trans-
lation, since the decision rule prefers translations
that are similar to other high-scoring translations.
Minimum Bayes risk decoding is defined as:

€ypr — argmax, Z Lfe, e/) p(e,]f)

e/

Minimum Bayes Risk Decoding

As similarity function L, we use sentence-level
BLEU with add-one smoothing. As highest scoring
translations, we consider the top 100 distinct trans-
lations, for which we convert the translation scores
into a probability distribution p (with a scaling fac-
tor of 1). We tried other n-best list sizes and scaling
factors, with very similar outcomes.
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Language Pair Baseline MBR MP MBR+MP
Spanish—German news 11.7 11.8 (+0.1) | 11.9 (+0.2) | 12.0 (+0.3)
Spanish—German ep 20.7 21.0 (+0.3) | 20.8 (+0.1) | 21.0 (+0.3)
German—Spanish news 16.2 16.3 (+0.1) | 16.4 (+0.2) | 16.6 (+0.4)
German—Spanish ep 28.5 28.6 (+0.1) | 28.5 (£0.0) | 28.6 (+0.1)
Spanish-English news 19.8 20.2 (+0.4) | 20.2 (+0.4) | 20.3 (+0.5)
Spanish—English ep 33.6 33.7 (+0.1) | 33.6 (£0.0) | 33.7 (+0.1)
English—Spanish news 20.1 20.5 (+0.4) | 20.5 (+0.4) | 20.7 (+0.6)
English—Spanish ep 33.1 33.1 (£0.0) | 33.0(-0.1) | 33.1 (£0.0)
French-English news 18.5 19.1 (+0.6) | 19.1 (+0.6) | 19.2 (+0.7)
French—English ep 33.5 33.5(£0.0) | 33.4 (-0.1) | 33.5(£0.0)
English—French news 17.8 18.0 (+0.2) | 18.2 (+0.4) | 18.3 (+0.5)
English-French ep 31.1 31.1 (£0.0) | 31.1 (£0.0) | 31.1 (£0.0)
Czech—English news 14.2 14.4 (+0.2) | 14.3 (+0.1) | 14.5 (+0.3)
Czech—English nc 22.8 23.0 (+0.2) | 22.9 (+0.2) | 23.0 (+0.2)
English—Czech news 9.6 9.6 (£0.0) | 9.7(+0.1) | 9.6 (£0.0)
English—Czech nc 12.9 13.0 (+0.1) | 12.9 (£0.0) | 13.0 (+0.1)
Hungarian—English news 7.9 8.3 (+0.4) 8.5 (+0.6) 8.8 (+0.9)
English-Hungarian news 6.1 6.3 (+0.2) 6.4 (+0.3) 6.5 (+0.4)
average news - +0.26 +0.33 +0.46

average ep - +0.08 -0.02 +0.08

Table 1: Improvements in BLEU on the test sets test2008 (ep), newstest2008 (news) and nc-test2008 (nc) for minimum
Bayes risk decoding (MBR) and the monotone-at-punctuation reordering (MP) constraint.

2.2 Monotone at Punctuation

The reordering models in phrase-based translation
systems are known to be weak, since they essentially
relies on the interplay of language model, a general
preference for monotone translation, and (in the case
of lexicalized reordering) a local model based on a
window of neighboring phrase translations. Allow-
ing any kind of reordering typically reduces transla-
tion performance, so reordering is limited to a win-
dow of (in our case) six words.

One noticeable weakness is that the current model
frequently reorders words beyond clause bound-
aries, which is almost never well-motivated, and
leads to confusing translations. Since clause bound-
aries are often indicated by punctuation such as
comma, colon, or semicolon, it is straight-forward
to introduce a reordering constraint that addresses
this problem.

Our implementation of a monotone-at-punc-
tuation reordering constraint (Tillmann and Ney,
2003) requires that all input words before clause-
separating punctuation have be translated, before
words afterwards are covered. Note that this con-
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straint does not limit in any way phrase translations
that span punctuation.

2.3 Results

Table 1 summarizes the impact of minimum
Bayes risk decoding (MBR) and the monotone-
at-punctuation reordering constraint (MP). Scores
show higher gains for out-of-domain news test sets
(+0.46) than for in-domain Europarl sets (+0.08).

3 German-English

Translating between German and English is surpris-
ingly difficult, given that the languages are closely
related. The main sources for this difficulty is the
different syntactic structure at the clause level and
the rich German morphology, including the merging
of noun compounds.

In prior work, we addressed reordering with a
pre-order model that transforms German for train-
ing and testing according to a set of hand-crafted
rules (Collins et al., 2005). Employing this method
to our baseline system leads to an improvement of
+0.8 BLEU on the nc-test2007 set and +0.5 BLEU on
the test2007 set.



German-English ‘ nc-test2007 ‘ test2007

baseline 20.3 27.6
tokenize hyphens 20.1 (=0.2) | 27.6 (£0.0)
tok. hyph. + truecase | 20.7 (+0.4) | 27.8 (+0.2)

Table 2: Impact of truecasing on case-sensitive BLEU

In a more integrated approach, factored transla-
tion models (Koehn and Hoang, 2007) allow us to
consider grammatical coherence in form of part-
of-speech language models. When translating into
output words, we also generate a part-of-speech tag
along with each output word. Since there are only 46
POS tags in English, we are able to train high-order
n-gram models of these sequences. In our experi-
ments, we used a 7-gram model, yielding improve-
ments of +0.2/-0.1. We obtained the POS tags using
Brill’s tagger (Brill, 1995).

Next, we considered the problem of unknown in-
put words, which is partly due to hyphenated words,
noun compounds, and morphological variants. Us-
ing the baseline model, 907 words (1.78%) in nc-
test2007 and 262 (0.47%) in test2007 are unknown.
First we separate our hyphens by tokenizing words
such as high-risk into high @-@ risk. This reduces
the number of unknown words to 791/224. Unfor-
tunately, it hurts us in terms of BLEU (-0.1/-0.1).
Second, we split compounds using the frequency-
based method (Koehn and Knight, 2003), reducing
the number of unknown words to than half, 424/94,
improving BLEU on nc-test2007 (+0.5/-0.2).

A final modification to the data preparation is
truecasing. Traditionally, we lowercase all training
and test data, but especially in German, case marks
important distinctions. German nouns are capital-
ized, and keeping case allows us to make the dis-
tinction between, say, the noun Wissen (knowledge)
and the verb wissen (fo know). By truecasing, we
only change the case of the first word of a sentence
to its most common form. This method still needs
some refinements, such as the handling of headlines
or all-caps text, but it did improve performance over
the hyphen-tokenized baseline (+0.3/+0.2) and the
original baseline (+0.2/+0.1).

Note that truecasing simplifies the recasing prob-
lem, so a better way to gauge its effect is to look
at the case-sensitive BLEU score. Here the dif-
ference are slightly larger over both the hyphen-
tokenized baseline (+0.6/+0.2) and the original base-
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German-English nc-test2007 | test2007
baseline 21.3 28.4

pos Im 21.5 (+0.2) | 28.3 (-0.1)
reorder 22.1 (+0.8) | 28.9 (+0.5)
tokenize hyphens 21.2(-0.1) | 28.3(-0.1)
tok. hyph. + split 21.8 (+0.5) | 28.2(-0.2)
tok. hyph. + truecase | 21.5 (+0.2) | 28.5 (+0.1)
mp 21.6 (+0.3) | 28.2 (-0.2)
mbr 21.4 (+0.1) | 28.3(-0.1)
big beam 21.3 (£0.0) | 28.3 (-0.1)

Table 3: Impact of individual modifications for German—
English, measured in BLEU on the development sets

German-English | nc-test2007 | test2007
baseline 21.3 28.4

+ reorder 22.1 (+0.8) | 28.9 (+0.5)
+ tokenize hyphens | 22.1 (+0.8) | 28.9 (+0.5)
+ truecase 22.7 (+1.3) | 28.9 (+0.5)
+ split 23.0 (+1.7) | 29.1 (+0.7)
+ mbr 23.1 (+1.8) | 29.3 (+0.9)
+ mp 23.3 (+2.0) | 29.2 (+0.8)

Table 4: Impact of combined modifications for German—
English, measured in BLEU on the development sets

line (+0.4/+0.2). See the Table 2 for details.

As for the other language pairs, using the
monotone-at-punctuation reordering constraint
(+0.3/-0.2) and minimum Bayes risk decoding
(+0.1/-0.1) mostly helps. We also tried bigger
beam sizes (stack size 1000, phrase table limit 50),
but without gains in BLEU (£0.0/-0.1).

Table 3 summarizes the contributions of the indi-
vidual modifications we described above. For our fi-
nal system, we added the improvements one by one
(see Table 4), except for the bigger beam size and
the POS language model. This led to an overall in-
crease of +2.0/+0.8 over the baseline. Due to a bug
in splitting, the system we submitted to the shared
task had a score of only +1.5/+0.6 over the baseline.

4 English-German

For English—German, we applied many of the same
methods as for the inverse language pair. Tok-
enizing out hyphens has questionable impact (—
0.1/40.1), while truecasing shows minor gains
(£0.0/+0.1), slightly higher for case-sensitive scor-
ing (+0.2/+0.3). We have not yet developed a
method that is the analog of the compound splitting



English—-German nc-test2007 | test-2007
baseline 14.6 21.0
tokenize hyphens 14.5 (-0.1) | 21.1 (+0.1)
tok. hyph. + truecase | 14.6 (0.0) | 21.1 (+0.1)
morph Im 15.7 (+1.1) | 21.2(+0.2)
mbr 14.9 (+0.3) | 21.0 (£0.0)
mp 14.8 (+0.2) | 20.9 (-0.1)
big beam 14.7 (+0.1) | 21.0 (£0.0)

Table 5: Impact of individual modifications for English—
German, measured in BLEU on the development sets

method — compound merging. We consider this an
interesting challenge for future work.

While the rich German morphology on the source
side mostly poses sparse data problems, on the tar-
get side it creates the problem of which morpholog-
ical variant to choose. The right selection hinges
on grammatical agreement within noun phrases, the
role that each noun phrase plays in the clause, and
the grammatical nature of the subject of a verb. We
use LoPar (Schmidt and Schulte im Walde, 2000),
which gives us morphological features such as
case, gender, count, although in limited form, it of-
ten opts for more general categories such as not gen-
itive. We include these features in a sequence model,
as we used a sequence model over part-of-speech
tags previously. The gains of this method are espe-
cially strong for the out-of-domain set (+1.1/+0.2).

Minimum Bayes risk decoding (+0.3/£0.0),
the monotone-at-punctuation reordering constraint
(+0.2/-0.1), and bigger beam sizes (+0.1/4-0.0)
have similar impact as for the other language pairs.
See Table 5 for a summary of all modifications. By
combining everything except for the bigger beam
size, we obtain overall gains of +1.4/+0.4 over the
baseline. For details, refer to Table 6.

5 Conclusions

We built Moses systems trained on either only Eu-
roparl data or, for Czech and Hungarian, the avail-
able training data. We showed gains with minimum
Bayes risk decoding and a reordering constraint in-
volving punctuation. For German«English, we em-
ployed further language-specific improvements.

Acknowledgements: This work was supported in part
under the EuroMatrix project funded by the European
Commission (6th Framework Programme).
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English-German | nc-test2007 | test2007
baseline 14.6 21.0

+ tokenize hyphens | 14.5 (-0.1) | 21.1 (+0.1)
+ truecase 14.6 (£0.0) | 21.1 (+0.1)
+ morph Im 15.4 (+0.8) | 21.3(+0.3)
+ mbr 15.7 (+1.1) | 21.4(+0.4)
+ mp 16.0 (+1.4) | 21.4(+0.4)

Table 6: Impact of combined modifications for English—
German, measured in BLEU on the development sets
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Abstract 2 Factored Phrase-Based MT to Czech

This paper describes our two contributions to ~~ Bojar (2007) describes various experiments with
WMTO8 shared task: factored phrase-based factored translation to Czech aimed at improving
model using Moses and a probabilistic tree-  target-side morphology. We use essentially the same
transfer model at a deep syntactic layer. setup with some cleanup and significantly larger
target-side training data:
, Parallel datafrom CzEng 0.7 (Bojar etal., 2008),
1 Introduction with original sentence-level alignment and tokeniza-

Czech is a Slavic language with very rich morphol—tion' The par_aIIeI corpus was taken as a monolithic
ogy and relatively free word order. The CzecHext source disregarding dlﬁerenqes between CzEng
morphological system (Haji¢, 2004) defines 4’0061ata sources. We use only 1-1 aligned sentences.
tags in theory and 2,000 were actually seen in a Word alignment using GIZA++ toolkit (Och and
big tagged corpus while the English Penn Treebarii€y. 2000), the default configuration as available in
tagset contains just about 50 tags. In our paralléf@ining scripts for Moses. We based the word align-
corpus (see below), the English vocabulary size i@€nt on Czech and English lemmas (base forms

148k distinct word forms but more than twice as big®f words) as provided by the combination of tag-
in Czech, 343k distinct word forms. gers and lemmatizers by Hajic (2004) for Czech and

Brants (2000) followed by Minnen et al. (2001) for

When translating to Czech from an analytic lan _ )
fghalish. We symmetrized the two GIZA++ runs us-

guage such as English, target word forms have A Sl
be chosen correctly to produce a grammatical seffld 9row-diag-final heuristic.
tence and preserve the expressed relations betweerdruecasing. We attempted to preserve meaning-
elements in the sentence, e.g. verbs and their modigaring case distinctions. The Czech lemmatizer
fiers. produces case-sensitive lemmas and thus makes it
This year, we have taken two radically differentS@Sy to cast the capitalization of the lemma back on
approaches to English-to-Czech MT. Section 2 ddle word form: For English we approximate the
scribes our setup of the phrase-based system Mosg¥ne effect by a two-step procedere.

Koehn l., 2007) an ion 3 f nasyss=y————
(Koehn eta 007) and Section 3 focuses on a s We change the capitalization of the form to match the

tem with probabilistic tree transfer employed at Jemma in cases where the lemma is lowercase, capitalized (uc
deep syntactic layer and the new challenges this afirst) or all-caps. For mixed-case lemmas, we keep the form
proach brings. intact.
2\We first collect a lexicon of the most typical “shapes” for
*The work on this project was supported by the grants FP&ach word form (ignoring title-like sentences with most gsr
IST-5-034291-STP (EuroMatrix), MSM0021620838,SMT capitalized and the first word in a sentence). Capitalizedl an
CR LC536, and GA405/06/0589. all-caps words in title-like sentences are then changetédiv t
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Decoding steps.We use a simple two-step sce-
nario similar to class-based models (Brown and oth- : :
ers, 1992): (1) the source English word forms are &, uedia . %e Pred N /
translated to Czech word forms and (2) full Czech ' ______ e |
morphological tags are generated from the Czech Figure 1: Sample treelet pair, a-layer.
forms.

Language models.We use the following 6 inde-

pendently weighted language models for the targ&f syntactic analysis, both formally captured as la-
(Czech) side: belled ordered dependency trees: ¥naLYTICAL

(a-, surface syntax) representation bears a 1-1 corre-
¢ 3-grams of word forms based on all CzEng 0.3pondence between tokens in the sentence and nodes
data, 15M tokens, in the tree; theECTOGRAMMATICAL (t-, deep syn-
tax) representation contains nodes only for autose-
e 3-grams of word forms in Project Syndicatemantic words and adds nodes for elements not ex-

section of CzEng (in-domain for WMTO7 and pressed on the surface but required by the grammar
WMTO8 NC-test Set), 1.8M tOkenS, (eg dropped pronouns)_

We use the following tools to automatically anno-
e 4-grams of word forms based on Czech Na: g y

. ) lai he t-layer: (1) T Qeska,
o Corpus (kocel e al, 2000), versonggc DX 1P 0 e ver () TorSbdee,
SYN2006, 365M tokens, , gging

tion see above, (3) parsing to a-layer: Collins (1996)
o three models of 7-grams of morphological tagdellowed by head-selection rules for English, Mc-
from the same sources. Donald and others (2005) for Czech, (4) parsing to t-
layer: Zabokrtsky (2008) for English, Klimes (2006)
Lexicalized reordering using the mono- for Czech.
tone/swap/discontinuous bidirectional model based o
on both source and target word forms. 3.2 Probabilistic Tree Transfer
MERT. We use the minimum-error rate training The transfer step is based on Synchronous Tree Sub-
procedure by Och (2003) as implemented in thstitution Grammars (STSG), see Bojar @bihejrek
Moses toolkit to set the weights of the various transt2007) for a detailed explanation. The essence is a
lation and language models, optimizing for BLEU. log-linear model to search for the most likely syn-
Final detokenization is a simple rule-based pro- chronous derivatiod of the sourcel’; and targefl’
cedure based on Czech typographical conventiondependency trees:
Finally, we capitalize the beginnings of sentences.

M
See BLEU scores in Table 2 below. §= argmax exp< 3 )\mhm(5)> 1)
m=1

4 s.t. source ig
3 MT with a Deep Syntactic Transfer
The key feature functiot,,, in STSG represents

3.1 Theoretical Background the probability of attaching pairs of dependency
Czech has a well-established theory of linguisti¢reeletst!., such as in Figure 1 into aligned pairs of
analysis called Functional Generative Descriptioffrontiers (™) in another treelet paif]., given fron-
(Sgall et al., 1986) supported by a big treebankinger state labels (e.gPred-VP in Figure 1):
enterprise (Hajic and others, 2006) and on-going

k
adaptations for other languages including English hsrsa(d) = 1Ong( i, | frontier statey  (2)
(Cinkova and others, 2004). There are two layers =0 '

typical shape. In other sentences we change the case only if aQther features include e.g. number of internal

typically lowercase word is capitalized (e.g. at the befjign : .
of the sentence) or if a typically capitalized word is alpsa nodes (drawn as in Figure 1) produced, number

Unknown words in title-like sentences are lowercased aftd Ie0?c _treelets produced, and more _importantly the tra-
intact in other sentences. ditional n-gram language model if the target (a-)tree
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is linearized right away or a binode model promot- Tree-based Transfer LM Type  BLEU
ing likely combinations of the governgte) and the gggg Z:g:zm 180'8%3?
child c(e) of an edge: € T»: 70,

epcp none 8F0.6
eaca none 6:60.5
B s 8 =1lo cle e 3 etca n-gram 6.3:0.6
medE( ) & ll p( ( ) | g( )) 3) etct factored, preserving structure binode 45066
€52 etct factored, preserving structure none 45036
The probabilistic dictionary of aligned treelet eact, targetSiol‘le atot;nic :inoc?e &3-3
e : etct, atomic, all attributes inode 26.3
- ++ ’ )
pairs is extracted from node-aligned (GIZA++ on etet. atomic. all attributes none 6.3

linearized trees) parallel automatic treebank as iNgict, atomic, just t-lemmas none 0.0.2
Moses' training: all treelet pairs compatible with the Phrase-based (Moses) as reported by Bojar (2007)

node alignment. Vanilla n-gram  12.9-0.6
Factored to improve target morphologygram  14.2:0.7

3.2.1 Factored Treelet Translation ,
. Table 1: English-to-Czech BLEU scores for syntax-based
Labels of nodes at the t-layer are not atomic byt o WMTO7 DevTest.

consist of more than 20 attributes representing var-

ious linguistic feature$. We can consider the at- WMTO07 WMT08
tributes as individual factors (Koehn and Hoang, Devlest NCTest News Test
2007). This allows us to condition the translation mgz:z' C2Eng data only 11;;:3 12::8:2 15:2&8:2
choice on a subset of source factors only. In order tQetct TectoMT annotation 4505  4.9-0.3  3.3:0.3
generate a value for each target-side factor, we use

a sequence of mapping steps similar to Koehn and ~ Table 2: WMTO8 shared task BLEU scores.

Hoang (2007). For technical reasons, our current

implementation allows to generate factored targetyles for t-layer parsing and generation instead of

side only when translating a single node to a singlgjimes (2006) and (Ptatek athbokrtsky, 2006).
node, i.e. preserving the tree structure.

In our experiments we used 8 source (English) 3.3.1 Discussion
node attributes and 14 target (Czech) attributes.

Our syntax-based approach does not reach scores
of phrase-based MT due to the following reasons:

) ) Cumulation of errors at every step of analysis.
Table 1 shows BLEU scores for various configura-

tions of our decoder. The abbreviations indicate be- Data lossdue to incompatible parses and node

. lignment. Unlike e.g. Quirk et al. (2005) or Huang
tween which layers the tree transfer was employegit al. (2006) who parse only one side and project the

(e.g. “eact” means English a-layer to Czech t-layer). .
o . e tructure, we parse both languages independently.
The “p” layer is an approximation of phrase-base . e
atural divergence and random errors in either of

MT: the surface “syntactic” analysis is just a left-to- .
. . L the parses and/or the alignment prevent us from ex-
right linear tree For setups ending in t-layer, we . .

tracting many treelet pairs.

use a deterministic generation the of Czech sentenceC bi il losion | q
by Ptatek andabokrtsky (2006). ombinatorial explosion in target node at-

For WMTO8 shared task, Table 2, we used a varifibutes. Currently, treelet options are fully built in

advance. Uncertainty in the many t-node attributes

ant of the “etct factored” setup with the annotatior] ds to t insignificant variati hil
pipeline as incorporated in TectoMTEZ#gbokrtsky, c€ads 10100 many insigniticant variations while €.g.
ifferent lexical choices are pushed off the stack.

2008) environment and using TectoMT internafj o ! .
) d While vital for final sentence generation (see Ta-

*Treated as atomic, t-node labels have higher entropple 1), fine-grained t-node attributes should be pro-
(11.54) than lowercase plaintext (10.74). The t-layer belit 4 ced only once all key structural, lexical and form
does not bring any reduction in vocabulary. The idea is thet t . )
attributes should be more or less independent and should mQECISlonS have be,en made. The same sort of explo
easier across languages. sion makes complicated factored setups not yet fea-

“Unlike Moses, “epcp” does not permit phrase reordering. Sible in Moses, either.

3.3 Recent Experimental Results
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Lack of n-gram LM in the (deterministic) gen- PavelCeska. 2006. Segmentace textu. Bachelor’s The-
eration procedures from a t-tree. While we support sis, MFF, Charles University in Prague.
final LM-based rescoring, there is too little varianceSilvie Cinkova et al. 2004. Annotation of English on the
in n-best lists due to the explosion mentioned above, {ectogrammatical level.  Technical Report TR-2006-

Too many model parametersgiven our stack .35'UFAL/(.:KL’ Prague, Czech Re.pl.Jb“C'
I . . . . Michael Collins. 1996. A New Statistical Parser Based
limit. We use identical MERT implementation to

o - on Bigram Lexical Dependencies. Rroc. of ACL
optimize A,,s but in the large space of hypothesesyan ping and Martha Palmer. 2005. Machine Transla-
MERT does not converge. tion Using Probabilistic Synchronous Dependency In-
sertion Grammars. IRroc. of ACL
332 Related Research Jan Hajic. 2004. Disambiguation of Rich Inflection
Our approach should not be confused with the (Computational Morphology of Czech)Nakladatel-
TectoMT submission by Zdenékabokrtsky with a stvi Karolinum, Prague.
deterministic transfer: heuristics fully exploiting theJan Hajic et al. 2006. Prague Dependency Treebank 2.0.
similarity of English and Czech t-layers. LDC2006T01, ISBN: 1-58563-370-4.
Ding and Palmer (2005) improve over word-base§ang Huang, Kevin Knight, and Aravind Joshi. 2006.
MT baseline with a formalism very similar to STSG. Statistical Syntax-Directed Translation with Extended

Thouah not exolicitly stated. thev seem not to en- Domain of Locality. InProc. of AMTA Boston, MA.
9 plicitly ' y Vaclav Klimes. 2006 Analytical and Tectogrammatical

code frontiers in the treelets and allow for adjunction Analysis of a Natural LanguagePh.D. thesisUFAL

(adding siblings), like Quirk et al. (2005), which sig-  MFF UK, Prague, Czech Republic.

nificantly reduces data sparseness. Jan Kocek, Marie Kopfivova, and Karel Kutera, edi-
Riezler and Ill (2006) report an improvement in tors. 2000.Cesk narodri korpus -Gvod a girutka

MT grammaticality on a very restricted test set: uzivatele FF UK -UCNK, Praha.

short sentences parsab|e by an LFG grammar W|tﬁ>hl|lpp Koehn and Hieu Hoang. 2007. Factored Transla-
out back-off rules. tion Models. InProc. of EMNLP

Philipp Koehn, Hieu Hoang, et al. 2007. Moses: Open

4 Conclusion Source Toolkit for Statistical Machine Translation. In
Proc. of ACL Demo and Poster Sessions

We have presented our best-performing factoredyan McDonald et al. 2005. Non-Projective Depen-
phrase-based English-to-Czech translation and adency Parsing using Spanning Tree Algorithms. In
highly experimental complex system with tree- Proc. of HLT/EMNLP 2005
based transfer at a deep syntactic layer. We hatido Minnen, John (_Zarroll, and _Darren Peqrce. 2001.
discussed some of the reasons why the phrase-basedPP!ied morphological processing of EnglisiNatu-

ral Language Engineerind/(3):207-223.
MT currently performs much better. Franz Josef Och and Hermann Ney. 2000. A Comparison

of Alignment Models for Statistical Machine Transla-
tion. In Proc. of COLING pages 1086—1090.
. Franz Josef Och. 2003. Minimum Error Rate Trainingin
Ondfej Bojar and Marti€mejrek. 2007. Mathematical  Statistical Machine Translation. Proc. of ACL
Model of Tree Transformations. Project EuroMatrix -jan pPtagek and Zdené«abokrtsky. 2006. Synthesis
Deliverable 3.2UFAL, Charles University, Prague. of Czech Sentences from Tectogrammatical Trees. In
Ondfej Bojar, ZdenékZabokrtsky, PavelCeSka, Peter Proc. of TSD pages 221-228.
Bena, and Miroslav Janicek. 2008. CzEng 0.7: Parakhris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
lel Corpus with Community-Supplied Translations. In  pendency Treelet Translation: Syntactically Informed
Proc. of LREC 2008ELRA. Phrasal SMT. IrProc. of ACL, pages 271-279.

Ondrej Bojar. 2007. English-to-Czech Factored Machingtefan Riezler and John T. Maxwell Ill. 2006. Grammat-
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Abstract

We describe the experiments of the UC Berke-
ley team on improving English-Spanish ma-
chine translation of news text, as part of the
WMT’08 Shared Translation Task. We ex-
periment with domain adaptation, combin-
ing a small in-domain news bi-text and a
large out-of-domain one from the Europarl
corpus, building two separate phrase transla-
tion models and two separate language mod-
els. We further add a third phrase transla-
tion model trained on a version of the news
bi-text augmented with monolingual sentence-
level syntactic paraphrases on the source-
language side, and we combine all models in
a log-linear model using minimum error rate
training. Finally, we experiment with differ-
ent tokenization and recasing rules, achieving
35.09% Bleu score on the WMT 07 news test
data when translating from English to Span-
ish, which is a sizable improvement over the
highest Bleu score achieved on that dataset
at WMT’07: 33.10% (in fact, by our sys-
tem). On the WMT’08 English to Spanish
news translation, we achieve 21.92%, which
makes our team the second best on Bleu score.

1 Introduction

Modern Statistical Machine Translation (SMT) sys-
tems are trained on sentence-aligned bilingual cor-
pora, typically from a single domain. When tested
on text from that same domain, they demonstrate

*After January 2008 at the Linguistic Modeling Depart-
ment, Institute for Parallel Processing, Bulgarian Academy of
Sciences, nakov@1lml .bas.bg
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state-of-the art performance, but on out-of-domain
test data the results can get significantly worse. For
example, on the WMT’ 06 Shared Translation Task,
the scores for French to English translation dropped
from about 30 to about 20 Bleu points for nearly all
systems when tested on News Commentary rather
than Europarl text, which was used on training
(Koehn and Monz, 2006).

Therefore, in 2007 the Shared Task organizers
provided 1M words of bilingual News Commentary
training data in addition to the 30M Europarl data,
thus inviting interest in domain adaptation experi-
ments. Given the success of the idea, the same task
was offered this year with slightly larger training bi-
texts: 1.3M and 32M words, respectively.

2 System Parameters

The team of the University of California at Berkeley
(ucb) participated in the WMT’ 08 Shared Transla-
tion Task with two systems, English—Spanish and
Spanish—English, applied to translating News Com-
mentary text, for which a very limited amount of
training data was provided. We experimented with
domain adaptation, combining the provided small
in-domain bi-text and the large out-of-domain one
from the Europarl corpus, building two phrase trans-
lation models and two language models. We further
added a third phrase translation model trained on a
version of the news bi-text augmented with mono-
lingual sentence-level syntactic paraphrases on the
source-language side, and we combined all models
in one big log-linear model using minimum error
rate training. We also experimented with different
tokenization and recasing ideas.

Proceedings of the Third Workshop on Statistical Machine Translation, pages 147-150,
Columbus, June 2008. (©)2008 Association for Computational Linguistics



2.1 Sentence-Level Syntactic Paraphrases

The idea of using paraphrases is motivated by the
observation that, in many cases, the testing text
contains pieces that are equivalent, but syntacti-
cally different from the phrases learned on train-
ing, which might result in missing the opportu-
nity for a high-quality translation. For example, an
English—Spanish SMT system could have an entry
in its phrase table for inequality of income, but not
for income inequality. Note that the latter phrase
is hard to translate into Spanish where noun com-
pounds are rare: the correct translation in this case
requires a suitable Spanish preposition and a re-
ordering, which are hard for the system to realize
and do properly. We address this problem by gen-
erating nearly-equivalent syntactic paraphrases of
the source-side training sentences, targeted at noun
compounds. We then pair each paraphrased sen-
tence with the foreign translation associated with the
original sentence in the training data. The resulting
augmented bi-text is used to train an SMT system,
which learns many useful new phrases. The idea
was introduced in (Nakov and Hearst, 2007), and is
described in more detail in (Nakov, 2007).

Unfortunately, using multiple paraphrased ver-
sions of the same sentence changes the word fre-
quencies in the training bi-text, thus causing worse
maximum likelihood estimates, which results in bad
system performance. However, real improvements
can still be achieved by merging the phrase tables of
the two systems, giving priority to the original.

2.2 Domain Adaptation

In our previous findings (Nakov and Hearst, 2007),
we found that using in-domain and out-of-domain
language models is the best way to perform do-
main adaptation. Following (Koehn and Schroeder,
2007), we further used two phrase tables.

2.3 Improving the Recaser

One problem we noticed with the default recasing
is that unknown words are left in lowercase. How-
ever, many unknown words are in fact named en-
tities (persons, organization, or locations), which
should be spelled capitalized. Therefore, we pre-
pared a new recasing script, which makes sure that
all unknown words keep their original case.
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2.4 Changing Tokenization/Detokenization

We found the default tokenizer problematic: it
keeps complex adjectives as one word, e.g., well-
rehearsed, self-assured, Arab-Israeli. While lin-
guistically correct, this is problematic for machine
translation due to data sparsity. For example, the
SMT system might know how to translate into Span-
ish both well and rehearsed, but not well-rehearsed,
and thus at translation time it would be forced to
handle it as an unknown word. A similar problem
is related to double dashes ‘--’, as illustrated by the
following training sentence: “So the question now
is what can China do to freeze--and, if possible, to
reverse--North Korea’s nuclear program.”

Therefore, we changed the tokenizer, so that it
puts a space around ‘-’ and ‘--’. We also changed the
detokenizer accordingly, adding some rules for fix-
ing erroneous output, e.g., making sure that in Span-
ish text ; and ?, ; and ! match. We also added some
rules for numbers, e.g., the English 1,185.32 should
be spelled as 1.185,32 in Spanish.

3 The UCB System

As Table 1 shows, we performed many experiments
varying different parameters of the system. Due to
space limitations, here we will only describe our best
system, newsig—<eurojg—<parig.

To build the system, we trained three separate
phrase-based SMT systems (max phrase lengths 10):
on the original News Commentary corpus (news),
on the paraphrased version of News Commentary
(par), and on the Europarl dataset (euro). As a re-
sult, we obtained three phrase tables, Tcws, Tpar
and T¢yr0, and three lexicalized reordering models,
Ryews> Rpar, and Reyro, which we had to merge.

First, we kept all phrase pairs from 7},cs. Then
we added those phrase pairs from 7T¢,,, which were
not present in T,e,s. Finally, we added to them
those from 7,4, which were not in 7},,s nor in
Tewro- For each phrase pair added, we retained its as-
sociated features: forward phrase translation proba-
bility, reverse phrase translation probability, forward
lexical translation probability, reverse lexical trans-
lation probability, and phrase penalty. We further
added three new features — Pp,cys, Peuro, and Ppg, —
each of them was 1 if the phrase pair came from that
system, and 0.5 otherwise.



BLEU Toke- | News Comm. Europarl Tuning

Model DR IR nizer | slen plen LM | slen plen LM | #iter score
1 2 3 4 5 6 17 8 9 10 11 12
I. Original Tokenizer
newsy (baseline) 32.04 3230 | def. 40 7 3 - - = 8 33.51
newsy 3198 3221 | def. | 100 7 3 - - - 19 3395
newsig 3243 3267 | def. | 100 10 3 - - - 13 34.50

II. New Tokenizer
- I1.1. Europarl only

euroy 29.92 30.19 | new - - - 40 7 5 10 33.02
euroy g 30.14 30.36 | new - - - 40 10 5 10  32.86
- IL.2. News Commentary only

parig 31.17 3144 | new | 100 10 3 - - - 8 33.91
newsyg 3227 3253 | new | 100 10 3 - - - 12 3449
newsip—<parig 32.09 32.34 | new 100 10 3 - - - 24 34.63

- IL.3. News Commentary + Europarl
-- I1.3.1. using Europarl LM

parig 3288 33.16 | new | 100 10 3 - -5 11 35.54
newsig 3399 3426 | new | 100 10 3 - - 5 8 36.16
newsig—<parig 3442 34771 | new 100 10 3 - -5 17 36.41

-- I1.3.2. using Europarl LM & Phrase Table (max phrase length 7)

*NEeWS1g+euroy+paryg 32.75 3296 | new 100 10 3 40 7 5 27 35.28
*NEWS1(o+euroy 3406 3432 | new | 100 10 3 40 7 5 28  36.82
newsig—<euroy 34.05 34.31 | new 100 10 3 40 7 5 9 36.71
newsjg—<parig—<euroy 3425 3452 | new | 100 10 3 40 7 5 14  36.88
news1g—<euro7<parig 34.69 3497 | new 100 10 3 40 7 5 10  37.01

-- I1.3.3. using Europarl LM & Phrase Table (max phrase length 10)
*newsjg+eurojg+paryg | 32.74 33.02 | new | 100 10 3 40 10 5 36 35.60
newsjg<eurojg<pary | 34.85 3509 | new | 100 10 3 40 10 5 12 3713

Table 1: English—Spanish translation experiments with the WMT 07 data: training on News Commentary and
Europarl, and evaluating on News Commentary. Column 1 provides a brief description of the model used. Here
we use euro, news and par to refer to using phrase tables extracted from the Europarl, the News Commentary, or the
Paraphrased News Commentary training bi-text; the index indicates the maximum phrase length allowed. The < oper-
ation means the phrase tables are merged, giving priority to the left one and using additional features indicating where
each phrase pair came from, while the 4 operation indicates the phrase tables are used together without priorities. The
models using the + operation are marked with a x as a reminder that the involved phrase tables are used together, as
opposed to being priority-merged. Note also that the models from II1.3.1. only use the Spanish part of the Europarl
training data to build an out-of-domain language model; this is not indicated in column 1, but can be seen in column
10. Columns 2 and 3 show the testing Bleu score after applying the Default Recaser (DR) and the Improved Recaser
(IR), respectively. Column 4 shows whether the default or the new tokenizer was used. Columns 5, 6 and 7 contain the
parameters of the News Commentary training data: maximum length of the training sentences used (slen), maximum
length of the extracted phrases (plen), and order of the language model (LM), respectively. Columns &, 9 and 10 con-
tain the same parameters for the Europarl training data. Column 11 shows the number of iterations the MERT tuning
took, and column 12 gives the corresponding tuning Bleu score achieved. Finally, for the WMT’08 competition, we
used the system marked in bold.
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We further merged Ryecws, Reuro,» and Ry, in
a similar manner: we first kept all phrases from
R,ews, then we added those from R.,,.-, which were
not present in Rye.s, and finally those from R,
which were not in Ryeqs nOT in Reyyro-

We used two language models with Kneser-Ney
smoothing: a 3-gram model trained on News Com-
mentary, and a 5-gram model trained on Europarl.

We then trained a log-linear model using the fol-
lowing feature functions: language model proba-
bilities, word penalty, distortion cost, and the pa-
rameters from the phrase table. We set the feature
weights by optimizing the Bleu score directly using
minimum error rate training (Och, 2003) on the de-
velopment set. We used these weights in a beam
search decoder to produce translations for the test
sentences, which we compared to the WMT’ 07 gold
standard using Bleu (Papineni et al., 2002).

4 Results and Discussion

Table 1 shows the evaluation results using the
WMT’07 News Commentary test data. Our best
English—Spanish system newsjg—<eurojg=<parig
(see the table caption for explanation of the nota-
tion), which is also our submission, achieved 35.09
Bleu score with the improved recaser; with the de-
fault recaser, the score drops to 34.85.

Due to space limitations, our Spanish—English
results are not in Table 1. This time, we did not use
paraphrases, and our best system newsjg—<eurojg
achieved 35.78 and 35.17 Bleu score with the im-
proved and the default recaser, respectively.

As the table shows, using the improved recaser
yields consistent improvements by about 0.3 Bleu
points. Using an out-of-domain language model
adds about 2 additional Bleu points, e.g., newsig
improves from 32.53 to 34.26, and newsjg=<parig
improves from 32.34 to 34.71. The impact of
also adding an out-of-domain phrase table is tiny:
newsjp—<euroy; improves on newsjg by 0.05 only.
Adding paraphrases however can yield an absolute
improvement of about 0.6, e.g., 34.31 vs. 34.97
for news;g<euro; and newsjg—<euroy<paryg. Inter-
estingly, using an out-of-domain phrase table has a
bigger impact when paraphrases are used, e.g., for
newsjg<parjp and newsjp—<euroy<par;g we have
34.71 and 34.97, respectively. Finally, we were sur-

150

prised to find out that using the new tokenizer does
not help: for newsjo the default tokenizer yields
32.67, while the new one only achieves 32.53. This
is surprising for us, since the new tokenizer used to
help consistent on the WMT’06 data.

5 Conclusions and Future Work

We described the UCB system for the WMT 08
Shared Translation Task. By combining in-domain
and out-of-domain data, and by using sentence-
level syntactic paraphrases and a better recaser, we
achieved an improvement of almost 2 Bleu points'
over the best result on the WMT 07 test data?,
and the second best Bleu score for this year’s
English—Spanish translation of news text.

In future work, we plan a deeper analysis of the
obtained results. First, we would like to experiment
with new ways to combine data from different do-
mains. We also plan to further improve the recaser,
and to investigate why the new tokenizer did not help
for the WMT’ 07 data.
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Abstract

This paper describes the statistical machine trans-
lation systems submitted to the ACL-WMT 2008
shared translation task. Systems were submitted for
two translation directions: English—Spanish and
Spanish—English. Using sentence pair confidence
scores estimated with source and target language
models, improvements are observed on the News-
Commentary test sets. Genre-dependent sentence
pair confidence score and integration of sentence
pair confidence score into phrase table are also in-
vestigated.

1 Introduction

Word alignment models are a crucial component in sta-
tistical machine translation systems. When estimating
the parameters of the word alignment models, the sen-
tence pair probability is an important factor in the objec-
tive function and is approximated by the empirical prob-
ability. The empirical probability for each sentence pair
is estimated by maximum likelihood estimation over the
training data (Brown et al., 1993). Due to the limitation of
training data, most sentence pairs occur only once, which
makes the empirical probability almost uniform. This is
a rather weak approximation of the true distribution.

In this paper, we investigate the methods of weighting
sentence pairs using language models, and extended the
general weighting method to genre-dependent weight. A
method of integrating the weight directly into the phrase
table is also explored.

2 The Baseline Phrase-Based MT System

The ACL-WMTO8 organizers provided Europarl and
News-Commentary parallel corpora for English < Span-
ish. Detailed corpus statistics is given in Table 1. Follow-
ing the guidelines of the workshop we built baseline sys-
tems, using the lower-cased Europarl parallel corpus (re-
stricting sentence length to 40 words), GIZA++ (Och and
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Ney, 2003), Moses (Koehn et al., 2007), and the SRI LM
toolkit (Stolcke, 2002) to build 5-gram LMs. Since no
News development sets were available we chose News-
Commentary sets as replacements. We used test-2006
(E06) and nc-devtest2007 (NCd) as development sets for
Europarl and News-Commentary; test-2007 (E07) and
nc-test2007 (NCt) as held-out evaluation sets.

‘ English ‘ Spanish

Europarl (E)

sentence pairs 1,258,778
unique sent. pairs 1,235,134
avg. sentence length 27.9 29.0
# words 35.14M | 36.54 M
vocabulary 108.7K | 164.8K

News-Commentary (NC)
sentence pairs 64,308
unique sent. pairs 64,205
avg. sentence length 24.0 27.4
# words 1.54 M 1.76 M
vocabulary 442K 56.9 K

Table 1: Statistics of English«>Spanish Europarl and News-
Commentary corpora

To improve the baseline performance we trained sys-
tems on all true-cased training data with sentence length
up to 100. We used two language models, a 5-gram LM
build from the Europarl corpus and a 3-gram LM build
from the News-Commentary data. Instead of interpolat-
ing the two language models, we explicitly used them in
the decoder and optimized their weights via minimum-
error-rate (MER) training (Och, 2003). To shorten the
training time, a multi-threaded GIZA++ version was used
to utilize multi-processor servers (Gao and Vogel, 2008).
Other parameters were the same as the baseline sys-
tem. Table 2 shows results in lowercase BLEU (Pap-
ineni et al., 2002) for both the baseline (B) and the im-
proved baseline systems (B5) on development and held-
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out evaluation sets. We observed significant gains for the
News-Commentary test sets. Our improved baseline sys-
tems obtained a comparable performance with the best
English«Spanish systems in 2007 (Callison-Burch et al.,
2007).

Pairs Europarl NC
E06 E07 NCd NCt
En—Es B | 33.00 | 32.21 | 31.84 | 30.56
B5 | 33.33 | 3225 | 35.10 | 34.08
Es—En B | 33.08 | 33.23 | 31.18 | 31.34
B5 | 33.26 | 33.23 | 36.06 | 35.56

Table 2: NIST-BLEU scores of baseline and improved baseline
systems experiments on English«Spanish

3 Weighting Sentence Pairs
3.1 Problem Definition

The quality of word alignment is crucial for the perfor-
mance of the machine translation system.

In the well-known so-called IBM word alignment
models (Brown et al., 1993), re-estimating the model pa-
rameters depends on the empirical probability P(e*, f¥)
for each sentence pair (¢¥, f*). During the EM train-
ing, all counts of events, e.g. word pair counts, distortion
model counts, etc., are weighted by }5(6’C , fk) For ex-
ample, in IBM Model 1 the lexicon probability of source
word f given target word e is calculated as (Och and Ney,
2003):

>, clfle; e, 1)
> ¢ clEle; e, 1)
D P D Plalet, 1f) - @
ek’,fk a

> 6(E f1)d(e el

p(fle) ey

c(flese®, f*) =

Therefore, the distribution of P(e*, f*) will affect the
alignment results. In Eqn. 2, P(e*, f*) determines
how much the alignments of sentence pair (e, f*) con-
tribute to the model parameters. It will be helpful if
the P(e*, f*) can approximate the true distribution of
P(e*, fF).

Consider that we are drawing sentence pairs from a
given data source, and each unique sentence pair (e*, f¥)
has a probability P(e”, f¥) to be observed. If the training
corpora size is infinite, the normalized frequency of each
unique sentence pair will converge to P(e®, f*). In that
case, equally assigning a number to each occurrence of
(e, f*) and normalizing it will be valid. However, the
assumption is invalid if the data source is finite. As we
can observe in the training corpora, most sentences occur
only one time, and thus P(e*, f*) will be uniform.
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To get a more informative P(e*, f*), we explored
methods of weighting sentence pairs. We investigated
three sets of features: sentence pair confidence (sc),
genre-dependent sentence pair confidence (gdsc) and
phrase alignment confidence (pc) scores. These features
were calculated over an entire training corpus and could
be easily integrated into the phrase-based machine trans-
lation system.

3.2 Sentence Pair Confidence

We can hardly compute the joint probability of P(e*, f*)
without knowing the conditional probability P(e*|f*)
which is estimated during the alignment process. There-
fore, to estimate P(e”, f*) before alignment, we make an
assumption that P(e*,| f¥) = P(e*)P(f*), which means
the two sides of sentence pair are independent of each
other. P(e*) and P(f*) can be obtained by using lan-
guage models. P(e*) or P(f*), however, can be small
when the sentence is long. Consequently, long sentence
pairs will be assigned low scores and have negligible ef-
fect on the training process. Given limited training data,
ignoring these long sentences may hurt the alignment re-
sult. To compensate this, we normalize the probability by
the sentence length. We propose the following method
to weighting sentence pairs in the corpora. We trained
language models for source and target language, and the
average log likelihood (AVG-LL) of each sentence pair
was calculated by applying the corresponding language
model. For each sentence pair (e*, f¥), the AVG-LL
L(eF, f*)is

L) = g S log P(H)
LUY) = g SpeploaP(ff) 3
Lleh f5) = [L(F) + L(f)]/2

where P(eF|h) and P( ff|h) are ngram probabilities.
The sentence pair confidence score is then given by:

sc(ek,fk) = exp(ﬁ(ek,fk)).

3.3 Genre-Dependent Sentence Pair Confidence

“4)

Genre adaptation is one of the major challenges in statis-
tical machine translation since translation models suffer
from data sparseness (Koehn and Schroeder, 2007). To
overcome these problems previous works have focused
on explicitly modeling topics and on using multiple lan-
guage and translation models. Using a mixture of topic-
dependent Viterbi alignments was proposed in (Civera
and Juan, 2007). Language and translation model adap-
tation to Europarl and News-Commentary have been ex-
plored in (Paulik et al., 2007).

Given the sentence pair weighting method, it is pos-
sible to adopt genre-specific language models into the



weighting process. The genre-dependent sentence pair
confidence gdsc simulates weighting the training sen-
tences again from different data sources, thus, given
genre g, it can be formulated as:

gdsc(ek, fk) = sc(ek,fk|g) 5)

where P(ef|h) and P( fj’C |h) are estimated by genre-
specific language models.

The score generally represents the likelihood of the
sentence pair to be in a specific genre. Thus, if both sides
of the sentence pair show a high probability according
to the genre-specific language models, alignments in the
pair should be more possible to occur in that particular
domain, and put more weight may contribute to a better
alignment for that genre.

3.4 Phrase Alignment Confidence

So far the confidence scores are used only in the train-
ing of the word alignment models. Tracking from which
sentence pairs each phrase pair was extracted, we can use
the sentence level confidence scores to assign confidence
scores to the phrase pairs. Let S(é, f ) denote the set of
sentences pairs from which the phrase pair (€, f) was ex-
tracted. We calculate then a phrase alignment confidence

SCOore pc as:
Z(ek,fk)es(é,f) log Sc(ek’ fk)
1S (e, )

This score is used as an additional feature of the phrase
pair. The feature weight is estimated in MER training.

pe(é, f) = exp (6)

4 Experimental Results

The first step in validating the proposed approach was
to check if the different language models do assign dif-
ferent weights to the sentence pairs in the training cor-
pora. Using the different language models NC (News-
Commentary), EP (Europarl), NC+EP (both NC and EP)
the genre-specific sentence pair confidence scores were
calculated. Figure 1 shows the distributions of the dif-
ferences in these scores across the two corpora. As ex-
pected, the language model build from the NC corpus as-
signs - on average - higher weights to sentence pairs in the
NC corpus and lower weights to sentence pairs in the EP
corpus (Figure 1a). The opposite is true for the EP LM.
When comparing the scores calculated from the NC LM
and the combined NC+EP LM we still see a clear sep-
aration (Figure 1b). No marked difference can be seen
between using the EP LM and the NC+EP LM (Figure
1c), which again is expected, as the NC corpus is very
small compared to the EP corpus.

The next step was to retrain the word alignment mod-
els using sentences weights according to the various con-
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Figure 1: Histogram of weight differences genre specific con-
fidence scores on NC and EP training corpora

fidence scores. Table 3 shows training and test set per-
plexities for IBM model 4 for both training directions.
Not only do we see a drop in training set perplexities,
but also in test set perplexities. Using the genre specific
confidence scores leads to lower perplexities on the cor-
responding test set, which means that using the proposed
method does lead to small, but consistent adjustments in
the alignment models.

Uniform | NC+EP NC EP
train En—Es 46.76 42.36 42.97 44.47
Es—En 70.18 62.81 62.95 65.86
NC(En—Es) 53.04 53.44 51.09 55.94
test EP(En—Es) 91.13 90.89 91.84 90.77
NC(Es—En) 81.39 81.28 78.23 80.33
EP(Es—En) 126.56 125.96 123.23 | 122.11

Table 3: IBM model 4 training and test set perplexities using
genre specific sentence pair confidence scores.

In the final step the specific alignment models were
used to generate various phrase tables, which were then
used in translation experiments. Results are shown in Ta-
ble 4. We report lower-cased Bleu scores. We used nc-
dev2007 (NCt1) as an additional held-out evaluation set.
Bold cells indicate highest scores.

As we can see from the results, improvements are ob-
tained by using sentence pair confidence scores. Us-
ing confidence scores calculated from the EP LM gave
overall the best performance. While we observe only a
small improvement on Europarl sets, improvements on
News-Commentary sets are more pronounced, especially
on held-out evaluation sets NCt and NCtl. The exper-
iments do not give evidence that genre-dependent con-
fidence can improve over using the general confidence



Test Set
EO6 | EO7 | NCd | NCt | NCtl

Es—En
B5 33.26 | 3323 | 36.06 [ 35.56 | 35.64
NC+EP | 3323 [ 3229 | 36.12 | 3547 | 3597
NC 33.43 | 3339 [ 36.14 | 3527 [ 35.68
EP 33.36 | 3339 | 36.16 | 35.63 | 36.17

En—Es
B5 33.33 [ 32.25 [ 35.10 [ 34.08 | 3443
NC+EP | 3323 | 3229 | 3512 | 3456 | 34.89
NC 3330 [ 3227 | 3491 | 3407 | 3429
EP 33.08 [ 3229 | 35.05 | 34.52 | 35.03

Table 4: Translation results (NIST-BLEU) using gdsc with dif-
ferent genre-specific language models for Es<—En systems

score. As the News-Commentary language model was
trained on a very small amount of data further work is
required to study this in more detail.

Test Set
E06 [ E07 | NCd [ NCt [ NCil

Es—En
B5 3326 | 33.23 | 36.06 | 3556 | 35.64
NC+EP+pc | 33.54 | 33.39 | 36.07 | 3538 | 35.85
NC+pc 33.17 | 3331 | 35.96 | 35.74 | 36.04
EP+pc 3344 | 32.87 | 3622 | 35.63 | 36.09

En—Es
B5 33.33 [ 32.25 [ 35.10 [ 34.08 | 3443
NC+EP+pc | 33.28 | 32.45 [ 34.82 [ 33.68 | 33.86
NC-+pc 33.13 [ 3247 | 3401 | 3434 | 34.98
EP+pc 32.97 [ 3220 | 3426 | 3399 | 34.34

Table 5: Translation results (NIST-BLEU) using pc with differ-
ent genre-specific language models for Es<=En systems

Table 5 shows experiments results in NIST-BLEU us-
ing pc score as an additional feature on phrase tables
in Es<—~En systems. We observed that across develop-
ment and held-out sets the gains from pc are inconsistent,
therefore our submissions are selected from the B5+EP
system.

5 Conclusion

In the ACL-WMT 2008, our major innovations are meth-
ods to estimate sentence pair confidence via language
models. We proposed to use source and target language
models to weight the sentence pairs. We developed sen-
tence pair confidence (sc), genre-dependent sentence pair
confidence (gdsc) and phrase alignment confidence (pc)
scores. Our experimental results shown that we had a bet-
ter word alignment and translation performance by using
gdsc. We did not observe consistent improvements by
using phrase pair confidence scores in our systems.
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Abstract et al., 2005), the complexity of the SMT problem it-

self together with the computational complexities of
The novel kernel regression model for SMT  kernel methods significantly complicate the imple-
only demonstrated encouraging results on  antation of the regression technique in this field.
small-scale toy data sets in previous works due . . .
hy . Our system is actually designed as a hybrid of
to the complexities of kernel methods. It is .
the first time results based on the real-world the classic phrase-based SMT model (Koehn et al.,
data from the shared translation task will be ~ 2003) and the kernel regression model as follows:
reported at ACL 2008 Workshop on Statisti- First, for each source sentence a small relevant set of
cal Machine Translation. This paper presents  sentence pairs are retrieved from the large-scale par-
the key modules of our system, including the  allel corpus. Then, the regression model is trained
kernel ridge regression rr]nodel, rgtrlevlal-b_aﬁed on this small relevant set only as a sparse approx-
sparse approximation, the decoding algorithm, a4 of the regression hyperplane trained on the
as well as language modeling issues under this . . .
framework. entire training set, as proposed in (Wang and Shawe-
Taylor, 2008). Finally, a beam search algorithm is
. utilized to decode the target sentence from the very
1 Introduction noisy output feature vector we predicted, with the
2007.support of a pre-trained phrase table to generate pos-

This paper follows the work in (Wang et al., ) : : _
Wang and Shawe-Taylor, 2008) which applied thé'ble hypotheses (candidate translations). In addi-
’ ﬁion, alanguage model trained on a monolingual cor-

kernel regression method with high-dimensiona _ ) ) )
outputs proposed originally in (Cortes et al., 20055)_us can be mtegrgted either dlrt_actly into the regres-
to statistical machine translation (SMT) tasks. In our'o" modgl orfdurl_ng the decoding procedure as an
approach, the machine translation problemis Viewe@(trafscoréng U_E?t'on' hk ¢

as a string-to-string mapping, where both the source Before describing each key component of our sys-

and the target strings are embedded into their ré?m in detail, we give a block diagram overview in

spective kernel induced feature spaces. Then ké:rlgure 1.
nel ridge regression is employed to learn the ma
ping from the input feature space to the output one.
As a kernel method, this model offers the potentiaConcretely, the machine translation problem in our
advantages of capturing very high-dimensional comethod is formulated as follows. If we define a fea-
respondences among the features of the source ande spacé<, of our source languag®, and define
target languages as well as easy integration of athe mappingd : X — H,, then a sentence € X
ditional linguistic knowledge via selecting particu-can be expressed by its feature vectdk) € H,.

lar kernels. However, unlike the sequence labelinhe definition of the feature spa@¢, of our target
tasks such as optical character recognition in (Cortésnguage) can be made in a similar way, with cor-

Problem Formulation
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o where 1 is the identity matrix, andKgs =
. rase
Algnment =) ¢ o Gton D {Phrase Table| M Mg = (150 (x;, X;)1<i j<m). Note here, we use

the kernel function:

Monolingual
Corpus

Vogeing R (xi,%;) = (D(x;), ®(x))) = 2(x;) ' (%) (4)

@ to denote the inner product between two feature vec-
Of

_ NN tors. If the feature spaces are properly defined, the
Retriever otovam Sef = ‘kernel trick’ will allow us to avoid dealing with

V4 the very high-dimensional feature vectors explicitly

Kemel (Shawe-Taylor and Cristianini, 2004).
. ﬂ/ Decoder . . . .
‘ Regression Inserting Equation (3) into Equation (1), we ob-
ﬁ @ tain our prediction as:
Source Text Target Text \I/(y) = M\II (Kq) + Z/I)_lk(b (X) (5)

. whereks (x) = (ko (X, X;)1<i<m) IS @nm x 1 col-
umn matrix. Note here, we will use the exact matrix

Figure 1: System overview. The processes in gray blockaversion instead of iterative approximations.
are pre-performed for the whole system, while the white _
blocks are online processes for each input sentence. TBd. N-gram String Kernel

two dash-line arrows represent two possible ways of lan; 1he practical learning and prediction processes,

guage model integration in our system described in Se(c)—nly the inner products of feature vectors are re-

tion 6. . . .

quired, which can be computed with the kernel func-

. . ) tion implicitly without evaluating the explicit coor-

respondlng m'appmg/ V- Hy'. Now in the ma- dinates of points in the feature spaces. Here, we de-

chine translation task, we are trying to seek a mat”ffne our features of a sentence as its werdram

represented linear operat, such that: counts, so that a blendedgram string kernel can
U(y) = Wd(x) (1) be used. Thatis, if we denote by” a substring

of sentencex starting with theith word and ending

with the jth, then for two sentences and z, the

blendedn-gram string kernel is computed as:

3 Kernel Ridge Regression n |x|—p+1 |z|—p+1

.. . . — i+p—1 __ _j:j+p—1
Based on a set of training samples, i.e. bilinguaf(*:2) = > Z Z [x =z I
sentence pair§ = {(x;,y;) : x; € X,y; € V,i = p=1 =1 j=1 )
.1’ E ’Wii}’ Wf use_ ridge regression to learn é Here, | - | denotes the length of the sentence, and
In Equation (1), as: [-] is the indicator function for the predicate. In our

min  [|[WMg — My ||% + v|W]|2% (2) system, the blended tri-gram kernel is used, which
means we count the-grams of length up to 3.

to predict the translatioy for an arbitrary source
sentencex.

where Mgy = [®(x1),....,°2(x)], Mg =
[¥(y1),..., ¥(ym)], || - || denotes the Frobenius4 Retrieval-based Sparse Approximation
norm that is a matrix norm defined as the square ro?__to

of the sum of the absolute squares of the elements in rSMT, we are nqt _able o use the entire ”".’“”'”9
: : o - set that contains millions of sentences to train our
that matrix, and’is a regularization coefficient. regression model. Fortunately, it is not necessary ei
Differentiating the expression and setting it to 9 ' Y Y
. - . . ther. Wang and Shawe-Taylor (2008) suggested that
zero gives the explicit solution of the ridge regres- .

. _ a small set of sentences whose source is relevant to

sion problem: . . .
the input can be retrieved, and the regression model

W = My (Kg + vI)"'MJ (3) can be trained on this small-scale relevant set only.
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Src | n' ya-t-il pasici deux poids, deux mesures | et al., 2007). In addition, Wang and Shawe-Taylor
RIv | pourquoly a-t-il deux poids, deux mesures (2008) further showed that the search error rate of

pourquoideux poids et deux mesures this algorithm is acceptable.

peutétren’ y a-t-il pas d’ épicemie non )

plus 6 LanguageModel Integration

pourquoin’ y a-t-il pas urgence In previous works (Wang et al., 2007; Wang and

cette directive doit exister dti deux mois Shawe-Taylor, 2008), there was no language model
Table 1: A sample input (Src) and some of the retrieve(lf_m'_Zed N the regression fl.’amework for SMT, as
relevant examples (RIV). similar function can be achieved by the correspon-
dences among the-gram features. It was demon-

strated to work well on small-scale toy data, how-

In our system, we take each sentence as a doGier, real-world data are much more sparse and
ment and use thig-idf metric that is frequently used noisy, where a language model will help signifi-
in information retrieval tasks to retrieve the relevanl:amly_

set. Preliminary experiments show that the size of There are two ways to integrate a language model
the relevant set should be properly controlied, as {f, oyr framework. First, the most straightforward so-
many sentences that are not very close to the SoUfgion is to add a weight to adjust the strength of the
text are involved, they will correspond to adding;eqression based translation scores and the language
noise. Hence, we use a threshold of thielf score 1 q4e score during the decoding procedure. Alter-
to filter the r(_elevant set. On average, around 150rQativer, as language modelisgram-based which
sentence pairs are extracted for each source Sefiaiches the definition of our feature space, we can
tence. Table 1 shows a sample input and some Qfij 5 jangauge model loss to the objective function
its top relevant sentences retrieved. of our regression model as follows. We define our
language score for a target sentegpcas:

After the regression, we have a prediction of the LM(y) = VT\II(Y) (8)
target feature vector as in Equation (1). To obwhereV is a vector whose componerts,, ., will
tain the target sentence, a decoding algorithm is stilypically be log-probabilitiedog P(y|y"y’), andy,
required to solve the pre-image problem. This ig’ andy” are arbitrary words. Note here, in or-
achieved in our system by seeking the sentejce der to match our blended tri-gram induced feature
whose feature vector has the minimum Euclideaspace, we can mak¥ of the same dimension as

5 Decoding

distance to the prediction, as: U(y), while zero the components corresponding to
. ) uni-grams and bi-grams. Then the regression prob-
y = arg min, [We(x) - ¥(y)ll (") lem can be defined as:

. o 2 2 T
where)(x) C Y denotes a finite set covering all"™'" IWMg — My ||z +v1|W|F — 2V WM<(1>91)

potential translations for the given source sentence : - .

x. To obtain a smaller search space and more rg/_herez/g is a coefficient balancing between the pre-
liable translations)(x) is generated with the sup- |9t|on being close to the target feature vector and
port of a phrase table extracted from the whole traint—)e'ng a fluent target sentence, andenotes a vec-

ing set. Then a modified beam search algorithr%Or with components 1. By differentiating the ex-

is employed, in which we restricted the distortiorP' 3510 with respect v an_d_settlng the result to
of the phrases by only allowing adjacent phrases for'0 We can obtain the explicit solution as:
exchange their positions, and rank the search statesW = (My + 1, V1 ") (Kg + 11I)"'Mj  (10)
in the beams accor_dlng to Eq.uatlon (7 buj[ applle(} Experimental Results

directly to the partial translations and their corre-
sponding source parts. A more detailed explanatioBreliminary experiments are carried out on the
of the decoding algorithm can be found in (Wand-rench-English portion of the Europarl corpus. We
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System| BLEU (%) | NIST | METEOR (%) | TER (%) | WER (%) | PER (%)
Kernel Regression 26.59 7.00 52.63 55.98 60.52 43.20
Moses| 31.15 7.48 56.80 55.14 59.85 42.79

Table 3: Evaluations based on different metrics with consparto Moses.

train our regression model on the training set, and no-LM | LM3gam | LM3gram | EM5gram

test the effects of different language models on theBLEU | 23.27 25.19 25.66 26.59
development set (test2007). The results evaluated

by BLEU score (Papineni et al., 2002) is shown infable 2: BLEU score performance of different language
Table 2 ’ models. LM denotes adding the language model dur-

ing decoding process, while Lrepresents integrating

It can be found thf'it integrating the Ianguag?he language model into the regression framework as de-
model into the regression framework works slightlyscribed in Problem (9).

better than just using it as an additional score com-
ponent during decoding. But language models
higher-order than the-gram kernel cannot be for- _ . _
mulated to the regression problem, which would b&atanjeev Banerjee and Alon Lavie. 2005. METEOR:
a drawback of our system. Furthermore, the BLEU An automatic metric for MT evaluation with improved

' ' . correlation with human judgments. Rroceedings of
score performance sugge_sts that_ our model IS notthe ACL Workshop on Intrinsic and Extrinsic Evalu-
very powerful, but some interesting hints can be

i ~~ ation Measures for Machine Translation and/or Sum-
found in Table 3 when we compare our method with grization, pages 65-72.

a 5-gram language model to a state-of-the-art syste@brinna Cortes, Mehryar Mohri, and Jason Weston.
Moses (Koehn and Hoang, 2007) based on various 2005. A general regression technique for learning
evaluation metrics, including BLEU score, NIST transductions. liProc. of ICML’05.

score (Doddington, 2002), METEOR (Banerjee ané€orge Doddington. 2002. Automatic evaluation of ma-

Lavie, 2005), TER (Snover et al., 2006), WER and gth;:;gg”fr'g:'(‘;g‘ ;}“:Et%{SJZSnggZ‘grlang_Cl‘Z;CC“”ence
PER. Itis shown that our system's TER, WER an(Ighilipp Koehn and Hieu Hoang. 2007. Factored transla-

PER scores are very close to Moses, though the iisn models. InProc. of EMNLP-CoNLL' 07

gaps in BLEU, NIST and METEOR are significant,phjiipp Koehn, Franz Josef Och, and Daniel Marcu.

which suggests that we would be able to produce ac-2003. Statistical phrase-based translation. Ptoc.

curate translations but might not be good at making of HAACL-HLT 03, pages 48-54.

fluent sentences. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. Proc. of ACL'02.

John Shawe-Taylor and Nello Cristianini. 200<ernel

This work is a novel attempt to apply the advanced I\P/Ireetzgds for Pattern Analysis. Cambridge University

kernel method to SMT tasks. The contribution at thi§; «thew Snover. Bonnie Dorr. Richard Schwartz. Lin-

stage is still preliminary. When applied to real-world  neg Micciulla, and John Makhoul. 2006. A study of
data, this approach is not as powerful as the state-of-translation edit rate with targeted human annotation.
the-art phrase-based log-linear model. However, in- In Proc. of AMTA 06.

teresting prospects can be expected from the sharéauoran Wang and John Shawe-Taylor. 2008. Kernel-
translation task. based machine translation. In Cyril Goutte, Nicola
Cancedda, Marc Dymetman, and George Foster, edi-
tors,Learning Machine Tranglation. MIT Press, to ap-
pear.

. . . Zhuoran Wang, John Shawe-Taylor, and Sandor Szed-
This work is supported by the European Commis- oy 2007. Kernel regression based machine transla-
sion under the IST Project SMART (FP6-033917).  tion. InProc. of NAACL-HLT 07, Short Paper \Volume,

pages 185-188.
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Using syntactic coupling features for discriminating phrase-based
translations (WMT-08 Shared Translation Task)

Vassilina Nikoulina and Marc Dymetman
Xerox Research Centre Europe
Grenoble, France
{ni koul i na, dynet man}@xr ce. xer ox. com

Abstract parse on the order of a few hundred target candi-
dates on the fly. Also of interest to us is the fact that

Our participation in the shared translationtask ~ XIP produces labelled dependencies, a feature that
at WMT-08 focusses on news translation from we use in some of our experiments.

English to French. Our main goal is to con-

trast a baseline version of the phrase-based 1.1 Decoding and Training

MATRAX system, with a version that incor- ] ] )
porates Syntactic “Coup"ng” features in order We resort to a Standard I’eranklng approaCh In Wh|Ch

to discriminate translations produced by the ~ we produce an n-best list of MATRAX candidate
baseline system. We report results comparing  translations (with n = 100 in our experiments), and
different feature combinations. then rerank this list with a linear combination of our
parse-dependent features. In order to train the fea-
ture weights, we use an averaged structured percep-
tron approach (Roark et al., 2004), where we try to
Our goal is to try to improve the fluency and ad-earn weights such that the first candidate to emerge
equacy of a baseline phrase-based SMT system j§yequal to the “oracle” candidate, that is, the candi-
using a Variety of “Syntactic Coup”ng features”, ex.date that is closest to the reference in terms of NIST
tracted from parses for the source and target stringScOre.
These features are used for reranking the n-best can- _
didates of the baseline system. 1.2 Coupling Features

The phrase-based SMT system MATRAX, develOur general approach to computing coupling fea-
oped at XRCE, is used as the baseline in the expetiires between the dependency structure of the source
ments. MATRAX is based on a fairly standard log-and that of a candidate translation produced by MA-
linear model, but one original aspect of the systerlfRAX is the following: we start by aligning the
is the use of non-contiguous bi-phrases sucmes words between the source and the candidate trans-
... plus/ not ... anymorewhere words in the source lation, we parse both sides, and we count (possi-
and target phrases may be separated by gaps, tolidg according to a weighting scheme) the number of
filled at translation time by lexical material providedconfigurations (“rectangles”) that are of the follow-
by some other such pairs (Simard et al., 2005).  ing type:((s1, S12, $2), (1, t12,t2)), Wheresy, is an

For parsing, we use théerox Incremental Parser edge betweer; and sz, t12 is an edge betweeh
XIP (Ait-Mokhtar et al., 2002), which is a robustandt,, s; is aligned witht; and s, is aligned with
dependency parser developed at the Xerox Researgh We implemented several variants of this basic
Centre Europe. XIP is fast (around 2000 words pescheme.
second for English) and is well adapted to a situ- We start by describing different “generic” cou-
ation, like the one we have here, were we need taling functions derived from the basic scheme, as-

1 Introduction
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suming that word alignments have been already deised by different grammar developers for the two
termined, then we describe the option of taking intdanguages.
account specific dependency labels when counting In order to control this problem, we introduce a
rectangles, and finally we describe two options focollection ofLabel-Specific-Couplineatures, each
computing the word alignments. for a specific pair of source label and target label.
The values of a label-specific feature are the num-
ber of occurrences for this specific label pair. We
The first measure of coupling is based on simuse only label pairs that have been observed to be
ple, non-weighted, word alignments. Here we simaligned in the training corpus (that is, that partici-
ply consider that a word of the source and a worgate in observed rectangles). In one version of that
of the target are aligned or not aligned, without anyapproach, we use all such pairs found in the corpus,
intermediary degree, and consider that a rectangie another version only the pairs above a certain fre-
exists on the quadruple of words, so, t1,t5 iff s; quency threshold in the corpus.
is aligned tot;, s; and sy have a dependency link )
between them (in whatever direction) and similarlyt-2-3 Alignment
for t; andty. The first feature that we introduce, In order to compute the features described above,
Coupling-Countis simply the count of all such rect- a prerequisite is to be able to determine a word align-
angles between the source and the target. ment between the source and a candidate translation.
We note that the value of this feature tends to b@ur first approach is to use GIZA++ (correspond-
correlated with the size of the source and target déag roughly to IBM Model 4) to create these align-

pendency trees. We therefore introduce some nofents, by producing for a given source and a given
malized variants of the feature: candidate translation n-best alignment lists in both

directions and applying standard techniques of sym-
e Coupling-Recall We compute the number of metrization to produce a bidirectional alignment.
source edges for which there exists a projec- Another way to find word alignments is to use the
tion in the target. More formally, the number of information provided by the baseline system. Since
edges between two words, s, such that there MATRAX is a phrase-based system, it has access to
exist two wordst;, to with s; aligned tot; and the bi-phrases (aligned by definition) that are used in
such that1, t, have an edge between them. Weorder to generate a candidate translation. However
then divide this number by the total number ofnote that when we use a bi-phrase based alignment,
edges in the source. there will be differences from the word alignment
that we discussed before, and we need to adapt our
¢ Coupling-Precision We do the same thing this coupling functions.
time starting from the target.

1.2.1 Generic features

1.2.4 Related approaches

e Coupling-F-measute This is defined as the There is a growing body of work on the use of
harmonic mean of the two previous features. syntax for improving the quality of SMT systems.
Our approach is closest to the line taken in (Och
1.2.2 Label-specific features et al., 2003), where syntactic features are also used
The features previously defined do not take intdor discriminating between candidates produced by
account the labels associated with edges in the de-phrase-based system, but here we introduce and
pendency trees. However, while rectangles of theompare results for a wider variety of coupling fea-
form ((s1, subj s2), (t1, Subj t2)) may be rather sys- tures, taking into account different combinations in-
tematic between such languages as English an@lving normalization of the counts, symmetrized
French, other rectangles may be much less so, digatures between the source and target, labelled de-
on the one hand to actual linguistic divergences be- Although the XIP formalism is shared between grammar

tween the two languages, but also, as importantlyeveiopers of French and English, the grammars do sometimes
in practice, to different representational conventionsllow different conventions.
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pendencies, and also consider several ways for com- the first case (Labels) we extracted all of the
puting the word alignment on the basis of which aligned label pairs (label pair associated with

edge couplings are determined. a coupling rectangle) found in a training set,

) while in the second case (Frequent Labels), we
2 Experiments only kept the most frequently observed among
2.1 Description these label pairs.

Our participation concerns the English to French o \yhen several keywords appear on a line, we
News translation task. To train our baseline system sed the union of the corresponding features,

we used the News Commentary corpus, namely the and in the last line of the table, we show a

training (~ 1M words) and development (1057 sen-  compination involving at the same time some

tences) sets proposed for the shared translation task. featyres computed on the basis of Giza-based
The same development set was used for the MERT  gjignments and of phrase-based alignments.

training procedure of the baseline system, as well

as for learning the parameters of the reranking pro- ¢ Along with the NIST and BLEU scores of each
cedure. Note that the test data on which we report  combination, we also conducted an informal

our experimental results here is the one proposed as manual assessment of the quality of the re-
development test set for the News translation task sylts relative to the MATRAX baseline. We
(1064 sentences, nc-devtest2007). took a random sample of 100 source sentences

Using MATRAX as the baseline system we gen-  from the test set and for each sentence, assessed
erate 100-best lists of candidate translations for all  whether the first candidate produced by rerank-

source sentences of the test set, we rerank these can- ing was better, worse, or indistinguishable in
didates using our features, and we output the top terms of quality relative to the baseline trans-
candidate. We present our results in Table 1, distin-  |ation. We report the number of improvements
guished according to the actual combination of fea-  (+) and deteriorations (-) among these 100 sam-
tures used in each experiment. ples as well as their difference.

The Baselineentry in the table corresponds 103 Dpiscussion

MATRAX results on the test set, without the

use of any of the coupling features. While the overall results in terms of Bleu and Nist
L _ do not show major improvements relative to the

we d'Stmngh two sub-_tables, according tooaseline, there are several interesting observations

whether. Giza-based alignments or phraseT-O make. First of all, if we focus on feature com-

based alignments were used.

binations in which MATRAX features are included

The Generickeyword corresponds to the cou-(Shown in italics in the table), we see that there is a
pling features introduced in section 1.2.1, base@eneral tendency for the results, both in terms of au-
on rectangle counts, independent of the labef9Matic and human evaluations, to be better than for
of the edges. the same combination without the MATRAX fea-
tures; the explanation seems to be that if we do
The Matrax keyword corresponds to using not use the MATRAX features during reranking, but
MATRAX “internal” features as reranking fea- consider the 100 candidates in the n-best list to be
tures, along with the coupling features. Thesequally valuable from the viewpoint of MATRAX
MATRAX features are pretty standard phrasefeatures, we lose essential information that cannot
based features, apart from some features de
ing explicitly with gapped phrases, and are de
scribed in detail in (Simard et al., 2005).

_ 2All the results reported here correspond to our own evalu-
ations, prior to the WMT evaluations. Given time constraint
we focussed more on contrasting the baseline with the Imaseli
+ coupling features, than in tuning the baseline itself foe t
ThelLabelsandFrequent Label&eywords Cor-  task at hand. After the submission deadline, we were able to

responds to using label-specific features. limprove the baseline for this task.
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| [ NIST BLEU [ - + | Diff |

| Baseline | 64093 0.2034 0 0| 0 |
Giza-based alignments
Generic 6.3383 0.2043 15 17| 2
Generic, Matrax 6.3782 0.2083 4 18| 14
Labels 6.3483 0.1963 12 18| 6
Labels, Generic 6.3514 0.2010 3 18| 15
Labels, Generic, Matrax 6.4016 0.2075 3 20| 17
Frequent Labels 6.3815 0.2054 7 11| 4
Frequent Labels, Generic 6.3826 0.2044 6 18| 12
Frequent Labels, Generic, Matrax 6.4177 0.2100 2 16| 14
Phrase-based alignments
Generic 6.2869 0.1964 12 14| 2
Generic, Matrax 6.3972 0.2031 4 11| 7
Labels 6.3677 0.1995 16 15| -1
Labels, Generic 6.3567 0.1977 8 15| 7
Labels, Generic, Matrax 6.4269 0.2049 4 17| 13
Frequent Labels 6.3701 0.1998 3 15| 12
Frequent Labels, Generic 6.3846 0.2013 7 16| 9
Frequent Labels, Generic, Matrax 6.4160 0.2049 4 16| 12
| Giza Generic, Phrase Generic, Giza Labels, Matfag.4351 0.2060 7 22| 15 |

Table 1: Reranking results.

be recovered simply by appeal to the syntactic cou- Viren Jain, Zhen Jin, and Dragomir Radev. 2003. Syn-
pling features. tax for Statistical Machine Translation: Final report of

If we now concentrate on the lines which do in- John Hopkins 2003 Summer Workshop. Technical re-

clude MATRAX features and compare their results plgrt, ‘];hnMH%pkinsi Uni&ersétyill 4 M. Joh
with the baseline, we see a trend for these results% oark, M. saracar, M. Loins, an - Johnson.

. . 2004. Discriminative language modeling with condi-
be better than the baseline, both in terms of auto- tional random fields and the perceptron algorithm. In

matic measures as (more strongly) in terms of hu- proceedings of the 42nd Annual Meeting of the Asso-
man evaluation. Taken individually, perhaps the im- ciation for Computational Linguistics (ACL'04)uly.
provements are not very clear, babllectively a Michel Simard, Nicola Cancedda, Bruno Cavestro,
trend does seem to appear in favor of syntactic cou- Marc Dymetman, Eric Gaussier, Cyril Goutte,
pling features generally, although we have not con- Kenji Yamada, Philippe Langlais, and Arne Mauser.
ducted formal statistical tests to validate this impres- 2005- Translating with non-contiguous phrases. In
sion. A more detailed comparison between individ- HLT/EMNLP

ual lines, inside the class of combinations that in-

clude MATRAX features, appears however difficult

to make on the basis of the reported experiments.
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Abstract (Section 3) and share some early analysis and future

. directions (Section 4).
We apply the Stat-XFER statistical transfer

maching translation framework to the_ task of 2 System Description
translating from French and German into En-
glish. We introduce statistical methods within Building a new machine translation system under
our framework that allow for the principled — the stat-XFER framework involves constructing a
extraction of syntax-based transfer rules from i 0\ o1 transiation lexicon and a transfer gram-
parallel corpora given word alignments and :
constituency parses. Performance is evaluated mar. Over the past six months, we have developed
on test sets from the 2007 WMT shared task. new methods for extracting syntax-based translation
lexicons and transfer rules fully automatically from
parsed and word-aligned parallel corpora. These
new methods are described in detail by Lavie et
The Carnegie Mellon University statistical trans-al. (2008). Below, we detail the statistical meth-
fer (Stat-XFER) framework is a general searcheds by which these resources were extracted for our
based and syntax-driven framework for developFrench—English and German—English systems.
ing MT systems under a variety of data condi- _
tions (Lavie, 2008). At its core is a transfer en2-1 Lexicon
gine using two language-pair-dependent resourceShe bilingual lexicon is automatically extracted
a grammar of weighted synchronous context-frefom automatically parsed and word-aligned paral-
rules (possibly augmented with unification-style fealel corpora. To obtain high-quality statistical word
ture constraints), and a probabilistic bilingual lexi-alignments, we run GIZA++ (Och and Ney, 2003)
con of syntax-based word- and phrase-level transl@ both the source-to-target and target-to-source di-
tions. The Stat-XFER framework has been used tections, then combine the resulting alignments with
develop research MT systems for a number of larthe Sym2 symmetric alignment heuristic of Ortiz-
guage pairs, including Chinese—English, HebrewMartinez et al. (200%) From this data, we extract a
English, Urdu—English, and Hindi—English. lexicon of both word-to-word and syntactic phrase-
In this paper, we describe our use of the frameto-phrase translation equivalents.
work to create new French—-English and German— The word-level correspondences are extracted di-
English MT systems for the 2008 Workshop on Starectly from the word alignments: parts of speech for
tistical Machine Translation shared translation taskhese lexical entries are obtained from the preter-
We first describe the acquisition -and processing 'We use Sym2 over more well-known heuristics such as
resources for each Ignguage pair and the roles ogfrow-diag-final" because Sym2 has been shown to give the
those resources within the Stat-XFER system (Segzst results for the node-alignment subtask that is partiof o
tion 2); we then report results on common test sefsocessing chain.

1 Introduction
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Ws \ Cs W Ct \ r taining 1,064,755 entries for French—English and
paru| V appeared \% 0.2054 1,111,510 entries for German—English. Sample lex-
paru| V seemed \% 0.1429 ical entries are shown in Figure 1.

paru| V found Vv 0.0893

paru| V published V| 0.0804 2.2 Grammar

paru| V felt Vv 0.0714 Transfer grammars for our earlier statistical transfer

: : systems were manually created by in-house experts
paru| v aieady  ADV| 00069 0l enciages Ivobed nd were ereire sl
paru| V appear \% 0.0089 ) . "
paru| vV authoritative ADJ | 0.0089 with procedures for automatic grammar acquisition

from a parallel corpus, given constituency parses for
source or target data or both. Our French and Ger-
man systems used the context-free grammar rule ex-
traction process described by Lavie et al. (2008).
inal ¢ f th For French, we used 300,000 parallel sentences from
minal nodes of parse trees of ¢ € source a'nd targgte Europarl training data parsed on the English side
sentences. If parsers are unavallable f_or either I"?‘With the Stanford parser (Klein and Manning, 2003)
guage, we have also 'experlmented with determ'@ind on the French side with the Xerox XIP parser
ing parts of speech with independent taggers SUGR \okhtar et al., 2001). For German, we used
as TreeTagger (SChm_'d’ 1995). Alternatively, p?”%O0,000 Europarl sentence pairs parsed with the En-
of speech may be projected through the word aligryisy, and German versions of the Stanford pdser
ments from one language to the other if the infor- The set of rules extracted from the parsed corpora

mation is available on at least one side. Syntactt&las filtered down after scoring to improve system
phrase-level correspondences are extracted from t &rformance and run time. The final Erench rule set

paral!el data by_ applying thg PFA node alignmen as comprised of the 1500 most frequently occur-
a_Igorlthm desc.rlbed by Lavie et al. (2008). Thering rules. For German, rules that occurred less than
yields Of, the aligned parse 'tree ”Of’es are eXtraCt?\g/ice were filtered out, leaving a total of 16,469. In
as constltuent.—level translatl_on eq_uwalents. each system, rule scores were again calculated by
Each entry in the lexicon is assigned a rule scor%quation 2, withw, and w, representing the full

r, based on its source-side part of SPeeGfsource- o hang sides of the source and target grammar
side textw;, target-side part of speeeh and target- |\

side textw;. The score is a maximum-likelihood es- A secondary version of our French system used a
t?mate of the distribution of target-language tranSIa\'/vord—IeveI lexicon extracted from the intersection
tion and source- and target-language parts of Spee?gther than the symmetricization, of the GIZA++

given the source word or phrase. alignments in each direction; we hypothesize that

Table 1. Part of the lexical entry distribution for the
French (source) worgaru.

ro= plw, e, cs | ws) (1) this tends to improve precision at the expense of re-
4 (wy, ¢, W, ¢) call. The word-level lexicon was supplemented with
#(’w ; J: 1 . (2) syntax-based phrase-level entries obtained from the
S

PFA node alignment algorithm. The grammar
We employ add-one smoothing in the denominatocontained the 700 highest-frequency and the 500
of Equation 2 to counteract overestimation in thenighest-scoring rules extracted from the parallel
case that#(w,) is small. Rule scores provide a wayparsed corpus. This version had a total lexicon size
to promote the more likely translation alternativesf 2,023,531 entries and a total grammar of 1034
while still retaining a high degree of diversity in therules after duplicates were removed. Figure 2 shows
lexicon. Table 1 shows part of the lexical distribu > o _ _ _

Due to a combination of time constraints and paucity of

tion for the French (Sour_ce_) WO U. . computational resources, only a portion of the Europarhiber
The result of the statistical word alignment pro-;orpys was utilized, and none of the supplementary news com-

cess and lexical extraction is a bilingual lexicon conmentary training data was integrated.
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1VS,248840} {NP,2000012}
V:V |: ["paru”] —> ["appeared"] NP::NP |: ['ein" "Beispiel"] —> ["an" "example"]

( (
(*score* 0.205357142857143) (*score* 0.763636363636364)

) )

Figure 1: Sample lexical entries for French and German.

sample grammar rules automatically learned by the DataSet | METEOR BLEU TER

process described above. dev2006 0.5332 0.2063 64.81
_ test2007 0.5358 0.2078 64.75
2.3 Transfer Engine nc-test2007 0.5369 0.1719 69.83

The Stat-XFER transfer engine runs in a two-stage

process, first applying the grammar and lexicorfable 2: Results for the primary French—English system
to an input sentence, then running a decoder ovép provided development and development test sets.
the resulting lattice of scored translation pieces.

Scores for each translation piece are based on a Data Set ‘ METEOR BLEU TER
log-linear combination of several features: language dev2006 0.5330 0.2086 65.02
model probability, rule scores, source-given-target test2007 0.5386 0.2129 64.29

and target-given-source lexical probabilities, parse Nc-test2007]  0.5311 0.1680 70.90
fragmentation, and length. For more details, see

Lavie (2008). The use of a German transfer gram'[able 3: Results for the secondary French—English sys-

mar an order of magnitude larger than the Corret_em on provided development and development test sets.
sponding French grammar was made possible due to
a recent optimization made in the engine. When et Analysis and Conclusions
abled, it constrains the search of translation hypothtFrom the development test results in Section 3, we
ses to the space of hypotheses whose structure satis- .
: . . note that the Stat-XFER systems’ performance cur-
fies the consituent structure of a source-side parse, .
rently lags behind the state-of-the-art scores on the
2007 test dafh This may be in part due to the low
volume of training data used for rule learning. A key
We trained our model parameters on a subset ofsearch question in our approach is how to distin-
the provided “dev2006” development set, optimiz-guish low-frequency correct and useful transfer rules
ing for case-insensitive IBM-style BLEU (Papinenifrom “noisy” rules that are due to parser errors and
etal., 2002) with several iterations of minimum errotincorrect word alignments. We believe that learning
rate training omn-best lists. In each iteration’s list, rules from more data will help alleviate this prob-
we also included the lists from previous iterations inem by proportionally increasing the counts of good
order to maintain a diversity of hypothesis types andules compared to incorrect ones. We also plan to
scores. The provided “test2007” and “nc-test20075tudy methods for more effective rule set pruning,
data sets, identical with the test data from the 200regardless of the volume of training data used.
Workshop on Statistical Machine Translation shared The difference in metric scores between in-
task, were used as internal development tests.  domain and out-of-domain data is partly due to ef-
Tables 2, 3, and 4 report scores on these data ségsts of reference length on the metrics used. De-
for our primary French, secondary French, and Getailed output from METEOR and BLEU shows that
man systems. We report case-insensitive scores fibhre reference translations for the test2007 set are
version 0.6 of METEOR (Lavie and Agarwal, 2007)about 94% as long as the primary French—English

with all modules enabled, version 1.04 of IBM_Ster 3Top scores on the 2007 test data are approximately 0.60

BLEU (Papineni et al., 2002), and version 5 of TERyeTEOR, 0.33 BLEU, and 57.6 TER. See Callison-Burch et
(Snover et al., 2006). al. (2007) for full results.

3 Evaluation
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{PP,1627955} ]
PP:PP [PRE "d" "autres" N] —> [PRE "other" N] {PP,3000085}
( PP:ADVP ["vor" CARD "Monaten"] —> [NUM "months" "ago"]

(*score* 0.866050808314088 ) (

X1::Y1 (*score* 0.9375)
) EX4::Y33 ) (X2::Y1)
Figure 2: Sample grammar rules for French and German.
Data Set ‘ METEOR BLEU TER parsing. InAdvancesin Neural Information Process-
dev2006 0.4967 0.1794 68.68 ing Systems 15, pages 3—-10. MIT Press, Cambridge,
test2007 0.5052 0.1878 67.94 MA.

nc-test2007 04939 0.1347 74.38 Alon Lavie_and Aphaya Agarwal. _2007_. MI_ETEOR: An
automatic metric for MT evaluation with high levels of
, correlation with human judgments. Rroceedings of
Table 4: Results for the German—English system on pro- the Second Workshop on Statistical Machine Transla-
vided development and development test sets. tion, pages 228-231, Prague, Czech Republic, June.
Alon Lavie, Alok Parlikar, and Vamshi Ambati. 2008.
system’s translations. On this set, our system has Syntax-driven learning of sub-sentential translation
approximately balanced precision (0.62) and recall f‘?“'v"’:le”rts anlﬂ gra”z'e"’(‘jti'r?” rufletsh frgg‘c ;zgr?/\egrkparal-
(0.66). However, the nc-test2007 references are only e corpora. oc gs of the =5co

. . shop on Syntax and Structure in Satistical Transla-
84% as long as our output, a situation that hurts our 4o columbus. OH. June. To appear.

system’s precision (0.57) but boosts its recall (0.68ljon Lavie. 2008. Stat-XFER: A general search-based
METEOR, as a metric that favors recall, shows a syntax-driven framework for machine translation. In
negligible increase in score between these two test Computational Linguistics and Intelligent Text Pro-
sets, while BLEU and TER report significant relative cessing, Lecture Notes in Computer Science, pages
drops of 17.3% and 7.8%. This behavior appears to 362-375. Springer.

be consistent on the test2007 and nc-test2007 ddtgnz Josef Och and Hermann Ney. 2003. A system-

sets across systems (Callison-Burch et al., 2007). th'sc égmgtigtsigga?];_;/r?é:.lci);iscztggs(t]{;all 9a_||591nment mod-
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TectoMT: Highly Modular MT System
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Abstract

We present a new English—Czech machine
translation system combining linguistically
motivated layers of language description (as
defined in the Prague Dependency Treebank
annotation scenario) with statistical NLP ap-
proaches.

1 Introduction

We describe a new MT system (called Tec-
toMT) based on the conventional analysis-transfer-
synthesis architecture. We use the layers of language
description defined in the Prague Dependency Tree-
bank 2.0 (PDT for short, (Haji¢ and others, 2006)),
namely (1) word layer — raw text, no linguistic
annotation, (2) morphological layer — sequence of
tagged and lemmatized tokens, (3) analytical layer
— each sentence represented as a surface-syntactic
dependency tree, and (4) tectogrammatical layer —
each sentence represented as a deep-syntactic de-
pendency tree in which only autosemantic words do
have nodes of their own; prefixes w-, m-, a-, or t-
will be used for denoting these layers.!

We use ‘Praguian’ tectogrammatics (introduced
in (Sgall, 1967)) as the transfer layer because
we believe that, first, it largely abstracts from
language-specific (inflection, agglutination, func-
tional words...) means of expressing non-lexical

"The research reported in this paper is financially supported
by grants GAAV CR 1ET101120503 and MSM0021620838.

'In addition, we use also p-layer (phrase structures) as an
a-layer alternative, the only reason for which is that we do not
have a working a-layer parser for English at this moment.
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meanings, second, it allows for a natural transfer
factorization, and third, local tree contexts in t-trees
carry more information (esp. for lexical choice) than
local linear contexts in the original sentences.

In order to facilitate separating the transfer of lex-
icalization from the transfer of syntactization, we in-
troduce the concept of formeme. Each t-node’s has
a formeme attribute capturing which morphosyntac-
tic form has been (in the case of analysis) or will
be (synthesis) used for the t-node in the surface sen-
tence shape. Here are some examples of formemes
we use for English: n:subj (semantic noun (sn) in
subject position), n:for+X (sn with preposition for),
n:X+ago (sn with postposition ago), n:poss (posses-
sive form of sn), vibecause+fin (semantic verb (sv)
as a subordinating finite clause introduced by be-
cause), v:without+ger (sv as a gerund after without),
adj:attr (semantic adjective (sa) in attributive posi-
tion), adj:compl (sa in complement position).

The presented system intensively uses the PDT
technology (data formats, software tools). Special
attention is paid to modularity: the translation is im-
plemented (in Perl) as a long sequence of processing
modules (called blocks) with relatively tiny, well-
defined tasks, so that each module is independently
testable, improvable, or substitutable. TectoMT al-
lows to easily combine blocks based on different
approaches, from blocks using complex probabilis-
tic solutions (e.g., B2, B6, B35, see the next section),
through blocks applying simpler Machine Learning
techniques (e.g., B69) or empirically based heuris-
tics (e.g., B7, B25, B36, B71), to blocks implementing
‘crisp’ linguistic rules (e.g., B48-B5s1, B59). There are
also blocks for trivial technical tasks (e.g., B33, B72).

Proceedings of the Third Workshop on Statistical Machine Translation, pages 167-170,
Columbus, June 2008. (©)2008 Association for Computational Linguistics
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Figure 1: MT ‘pyramid’ as implemented in TectoMT. All the representations are rooted with artificial nodes, serving
only as labels. Virtually, the pyramid is bottomed with the input sentence on the source side (She has never laughed in
her new boss’s office.) and its automatic translation on the target side (Nikdy se nesmdla v tiradu svého nového séfa.).

2 Translation Procedure

The structure of this section directly renders the se-
quence of blocks currently used for English-Czech
translation in TectoMT. The intermediate stages of
the translation process are illustrated in Figure 1;
identifiers of the blocks affecting on the translation
of the sample sentence are typeset in bold.

2.1 From English w-layer to English m-layer

B1: Segment the source English text into sentences.
B2: Split the sentences into sequences of tokens,
roughly according to Penn Treebank (PTB for short;
(Marcus et al., 1994)) conventions. B3: Tag the
tokens with PTB-style POS tags using a tagger
(Brants, 2000). B4: Fix some tagging errors sys-
tematically made by the tagger using a rule-based
corrector. Bs: Lemmatize the tokens using morpha,
(Minnen et al., 2000).

2.2 From English m-layer to English p-layer

B6: Build PTB-style phrase-structure tree for each
sentence using a parser (Collins, 1999).

2.3 From English p-layer to English a-layer

B7: In each phrase, mark the head node (using a set
of heuristic rules). B8: Convert phrase-structure trees
to a-trees. B9: Apply some heuristic rules to fix ap-
position constructions. B10: Apply another heuris-
tic rules for reattaching incorrectly positioned nodes.
B11: Unify the way in which multiword prepositions
(such as because of ) and subordinating conjunctions
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(such as provided that) are treated. B12: Assign an-
alytical functions (only if necessary for a correct
treatment of coordination/apposition constructions).

2.4 From English a-layer to English t-layer

B13: Mark a-nodes which are auxiliary (such as
prepositions, subordinating conjunctions, auxiliary
verbs, selected types of particles, etc.) B14: Mark not
as an auxiliary node too (but only if it is connected to
a verb form). B15: Build t-trees. Each a-node cluster
formed by an autosemantic node and possibly sev-
eral associated auxiliary nodes is ‘collapsed’ into a
single t-node. T-tree dependency edges are derived
from a-tree edges connecting the a-node clusters.
B16: Explicitely distinguish t-nodes that are mem-
bers of coordination (conjuncts) from shared modi-
fiers. It is necessary as they all are attached below
the coordination conjunction t-node. B17: Modify
t-lemmas in specific cases. E.g., all kinds of per-
sonal pronouns are represented by the ‘artificial’ t-
lemma #PersPron. B18: Assign functors that are nec-
essary for proper treatment of coordination and ap-
position constructions. B19: Distribute shared auxil-
iary words in coordination constructions. B20: Mark
t-nodes that are roots of t-subtrees corresponding to
finite verb clauses. B21: Mark passive verb forms.
B22: Assign (a subset of) functors. B23: Mark t-nodes
corresponding to infinitive verbs. B24: Mark t-nodes
which are roots of t-subtrees corresponding to rel-
ative clauses. B25: Identify coreference links be-
tween relative pronouns (or other relative pronom-
inal word) and their nominal antecedents. B26: Mark



t-nodes that are the roots of t-subtrees correspond-
ing to direct speeches. B27: Mark t-nodes that are
the roots of t-subtrees corresponding to parenthe-
sized expressions. B28: Fill the nodetype attribute
(rough classification of t-nodes). B29: Fill the sem-
pos attribute (fine-grained classification of t-nodes).
B30: Fill the grammateme attributes (semantically in-
dispensable morphological categories, such as num-
ber for nouns, tense for verbs). B31: Determine the
formeme of each t-node. B32: Mark personal names,
distinguish male and female first names if possible.

2.5 From English t-layer to Czech t-layer

B33: Initiate the target-side t-trees, simply by cloning
the source-side t-trees. B34: In each t-node, trans-
late its formeme.?> B3s: Translate t-lemma in each
t-node as its most probable target-language counter-
part (which is compliant with the previously chosen
formeme), according to a probabilistic dictionary.?
B36: Apply manual rules for fixing the formeme and
lexeme choices, which are otherwise systematically
wrong and are reasonably frequent. B37: Fill the gen-
der grammateme in t-nodes corresponding to deno-
tative nouns (it follows from the chosen t-lemma).*
B38: Fill the aspect grammateme in t-nodes corre-
sponding to verbs. Information about aspect (perfec-
tive/imperfective) is necessary for making decisions
about forming complex future tense in Czech. B39:
Apply rule-based correction of translated date/time
expressions (several templates such as /970’s, July
1, etc.). B40: Fix grammateme values in places where
the English-Czech grammateme correspondence is
not trivial (e.g., if an English gerund expression
is translated using Czech subordinating clause, the

*The translation mapping from English formemes to Czech
formemes was obtained as follows: we analyzed 10,000 sen-
tence pairs from the WMT’08 training data up to the t-layer
(using a tagger shipped with the PDT and parser (McDonald et
al., 2005) for Czech), added formemes to t-trees on both sides,
aligned the t-trees (using a set of weighted heuristic rules, simi-
larly to (Menezes and Richardson, 2001)), and from the aligned
t-node pairs extracted for each English formeme its most fre-
quent Czech counterpart.

3The dictionary was created by merging the translation dic-
tionary from PCEDT ((Cufin and others, 2004)) and a trans-
lation dictionary extracted from a part of the parallel corpus
Czeng ((Bojar and Zabokrtsky, 2006)) aligned at word-level by
Giza++ ((Och and Ney, 2003)).

*Czech nouns have grammatical gender which is (among
others) important for resolving grammatical agreement.
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tense grammateme has to be filled). B41: Negate
verb forms where some arguments of the verbs bear
negative meaning (double negation in Czech). B42:
Verb t-nodes in active voice that have transitive t-
lemma and no accusative object, are turned to re-
flexives. B43: The t-nodes with genitive formeme
or prepositional-group formeme, whose counterpart
English t-nodes are located in pre-modification po-
sition, are moved to post-modification position. B44:
Reverse the dependency orientation between nu-
meric expressions and counted nouns, if the value
of the numeric expression is greater than four and
the noun without the numeral would be expressed in
nominative or accusative case. B45: Find coreference
links from personal pronouns to their antecedents,
if the latter are in subject position (needed later for
reflexivization).

2.6 From Czech t-layer to Czech a-layer

B46: Create initial a-trees by cloning t-trees. B47:
Fill the surface morphological categories (gender,
number, case, negation, etc.) with values derived
from values of grammatemes, formeme, seman-
tic part of speech etc. B4s: Propagate the values
of gender and number of relative pronouns from
their antecedents (along the coreference links). B49:
Propagate the values of gender, number and person
according to the subject-predicate agreement (i.e.,
from subjects to the finite verbs). B50: Resolve agree-
ment of adjectivals in attributive positions (copying
gender/number/case from their governing nouns).
B51: Resolve complement agreement (copying gen-
der/number from subject to adjectival complement).
B52: Apply pro-drop — deletion of personal pronouns
in subject positions. B53: Add preposition a-nodes
(if implied by the t-node’s formeme). Bs4: Add a-
nodes for subordinating conjunction (if implied by
the t-node’s formeme). Bss5: Add a-nodes corre-
sponding to reflexive particles for reflexiva tantum
verbs. B56: Add an a-node representing the auxiliary
verb byt (to be) in the case of compound passive
verb forms. B57: Add a-nodes representing modal
verbs, accordingly to the deontic modality gram-
mateme. B58: Add the auxiliary verb byt in imperfec-
tive future-tense complex verb forms. B59: Add verb
forms such as by/bys/bychom expressing conditional
verb modality. Be60: Add auxiliary verb forms such
as jseml/jste in past-tense complex verb forms. Be1:



Partition a-trees into finite clauses (a-nodes belong-
ing to the same clause are coindexed). Bé62: In each
clause, a-nodes which represent clitics are moved to
the so called second position in the clause (accord-
ing to Wackernagel’s law). B63: Add a-nodes cor-
responding to sentence-final punctuation mark. Be4:
Add a-nodes corresponding to commas on bound-
aries between governing and subordinated clauses.
B65: Add a-nodes corresponding to commas in front
of conjunction ale and also commas in multiple co-
ordinations. Bes: Add pairs of parenthesis a-nodes.
B67: Choose morphological lemmas in a-nodes cor-
responding to personal pronouns. Be68: Generate
the resulting word forms (derived from lemmas and
tags) using Czech word form generator described in
(Hajic, 2004). B6v: Vocalize prepositions k, s, v, and
z (accordingly to the prefix of the following word).
B70: Capitalize the first word in each sentence as well
as in each direct speech.

2.7 From Czech a-layer to Czech w-layer

B71: Create the resulting sentences by flattening the
a-trees. Heuristic rules for proper spacing around
punctuation marks are used. B72: Create the resulting
text by concatenating the resulting sentences.

3 Final remarks

We believe that the potential contribution of tec-
togrammatical layer of language representation for
MT is the following: it abstracts from many
language-specific phenomena (which could reduce
the notorious data-sparsity problem) and offers a
natural factorization of the translation task (which
could be useful for formulating independence as-
sumptions when building probabilistic models). Of
course, the question naturally arises whether these
properties can ever outbalance the disadvantages, es-
pecially cumulation and interference of errors made
on different layers, considerable technical complex-
ity, and the need for detailed linguistic insight. In
our opinion, this question still remains open. On
one hand, the translation quality offered now by Tec-
toMT is below the state-of-the-art system according
to the preliminary evaluation of the WMTOS Shared
Task. But on the other hand, the potential of tec-
togrammatics has not been used fully, and more-
over there are still many components with only pilot
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heuristic implementation which increase the number
of translation errors and which can be relatively eas-
ily substituted by corpus-based solutions. In the near
future, we plan to focus especially on the transfer
blocks, which are currently based on the naive as-
sumption of isomorphism of the source and target
t-trees and which do not make use of the target lan-
guage model, so far.
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Abstract

In this paper, we give a description of the ma-
chine translation system developed at DCU
that was used for our participation in the eval-
uation campaign of the Third Workshop on
Statistical Machine Translation at ACL 2008.

We describe the modular design of our data-
driven MT system with particular focus on
the components used in this participation. We
also describe some of the significant modules
which were unused in this task.

We participated in théeuroParl task for the
following translation directions: Spanish—
English and French—English, in which we em-
ployed our hybrid EBMT-SMT architecture to
translate. We also participated in the Czech—
English News and News Commentaryasks
which represented a previously untested lan-
guage pair for our system. We report results
on the provided development and test sets.

Introduction

represents a new challenge for our system and pro-
vides a good test of its flexibility.

The remainder of this paper is organised as fol-
lows: Section 2 details the various components of
our system, in particular the chunking and chunk
alignment strategies used for the shared task. In Sec-
tion 3, we outline the complete system setup for the
shared task, and in Section 4 we give some results
and discussion thereof.

2 The MATREX System

The MATREX system is a modular hybrid data-
driven MT system, built following established De-
sign Patterns, which exploits aspects of both the
EBMT and SMT paradigms. It consists of a num-
ber of extendible and re-implementable modules, the
most significant of which are:

e Word Alignment Moduleoutputs a set of word
alignments given a parallel corpus,

e Chunking Module outputs a set of chunks

In this paper, we present the Data-Driven MT sys-
tems developed at DCU, MREX (Machine Trans- _ .
lation using Examples). This system is a hybrid sys- ® Chunk Alignment Module outputs aligned
tem which exploits EBMT and SMT techniques to  ¢nunk pairs given source and target chunks ex-
build a combined translation model. tracted from comparable corpora,

We patrticipated in both the French—English and
Spanish—English EuroParl tasks. In these two tasks,
we monolingually chunk both source and target
sides of the dataset using a marker-based chunker
(Gough and Way, 2004). We then align these chunks In some cases, these modules may comprise
using a dynamic programming, edit-distance-stylevrappers around pre-existing software. For exam-
algorithm and combine them with phrase-basegle, our system configuration for the shared task
SMT-style chunks into a single translation model. incorporates a wrapper aroundza++ (Och and

We also participated in the Czech—English Newsley, 2003) for word alignment and a wrapper
Commentary and News tasks. This language padround Moses (Koehn et al., 2007) for decoding. It
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given an input corpus,

e Decoder returns optimal translation given a
set of aligned sentence, chunk/phrase and word
pairs.



should be noted, however, that the complete systemAssuming that the parameteiB(e;, |fs,) are
is not limited to using only these specific moduleknown, the most likely alignment is computed by
choices. The following subsections describe thosa simple dynamic-programming algorithim.
modules unique to our system. Instead of using an Expectation-Maximization al-

_ gorithm to estimate these parameters, as commonly
2.1 Marker-Based Chunking done when performing word alignment (Brown
The chunking module used for the shared task it al., 1993; Och and Ney, 2003), we directly com-
based on the Marker Hypothesis, a psycholinguistipute these parameters by relying on the information
constraint which posits that all languages are markagbntained within the chunks. The conditional prob-
for surface syntax by a specific closed set of lexability P(e;, | fs,) can be computed in several ways.
emes or morphemes which signify context. Using & our experiments, we have considered three main
set of closed-class (or “marker”) words for a particusources of knowledge: (i) word-to-word translation
lar language, such as determiners, prepositions, caprobabilities, (i) word-to-word cognates, and (iii)
junctions and pronouns, sentences are segmentgtlnk labels. These sources of knowledge are com-
into chunks. A chunk is created at each new occubined in a log-linear framework. The weights of
rence of a marker word with the restriction that eaclhe log-linear model are not optimised; we experi-
chunk must contain at least one content (or normented with different sets of parameters and did not
marker) word. An example of this chunking strategyfind any significant difference as long as the weights
for English and Spanish is given in Figure 1. stay in the interval0.5 — 1.5]. Outside this inter-

val, the quality of the model decreases. More details

2.2 Chunk Alignment about the combination of knowledge sources can be
In order to align the chunks obtained by the chunkfound in (Stroppa and Way, 2006).

ing procedures described in Section 2.1, we make

use of an “edit-distance-style” dynamic program2-3 Unused Modules

ming alignment algorithm. There are numerous other features available in our
In the following, a denotes an alignment betweensystem which, due to time constraints, were not ex-

a target sequence consisting ofI chunks and a ploited for the purposes of the shared task. They

source sequencg consisting ofJ chunks. Given include:

these sequences of chunks, we are looking for the

most likely alignment: e Word packing(Ma et al., 2007): a bilingually

motivated packing of words that changes the
basic unit of the alignment process in order to

i = argmax P(ale, f) = argmax P(a, e|f). simplify word alignment.
a a
_ _ _ e SupertaggingHassan et al., 2007b): incorpo-
We first consider alignments such as those ob-  r4iing lexical syntactic descriptions, in the form

side of the translation model in order to better
a = (tl, 81)(t2, 82) . (tn, Sn),

inform decoding.
with Vk € [1,n], tx € [0,1] ands; € [0, J], and

e Source-context featurgStroppa et al., 2007):
VEk < K

use memory-based classification to incorporate
context-informed features on the source side of
the translation model.

tr <t orty =0,
Sk < sgr Or spr = 0,
wheret;, = 0 (resp.s; = 0) denotes a non-aligned

target (resp. source) chunk.
We then assume the following model:

e Treebank-based phrase extractioTinsley
et al., 2007): extract word and phrase align-
ments based on linguistically informed sub-
P(a, el f) = TP (t, sk, el ) = TPy, | fs,) sentential alignment of the parallel data.
1This algorithm is actually a classical edit-distance al-

whereP(eo|f;) (resp.P(e;]fo)) denotes an “iNser- gorithm in which distances are replaced by opposite-log-
tion” (resp. “deletion”) probability. conditional probabilities.
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English: [ voted] [in favour] [of the strategy presented] [bthe council] [concerningrelations] [with
Mediterranean countries]

Spanish: [He votado] [a favor] [de la estrategia presentada] [poel consejo] [relativalas relaciones]

[con los pdses mediterra@os]

Figure 1: English and Spanish Marker-Based chunking

Table 1: Summary of pre-processing on training data. tasks.

Filter criteria es—en fr—en cz—en System | BLEU (-EBMT) | BLEU (+EBMT)
Initial Total 1258778| 1288074| 1096941 es—en 0.3283 0.3287

Blank Lines 5632 4200 2 fr-en 0.2768 0.2770

Length 6794 8361 2922 cz—en 0.2235 -

Fertility 120 82 1672

Final Total 1246234| 1275432| 1092345 Table 2: Summary of results on developments sets

vtest2006for EuroParl tasks andc-test2007or cz—en

System BLEU (-EBMT) | BLEU (+EBMT)
3 Shared Task Setup es—en 0.3274 0.3285
fr-en 0.3163 0.3174
The following section describes the system setupcz—en (news) 0.1458 -
using the Spanish—English and French—-English | cz—en (nc) 0.2217 -

roParl, and Czech-EnglisBzEngtraining data. Table 3: Summary of results on 2008 test data.

3.1 Pre-processing

For all tasks we initially tokenised the data (Czeclsuch as a reordering model, in a log-linear combina-
data was already tokenised) and removed blanion of functions.
lines. We then filtered out sentence pairs based on\we tuned our system on the developmentdeet
length (>100 words) and fertility (9:1 word ratio). vtest2006or the EuroParl tasks and arc-test2007
Finally we lowercased the data. Details of this prefor Czech—English, using minimum error-rate train-
processing are given in Table 1. ing (Och, 2003) to optimise BLEU score.

Finally, we carried out decoding using a wrapper
around the Moses decoder.
As mentioned in Section 2, our word alignment )
module employs a wrapper aroundz@++. 3.3 Post-processing

We built a 5-gram language model based the taf-ase restoration was carried out by training the sys-
get side of the training data. This was done usintem outlined above - without the EBMT chunk ex-
the SRI Language Modelling toolkit (Stolcke, 2002)traction - to translate from the lowercased version
employing linear interpolation and modified Kneserof the applicable target language training data to the
Ney discounting (Chen and Goodman, 1996). truecased version. We have previously shown this

Our phrase-table comprised a combination ofpproach to be very effective for both case and punc-
marker-based chunk pégsextracted as described tuation restoration (Hassan et al., 2007a). The trans-
in Sections 2.1 and 2.2, and word-alignment-basd@ations were then detokenised.
phrase pairs extracted using thgréw-diag-finat
method of Koehn et al. (2003), with a maximum? Results
phrase length of 7 words. Phrase translation probghe system output is evaluated with respect to
bilities were estimated by relative frequency over alg| EU score. Results on the development sets and
phrase pairs and were combined with other featuregst sets for each task are given in Tables 2 and 3
" 2This module was omitted from the Czech-English systenqupeCtlvely’ where “-EBMT" indicates that EBMT

as we have yet to verify whether marker-based chunking is aghunk modules were not used, and “+EBMT” indi-
propriate for Czech. cates that they were used.

3.2 System Configuration
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4.1 Discussion Hassan, H., Sima’an, K., and Way, A. (2007b). Su-

. : L pertagged Phrase-based Statistical Machine Transla-
Those configurations which incorporated the EBMT tion. In Proceedings of the 45th Annual Meeting of the

chunks improved slightly over thpse which did nqt. Association for Computational Linguistics (ACL'Q7)
Groves (2007) has shown previously that combin- n,g5es 288295, Prague, Czech Republic.
Ing E_BMT a”‘_j SMT translation models cgn lead tq(oehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
considerable improvement over the baseline SYsteMSgrico. M., Bertoldi, N., Cowan, B., Shen, W., Moran,
from which they are derived. The results achieved c | zens, R., Dyer, C., Bojar, O., Constantin, A., and
here lead us to believe that on such a large scaleHerbst, E. (2007). Moses: Open Source Toolkit for
there may be a more effective way to incorporate the Statistical Machine Translation. knnual Meeting of
EBMT chunks. the Association for Computational Linguistics (ACL),
Previous work has shown the EBMT chunks to demonstration sessippages 177-180, Prague, Czech
have higher precision than their SMT counterparts, Republic.
but they lack sufficient recall when used in isolaXoehn, P., Och, F. J., and Marcu, D. (2003). Statisti-

tion (Groves, 2007). We believe that increasing their €&l Phrase-Based Translation. fnoceedings of the
. ( ) ) . 9 . 2003 Conference of the North American Chapter of the
influence in the translation model may lead to im-

; . . Association for Computational Linguistics on Human

proved translation accuracy. One experiment to this | 5 age Technology (NAACL ‘03)ages 48-54, Ed-

effect would be to add the EBMT chunks as a sep- monton, Canada.

arate phrase table in the log-linear model and a||0\f\\ha’ Y., Stroppa, N., and Way, A. (2007). Boostrap-

the decoder to chose when to use them. ping Word Alignment via Word Packing. IRroceed-
Finally, we intend to exploit the unused modules ings of the 45th Annual Meeting of the Association for

of the system in future experiments to investigate Computational Linguistics (ACL'07pages 304-311,

their effects on the tasks presented here. Prague, Czech Republic.
Och, F. (2003). Minimum error rate training in statistical
Acknowledgments machine translation. IRroceedings of the 41st Annual
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paradigms and exploiting different types of infor-
Abstract mation, these two research lines are not in opposi-
tion and may be combined to produce improved
This paper describes SYSTRAN submissions  results. For instance, serial combination of the tw
for the shared task of the third Workshop on approaches has produced very good results in
Stqtistical .Maghine Trgnslgtion at ACL. Opr WMTO7 (Simard, 2007), (Dugast, 2007) and
main contribution consists in a French-English NISTO7 (Ueffing, 2008). (Schwenk et al., 2008)

statistical model trained without the use of any 5,4 comhines both approaches and resources to
human-translated parallel corpus. In substitu- .
build a better system.

tion, we translated a monolingual corpus with ;
SYSTRAN rule-based translation engine to 1€ SYSTRAN's R&D team actually works to

produce the parallel corpus. The results are Merge these two approaches, drawing benefit from
provided herein, along with a measure of error  their respective strengths. Initially, the SYSTRAN
analysis. system was a pure rule-based system that in recent
years began integrating statistical features amd co
pus-based model (Senellart, 2006). It must be
1 Introduction noted that, for sake of simplification of the ex-

. . periment and its interpretation, the base system
Current machine translation systems follow twonentioned in this paper is a purely rule-based ver-

different lines of research: (1) manually writtersjon |n the framework of this research effort,ivar
rules associated with bilingual dictionaries (rulegg exploratory experiments are being run which
based systems), (2) a statistical framework (staligim poth at finding efficient combination setups
tical machine translation) based on large amount ghq a4t discriminating strengths and weaknesses of
monolingual and parallel corpora. The first linge_pased and statistical systems.

uses linguistically generalized information baseq\,e had performed a first analysis on a statistical
on _vvhat humans understand from what happens #Bst-editing system (Dugast, 2007). The system
a given language (source and target) and what h@gpmitted for  Czech-English follows this setup.
pens in the translation process. The translatiqfje present also here an original French-English
process isbuilding a translation from a given giatistical model which doesn’t make use of the
source sentence based on this knowledge. The sggyet side of the parallel data to train its paras
ond line exploits implicit information present ingaple byt rather uses the rule-based translation o
already tran_slatgd corpora and more generally af¥e source side. We call this system “SYSTRAN
text production in the target language to automalielearnt” because, as far as the translation model
cally find the most likely translation for a givenis concemed, this system is a statistical model of

source sentence. This approach has proven to g le-based engine. In addition to the submitted
competitive with the rule-based approach Whe§'ystem which only makes use of the Europarl

provided with enough resources on a specific d@ionglingual data, we present additional results
main. Though based on fundamentally different
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using unrelated monolingual data in the news dd-is same language model is used in both statisti-
main. Though human evaluation of these systemal models: arelearnt system and a baseline
will provide additional insight, we try here to gta phrase-based model whose phrase table was learnt

analyzing the specificities of those systems. from the Europarl parallel data. Both trainings fol
lowed the baseline recommendations of the shared
task.
2 Training without any human reference
translation Corpus Size Size
) ) (sen- (words)
If the need in terms of monolingual corpus to tences)

build language models can most of the time be {Ub 311el FR-EN (Europarl | 0.94M 21M
filled without much problem, the reliance of statisv3)

tical models on parallel corpora is much MARionolingual FR  (Le | 0.96M 18M
problematic. Work on domain adaptation for statiyonde 1995)
tical machine translation (Koehn and Schroe Sfonolingual EN (NYT | 3.8M 19M
2007) tries to bring solutions to this issue. Stati 1995)
cal Post-Editing may well be another way to per=—j1o> Corpus sizes for the additional model
form efficient domain-adaptation, but still requsire rained on news domain ’
parallel corpora. We try here to open a new path.

Our submitted system for French-English on th§
Europarl task is a phrase based system, whose
phrase table was trained on the rule based transla-

tion of the French Europarl corpus. The French e provide here results on evaluation metrics,
side of the Europarl parallel corpus was translategh injtial error analysis and results on the addi-
with the baseline rule-based translation engine {@nalrelearntmodel.

produce the target side of the training data. Howraple 3 provides metrics results for four different
ever, the language model_was trained on the r%%Jstems - purely rule based, purely statisticad, an
English Europarl data provided for the shared tasje relearnt systems: Relearnt-0 is a plain statisti-
Training was otherwise performed according t@s] model of systran, while Relearnt uses a real

Results for the SYSTRAN-relearnt sys-
tems

baseline recommendations. English language model and is tuned on real Eng-
lish.
Corpus Size Size
(sentences | (words) Model BLEU(tun- | BLEU
Parallel FR-EN 0.94 M 21 M ing, (test, dev-
Monolingual EN (LM) | 1.4 M 38 M dev2006) test2006)
Table 1 Corpus sizes for the submitted EUBaseline n.a. 21.27
roparl-domain translation SYSTRAN
Relearnt-0, with | 20.54 20.92

An additional (non-submitted) system wassysSTRAN English
trained using two monolingual news corpora |of M tuned on
approximately a million sentences. The FrencBysTRAN English
corpus was built from a leading French newspap&gejearnt 26.74 26.57
the English from a leading American newspapeBaseline Moses 2908 2986

both of the same year (1995). In the previousTahje 3 Results of systems on Europarl task,

model, the English corpus used to train the lafzineq (when relevant) on Europarl-only data
guage model actually contained the reference

translations of the source corpus. This is not the tha score of the Relearnt-0 model is slightly

case here. As for the previous model, the Frenghy ey than the rule-based original (absence of mor-
corpus was translated by the rule-based system blogical analysis and some non-local rules

produce the parallel training data, while the Engyphich failed to be modelled may explain this). The
lish corpus was used to train a language model,.
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use of a real English language model and tuning
set gives a more than 5 BLEU points improvement,
which is only 3 BLEU points below the Moses
baseline, which uses the Europarl phrase table.
Comparing these three systems may help
us discriminate between the statistical nature of a
translation system and the fact it was trainechen t
relevant domain. For this purpose, we defined 11
error types and counted occurrences for 100 ran-
dom-picked sentences of the devtest2006 test cor-
pus for the three following systems : a baseline
phrase-based system, a SYSTRAN relearnt phrase-
based system and the baseline SYSTRAN rule-

learnt and baseline Moses) . Although we do

not have evidence for that, we guess that it is
especially impairing adequacy when content
words are concerned.

* Extra words

Obviously, the rule-based output produces
many useless functional words (determiners,
prepositions...) while statistical systems do not
have this problem that much. However, they
may also produce extra content words..

* Unknown words

Few words are out of the rule-based dictionar-
ies’ vocabulary. Morphological analysis may

based system. Results are displayed in tables 5.a explain at least part of this.

and 5.b.

MC Missing Content

MO Missing Other

TCL Translation Choice (content, lemma)
TCI Translation Choice (content, inflection)
TCO Translation Choice (other)

EWC Extra Word Content

EWO Extra Word Other

uw Unknown word

WOS |Word Order, short

WOL Word Order, long (distance>=3 words)
PNC Punctuation

Table 4: Short definition of error types

System MC |MO |TCL | TCI | TCO
SYSTRAN (0.02| 0.2]|1.11|0.14| 0.48
Relearnt |0.22|0.39|0.77(0.22| 0.38
Moses 0.35|0.46|0.63|0.27 | 0.25

« Translation choice

Translation choice is the major strength of the
statistical model. Note that thielearnt system
gains a great deal of the difference between
Systran and Moses in this category. We would
expect the remaining difference to require
more translation choices (which may be learnt
from a parallel corpus). Inflection errors re-
main low for the rule-based system only,
thanks to its morphological module.

e Word Order

The language model couldn’t lower the num-
ber of short-distance word-order errors (no dif-
ference between SYSTRAN and SYSTRAN
relearnt). Long-distance word order is, as ex-
pected, better for the rule-based output, though
French-English is not known to be especially
sensitive to this issue.

Additionally, table 6 shows the results of tree
learnt system we trained using only monolingual

Table 5.a: Average number of errors/sentence Corpus. It performed better than both the europarl-

trained phrase-based model and the baseline rule-

based engine. Table 7 shows the three different
System ewe | ewoluw |wos lwoL lpne translations of a same example French sentence.
SYSTRAN 0| 0.72/0.06| 0.41| 0.02 0| | Model BLEU (tuning, | BLEU (test,
Relearnt | 0.05| 0.35(0.09| 0.41| 0.05| 0 nc-dev2007) | nctest2007)
SYSTRAN n.a. 21.32
Moses 0.17| 04012 0.3| 0.08] 0.02 Relearnt 228 2315
Table 5.b: Average number of errors/sentence gaseline 227 2219
Moses

Such results lead us to make the following co
ments, regarding the various error types:
e Missing words

M- Table 6: Results of systems on News task

This type of error seems to be specific to statis-

tical systems (counts are close between
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gual corpus used for training the translation model
We may also refine the model by using the target

Ces politiques sont considérées comme | side of the parallel training data when building th
un mt‘?ye”dd offrir qestreﬁ’a“’%t'onstpoﬁr('jes language model corpus (to avoid a mismatch of
INjustices du passe et, plus important, de - . .
créer des modeles de réle et de surmon. vocabularle_s) and also comblne such a model with
ter la discrimination restante et peut-ére | the translation model(s) trained on whatever paral-
SOURCE |involontaire. lel data is available. This would then be interesti
These policies are regarded asameans | to compare this strategy with the corpus-based-
g‘;g{fg::ggr;%es'ir; :)%rntgren'”é?itr'gfjncg the | only strategies that make use of smaller in-domain
models olf role and of ovelrcoming re- parallel corpora.
maining and perhaps involuntary dis-
SYSTRAN | crimination. References
these policies are regarded as a way to
offer of repairs for past injustices and , Chris Callison-Burch, Miles Osborne and Philipp
zr?drerérr?]g(i)r:itr?gt d’i;(():ricr:ﬁr?;?ic?nr(:r? d”:)"e(:_els Koehn, 2006 Re-evaluating the Role of Bleu in Ma-
Moses haps involuntary . chine Translation Researchin Proceedings of
these policies are regarded as a means EACL-2006
to offer repairs for the past injustices and | | pygast, J. Senellart and P. Koel8tatistical Post-
,mdore important , cr.egtln%.role. mOdt‘?'S Editing on SYSTRAN's Rule-Based Translation Sys-
Relearnt Zﬂd oéfﬁgor;?mr,img?g Iscrimination tem Proc. 2% ACL Workshop on Statistical Machine
pernap Y Translation pp. 220-223, June 2007.
fTJ;ﬁ]s;rgggizisoﬁrfeofizgtﬁjSsﬁ?g:fagg Philipp Koehn &al. Moses: Open Source Toolkit for
more importantly, for creating role mod- Statistical Machine TranslatigPACL 2007, demon-
els and for overcoming residual and per- stration session
REF haps involuntary discrimination. Philipp Koehn and Josh Schroeder. Experiments in Do

Table 7: Example outputs for the news domain main Adaptation for Statistical Machine Translation
models (example taken from time-test2007cor-

pus)

4 Conclusion

The relearnt experiment primary goal was to

ACL Workshop on Statistical Machine Translation
2007

Holger Schwenk, Jean-Baptiste Fouet and Jean Senel-
lart. First Steps towards a general purpose
French/English Statistical Machine Translation Sys-
tem Submitted at the 3rd ACL Workshop on Statisti-

set-up a comparison between three different sys-cal Machine Translation, 2008

tems, with eqUIvaI.en-t resources. This experlme%an Senellart. 200800sting linguistic rule-based MT
showed that a statistical translation system may begystem with corpus-based approachis Presenta-

granted a high BLEU score, even if its translation ton. GALE PI Meeting, Boston, MA
model was not extracted from corpus. It remains Simard. C. Goutt d P Isabellstatistical
to be seen how this correlates with human judg->'Mard. . LOulle, and .- Isapefisiatstica
. . Phrase-based Post-EditingProc. HLT-NAACIL. pp.
ment (Callison-Burch, 2006), but the detailed error gyg o1 A i
. . -515, April 2007.

analysis we performed already shows improve-
ments for important Categories of errors. Simard Michel & al. 2007Rule-based Translation With

This experiment provided us with some new in- Statistical Phrase-based Post-editing Proceedings
sight on the strengths and weaknesses of rule-0f WMTO7
based and phrase-based systems. As an intermedi-Nicola Ueffing, Jens Stephan, Evgeny Matu-
ate between a purely corpus-based statistical Sy®v, Loic Dugast, George Foster, Roland Kuhn,
tem and a rule-based system, this setup couwedan Senellart, and Jin Yaflgghter Integration of
benefit from some of the strengths of a phras®ule-based and Statistical MT in Serial System
based statistical system, though at the expense@bmbinationSubmitted
its known drawbacks.

As future work, we may pursue in this direction
by exploring the effect of the size of the monolin-
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Abstract

Based on an architecture that allows to com-
bine statistical machine translation (SMT)
with rule-based machine translation (RBMT)
in a multi-engine setup, we present new results
that show that this type of system combination
can actually increase the lexical coverage of
the resulting hybrid system, at least as far as
this can be measured via BLEU score.

1 Introduction

(Chen et al., 2007) describes an architecture that
allows to combine statistical machine translation
(SMT) with one or multiple rule-based machine
translation (RBMT) systems in a multi-engine setup.
It uses a variant of standard SMT technology to align
translations from one or more RBMT systems with
the source text and incorporated phrases extracted
from these alignments into the phrase table of the
SMT system. Using this approach it is possible to
employ a vanilla installation of the open-source de-
coder Moses! (Koehn et al., 2007) to find good com-
binations of phrases from SMT training data with
the phrases derived from RBMT. A similar method
was presented in (Rosti et al., 2007).

This setup provides an elegant solution to the
fairly complex task of integrating multiple MT re-
sults that may differ in word order using only stan-
dard software modules, in particular GIZA++ (Och
and Ney, 2003) for the identification of building
blocks and Moses for the recombination, but the
authors were not able to observe improvements in

'see http://www.statmt.org/moses/
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terms of BLEU score. A closer investigation re-
vealed that the experiments had suffered from a cou-
ple of technical difficulties, such as mismatches in
character encodings generated by different MT en-
gines and similar problems. This motivated us to
re-do these experiments in a somewhat more sys-
tematic way for this year’s shared translation task,
paying the required attention to all the technical de-
tails and also to try it out on more language pairs.

2 System Architecture

For conducting the translations, we use a multi-
engine MT approach based on a “vanilla” Moses
SMT system with a modified phrase table as a cen-
tral element. This modification is performed by aug-
menting the standard phrase table with entries ob-
tained from translating the data with several rule-
based MT systems. The resulting phrase table thus
combines statistically gathered phrase pairs with
phrase pairs generated by linguistic rules.

Basing its decision about the final translation on
the obtained “combined” phrase table, the SMT de-
coder searches for the best translation by recombin-
ing the building blocks that have been contributed by
the different RBMT systems and the original SMT
system trained on Europarl data.

A sketch of the overall architecture is given in
Fig. 1, where the lighter parts represent the mod-
ules and data sets used in purely statistical MT,
and the darker parts are the additional modules and
data sets derived from the rule-based engines. The
last word in the proposed setup is thus given to the
SMT decoder, which can recombine (and potentially
also tear apart) linguistically well-formed constructs
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Figure 1: Hybrid architecture of the system

from the rule-based engines’ output.

2.1 The Combined Phrase Table

The combined phrase table is built from the orig-
inal Moses phrase table and separate phrase tables
for each of the RBMT systems that are used in our
setup. Since the original phrase table is created
during the training process of the Moses decoder
with the Europarl bilingual corpus as training ma-
terial, it comprises general knowledge about typical
constructions and vocabulary from the Europarl do-
main. Therefore, a standard Moses SMT system is,
in principle, well adapted for input from this do-
main. However, it will have problems in dealing
with vocabulary and structures that did not occur in
the training data. The additional phrase tables are
generated separately for each RBMT system from
the source text and its translation by the respective
system. By using a combined phrase table that in-
cludes the original Moses phrase table as well as the
phrase tables from the RBMT systems, the hybrid
system can both handle a wider range of syntactic
constructions and exploit knowledge that the RBMT
systems possess about the particular vocabulary of
the source text.

3 Implementation

3.1 MT Systems and Knowledge Sources

Apart from the Moses SMT system, we used a
set of six rule-based MT engines that are partly
available via web interfaces and partly installed lo-
cally. The web interfaces are provided by Al-
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tavista Babelfish (based on Systran), SDL, ProMT
and Lucy (a recent offspring of METAL). All of
them deliver significantly different output trans-
lations. Locally installed systems are OpenLo-
gos (for German<—English, English—Spanish and
English—French) and translatePro by lingenio (for
German«English). The language model for our pri-
mary setup is based on the Europarl corpus whereas
the English Gigaword corpus served as training data
for a contrastive setup that was created for the trans-
lation direction German—English only.

3.2 Alignment of RBMT output

As already mentioned above, the construction of the
RBMT system specific phrase tables is a major part
of the overall system architecture. Such an RBMT
phrase table is generated from a bilingual corpus
consisting of the input text and its translation by
the respective RBMT system. Because this corpus
has the mere size of the text to be translated, it usu-
ally is not big enough to ensure the statistical meth-
ods for phrase table building of the Moses system to
work. Therefore, we create the alignments between
the RBMT input and output with help of another tool
(Theison, 2007) that is based on knowledge learned
in a previously conducted training phase with an ap-
propriately bigger corpus. On the basis of the align-
ments created in this manner, the Moses training
script provides a phrase table that consists of the
source text vocabulary. These steps are carried out
for each one of the six RBMT systems leading to
six source text specific phrase tables which are then
combined with the original Moses phrase table.

3.3 Combination of Phrase Tables

The combination process basically consists of the
concatenation of the Moses phrase table and the pre-
viously created RBMT phrase tables with one mi-
nor adjustment: The phrase table resulting from this
combination now also features additional columns
indicating which system each phrase table entry
originated from. For each new source text, the
RBMT phrase tables have to be created from scratch
and incorporated into a new combined phrase table.

3.4 Tuning

The typical process for creating an SMT system with
the Moses toolkit includes a tuning step in which



Europarl NewsCommentary

de-en | en-de | fr-en | en-fr | es-en | en-es || de-en | en-de | fr-en | en-fr | es-en | en-es
SMT 22.81 | 19.78 | 24.18 | 21.62 | 31.68 | 24.46 || 1424 | 9.75 | 11.60 | 12.24 | 17.27 | 14.48
Hybrid 27.85 | 20.75 | 28.12 | 28.82 | 33.15 | 32.31 || 17.36 | 13.57 | 17.66 | 20.71 | 22.16 | 22.55
RBMT1* | 1334 | 11.09 | —— | 17.19 | —— | 18.63 || 1490 | 1234 | —— | 15.11 | —— | 17.13
RBMT2 16.19 | 12.06 16.66 | 13.64
RBMT3 16.32 | 10.88 | 18.18 | 20.38 | 19.32 | 20.89 || 16.88 | 12.53 | 17.20 | 18.82 | 19.00 | 19.98
RBMT4 15.58 | 12.09 | 19.00 | 22.20 | 18.99 | 21.69 || 17.41 | 13.93 | 17.73 | 20.85 | 19.14 | 21.70
RBMTS5 15.58 9.54 | 21.36 | 1298 | 18.47 | 20.59 || 15.99 | 11.05 | 18.65 | 19.49 | 20.50 | 20.02
RBMT6 1396 | 9.44 | 17.16 | 1891 | 18.01 | 19.18 || 15.08 | 10.41 | 16.86 | 17.82 | 18.70 | 19.97

Table 1: Performance of baseline SMT system, our system and RBMT systems (BLEU scores)

the system searches for the best weight configura-
tion for the columns in the phrase table while given
a development set to be translated, and correspond-
ing reference translations. In our hybrid setup, it is
equally essential to conduct tuning since the com-
bined phrase table we use contains 7 more columns
than the original Moses phrase table. All these
columns are given the same default weight initially
and thus still need be to be tuned to more meaning-
ful values. From this year’s Europarl development
data the first 200 sentences of each of the data sets
dev2006, test2006, test2007 and devtest2006 were
concatenated to build our development set. This set
of 800 sentences was used for Minimum Error Rate
Training (Och, 2003) to tune the weights of our sys-
tem with respect to BLEU score.

4 Results

In order to be able to evaluate our hybrid approaches
in contrast to stand-alone rule-based approaches, we
also calculated BLEU scores for the translations
conducted by the RBMT systems used in the hy-
brid setup. Our hybrid system is compared to a SMT
baseline and all the 6 RBMT systems that we used.
Table 1 shows the evaluation of all the systems in
terms of BLEU score (Papineni et al., 2002) with the
best score highlighted. The empty cells in the table
indicate the language pairs which are not available
in the corresponding systems?. The SMT system is
the one upon which we build the hybrid system. Ac-
cording to the scores, the hybrid system produces
better results than the baseline SMT system in all

’The identities of respective RBMT systems are not revealed
in this paper. RBMT1 is evaluated on the partial results pro-
duced due to some technical problems.
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cases. The difference between our system and the
baseline is more significant for out-of-domain tests,
where gaps in the lexicon tend to be more severe.

Figure 2 illustrates an example of how the hy-
brid system differs from the baseline SMT system
and how it benefits from the RBMT systems. The
example lists the English translations of the same
German sentence (from News Commentary test set)
from different systems involved in our experiment.
Neither the word “Pentecost” nor its German trans-
lation “Pfingsten” has appeared in the training cor-
pus. Therefore, the SMT baseline system cannot
translate the word and chooses to leave the word
as it is whereas all the RBMT systems translate the
word correctly. The hybrid system appears to have
the corresponding lexicon gap covered by the ex-
tra entries produced by the RBMT systems. On the
other side, these additional entries may not always
be helpful. The errors in RBMT outputs can be sig-
nificant noise that destroys the correct information
in the SMT system. In the example translation pro-
duced by the hybrid system, there is a comma miss-
ing after “in addition”, which appears to be frequent
in the RBMT outputs.

5 Outlook

The results reported in this paper are still somewhat
preliminary in the sense that many possible (includ-
ing some desirable) variants of the setup could not
be tried out due to lack of time. In particular, we
think that the full power of our approach on out-
of-domain test data can only be exploited with the
help of large language models trained on out-of-
domain text, but could not yet try this systematically.
Furthermore, the presence of multiple instances of



Source

Dariiber hinaus gibt es je zwei Feiertage zu Ostern, Pfingsten, und Weihnachten.

Reference In addition, Easter, Pentecost, and Christmas are each two-day holidays.
Moses In addition, there are two holidays, pfingsten to Easter, and Christmas.
Hybrid In addition there are the two holidays to Easter, Pentecost and Christmas.
RBMT1 Furthermore there are two holidays to Easter, Pentecost and Christmas .

RBMT2
RBMT3
RBMTH4
RBMTS5
RBMT6

Furthermore there are two holidays each at Easter, Pentecost and Christmas.
In addition there are each two holidays to Easters, Whitsun, and Christmas.

In addition, there is two holidays to Easter, Pentecost, and Christmas.

Beyond that there are ever two holidays to Easter, Whitsuntide, and Christmas.
In addition it gives two holidays apiece to easter, Pentecost, and Christmas.

Figure 2: German-English translation examples

the same phrase pair (with different weight) in the
combined phrase table causes the decoder to gen-
erate many instances of identical results in differ-
ent ways, which increases computational effort and
significantly decreases the number of distinct cases
that are considered during MERT. We suspect that a
modification of our scheme that avoids this problem
will be able to achieve better results, but experiments
in this direction are still ongoing.

The approach presented here combines the
strengths of multiple systems and is different from
recent work on post-correction of RBMT output as
presented in (Simard et al., 2007; Dugast et al.,
2007), which focuses on the improvement of a sin-
gle RBMT system by correcting typical errors via
SMT techniques. These ideas are independent and a
suitable combination of them could give rise to even
better results.
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I ncremental Hypothesis Alignment for Building Confusion Networ ks with
Application to Machine Translation System Combination
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Abstract

Confusion network decoding has been the
most successful approach in combining out-
puts from multiple machine translation (MT)
systems in the recent DARPA GALE and
NIST Open MT evaluations. Due to the vary-
ing word order between outputs from differ-
ent MT systems, the hypothesis alignment
presents the biggest challenge in confusion
network decoding. This paper describes an
incremental alignment method to build confu-
sion networks based on the translation edit rate
(TER) algorithm. This new algorithm yields
significant BLEU score improvements over
other recent alignment methods on the GALE
test sets and was used in BBN’s submission to
the WMTO8 shared translation task.

1 Introduction

Confusion network decoding has been applied in
combining outputs from multiple machine transla-
tion systems. The earliest approach in (Bangalore
et al., 2001) used edit distance based multiple string
alignment (MSA) (Durbin et al., 1988) to build the
confusion networks. The recent approaches used
pair-wise alignment algorithms based on symmetric
alignments from a HMM alignment model (Matusov
et al., 2006) or edit distance alignments allowing
shifts (Rosti et al., 2007). The alignment method
described in this paper extends the latter by incre-
mentally aligning the hypotheses as in MSA but also
allowing shifts as in the TER alignment.

The confusion networks are built around a “skele-
ton” hypothesis. The skeleton hypothesis defines
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the word order of the decoding output. Usually, the
1-best hypotheses from each system are considered
as possible skeletons. Using the pair-wise hypoth-
esis alignment, the confusion networks are built in
two steps. First, all hypotheses are aligned against
the skeleton independently. Second, the confusion
networks are created from the union of these align-
ments. The incremental hypothesis alignment algo-
rithm combines these two steps. All words from the
previously aligned hypotheses are available, even if
not present in the skeleton hypothesis, when align-
ing the following hypotheses. As in (Rosti et al.,
2007), confusion networks built around all skeletons
are joined into a lattice which is expanded and re-
scored with language models. System weights and
language model weights are tuned to optimize the
quality of the decoding output on a development set.

This paper is organized as follows. The incre-
mental TER alignment algorithm is described in
Section 2. Experimental evaluation comparing the
incremental and pair-wise alignment methods are
presented in Section 3 along with results on the
WMTO08 Europarl test sets. Conclusions and future
work are presented in Section 4.

2 Incremental TER Alignment

The incremental hypothesis alignment is based on
an extension of the TER algorithm (Snover et al.,
2006). The extension allows using a confusion net-
work as the reference. First, the algorithm finds the
minimum edit distance between the hypothesis and
the reference network by considering all word arcs
between two consecutive nodes in the reference net-
work as possible matches for a hypothesis word at
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Figure 1: Network after pair-wise TER alignment.

that position. Second, shifts of blocks of words that
have an exact match somewhere else in the network
are tried in order to find a new hypothesis word or-
der with a lower TER. Each shifted block is con-
sidered a single edit. These two steps are executed
iteratively as a greedy search. The final alignment
between the re-ordered hypothesis and the reference
network may include matches, substitutions, dele-
tions, and insertions.

The confusion networks are built by creating a
simple confusion network from the skeleton hypoth-
esis. If the skeleton hypothesis has N words, the
initial network has N arcs and N + 1 nodes. Each
arc has a set of system specific confidence scores.
The score for the skeleton system is set to 1/2 and
the confidences for other systems are set to zeros.
For each non-skeleton hypothesis, a TER alignment
against the current network is executed as described
above. Each match found will increase the system
specific word arc confidence by 1/(1 + k) where k
is the rank of the hypothesis in that system’s N-best
list. Each substitution will generate a new word arc
at the corresponding position in the network. The
word arc confidence for the system issetto 1/(1+k)
and the confidences for other systems are set to ze-
ros. Each deletion will generate a new NULL word
arc unless one exists at the corresponding position
in the network. The NULL word arc confidences are
adjusted as in the case of a match or a substitution
depending on whether the NULL word arc exists or
not. Finally, each insertion will generate a new node
and two word arcs at the corresponding position in
the network. The first word arc will have the in-
serted word with the confidence set as in the case
of a substitution and the second word arc will have
a NULL word with confidences set by assuming all
previously aligned hypotheses and the skeleton gen-
erated the NULL word arc.

After all hypotheses have been added into the con-
fusion network, the system specific word arc confi-
dences are scaled to sum to one over all arcs between
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Figure 2: Network after incremental TER alignment.

each set of two consecutive nodes. Other scores for
the word arc are set as in (Rosti et al., 2007).

2.1 Benefits over Pair-Wise TER Alignment

The incremental hypothesis alignment guarantees
that insertions between a hypothesis and the cur-
rent confusion network are always considered when
aligning the following hypotheses. This is not the
case in any pair-wise hypothesis alignment algo-
rithm. During the pair-wise hypothesis alignment,
an identical word in two hypotheses may be aligned
as an insertion or a substitution in a different posi-
tion with respect to the skeleton. This will result in
undesirable repetition and lower confidence for that
word in the final confusion network. Also, multiple
insertions are not handled implicitly.

For example, three hypotheses “I like balloons”,
“l like big blue balloons”, and “I like blue kites”
might be aligned by the pair-wise alignment, assum-
ing the first as the skeleton, as follows:

I like NULL balloons NULL

I like bigblue balloons NULL
I like NULL balloons NULL
I like NULL blue kites

which results in the confusion network shown in
Figure 1. The number of hypotheses proposing each
word is shown in parentheses. The alignment be-
tween the skeleton and the second hypothesis has
two consecutive insertions “big blue” which are not
available for matching when the third hypothesis is
aligned against the skeleton. Therefore, the word
“blue” appears twice in the confusion network. If
many hypotheses have multiple insertions at the
same location with respect to the skeleton, they have
to be treated as phrases or a secondary alignment
process has to be applied.

Assuming the same hypotheses as above, the in-
cremental hypothesis alignment may yield the fol-
lowing alignment:



System TER BLEU MTR
worst 53.26 33.00 63.15
best 4230 4852 67.71
syscomb pw  39.85 52.00 68.73
syscomb giza 40.01 52.24 68.68
syscombinc 39.25 52.73 68.97
oracle 2168 64.14 78.18

Table 1: Results on the Arabic GALE Phase 2 system
combination tuning set with four reference translations.

I like NULL NULL balloons
I like big blue balloons
I like NULL blue kites

which results in the confusion network shown in
Figure 2. In this case the word “blue” is available
for matching when the third hypothesis is aligned.
It should be noted that the final confusion network
depends on the order in which the hypotheses are
added. The experiments so far have indicated that
different alignment order does not have a significant
influence on the final combination results as mea-
sured by the automatic evaluation metrics. Usually,
aligning the system outputs in the decreasing order
of their TER scores on the development set yields
the best scores.

2.2 Confusion Network Oracle

The extended TER algorithm can also be used to
estimate an oracle TER in a confusion network by
aligning the reference translations against the con-
fusion network. The oracle hypotheses can be ex-
tracted by finding a path with the maximum number
of matches. These hypotheses give a lower bound
on the TER score for the hypotheses which can be
generated from the confusion networks.

3 Experimental Evaluation

The quality of the final combination output depends
on many factors. Combining very similar outputs
does not yield as good gains as combining out-
puts from diverse systems. It is also important that
the development set used to tune the combination
weights is as similar to the evaluation set as possi-
ble. This development set should be different from
the one used to tune the individual systems to avoid
bias toward any system that may be over-tuned. Due
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System TER BLEU MTR
worst 59.09 20.74 57.24
best 48.18 3146 62.61
syscomb pw  46.31 33.02 63.18
syscomb giza 46.03 33.39 63.21
syscombinc 4545 3390 63.45
oracle 2753 49.10 7181

Table 2: Results on the Arabic GALE Phase 2 evaluation
set with one reference translation.

to the tight schedule for the WMTO08, there was no
time to experiment with many configurations. As
more extensive experiments have been conducted in
the context of the DARPA GALE program, results
on the Arabic GALE Phase 2 evaluation setup are
first presented. The translation quality is measured
by three MT evaluation metrics: TER (Snover et al.,
2006), BLEU (Papineni et al., 2002), and METEOR
(Lavie and Agarwal, 2007).

3.1 Results on Arabic GALE Outputs

For the Arabic GALE Phase 2 evaluation, nine sys-
tems were combined. Five systems were phrase-
based, two hierarchical, one syntax-based, and one
rule-based. All statistical systems were trained on
common parallel data, tuned on a common genre
specific development set, and a common English to-
kenization was used. The English bi-gram and 5-
gram language models used in the system combina-
tion were trained on about 7 billion words of English
text. Three iterations of bi-gram decoding weight
tuning were performed followed by one iteration of
5-gram re-scoring weight tuning. All weights were
tuned to minimize the sum of TER and 1-BLEU.
The final 1-best outputs were true-cased and deto-
kenized before scoring.

The results on the newswire system combination
development set and the GALE Phase 2 evaluation
set are shown in Tables 1 and 2. The first two
rows show the worst and best scores from the in-
dividual systems. The scores may be from different
systems as the best performing system in terms of
TER was not necessarily the best performing system
in terms of the other metrics. The following three
rows show the scores of three combination outputs
where the only difference was the hypothesis align-
ment method. The first, syscomb pw, corresponds



BLEU

System  de-en  fr-en
worst 11.84 16.31
best 28.30 33.13
syscomb 29.05 33.63

Table 3: NIST BLEU scores on the German-English (de-
en) and French-English (fr-en) Europarl test2008 set.

to the pair-wise TER alignment described in (Rosti
et al., 2007). The second, sysconb gi za, cor-
responds to the pair-wise symmetric HMM align-
ments from GIZA++ described in (Matusov et al.,
2006). The third, sysconb i nc, corresponds to
the incremental TER alignment presented in this pa-
per. Finally, or acl e corresponds to an estimate of
the lower bound on the translation quality obtained
by extracting the TER oracle output from the con-
fusion networks generated by the incremental TER
alignment. It is unlikely that there exists a set of
weights that would yield the oracle output after de-
coding, though. The incremental TER alignment
yields significant improvements over all individual
systems and the combination outputs using the pair-
wise alignment methods.

3.2 Results on WMTO08 Europarl Outputs

On the WMTO08 shared translation task, transla-
tions for two language pairs and two tasks were
provided for the system combination experiments.
Twelve systems participated in the German-English
and fourteen in the French-English translation tasks.
The translations of the Europarl test (test2008) were
provided as the development set outputs and the
translations of the News test (newstest2008) were
provided as the evaluation set outputs. An English
bi-gram, 4-gram, and true-caser language models
were trained by using all English text available for
the WMTO08 shared task, including Europarl mono-
lingual and news commentary parallel training sets.
The outputs were tokenized and lower-cased before
combination, and the final combination output was
true-cased and detokenized.

The results on the Europarl test set for both lan-
guage pairs are shown in table 3. The first two rows
have the NIST BLEU scores of the worst and the
best individual systems. The last row, sysconb,
corresponds to the system combination using the in-
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cremental TER alignment. The improvements in the
NIST BLEU scores are fairly modest which is prob-
ably due to low diversity of the system outputs. It is
also unlikely that these weights are optimal for the
out-of-domain News test set outputs.

4 Conclusions

This paper describes a novel hypothesis alignment
algorithm for building confusion networks from
multiple machine translation system outputs. The al-
gorithm yields significant improvements on the Ara-
bic GALE evaluation set outputs and was used in
BBN’s submission to the WMTO8 shared translation
task. The hypothesis alignment may benefit from
using stemming and synonymy in matching words.
Also, special handling of punctuation may improve
the alignment further. The future work will inves-
tigate the influence of better alignment to the final
combination outputs.
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Abstract

Previous studies have shown automatic evalu-
ation metrics to be more reliable when com-
pared against many human translations. How-
ever, multiple human references may not al-
ways be available. It is more common to have
only a single human reference (extracted from
parallel texts) or no reference at all. Our ear-
lier work suggested that one way to address
this problem is to train a metric to evaluate a
sentence by comparing it agaipsteudo refer-
ences or imperfect “references” produced by
off-the-shelf MT systems. In this paper, we
further examine the approach both in terms of
the training methodology and in terms of the
role of the human and pseudo references. Our
expanded experiments show that the approach
generalizes well across multiple years and dif-
ferent source languages.

Introduction

references or sentences produced by off-the-shelf
MT systems, as stand-ins for human references.
However, since pseudo references may be imperfect
translations themselves, the comparisons cannot be
fully trusted. Previously, we have taken a learning-
based approach to develop a composite metric that
combines measurements taken from multiple pseudo
references (Albrecht and Hwa, 2007). Experimental
results suggested the approach to be promising; but
those studies did not consider how well the metric
might generalize across multiple years and different
languages. In this paper, we investigate the appli-
cability of the pseudo-reference metrics under these
more general conditions.

Using the WMTO06 Workshop shared-task re-
sults (Koehn and Monz, 2006) as training exam-
ples, we train a metric that evaluates new sentences
by comparing them against pseudo references pro-
duced by three off-the-shelf MT systems. We ap-
ply the learned metric to sentences from the WMTO7

d shared-task (Callison-Burch et al., 2007b) and com-

that is, they compare system-produced translatiof&'© the met_rlc’s prEd'Cthns against human judg-

against human-translated references produced 1%}ents. We f|nd_ that additional _pseud(_) references

the same source. Since there is usually no Sing\@prove correlations for automatic metrics.

best way to translate a s'entence, each MT outpyt Background

should be compared against many references. On

the other hand, creating multiple human referencekhe ideal evaluation metric reports an accurate dis-

is itself a costly process. For many naturally occurtance between an input instance and its gold stan-

ring datasets (e.g., parallel corpora) only a single reflard, but even when comparing against imperfect

erence is readily available. standards, the measured distances may still convey
The focus of this work is on developing auto-some useful information — they may help to trian-

matic metrics for sentence-level evaluation wéath gulate the input’s position relative to the true gold

most one human referenceOne way to supple- standard.

ment the single human reference is to pseudo In the context of sentence-level MT evaluations,

Standard automatic metrics areference-base
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the challenges are two-fold. First, the ideal quantitao determine how much each comparison with a
tive distance function between a translation hypottpseudo reference might be trusted. To observe the
esis and the proper translations is not known; curele of learning, we compare trained metrics against
rent automatic evaluation metrics produce approxstandard reference-based metrics, all using pseudo
mations to the true translational distance. Seconctkferences.

although we may know the qualitative goodness of o

the MT systems that generate the pseudo referencd§€ amount vs. types of training data The suc-

we do not know how imperfect the pseudo referc€SS of any learned model depends on its training ex-
ences are. These uncertainties make it harder to driences. We study the trade-off between the size
tablish the true distance between the input hypottf§ the training set and the specificity of the train-

esis and the (unobserved) acceptable gold standdp§ data. We perform experiments comparing a met-
translations. ric trained from a large pool of heterogeneous train-

In order to combine evidence from these uncertaif#d €xamples that include translated sentences from

observations, we take a learning-based approadﬂ.umple I.anguages and individual metrics trained
Each hypothesis sentence is compared with mulffom particular source languages.

ple pS(_audo references using multiple m_etrics. ReH"he role of a single human reference Previous
resentlng the measurements as a set of input feat.u'@adies have shown the importance of comparing
and us:ng human—_assefssed. MT Een?enceg as trc‘;’“nﬁbgainst multiple references. The approach in this
examples, we train a function that is optimized 1Q,, o attempts to approximate multiple human ref-
correlate the features with the human assessmentsif. | ~as with machine-produced sentences. Is a sin-

the training examples. Spempcalllz/., ;or iac? mpuble trust-worthy translation more useful than multi-
sentence, we compute a set of 18 kinds of re erencsl-e imperfect translations? To answer this question,

based measurements for each pseudo re‘cerenC("\/\f’e’Scompare three different reference settings: using
well as 26 monolingual fluency measurements. T

full ; h hei fhj‘ﬁst a single human reference, using just the three
ull seto me_asurements t_ €N Serves _ast € 'npm_eﬁéeudo references, and using all four references.
ture vector into the function, which is trained via

support vector regression. The learned function cgp Experimental Setup
then be used as an evaluation metric itself: it takes
the measurements of a new sentence as input and Fer the experiments reported in this paper, we used
turns a composite score for that sentence. human-evaluated MT sentences from past shared-
The approach is considered successful if the metasks of the WMT 2006 and WMT 2007. The data
ric’s predictions on new test sentences correlate wetbnsists of outputs from German-English, Spanish-
with quantitative human assessments. Like othdrnglish, and French-English MT systems. The out-
learned models, the metric is expected to perforrputs are translations from two corpoiuroparland
better on data that are more similar to the trainingews commentarngystem outputs have been evalu-
instances. Therefore, a natural question that ariseted by human judges on a 5-point scale (Callison-
with a metric developed in this manner is: how welBurch et al., 2007a). We have normalized scores

does it generalize? to reduce biases from different judges (Blatz et al.,
. 2003).
3 Research Questions We experimented with using four different sub-

To better understand the capability of metrics thaets of the WMT2006 data as training examples:

compare against pseudo-references, we consider @r&jy (;eémalr_lfngllllzré, donly ?Eanlsh—!fnghsh, o_nlyd
following aspects: rench-English, a ata. The metrics are traine

using support vector regression with a Gaussian
The role of learning Standard reference-basedkernel as implemented in the SVM-Light package
metrics can also use pseudo references; howevélpachims, 1999). The SVM parameters are tuned
they would treat the imperfect references as goldia grid-search on development data, 20% of the full
standard. In contrast, the learning process aimgining set that has been reserved for this purpose.
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We used three MT systems to generate pseudo refsize that because the pseudo references came from
erences: SystranGoogleMT?, and Moses (Koehn high-quality MT systems and because standard met-
et al., 2007). We chose these three systems becauws are based on simple word matches, the chances
they are widely accessible and because they taker bad judgments (input words matched against
relatively different approaches. Moreover, althouglpseudo reference, but both are wrong) are relatively
they have not all been human-evaluated in the pasinall compared to chances for good judgments. We
WMT shared tasks, they are well-known for producfurther hypothesize that the learned metrics would
ing good translations. be robust against the qualities of the pseudo refer-

A metric is evaluated based on its Spearman rardnce MT systems.
correlation coefficient between the scores it gave to
the evaluative dataset and human assessments Tdre amount vs. types of training data Com-
the same data. The correlation coefficient is a re@aring the three metrics trained from single lan-
number between -1, indicating perfect negative coguage datasets against the metric trained from all
relations, and +1, indicating perfect positive correlaof WMTO06 dataset, we see that the learning process
tions. benefitted from the larger quantity of training exam-

Two standard reference-based metrics, BLEles. It may be the case that the MT systems for the
(Papineni et al., 2002) and METEOR (Banerjee anthree language pairs are at a similar stage of maturity
Lavie, 2005), are used for comparisons. BLEU isuch that the training instances are mutually helpful.
smoothed (Lin and Och, 2004), and it considers only
matching up to bigrams because this has higher coFhe role of a single human reference Our results
relations with human judgments than when highereinforce previous findings that metrics are more re-

orderedn-grams are included. liable when they have access to more than a sin-
gle human reference. Our experimental data sug-
5 Results gests that a single human reference often may not be

. . .__as reliable as using three pseudo references alone.
The full experimental comparisons are summarized:

in Table 1. Each cell shows the correlation coef: inally, the best correlations are achieved by using

ficient between the human judgments and a metr|t<):Oth human and pseudo references.

(column) that uses a particular kind of references )
(row) for some evaluation data set (block row). 6 Conclusion

The role of learning With the exception of the We have presented an empirical study on automatic
German-English data, the learned metrics had higheretrics for sentence-level MT evaluation with at
correlations with human judges than the baselinemost one human reference. We show that pseudo
which used standard metrics with a single humareferences from off-the-shelf MT systems can be
reference. On the other hand, results suggest thaged to augment the single human reference. Be-
pseudo references often also improve correlatiortmause they are imperfect, it is important to weigh the
for standard metrics. This may seem countetrustworthiness of these references through a train-
intuitive because we can easily think of cases img phase. The metric seems robust even when the
which pseudo references hurt standard metrics (e.@pplied to sentences from different systems of a later
use poor outputs as pseudo references). We hypotfear. These results suggest that multiple imperfect
T i . translations make informative comparison points in
Available from http://www.systransoft.com/ .
We note that Systran is also a participating system under evac'f-u[)plement to human references.
uation. Although Sys-Test will be deemed to be identical to
Sys-Ref, it will not automatically receive a high score becausg\cknowmdgmems

the measurement is weighted by whether Sys-Ref was reliable
during training. Furthermore, measurements between Sys-T Sh
and other pseudo-references will provide alternative evidenc(::.|s is work has been supported by NSF Grants IIS-
for the metric to consider. 0612791.
2http://www.google.com/language _tools/
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Eval. Data| Ref Type || METEOR | BLEU || SVM(de06) | SVM(es06)| SVM(fr06) | SVM(wmt06)

de 1HR 0.458 0.471
europarl 3PR 0.521* | 0.527* 0.422 0.403 0.480* 0.467
07 1HR+3PR| 0.535* | 0.547* 0.471 0.480* 0.477* 0.523*

de 1HR 0.290 0.333
news 3PR 0.400* | 0.400* 0.262 0.279 0.261 0.261
07 1HR+3PR| 0.432* | 0.417* 0.298 0.321 0.269 0.330

es 1HR 0.377 0.412
europarl 3PR 0.453* | 0.483* 0.336 0.453* 0.432* 0.456*
07 1HR+3PR| 0.491* | 0.503* 0.405 0.513* 0.483* 0.510*

es 1HR 0.317 0.332
news 3PR 0.320 0.317 0.393* 0.381* 0.426* 0.426*
07 1HR+3PR| 0.353* 0.325 0.429* 0.427* 0.380* 0.486*

fr 1HR 0.265 0.246
europarl 3PR 0.196 0.285* 0.270* 0.284* 0.355* 0.366*
07 1HR+3PR 0.221 0.290* 0.277* 0.324* 0.304* 0.381*

fr 1HR 0.226 0.280
news 3PR 0.356* | 0.383* 0.237 0.252 0.355* 0.373*
07 1HR+3PR| 0.374* | 0.394* 0.272 0.339* 0.319* 0.388*

Table 1: Correlation comparisons of metrics (columns) using different references (row): a single human reference
(1HR), 3 pseudo references (3PR), or all (LIHR+3PR). The type of training used for the regression-trained metrics
are specified in parentheses. For each evaluated corpus, correlations highsatttemd metric using one human
referenceare marked by an asterisk(*).
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Abstract

Automatic evaluation of machine translation
(MT) systems is an important research topic
for the advancement of MT technology. Most
automatic evaluation methods proposed to
date are score-based: they compute scores that
represent translation quality, and MT systems
are compared on the basis of these scores.

We advocate an alternative perspective of au-
tomatic MT evaluation based on ranking. In-
stead of producing scores, we directly produce
a ranking over the set of MT systems to be
compared. This perspective is often simpler
when the evaluation goal is system compari-
son. We argue that it is easier to elicit human
judgments of ranking and develop a machine
learning approach to train on rank data. We
compare this ranking method to a score-based
regression method on WMTO7 data. Results
indicate that ranking achieves higher correla-
tion to human judgments, especially in cases
where ranking-specific features are used.

1 Motivation

(Papineni et al., 2002) work by comparing MT out-
put with one or more human reference translations
and generating a similarity score. Methods differ by
the definition of similarity. For instance, BLEU and
ROUGE (Lin and Och, 2004) are based on n-gram
precisions, METEOR (Banerjee and Lavie, 2005)
and STM (Liu and Gildea, 2005) use word-class
or structural information, Kauchak (2006) leverages
on paraphrases, and TER (Snover et al., 2006) uses
edit-distances. Currently, BLEU is the most popu-
lar metric; it has been shown that it correlates well
with human judgments on the corpus level. How-
ever, finding a metric that correlates well with hu-
man judgments on the sentence-level is still an open
challenge (Blatz and others, 2003).

Machine learning approaches have been proposed
to address the problem of sentence-level evalua-
tion. (Corston-Oliver et al., 2001) and (Kulesza
and Shieber, 2004) train classifiers to discrim-
inate between human-like translations and auto-
matic translations, using features from the afore-
mentioned metrics (e.g. n-gram precisions). In con-
trast, (Albrecht and Hwa, 2007) argues for a re-

Automatic evaluation of machine translation (MT)gression approach that directly predicts human ad-
systems is an important research topic for the agquecy/fluency scores.
vancement of MT technology, since automatic eval- A|| the above methods are score-based in the
uation methods can be used to quickly determine thgnse that they generate a score for each MT system
(approximate) quality of MT system outputs. This ispytput. When the evaluation goal is to compare mul-
useful for tuning system parameters and for compafiple MT systems, scores are first generated inde-
ing different techniques in cases when human judgsendently for each system, then systems are ranked
ments for each MT output are expensivie to obtainpy their respective scores. We think that this two-
Many automatic evaluation methods have beegltep process may be unnecessarily complex. Why

proposed to date. Successful methods such as BLEjve a more difficult problem of predicting the qual-
Work supported by an NSF Graduate Research Fellowshifty of MT system outputs, when the goal is simply
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to compare systems? In this regard, we proposetask. Ranking vs. scoring approaches are compared
ranking-based approach that directly ranks a set @f Section 4.
MT systems without going through the intermediary
of system-specific scores. Our approach requires (8) Formulation of the Ranking Problem
training data in terms of human ranking judgments
of MT outputs, and (b) a machine learning algorithmyVe formulate the sentence-level MT evaluation
for learning and predicting rankings. problem as follows: Suppose there dreource sen-
The advantages of a ranking approach are: tences to be translated. gt ¢ = 1..7" be the set of
reference& Corresponding to each source sentence,
o Itis often easier for human judges to rank MTthere areV MT system outputs\™, n = 1..N and
outputs by preference than to assign absolutgs, (M, < N) human evaluations. The evaluations
scores (Vilar et al., 2007). This is because it isire represented dd;-dimensional label vectors,.
difficult to quantify the quality of a translation In a scoring approach, the elementsypimay cor-
accurately, but relative easy to tell which oneespond to, e.g. a fluency score on a scale of 1 to 5.
of several translations is better. Thus humanmn a ranking approach, they may correspond to rel-
annotated data based on ranking may be leggive scores that are used to represent ordering (e.g.
costly to acquire. y; = [6;1; 3] means that there are three outputs, and

) ] the first is ranked best, followed by third, then sec-
e The inter- and intra-annotator agreement f°6nd.)

ranking is much more reasonable than that of

scoring. For instance, Callison-Burch (2007}ure vectorswt”) from each pair ofr, and Ogn)-3

found the inter-annotator agreement (Kappa (n) o

for scoring fluency/adequency to be around M€ S€H{(z; ", y:)}i=1.7 forms the training set.
:22-.25, whereas the Kappa for ranking idn a s)corlng approach, we train a functignwith
around .37-.56. Thus human-annotated dat&(®:) =~ y'™. In a ranking approach, we train

based on ranking may be more reliable to use,/ such that higher-ranked outputs have higher func-
tion values. In the example above, we would want:

o As mentioned earlier, when the final goal off(z("=") > f(z{"=%) > f£(={"=?). Oncef is
the evaluation is comparing systems, rankingrained, it can be applied to rank any new data: this is
more directly solves the problem. A scoringdone by extracting features from references/outputs
approach essentially addresses a more difficudind sorting by function values.
problem of estimating MT output quality.

In order to do machine learning, we extract fea-

3 Implementation
Nevertheless, we note that score-based ap-

proaches remain important in cases when the a1 Sentence-level scoring and ranking

solute difference between MT quality is desired.W q ibe th icul . q K
For instance, one might wondby how mucltdoes e now describe the particular scoring and rank-

the top-ranked MT system outperform the secondnd implementations we examir\ed and submitted to
ranked system, in which case a ranking-based aHle WMT2008 Shared Evaluation task. In the scor-

proach provide no guidance Ing approach,f is trained using RegressionSVM
In the following, Section 2 formulates the(DrUCker and others, 1996); in the ra_nking ap-
sentence-level MT evaluation problem as a rankin roach, we examined RankSVM (Joachims, 2002)

problem; Section 3 explains a machine learning a| __nd RinkBolosft (Flr:{eund et' al.,Ss/C')\;B). (\jN; uslfg\j)lclly
proach for training and predicting rankings; this i Inéar kernels for Regression and Ran ’

our submission to the WMT2008 Shared EvaIuationhIIe allowed RankBoost to produce non-linear
based on a feature thresholds.

10ur ranking approach is similar to Ye et. al. (2007), who_____
was the first to advocate MT evaluation as a ranking problem. 2Here we assume single reference for ease of notation; this
Here we focus on comparing ranking vs. scoring approachesan be easily extended for multiple reference
which was not done in previous work. 30nly M; (not N) features vectors are extracted in practice.

192



ID Description 3.2 Corpusleve ranking
1-4 log of ngram precision, n=1..4
5 ratio of hypothesis and reference length
6-9 ngram precision, n=1..4

10-11 | hypothesis and reference length
12 BLEU

Sentence-level evaluation generates a ranking for
each source sentence. How does one produce
an overall corpus-level ranking based on a set of
sentence-level rankings? This is known as the
“consensus ranking” or “rank aggregation” prob-
13 Smooth BLEU lem, which can be NP-hard under certain formula-
14-20 | Intra-set features for ID 5-9, 12,13 tions (Meila et al., 2007). We use the FV heuristic

Table 1: Feature set: Features 1-5 can be combined (withligner and Verducci, 1988), which estimates the
uniform weights) to form the log(BLEU) score. Features€mpirical probability;; that system ranks above
6-11 are redundant statistics, but scaled differently- Feaystemyj from sentence-level rankings (i.€;; =
ture 12 is sentence-level BLEU; Feature 13 is a modifiedumber of sentences whereanks better tha, di-
version with add-1 count to each ngram precision (thigided by total number of sentences). The corpus-

avoids prevalent zeros). Features 14-20 are only availaqgvel ranking of systenis then defined a5_ , P,
in the ranking approach; they are derived by comparing g

different outputs within the same set to be ranked. 4 Experiments

For experiments, we split the provided development

The complete feature set is shown in Table 1. Wg5ta into train, dev, and test sets (see Table 2). The
restricted our feature set to traditional BLEU statisygtg split is randomized at the level of different eval-

tics since our experimental goal is to directly comyation tracks (e.g. en-es.test, de-en.test are differ-
pare regression, ranking, and BLEU. Features 14m tracks) in order to ensure that devitest are suffi-
20 are the only novel features proposed here. Wgently novel with respect to the training data. This

wanted to examine features that are enabled byj@important since machine learning approaches have
ranking approach, but not possible for a scoringne risk of overfitting and spreading data from the

approach. We thus introduce “intra-set features’same track to both train and test could lead to over-
which are statistics computed by observing the ersptimistic results.

tire set of existing features,cg")}n:l“ M,

For instance: We define Feature 14 by looking at Train Dev Test
the relative 1-gram precision (Feature 1) in the set ¢ff tracks 8 3 3
M, outputs. Feature 14 is set to value 1 for the out-# sets | 1504 (63%)| 514 (21%) | 390 (16%)
put which has the best 1-gram precision, and valug{@F Sent | 6528 (58%)| 2636 (23%)| 2079 (19%)

or:herW|1sef. Slrr\n llarly, Feat.ur:e f:1L 5 LS a b;nary Va”abl.erable 2: Data characteristics: the training data contains
that is 1 for the output with the best 2-gram preciy tracks, which contained 6528 sentence evaluations or

sion, and O for all others. The advantage of intra-seji504 sets of human rankingg & 1504).
features is calibration. e.g. If the outputs fqr,

all have relatively high BLEU compared to those |n the first experiment, we compared Regression
of 7—, the basic BLEU features will vary widely SVM and Rank SVM (both used Features 1-12) by
across the two sets, making it more difficult to fit &raining on varying amounts of training data. The
ranking function. On the other hand, intra-set feasentence-level rankings produced by each are com-
tures are of the same scal@,(l] in this case) across pared to human judgments using the Spearman rank
the two sets and therefore induce better margins. correlation coefficient (see Figure 1).

While we have only explored one particular in- In the second experiment, we compared all rank-
stantiation of intra-set features, many other defining and scoring methods discussed thus far. The full
tions are imaginable. Novel intra-set features is &aining set is used; the dev set is used to tune the
promising research direction; experiments indicateost parameter for the SVMs and number of itera-
that they are most important in helping ranking outtions for RankBoost, which is then applied without
perform regression. modification to the test set. Table 3 shows the aver-
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Data ablation results on Dev Set ‘

Feature| Dev | Test|

BLEU 1-5 14 | .05
Smoothed BLEU| 1-5 A9 | .24
Regression SVM 1-12 33 | .24
RankSVM 1-12 34 | .25
RankBoost 1-12 29 | .22
RankSVM 1-20 52 | 42
RankBoost 1-20 .51 | .38

Table 3: Average Spearman coefficients on Dev/Test. The
Figure 1: Ranking slightly outperforms Regression fointra-set features gave the most significant gains (e.g. .42
various amounts of training data. Regression results apn test of RankSVM). Refer to Table 1 to see what fea-
pear to be less stable, with a rise/fall in average Spedmures are used in each row. The SVM/RankBoost results
man coefficent around 20%, possibly because linear résr features 1-12 and 1-5 are similar; only those of 1-12
gression functions become harder to fit with more data.are reported.

age Spearman coefficient for different methods an@. Corston-Oliver, M. Gamon, and C. Brockett. 2001. A

different feature sets. There are several interesting machine learning approach to the automatic evaluation
observations: of machine translation. IACL.

' H. Drucker et al. 1996. Support vector regression ma-
1. BLEU performs poorly, but SmoothedBLEU is  chines. INNIPS

almost as good as the machine learning metill\d' Fligner and J. Verduccil. 1988.. Multlstage ranking
models.Journal of American Statistical Assp88.

ods that use same set of basic BLEU featuresy, rreynd, R. Iyer, R. Schapire, and Y. Singer. 2003. An
2. Rank SVM slightly outperforms RankBoost. efficient boosting method for combining preferences.

3. Regression SVM and Rank SVM gave simi-T %MLRHA 2002, Optimizi o , _
lar results under the same feature set. How- -oachims: - ptimizing search engines using
clickthrough data. IiKDD.

ever, Rank SVM gave significant improve-p. Kauchak and R. Barzilay. 2006. Paraphrasing for

ments when intra-set features are incorporated. automatic evaluation. INAACL-HLT
L . . ~ . A.Kulesza and S. Shieber. 2004. A learning approach to
The last observation is particularly important: it improving sentence-level mt evaluation. TMI.

shows that the training criteria differences betweeg.-Y. Lin and F. Och. 2004. Automatic evaluation of ma-
the ranking and regression is actually not critical. chine translation quality using longest common subse-
Ranking can outperform regression, but only when guence and skip-bigram statistics. AGL.

rankina-specific features are considered. Withou . Liuand D. Gildea. 2005. Syntactic features for eval-
g-sp ' uation of machine translation. KCL 2005 Wksp on

intra-set features, ranking methods may be suffering |insic/Extrinsic Evaluation for MT/Summarization
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Jedis Giménez and Lluis Marquez
TALP Research Center, LS| Department
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Abstract translations by comparing their respectivsadurse
. . representation structures (DRS), as provided by the
This document describes the approach by the  he C&C Tools (Clark and Curran, 2004). DRS are

NLP Group at the Technical University of Cat- : - ot ; .
alonia (UPC-LSI), for the shared task on Au- essentially a variation of first-order predicate calcu

tomatic Evaluation of Machine Translation at lus Wh',Ch can t.)e seen as 'Semantlc trees. We use
the ACL 2008 Third SMT Workshop. three different kinds of metrics:

_ DR-STM Semantic Tree Matching, a la Liu and
1 Introduction Gildea (2005), but over DRS instead of over

Our proposal is based on a rich set of individual constituency trees.

metrics operating at different linguistic levels: lex-pr-g,.-x Lexical overlapping over DRS.

ical (i.e., on word forms), shallow-syntactic (e.g., on

word lemmas, part-of-speech tags, and base phrdd®-O;p-x Morphosyntactic overlapping on DRS.
chunks), syntactic (e.g., on dependency and con- ) _ _
stituengy trﬁes), sh(allgw—semanrt)ic (e.g.,yon named I'ZUfther detalls\ on DR metrics can be found in
entities and semantic roles), and semantic (e.g., (ggmenez and Marquez, 2008b).

discourse representations). Although from differ- ¢
ent viewpoints, and based on different similarity as-

. . . Lo Metrics based on deep linguistic analysis rely on
sumptions, in all cases, translation quality is mea-

sured by comparing automatic translations againgltu t.omatlc processors trained on out-domain data,
. . \{VhICh may be, thus, prone to error. Indeed, we found
human references. Extensive details on the meo-ut that in manv cases. metrics are unable o pro

ric set may be found in the I technical manual y ' S P
(Giménez, 2007) duce a result due to the lack of linguistic analysis.
! N . For instance, in our experiments, for SR metrics, we

Apart from individual metrics, we have also .

found that the semantic role labeler was unable to

applied a simple integration scheme based on

uniformly-averaged linear metric combinations?2"S€ 14% of the sentences. In order to improve the

(Giménez and Marquez, 2008a). recgll of the;e met'rlcs,'w'e have _deS|gned' two simple
variants. Given a linguistic metrie, we define:

Improved Sentence Level Behavior

i 2
2 Whatis new? e xp, — by backing off to lexical overlapping,

The main novelty, with respect to the set of metrics Oy, only when the linguistic processor is not
presented last year (Giménez and Marquez, 2007), able to produce a linguistic analysis. Other-
is the incorporation of a novel family of metrics wise, z score is returned. Lexical scores are
at the properly semantic level DR metrics ana- conveniently scaled so that they are in a similar
lyze similarities between automatic and reference range to scores af. Specifically, we multiply
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them by the average score attained over all WMT 2006

other test cases for which the parser succeeded. in-domain || out-of-domain
2,000 cases 1,064 cases

e x; — by linearly interpolatinge andO; scores #snt | #sys | #snt | #sys
for all test cases, via the arithmetic mean. de-en| 2,281 10/12 | 1,444| 10/12

es-en| 1,852| 11/15| 1,008| 11/15
In both cases, system scores are calculated by av- | frren | 2,268| 11/14 || 1,281 | 11/14
eraging over all sentence scores. Currently, these

variants are applied only to SR and DR metrics. WMT 2007
in-domain out-of-domain
2.2 Uniform Linear Metric Combinations 2.000 cases|| 2,007 cases
We have simulated a non-parametric combination #snt | #sys || #snt | #sys
scheme based on human acceptability by working | de-en| 956 | 7/8 || 947 | 5/6
on uniformly averaged linear combinationgL(C) es-en| 812 | 8/10 | 675 | 7/9
of metrics (Giménez and Marquez, 2008a). Our ap- | frr-en | 624 | 7/8 741 717

roach is similar to that of Liu and Gildea (2007
P ( )Table 1: Test bed description. ‘#snt’ columns show the

except that in our case the contribution of each met- o
. . . number of sentences assessed (considering all systems).
ric to the overall score is not adjusted.

: _ _ __ '#sys’ columns shows the number of systems counting
Optimal metric sets are determined by maximizpn human assessments with respect to the total number

ing the correlation with human assessments, eithef systems which participated in each task.
at the document or sentence level. However, because
exploring all possible combinations was not viable, Metrics are evaluated in terms of human accent
we have used a simple algorithm which performs an, ...~ . . . P

. . : ability, i.e., according to their ability to capture
approximate search. First, metrics are ranked a

cording to their individual quality. Then, following tqne degree of acceptability to humans of automatic

that order, metrics are added to the optimal set On&anslat!ons. We measure .human gc_ceptablllty by
if in doing so the global quality increases. omputing Pearson correlation coefficients between

automatic metric scores and human assessments of
3 Experimental Work translation quality both at document and sentence
level. We use the sum of adequacy and fluency to
We use all into-English test beds from the 200&imulate a global assessment of quality. Assess-
and 2007 editions of the SMT workshop (Koehrments from different judges over the same test case
and Monz, 2006; Callison-Burch et al., 2007)are averaged into a single score.
These include the translation of three differ- o
ent language-pairs: German-to-English (de-enp-1 Individual Performance
Spanish-to-English (es-en), and French-to-Englishn first place, we study the behavior of individual
(fr-en), over two different scenarios: in-domain (Eumetrics. Table 2 shows meta-evaluation results, over
ropean Parliament Proceedings) and out-of-domainto-English WMT 2007 test beds, -tiomain and
(News Commentary Corpus)In all cases, a single out-of-domain, both at the system and sentence lev-
reference translation is available. In addition, huels, for a set of selected representatives from several
man assessments on adequacy and fluency are avhilguistic levels.
able for a subset of systems and sentences. Eachat the system level (columns 1-6), corroborating
sentence has been evaluated at least by two differgsyevious findings by Giménez and Marquez (2007),
judges. A brief numerical description of these teshighest levels of correlation are attained by met-
beds is available in Table 1. rics based on deep linguistic analysis (either syn-
" We have not used the out-of-domain Czech-to-English teé?cnc or semantic). In particular, two kinds of met-

bed from the 2007 shared task because it includes only 4 sydCS, respectively paSEd on h?ad‘Word Ch"_iin match-
tems, and only 3 of them count on human assessments. ing over grammatical categories and relatioms>(
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System Level Sentence Level

de-en es-en fr-en de-en es-en fr-en

Level Metric in out in out in out in out in out in out
1-TER 0.64 | 041 0.83| 0.58| 0.72| 0.47| 0.43 | 0.29 || 0.23 | 0.23 0.29 | 0.20

BLEU 0.87 | 0.76 || 0.88 | 0.70|| 0.74 | 0.54 | 0.46 | 0.27 || 0.33 | 0.20 0.20 | 0.12

Lexical GTM(e=2) || 0.82 | 0.69|| 0.93| 0.71|| 0.76 | 0.60 || 0.56 | 0.36 || 0.43 | 0.33 || 0.27 | 0.18
ROUGEy 0.87 | 091 096 | 0.78|| 0.85| 0.83| 0.58 | 0.40 | 0.43| 0.35 0.30 | 0.31
METEOR, 0.83 | 092 096 | 0.74| 091 | 0.86| 053 | 041 | 0.35| 0.28 0.33 | 0.32

O, 0.79 | 0.75|| 0.91| 055 0.81| 0.66 || 0.48 | 0.33 || 0.35| 0.30 || 0.30 | 0.21

CP-O.-* 0.84 | 0.88| 0.95| 0.62 | 0.84| 0.76 || 0.49 | 0.37 || 0.38| 0.33 || 0.32 | 0.25

DP-HWC,-4 || 0.85 | 0.93| 0.96 | 0.68 | 0.84| 0.80| 0.31 | 0.26 || 0.33 | 0.07 || 0.10 | 0.14
Syntactic | DP-HWC.-4 091 | 098 096 | 090 0.98| 0.95| 0.30 | 0.25| 0.23| 0.06 || 0.13 | 0.12
DP-HWC,.-4 0.89 | 0.97| 0.97| 092 0.97| 0.95| 0.33 | 0.28 || 0.29 | 0.08 || 0.16 | 0.16

DP-O,-% 0.88 | 0.96 | 0.97 | 0.84| 0.89| 0.89| 0.57 | 0.41 | 0.44| 0.36 || 0.33 | 0.30
CP-STM-4 0.88 | 0.97 || 0.97 | 0.79|| 0.89| 0.89 | 0.49 | 0.39 || 0.40 | 0.37 || 0.32 | 0.26
NE-M.-x -0.13 | 0.79 || 0.95| 0.68 || 0.87| 0.92 || -0.03 | 0.07 | 0.07 | -0.05 || 0.05 | 0.06
NE-Oc-*x -0.18 | 0.78 || 0.95| 0.58 || 0.81| 0.71|| 0.32 | 0.26 || 0.37 | 0.26 || 0.31 | 0.20
SR-O,-x 0.55| 096 | 094 | 069 0.89| 0.85| 0.26 | 0.14 || 0.30| 0.11 || 0.08 | 0.19
SR-Or-%p 0.24 | 098 | 094 | 068 092 | 0.87| 0.33 | 0.21 || 0.35| 0.15 | 0.18 | 0.24
Shallow | SR-Or-x; 0.51| 095 0.93| 0.67| 0.88| 0.83| 0.37 | 0.26 || 0.38 | 0.19 || 0.24 | 0.27
Semantic | SR-M,-x 0.38 | 0.95| 0.96 | 0.83| 0.79| 0.75| 0.32 | 0.18 || 0.28 | 0.18 || 0.08 | 0.14
SR-M;-%p 0.14 | 0.98 | 0.97 | 0.82| 0.84| 0.79| 0.37 | 0.23 || 0.32| 0.21 || 0.15 | 0.17
SR-M-; 0.38 | 0.94| 0.96 | 0.80| 0.79| 0.74| 0.40 | 0.27 || 0.36 | 0.24 || 0.20 | 0.20
SRO; 0.73 | 0.99| 0.94| 0.66 | 0.97| 0.93| 0.12 | 0.09 || 0.16 | 0.07 || -0.04 | 0.17
SRO; 0.66 | 0.99| 094 | 0.64| 0.95| 0.89| 0.29 | 0.25 || 0.29| 0.19 || 0.15 | 0.28
DR-O,-% 0.87 | 0.89| 0.96 | 0.71| 0.78 | 0.75| 0.50 | 0.40 || 0.37 | 0.35 | 0.27 | 0.28
DR-O-*y 091 | 093 0.97| 0.72| 0.83| 0.80| 0.52 | 0.41 | 0.38| 0.34 || 0.28 | 0.27
DR-Oy-%; 0.87 | 0.87| 0.96 | 0.68| 0.79| 0.74| 053 | 0.42 | 0.39| 0.35 | 0.30 | 0.28
DR-Oyp-x 092 | 098 099 | 081 091|089 0.42 | 0.32| 0.29| 0.25 | 0.21 | 0.30

Semantic | DR-Orp-%y 093 | 098 099 | 081 094 | 091 0.45 | 0.34| 0.32| 0.22 || 0.22 | 0.30
DR-O,p-%; 091 | 095 0.98| 0.75| 0.89 | 0.85| 0.50 | 0.38 || 0.36 | 0.28 || 0.27 | 0.33
DR-STM-4 0.89 | 095| 0.98| 0.79| 0.85| 0.87| 0.28 | 0.29 || 0.25| 0.21 || 0.15 | 0.22
DR-STM-4, 0.92 | 097 0.98| 0.80| 0.90| 0.91| 0.36 | 0.31 || 0.29| 0.21 || 0.19 | 0.23
DR-STM-4; 091 | 094 097 | 0.74| 0.87| 0.86| 043 | 0.35| 0.34| 0.26 || 0.24 | 0.27

Optimabr 0.93 | 1.00| 0.99| 092 0.98| 0.95| 0.60 | 0.46 || 0.47 | 0.42 || 0.36 | 0.39
Optimabe 001 | 0.95| 0.96 | 0.75| 0.97 | 0.87| 0.50 | 0.41 || 0.40 | 0.20 || 0.27 | 0.30
ULC Optimakor 0.93 | 098 0.99| 081 094 | 091| 058 | 0.45| 0.46| 0.39 || 0.35 | 0.34
Optimakoe 034 | 0.96| 0.98| 0.82| 0.92| 0.93| 054 | 0.41 || 0.42| 0.32 || 0.32 | 0.34
Optimal, 0.87 | 0.98| 0.97| 0.79| 091 | 0.89| 0.56 | 0.44 || 0.43| 0.32 || 0.31 | 0.35

Table 2: Meta-evaluation results based on human acceipydbil the WMT 2007 into-English translation tasks

HWC.-4', ‘DP-HWC,-4’), and morphosyntactic over- resentations'DR-O,-x"). We speculate the underly-
lapping over discourse representatiomR{O,,-+'), ing cause might be on the side of parsing errors. In
are consistently among the top-scoring in all teghat respect, lexical back-off strategies report in all
beds. At the lexical level, variants ®OUGE and cases a significant improvement.
METEOR attain the best results, close to the perfor- |t can also be observed that, over these test beds,
mance of syntactic and semantic features. It can al$getrics based on named entities are completely use-
be observed that metrics based on semantic rolgss at the sentence level, at least in isolation. The
and named entities have serious troubles with th@zson is that they capture a very partial aspect of
German-to-English in-domain test bed (column 1).quality which may be not relevant in many cases.
At the sentence level, the highest levels of correThis has been verified by computing the¢E-O.-
lation are attained by metrics based on lexical simix«’ variant which considers also lexical overlapping
larity alone, only rivaled by lexical overlapping overover regular items. Observe how this metric attains
dependency relation®DP-0,.-x') and discourse rep- a much higher correlation with human assessments.
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3.2 Metric Combinations For future work, we plan to apply parametric

We also study the behavior of metric combinationg_o_rnbination schemes based on human I'ikeness clas-
under theULC scheme. Last 5 rows in Table 2S|f|ers, as suggested by Kulesza and Shieber (2004).

shows meta-evaluation results following 3 differeane must also further investigate the wppact of pars-
optimization strategies: ing errors on the performance of linguistic metrics.
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Abstract

In recent years, the quantity of parallel train-
ing data available for statistical machine trans-
lation has increased far more rapidly than
the performance of individual computers, re-
sulting in a potentially serious impediment
to progress. Parallelization of the model-
building algorithms that process this data on
computer clusters is fraught with challenges
such as synchronization, data exchange, and
fault tolerance. However, the MapReduce
programming paradigm has recently emerged
as one solution to these issues: a powerful
functional abstraction hides system-level de-
tails from the researcher, allowing programs to
be transparently distributed across potentially
very large clusters of commodity hardware.
We describe MapReduce implementations of
two algorithms used to estimate the parame-
ters for two word alignment models and one
phrase-based translation model, all of which
rely on maximum likelihood probability esti-
mates. On a 20-machine cluster, experimental
results show that our solutions exhibit good
scaling characteristics compared to a hypo-
thetical, optimally-parallelized version of cur-
rent state-of-the-art single-core tools.

1 Introduction

Like many other NLP problems, output quality of
statistical machine translation (SMT) systems in-
creases with the amount of training data. Brants et
al. (2007) demonstrated that increasing the quantity
of training data used for language modeling signifi-
cantly improves the translation quality of an Arabic-
English MT system, even with far less sophisticated
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backoff models. However, the steadily increas-
ing quantities of training data do not come with-
out cost. Figure 1 shows the relationship between
the amount of parallel Arabic-English training data
used and both the translation quality of a state-of-
the-art phrase-based SMT system and the time re-
quired to perform the training with the widely-used
Moses toolkit on a commodity server.! Building
a model using 5M sentence pairs (the amount of
Arabic-English parallel text publicly available from
the LDC) takes just over two days.? This represents
an unfortunate state of affairs for the research com-
munity: excessively long turnaround on experiments
is an impediment to research progress.

It is clear that the needs of machine translation re-
searchers have outgrown the capabilities of individ-
ual computers. The only practical recourse is to dis-
tribute the computation across multiple cores, pro-
cessors, or machines. The development of parallel
algorithms involves a number of tradeoffs. First is
that of cost: a decision must be made between “ex-
otic” hardware (e.g., large shared memory machines,
InfiniBand interconnect) and commodity hardware.
There is significant evidence (Barroso et al., 2003)
that solutions based on the latter are more cost ef-
fective (and for resource-constrained academic in-
stitutions, often the only option).

Given appropriate hardware, MT researchers
must still contend with the challenge of developing
software. Quite simply, parallel programming is dif-
ficult. Due to communication and synchronization

"http://www.statmt.org/moses/
2All single-core timings reported in this paper were per-
formed on a 3GHz 64-bit Intel Xeon server with 8GB memory.
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Figure 1: Translation quality and training time as a func-
tion of corpus size.

issues, concurrent operations are notoriously chal-
lenging to reason about. In addition, fault tolerance
and scalability are serious concerns on commodity
hardware prone to failure. With traditional paral-
lel programming models (e.g., MPI), the developer
shoulders the burden of handling these issues. As a
result, just as much (if not more) effort is devoted to
system issues as to solving the actual problem.

Recently, Google’s MapReduce framework (Dean
and Ghemawat, 2004) has emerged as an attractive
alternative to existing parallel programming models.
The MapReduce abstraction shields the programmer
from having to explicitly worry about system-level
issues such as synchronization, data exchange, and
fault tolerance (see Section 2 for details). The run-
time is able to transparently distribute computations
across large clusters of commodity hardware with
good scaling characteristics. This frees the program-
mer to focus on actual MT issues.

In this paper we present MapReduce implementa-
tions of training algorithms for two kinds of models
commonly used in statistical MT today: a phrase-
based translation model (Koehn et al., 2003) and
word alignment models based on pairwise lexi-
cal translation trained using expectation maximiza-
tion (Dempster et al., 1977). Currently, such models
take days to construct using standard tools with pub-
licly available training corpora; our MapReduce im-
plementation cuts this time to hours. As an benefit
to the community, it is our intention to release this
code under an open source license.

It is worthwhile to emphasize that we present
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these results as a “sweet spot” in the complex design
space of engineering decisions. In light of possible
tradeoffs, we argue that our solution can be consid-
ered fast (in terms of running time), easy (in terms
of implementation), and cheap (in terms of hard-
ware costs). Faster running times could be achieved
with more expensive hardware. Similarly, a custom
implementation (e.g., in MPI) could extract finer-
grained parallelism and also yield faster running
times. In our opinion, these are not worthwhile
tradeoffs. In the first case, financial constraints
are obvious. In the second case, the programmer
must explicitly manage all the complexities that
come with distributed processing (see above). In
contrast, our algorithms were developed within a
matter of weeks, as part of a “cloud computing”
course project (Lin, 2008). Experimental results
demonstrate that MapReduce provides nearly opti-
mal scaling characteristics, while retaining a high-
level problem-focused abstraction.

The remainder of the paper is structured as fol-
lows. In the next section we provide an overview of
MapReduce. In Section 3 we describe several gen-
eral solutions to computing maximum likelihood es-
timates for finite, discrete probability distributions.
Sections 4 and 5 apply these techniques to estimate
phrase translation models and perform EM for two
word alignment models. Section 6 reviews relevant
prior work, and Section 7 concludes.

2 MapReduce

MapReduce builds on the observation that many
tasks have the same basic structure: a computation is
applied over a large number of records (e.g., parallel
sentences) to generate partial results, which are then
aggregated in some fashion. The per-record compu-
tation and aggregation function are specified by the
programmer and vary according to task, but the ba-
sic structure remains fixed. Taking inspiration from
higher-order functions in functional programming,
MapReduce provides an abstraction at the point of
these two operations. Specifically, the programmer
defines a “mapper” and a “reducer”” with the follow-
ing signatures (square brackets indicate a list of ele-
ments):

map: (k1,v1) — [(ko, v2)]
reduce: (kao, [v2]) — [(k3,v3)]
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Figure 2: Illustration of the MapReduce framework: the
“mapper” is applied to all input records, which generates
results that are aggregated by the “reducer”.

Key/value pairs form the basic data structure in
MapReduce. The “mapper” is applied to every input
key/value pair to generate an arbitrary number of in-
termediate key/value pairs. The “reducer” is applied
to all values associated with the same intermediate
key to generate output key/value pairs. This two-
stage processing structure is illustrated in Figure 2.

Under this framework, a programmer need only
provide implementations of map and reduce. On top
of a distributed file system (Ghemawat et al., 2003),
the runtime transparently handles all other aspects
of execution, on clusters ranging from a few to a few
thousand workers on commodity hardware assumed
to be unreliable, and thus is tolerant to various faults
through a number of error recovery mechanisms.
The runtime also manages data exchange, includ-
ing splitting the input across multiple map workers
and the potentially very large sorting problem be-
tween the map and reduce phases whereby interme-
diate key/value pairs must be grouped by key.

For the MapReduce experiments reported in this
paper, we used Hadoop version 0.16.0,> which is
an open-source Java implementation of MapRe-
duce, running on a 20-machine cluster (1 master,
19 slaves). Each machine has two processors (run-
ning at either 2.4GHz or 2.8GHz), 4GB memory
(map and reduce tasks were limited to 768MB), and
100GB disk. All software was implemented in Java.

3http://hadoop.apache.org/
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Method 1

Mapl <AvB> - <<A7B>71>

Reduce; | ((A, B),c(4, B))

Map2 <<A’B>7C(A7B)> - <<A7*>7C(AaB)>
Reduces | ((A,),c(A))

Maps ({A,B),c(A,B)) — (A, (B, c(A, B)))
Reduces | (4, (B, C(C?}ﬁ) ))

Method 2

Map; <AvB> - <<A7 >71>§<<Av*>71>
Reduce; | ((A, B), C(c?,f)})>

Method 3

Map; (A,B;) — (A, (B; : 1))

Reduce; | (A, (B : C(Q’zl)% (B : C(ﬁ’,f)?)> )

Table 1: Three methods for computing Pyrg(B|A).
The first element in each tuple is a key and the second
element is the associated value produced by the mappers
and reducers.

3 Maximum Likelihood Estimates

The two classes of models under consideration are
parameterized with conditional probability distribu-
tions over discrete events, generally estimated ac-
cording to the maximum likelihood criterion:

B ¢(A, B) B ¢(A, B)
- o4) YA B)

Since this calculation is fundamental to both ap-
proaches (they distinguish themselves only by where
the counts of the joint events come from—in the case
of the phrase model, they are observed directly, and
in the case of the word-alignment models they are
the number of expected events in a partially hidden
process given an existing model of that process), we
begin with an overview of how to compute condi-
tional probabilities in MapReduce.

We consider three possible solutions to this prob-
lem, shown in Table 1. Method 1 computes the count
for each pair (A, B), computes the marginal c¢(A),
and then groups all the values for a given A together,
such that the marginal is guaranteed to be first and
then the pair counts follow. This enables Reducers
to only hold the marginal value in memory as it pro-
cesses the remaining values. Method 2 works simi-
larly, except that the original mapper emits two val-
ues for each pair (A, B) that is encountered: one that

Pryre(BlA) e))



will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of a/l the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal ¢(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P(B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many (A, B) pairs into a single value
before the key/value pair leaves for the reducer.* If
the underlying distribution from which pairs (A, B)
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

“Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).
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Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include (vi, ¢ saw),
(la. mesa pequena, the small table), and

(mesa pequena, small table); but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P(B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.
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Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs (g, f) and computing the conditional
phrase translation probabilities in both directions.’
With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P(B|A)
and P(A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in % of the time
required for the single-core version on our cluster.

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-

Following Och and Ney (2002), it is customary to combine
both these probabilities as feature values in a log-linear model.

%1n our cluster, only 19 machines actually compute, and each
has two single-core processors.
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dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P(fjle;) where each word f; in the foreign sentence
f{" is generated by precisely one word e; in the sen-
tence e}, independently of the other translation de-
cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (a* in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for f{", the translation
probability is defined as follows:

P(f{"le}) = e})

> P af
af"

m
= ZP |€llaf1 H (filea;)

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

m
ayt = argmaxP ael, fm) H (filea,)

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P(a}"|€}, fi) is uniform
over all possible alignments.

2. The HMM
P(af*|e}, fi") =

alignment model where

[T5%, P(ajlaj-1).



Estimating the parameters for these models is more
difficult (and more computationally expensive) than
with the models considered in the previous section:
rather than simply being able to count the word pairs
and alignment relationships and estimate the mod-
els directly, we must use an existing model to com-
pute the expected counts for all possible alignments,
and then use these counts to update the new model.”
This training strategy is referred to as expectation-
maximization (EM) and is guaranteed to always im-
prove the quality of the prior model at each iteration
(Brown et al., 1993; Dempster et al., 1977).

Although it is necessary to compute a sum over all
possible alignments, the independence assumptions
made in these models allow the total probability of
generating a particular observation to be efficiently
computed using dynamic programming.® The HMM
alignment model uses the forward-backward algo-
rithm (Baum et al., 1970), which is also an in-
stance of EM. Even with dynamic programming,
this requires O(SIm) operations for Model 1, and
O(SIm?) for the HMM model, where m and [ are
the average lengths of the foreign and English sen-
tences in the training corpus, and S is the number of
sentences. Figure 6 shows measurements of the av-
erage iteration run-time for Model 1 and the HMM
alignment model as implemented in Giza++ (Och
and Ney, 2003), a state-of-the-art C++ implemen-
tation of the IBM and HMM alignment models that
is widely used. Five iterations are generally neces-
sary to train the models, so the time to carry out full
training of the models is approximately five times the
per-iteration run-time.

5.1 EM with MapReduce

Expectation-maximization algorithms can be ex-
pressed quite naturally in the MapReduce frame-
work (Chu et al., 2006). In general, for discrete gen-
erative models, mappers iterate over the training in-
stances and compute the partial expected counts for
all the unobservable events in the model that should

"For the first iteration, when there is no prior model, a
heuristic, random, or uniform distribution may be chosen.

8For IBM Models 3-5, which are not our primary focus, dy-
namic programming is not possible, but the general strategy for
computing expected counts from a previous model and updat-
ing remains identical and therefore the techniques we suggest
in this section are applicable to those models as well.
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Figure 6: Per-iteration average run-times for Giza++ im-
plementations of Model 1 and HMM training on corpora
of various sizes.

be associated with the given training instance. Re-
ducers aggregate these partial counts to compute
the total expected joint counts. The updated model
is estimated using the maximum likelihood crite-
rion, which just involves computing the appropri-
ate marginal and dividing (as with the phrase-based
models), and the same techniques suggested in Sec-
tion 3 can be used with no modification for this
purpose. For word alignment models, Method 3
is possible since word pairs distribute according to
Zipf’s law (meaning there is ample opportunity for
the combiners to combine records), and the number
of parameters for P(e|f; = f) is at most the num-
ber of items in the vocabulary of F, which tends to
be on the order of hundreds of thousands of words,
even for large corpora.

Since the alignment models we are considering
are fundamentally based on a lexical translation
probability model, i.e., the conditional probability
distribution P(e|f), we describe in some detail how
EM updates the parameters for this model.” Using
the model parameters from the previous iteration (or
starting from an arbitrary or heuristic set of param-
eters during the first iteration), an expected count is
computed for every [ x m pair (e;, f;) for each par-
allel sentence in the training corpus. Figure 7 illus-

° Although computation of expected count for a word pair
in a given training instance obviously depends on which model
is being used, the set of word pairs for which partial counts are
produced for each training instance, as well as the process of ag-
gregating the partial counts and updating the model parameters,
is identical across this entire class of models.
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Figure 7: Each cell in (a) contains the expected counts for
the word pair (e;, f;). In (b) the example training data is
marked to show which training instances contribute par-
tial counts for the pair (house, maison).
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Figure 8: Average per-iteration latency to train HMM
and Model 1 using the MapReduce EM trainer, compared
to an optimal parallelization of Giza++ across the same
number of processors.

trates the relationship between the individual train-
ing instances and the global expected counts for a
particular word pair. After collecting counts, the
conditional probability P(f|e) is computed by sum-
ming over all columns for each f and dividing. Note
that under this training regime, a non-zero probabil-
ity P(f;|e;) will be possible only if e; and f; co-
occur in at least one training instance.

5.2 Experimental Results

Figure 8 shows the timing results of the MapReduce
implementation of Model 1 and the HMM alignment
model. Similar to the phrase extraction experiments,
we show as reference the running time of a hy-
pothetical, optimally-parallelized version of Giza++
on our cluster (i.e., values in Figure 6 divided by
38). Whereas in the single-core implementation the
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added complexity of the HMM model has a signif-
icant impact on the per-iteration running time, the
data exchange overhead dominates in the perfor-
mance of both models in a MapReduce environment,
making running time virtually indistinguishable. For
these experiments, after each EM iteration, the up-
dated model parameters (which are computed in a
distributed fashion) are compiled into a compressed
representation which is then distributed to all the
processors in the cluster at the beginning of the next
iteration. The time taken for this process is included
in the iteration latencies shown in the graph. In fu-
ture work, we plan to use a distributed model repre-
sentation to improve speed and scalability.

6 Related work

Expectation-maximization algorithms have been
previously deployed in the MapReduce framework
in the context of several different applications (Chu
et al., 2006; Das et al., 2007; Wolfe et al., 2007).
Wolfe et al. (2007) specifically looked at the perfor-
mance of Model 1 on MapReduce and discuss how
several different strategies can minimize the amount
of communication required but they ultimately ad-
vocate abandoning the MapReduce model. While
their techniques do lead to modest performance im-
provements, we question the cost-effectiveness of
the approach in general, since it sacrifices many of
the advantages provided by the MapReduce envi-
ronment. In our future work, we instead intend to
make use of an approach suggested by Das et al.
(2007), who show that a distributed database run-
ning in tandem with MapReduce can be used to
provide the parameters for very large mixture mod-
els efficiently. Moreover, since the database is dis-
tributed across the same nodes as the MapReduce
jobs, many of the same data locality benefits that
Wolfe et al. (2007) sought to capitalize on will be
available without abandoning the guarantees of the
MapReduce paradigm.

Although it does not use MapReduce, the MTTK
tool suite implements distributed Model 1, 2 and
HMM training using a “home-grown” paralleliza-
tion scheme (Deng and Byrne, 2006). However, the
tool relies on a cluster where all nodes have access to
the same shared networked file storage, a restriction
that MapReduce does not impose.



There has been a fair amount of work inspired by
the problems of long latencies and excessive space
requirements in the construction of phrase-based
and hierarchical phrase-based translation models.
Several authors have advocated indexing the train-
ing data with a suffix array and computing the nec-
essary statistics during or immediately prior to de-
coding (Callison-Burch et al., 2005; Lopez, 2007).
Although this technique works quite well, the stan-
dard channel probability P(f|€) cannot be com-
puted, which is not a limitation of MapReduce.!?

7 Conclusions

We have shown that an important class of model-
building algorithms in statistical machine transla-
tion can be straightforwardly recast into the MapRe-
duce framework, yielding a distributed solution
that is cost-effective, scalable, robust, and exact
(i.e., doesn’t resort to approximations). Alterna-
tive strategies for parallelizing these algorithms ei-
ther impose significant demands on the developer,
the hardware infrastructure, or both; or, they re-
quire making unwarranted independence assump-
tions, such as dividing the training data into chunks
and building separate models. We have further
shown that on a 20-machine cluster of commodity
hardware, the MapReduce implementations have ex-
cellent performance and scaling characteristics.
Why does this matter? Given the difficulty of im-
plementing model training algorithms (phrase-based
model estimation is difficult because of the size of
data involved, and word-based alignment models are
a challenge because of the computational complex-
ity associated with computing expected counts), a
handful of single-core tools have come to be widely
used. Unfortunately, they have failed to scale with
the amount of training data available. The long la-
tencies associated with these tools on large datasets
imply that any kind of experimentation that relies on
making changes to variables upstream of the word
alignment process (such as, for example, altering the
training data f — f’, building a new model P(f’|e),
and reevaluating) is severely limited by this state of
affairs. It is our hope that by reducing the cost of this
"It is an open question whether the channel probability
and inverse channel probabilities are both necessary. Lopez

(2008) presents results suggesting that P(f|€) is not necessary,
whereas Subotin (2008) finds the opposite.
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these pieces of the translation pipeline, we will see a
greater diversity of experimental manipulations. To-
wards that end, we intend to release this code under
an open source license.

For our part, we plan to continue pushing the lim-
its of current word alignment models by moving to-
wards a distributed representation of the model pa-
rameters used in the expectation step of EM and
abandoning the compiled model representation. Fur-
thermore, initial experiments indicate that reorder-
ing the training data can lead to better data local-
ity which can further improve performance. This
will enable us to scale to larger corpora as well as
to explore different uses of translation models, such
as techniques for processing comparable corpora,
where a strict sentence alignment is not possible un-
der the limitations of current tools.

Finally, we note that the algorithms and tech-
niques we have described here can be readily ex-
tended to problems in other areas of NLP and be-
yond. HMMs, for example, are widely used in
ASR, named entity detection, and biological se-
quence analysis. In these areas, model estimation
can be a costly process, and therefore we believe
this work will be of interest for these applications
as well. It is our expectation that MapReduce will
also provide solutions that are fast, easy, and cheap.
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Abstract

This paper presents a technique for class-
dependent decoding for statistical machine
translation (SMT). The approach differs from
previous methods of class-dependent transla-
tion in that the class-dependent forms of all
models are integrated directly into the decod-
ing process. We employ probabilistic mixture
weights between models that can change dy-
namically on a segment-by-segment basis
depending on the characteristics of the source
segment. The effectiveness of this approach is
demonstrated by evaluating its performance
on travel conversation data. We used the ap-
proach to tackle the translation of questions
and declarative sentences using class-
dependent models. To achieve this, our system
integrated two sets of models specifically built
to deal with sentences that fall into one of two
classes of dialog sentence: questions and dec-
larations, with a third set of models built to
handle the general class. The technique was
thoroughly evaluated on data from 17 lan-
guage pairs using 6 machine translation
evaluation metrics. We found the results were
corpus-dependent, but in most cases our sys-
tem was able to improve translation perform-
ance, and for some languages the improve-
ments were substantial.

1 Introduction

Topic-dependent modeling has proven to be an
effective way to improve quality the quality of
models in speech recognition (Iyer and Osendorf,
1994; Carter, 1994). Recently, experiments in the
field of machine translation (Hasan and Ney, 2005;
Yamamoto and Sumita, 2007; Finch et al. 2007,
Foster and Kuhn, 2007) have shown that class-
specific models are also useful for translation.

+ National Institute for Science and Technology
1 Advanced Telecommunications Research Laboratories

208

Eiichiro SUMITA
NICTT-ATR#
Kyoto, Japan

eiichiro.sumitalatr.jp

In the method proposed by Yamamoto and Su-
mita (2007), topic dependency was implemented
by partitioning the data into sets before the decod-
ing process commenced, and subsequently decod-
ing these sets independently using different models
that were specific to the class predicted for the
source sentence by a classifier that was run over
the source sentences in a pre-processing pass. Our
approach is in many ways a generalization of this
work. Our technique allows the use of multiple-
model sets within the decoding process itself. The
contributions of each model set can be controlled
dynamically during the decoding through a set of
interpolation weights. These weights can be
changed on a sentence-by-sentence basis. The pre-
vious approach is, in essence, the case where the
interpolation weights are either 1 (indicating that
the source sentence is the same topic as the model)
or 0 (the source sentence is a different topic). One
advantage of our proposed technique is that it is a
soft approach. That is, the source sentence can be-
long to multiple classes to varying degrees. In this
respect our approach is similar to that of Foster and
Kuhn (2007), however we used a probabilistic
classifier to determine a vector of probabilities rep-
resenting class-membership, rather than distance-
based weights. These probabilities were used di-
rectly as the mixture weights for the respective
models in an interpolated model-set. A second dif-
ference between our approach and that of Foster
and Kuhn, is that we include a general model built
from all of the data along with the set of class-
specific models.

Our approach differs from all previous ap-
proaches in the models that are class-dependent.
Hasan and Ney (2005) used only a class-dependent
language model. Both Yamamoto and Sumita
(2007) and Foster and Kuhn (2007), extended this
to include the translation model. In our approach
we combine all of the models, including the distor-
tion and target length models, in the SMT system
within a single framework.

The contribution of this paper is two-fold. The
first is the proposal of a technique for combining
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allow probabilistic soft weighting between topic-
dependent models for all models in the system.
The second is the application of this technique to
improve the quality of dialog systems by building
and combing class-based models for interrogative
and declarative sentences.

For the purposes of this paper, we wish to make
the distinction between interrogative sentences and
those which are not. For the sake of simplicity of
expression we will call those sentences which are
interrogative, questions and those which are not,
declarations for the remainder of this article.

The techniques proposed here were evaluated on
a variety of different languages. We enumerate
them below as a key: Arabic (ar), Danish (da),
German (de), English (en), Spanish (es), French
(fr), Indonesian (Malay) (id), Italian (it), Japanese
(ja), Korean (ko), Malaysian (Malay) (ms), Dutch
(nl), Portugese (pt), Russian (ru), Thai (th), Viet-
namese (vi) and Chinese (zh).

2 System Overview
2.1 Experimental Data

To evaluate the proposed technique, we conducted
experiments on a travel conversation corpus. The
experimental corpus was the travel arrangement
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Figure 1. The architecture of the class-based SMT system used in our experiments
multiple SMT systems in a weighted manner to  task of the BTEC corpus (Kikui et al., 2003) and

used English as the target and each of the other
languages as source languages. The training, de-
velopment, and evaluation corpus statistics are
shown in Table 1. The evaluation corpus had six-
teen reference translations per sentence. This train-
ing corpus was also used in the IWSLT06 Evalua-
tion Campaign on Spoken Language Translation
(Paul 2006) J-E open track, and the evaluation cor-
pus was used as the IWSLTO5 evaluation set.

2.2 System Architecture

Figure 1 shows the overall structure of our system.
We used punctuation (a sentence-final ‘?” charac-
ter) on the target-side as the ground truth as to the
class of the target sentence. Neither punctuation
nor case information was used for any other pur-
pose in the experiments. The data were partitioned
into classes, and further sub-divided into training
and development sets for each class. 1000 sen-
tences were set aside as development data, and the
remainder was used for training. Three complete
SMT systems were built: one for each class, and
one on the data from both classes. A probabilistic
classifier (described in the next section) was also
trained from the full set of training data.

The machine translation decoder used is able to
linearly interpolate all of the models models from



Questions + Decls. Questions Declarations Test

Train Dev Train Dev Train Dev
Sentences 161317 1000 69684 1000 90633 1000 510
Words 1001671 6112 445676 6547 549375 6185 3169

Table 1. The corpus statistics of the target language corpus (en). The number of sentences is the same as
these values for all source languaes. The number of words in the source language differs, and depends

on the segmentation granularity.

all of the sub-systems according to a vector of in-
terpolation weights supplied for each source word
sequence to be decoded. To do this, prior to the
search, the decoder must first merge the phrase-
tables from each sub-system. Every phrase from all
of the phrase-tables is used during the decoding.
Phrases that occur in one sub-system’s table, but
do not occur in another sub-system’s table will be
used, but will receive no support (zero probability)
from those sub-systems that did not acquire this
phrase during training. The search process pro-
ceeds as in a typical multi-stack phrase-based de-
coder. The weight for the general model was set by
tuning the parameter on the general development
set in order to maximize performance in terms of
BLEU score. This weight determines the amount
of probability mass to be assigned to the general
model, and it remains fixed during the decoding of
all sentences. The remainder of the probability
mass is divided among the class-specific models
dynamically sentence-by-sentence at run-time. The
proportion that is assigned to each class is simply
the class membership probability of the source se-
quence assigned by the classifier.

3 Question Prediction

3.1 Outline of the Problem

Given a source sentence of a particular class (inter-
rogative or declarative in our case), we wish to
ensure that the target sentence generated is of an
appropriate class. Note that this does not necessar-
ily mean that given a question in the source, a
question should be generated in the target. How-
ever, it seems reasonable to assume that, intuitively
at least, one should be able to generate a target
question from a source question, and a target decla-
ration from a source declaration. This is reason-
able because the role of a machine translation en-
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gine is not to be able to generate every possible
translation from the source, but to be able to gener-
ate one acceptable translation. This assumption
leads us to two plausible ways to proceed.

1. To predict the class of the source sentence, and
use this to constrain the decoding process used
to generate the target

2. To predict the class of the target

In our experiments, we chose the second
method, as it seemed the most correct, but feel
there is some merit in both strategies.

3.2 The Maximum Entropy Classifier

We used a Maximum Entropy (ME) classifier to
determine which class to which the input source
sentence belongs using a set of lexical features.
That is, we use the classifier to set the mixture
weights of the class-specific models. In recent
years such classifiers have produced powerful
models utilizing large numbers of lexical features
in a variety of natural language processing tasks,
for example Rosenfeld (1996). An ME model is an
exponential model with the following form:

K
pt,c) =[] al*“"po
k=0

t is the class being predicted;

c 1s the context of ¢;

y is a normalization coefficient;

K is the number of features in the model;
ar 1s the weight of feature f;

fr  are binary feature functions;

is the default model



<s> where is the
<s> where is
<s> where is the is the station </s>
is the station </s>
the station </s>

Figure 2. The set of n-gram (n<3) features extracted
from the sentence <s> where is the station </s> for
use as predicates in the ME model to predict target
sentence class.

We used the set of all n-grams (1n<3) occurring
in the source sentences as features to predict the
sentence’s class. Additionally we introduced be-
ginning of sentence tokens (<s>) and end of sen-
tence tokens into the word sequence to distinguish
n-grams occurring at the start and end of sentences
from those occurring within the sentence. This was
based on the observation that “question words” or
words that indicate that the sentence is a question
will frequently be found either at the start of the
sentence (as in the wh- <what, where, when>
words in English or the -kah words in Malay <a-
pakah, dimanakah, kapankah>), or at the end of the
sentence (for example the Japanese “ka” or the
Chinese “ma”). In fact, in earlier models we used
features consisting of n-grams occurring only at
the start and end of the source sentence. These
classifiers performed quite well (approximately 4%
lower than the classifiers that used features from
all of the n-grams in the source), but an error
analysis showed that n-grams from the interior of
the sentence were necessary to handle sentences
such as “excuse me please where is ...”. A simple
example sentence and the set of features generated
from the sentence is shown in Figure 2.

We used the ME modeling toolkit of (Zhang,
2004) to implement our ME models. The models
were trained by using L-BFGS parameter estima-
tion, and a Gaussian prior was used for smoothing
during training.

3.3 Forcing the target to conform

Before adopting the mixture-based approach set
out in this paper, we first pursued an obvious and
intuitively appealing way of using this classifier.
We applied it as a filter to the output of the de-
coder, to force source sentences that the classifier
predicts should generate questions in the target to
actually generate questions in the target. This ap-
proach was unsuccessful due to a number of issues.
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Source English Own
Language | Punctuation | Punctuation
ar 98.0 N/A
da 97.3 98.0
de 98.1 98.6
en 98.9 98.9
es 96.3 96.7
fr 97.7 98.7
id 97.9 98.5
it 94.9 95.4
ja 94.1 N/A
ko 94.2 99.4
ms 98.1 99.0
nl 98.1 99.0
pt 96.2 96.0
ru 95.9 96.6
th 98.2 N/A
vi 97.7 98.0
zh 93.2 98.8

Table 2. The classifcation accuracy (%) of the
classifier used to predict whether or not an input
sentence either is or should give rise to a question in
the target.

We took the n-best output from the decoder and
selected the highest translation hypothesis on the
list that had agreement on class according to source
and target classifiers. The issues we encountered
included, too much similarity in the n-best hy-
potheses, errors of the MT system were correlated
with errors of the classifier, and the number of
cases that were corrected by the system was small
<2%. As a consequence, the method proposed in
this paper was preferred.

4 Experiments

4.1 Experimental Conditions

Decoder

The decoder used to in the experiments, CleopA-
TRa is an in-house phrase-based statistical decoder
that can operate on the same principles as the
PHARAOH (Koehn, 2004) and MOSES (Koehn et



Source BLEU NIST WER PER GTM METEOR

o 0.4457 8.9386 0.4458 0.3742 0.7469 0.6766
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

i 0.6640 11.4500 0.2560 0.2174 0.8338 0.8154
(0.64) (1.64) (0.08) (2.42) (0.68) (1.23)

‘ 0.6642 11.4107 0.2606 0.2105 0.8348 0.8132
e (0.79) (0.44) (2.18) (0.14) (-0.13) (-0.07)
o 0.7345 12.1384 0.2117 0.1668 0.8519 0.8541
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N 0.6666 11.7443 0.2548 0.2172 0.8408 0.8293
(0.95) (0.63) (4.82) (6.50) (0.48) (1.29)

d 0.5295 10.3459 0.3899 0.3239 0.7960 0.7521
(9.56) @.11) (21.17) (4.65) (1.35) (2.35)

it 0.6702 11.5604 0.2590 0.2090 0.8351 0.8171
(1.01) (0.41) (3.25) (0.62) (0.36) (0.05)

- 0.5971 10.6346 0.3779 0.2842 0.8125 0.7669
J (3.47) (2.56) (5.53) (2.80) (0.74) (0.67)
. 0.5898 10.2151 0.3891 0.3138 0.7880 0.7397
0 (1.78) (1.31) (0.74) (-0.10) (0.36) (0.35)
s 0.5102 9.9775 0.4058 0.3355 0.7815 0.7247
(10.19) (2.75) (18.53) (3.59) (0.18) (2.49)

il 0.6906 11.9092 0.2415 0.1872 0.8548 0.8399
(2.55) (1.47) (3.21) (1.73) (0.39) (0.36)

0.6623 11.6913 0.2549 0.2110 0.8396 0.8265

pt (0.35) (0.26) (2.52) (2.68) (0.02) (-0.07)
0.5877 10.1233 0.3447 0.2928 0.7900 0.7537

u (0.34) (-1.10) (1.99) (1.71) (0.15) (-0.40)
" 0.4857 9.5901 0.4883 0.3579 0.7608 0.7104
(1.50) (1.17) (-0.23) (2.03) (0.45) (1.23)

. 0.5118 9.8588 0.4274 0.3301 0.7806 0.7254
(0.67) (1.85) (-0.05) (0.12) (1.05) (0.43)

i 0.5742 10.1263 0.3937 03172 0.7936 0.7343
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 3. Performance results translating from a number of source languages into English. Figures in parentheses are
the percentage improvement in the score relative to the original score. Bold-bordered cells indicate those conditions
where performance degraded. White cells indicate the proposed system’s performance is significanly different from
the baseline (using 2000-sample bootstrap resampling with a 95% confidence level). TER scores were not tested for
significance due to technical difficulties. ar, es and zh were also omitted since the systems were identical.

al, 2007) decoders. The decoder was configured to
produce near-identical output to MOSES for these
experiments. The decoder was modified in order to
handle multiple-sets of models, accept weighted
input, and to incorporate the dynamic interpolation
process during the decoding.
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Practical Issues

Perhaps the largest concerns about the proposed
approach come from the heavy resource require-
ments that could potentially occur when dealing
with large numbers of models. However, one im-
portant characteristic of the decoder used in our
experiments is its ability to leave its models on
disk, loading only the parts of the models neces-



Source Baseline No Classifier Hard Proposed
ar 0.4457 (0.00) | 0.4457 (0.00) | 0.4457 (0.00) 0.4457
da 0.6598 (0.64) 0.6647 (-0.11) 0.6591 (0.74) 0.664
de 0.6590 (0.79) | 0.6651 (-0.14) | 0.6634 (0.12) 0.6642
es 0.7345 (0.00) 0.7345 (0.00) 0.7345 (0.00) 0.7345
fr 0.6603 (0.95) 0.6594 (1.09) 0.6605 (0.92) 0.6666
id 0.4833(9.56) | 0.5029(5.29) | 0.5276 (0.36) 0.5295
it 0.6635(1.01) | 0.6660 (0.63) | 0.6644 (0.87) 0.6702
ja 0.5771 (3.47) 0.5796 (3.02) 0.5667 (5.36) 0.5971
ko 0.5795 (1.78) 0.5837 (1.05) 0.5922 (-0.41) 0.5898
ms 0.4630 (10.19) 0.5015 (1.73) 0.5057 (0.89) 0.5102
nl 0.6734 (2.55) | 0.6902 (0.06) | 0.6879 (0.39) 0.6906
pt 0.6600 (0.35) 0.6643 (-0.30) 0.6598 (0.38) 0.6623
ru 0.5857(0.34) | 0.5885(-0.14) | 0.5844 (0.56) 0.5877
th 0.4785 (1.50) | 0.4815(0.87) | 0.4831(0.54) 0.4857
vi 0.5084 (0.67) | 0.5095(0.45) | 0.5041(1.53) 0.5118
zh 0.5742 (0.00) | 0.5742(0.00) | 0.5742(0.00) 0.5742

Table 4. Performance results comaparing our proposes method with other techniques. The column labeled ‘Baseline’
is the same as in Table 3, for reference. The column lableled ‘No Classifier’, is the same system as our proposed
method, except that the classifier was replaced with a default model that assigned a class membership probability of
0.5 in every case. The column labeled ‘Hard’ corresponds to a system that used hard weights (either 1 or 0) for the
class-dependent models. The column labeled ‘Proposed’ are the results from our proposed method. Figures in
parentheses represent the percentage improvement of the proposed method’s score relative to the alternative method.
Cells with bold borders indicate those conditions where performance was degraded.

sary to decode the sentence in hand. This reduced
the memory overhead considerably when loading
multiple models, without noticeably affecting de-
coding time. Moreover, it is also possible to pre-
compute the interpolated probabilities for most of
the models for each sentence before the search
commences, reducing both search memory and
processing time.
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Decoding Conditions

For tuning of the decoder's parameters, minimum
error training (Och 2003) with respect to the BLEU
score using was conducted using the respective
development corpus. A 5-gram language model,
built using the SRI language modeling toolkit
(Stolcke, 1999) with Witten-Bell smoothing was
used. The model included a length model, and also
the simple distance-based distortion model used by
the PHARAOH decoder (Koehn, 2004).
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Figure 3. Graph showing the BLEU score on the
developmment set plotted against the general
model’s interpolation weight (a weight of 0
meaning no contribution from the general model)
for two systems in our experiments.

Tuning the interpolation weights

The interpolation weights were tuned by maximiz-
ing the BLEU score on the development set over a
set of weights ranging from 0 to 1 in increments of
0.1. Figure 1 shows the behavior of two of our
models with respect to their weight parameter.

Evaluation schemes

To obtain a balanced view of the merits of our pro-
posed approach, in our experiments we used 6
evaluation techniques to evaluate our systems.
These were: BLEU (Papineni, 2001), NIST (Dod-
dington, 2002), WER (Word Error Rate), PER
(Position-independent WER), GTM (General Text
Matcher), and METEOR (Banerjee and Lavie,
2005).
4.2 Classification Accuracy

The performance of the classifier (from 10-fold
cross-validation on the training set) is shown in
Table 2. We give classification accuracy figures for
predicting both source (same language) and target
(English) punctuation. Unsurprisingly, all systems
were better at predicting their own punctuation.
The poorer scores in the table might reflect linguis-
tic characteristics (perhaps questions in the source
language are often expressed as statements in the
target), or characteristics of the corpus itself. For
all languages the accuracy of the classifier seemed
satisfactory, especially considering the possibility
of inconsistencies in the corpus itself (and there-
fore our test data for this experiment).
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4.3 Translation Quality

The performance of the SMT systems are shown in
Table 3. It is clear from the table that for most of
the experimental conditions evaluated the system
outperformed a baseline system that consisted of
an SMT system trained on all of the data. For those
metrics in which performance degraded, in all-but-
one the results were statistically insignificant, and
in all cases most of the other MT evaluation met-
rics showed an improvement. Some of the lan-
guage pairs showed striking improvements, in par-
ticular both of the Malay languages id and ms im-
proved by over 3.5 BLEU points each using our
technique. Interestingly Dutch, a relative of Malay,
also improved substantially. This evidence points
to a linguistic explanation for the gains. Malay has
very simple and regular question structure, the
question words appear at the front of question sen-
tences (in the same way as the target language) and
do not take any other function in the language (un-
like the English “do” for example). Perhaps this
simplicity of expression allowed our class-specific
models to model the data well in spite of the re-
duced data caused by dividing the data. Another
factor might be the performance of the classifier
which was high for all these languages (around
98%). Unfortunately, it is hard to know the reasons
behind the variety of scores in the table. One large
factor is likely to be differences in corpus quality,
and also the relationship between the source and
target corpus. Some corpora are direct translations
of each other, whereas others are translated
through another language. Chinese was one such
language, and this may explain why we were un-
able to improve on the baseline for this language
even though we were very successful for both
Japanese and Thai, which are relatives of Chinese.

4.4  Comparison to Previous Methods

We ran an experiment to compare our proposed
method to an instance of our system that used hard
weights. The aim was to come as close as possible
within our framework to the system proposed by
Yamamoto and Sumita (2007). We used weights of
1 and 0, instead of the classification probabilities
to weight the class-specific models. To achieve
this, we thresholded the probabilities from the clas-
sifier such that probabilities >0.5 gave a weight of
1, otherwise a weight of 0 was used. The perform-
ance of this system is shown in Table 4 under the
column heading ‘Hard’. In all-but-one of the con-



ditions this system was outperformed by or equal
to the proposed approach.

The column labeled “No Classifier” in Table 4
illustrates the effectiveness of the classifier in our
system. These results show the effect of using
equal weights (0.5) to interpolate between the
Question and Declaration models. This system,
although not as effective as the system with the
classifier, gave a respectable performance.

5 Conclusion

In this paper we have presented a technique for
combining all models from multiple SMT engines
into a single decoding process. This technique al-
lows for topic-dependent decoding with probabilis-
tic soft weighting between the component models.
We demonstrated the effectiveness of our approach
on conversational data by building class-specific
models for interrogative and declarative sentence
classes. We carried out an extensive evaluation of
the technique using a large number of language
pairs and MT evaluation metrics. In most cases we
were able to show significant improvements over a
system without model interpolation, and for some
language pairs the approach excelled. The best im-
provement of all the language pairs was for Malay-
sian (Malay)-English which outperformed the
baseline system by 4.7 BLEU points (from 0.463
to 0.510). In future research we would like to try
the approach with larger sets of models, and also
(possibly overlapping) subsets of the data produced
using automatic clustering methods.
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Abstract

Chinese word segmentation (CWS) is a
necessary step in Chinese-English statisti-
cal machine translation (SMT) and its per-
formance has an impact on the results of
SMT. However, there are many settings in-
volved in creating a CWS system such as
various specifications and CWS methods.
This paper investigates the effect of these
settings to SMT. We tested dictionary-
based and CRF-based approaches and
found there was no significant difference
between the two in the qualty of the result-
ing translations. We also found the corre-
lation between the CWS F-score and SMT
BLEU score was very weak. This paper
also proposes two methods of combining
advantages of different specifications: a
simple concatenation of training data and
a feature interpolation approach in which
the same types of features of translation
models from various CWS schemes are
linearly interpolated. We found these ap-
proaches were very effective in improving
quality of translations.

1 Introduction

Chinese word segmentation (CWS) is a necessary
step in Chinese-English statistical machine transla-
tion (SMT). The research on CWS independently
from SMT has been conducted for decades. As an
evidence, the CWS evaluation campaign, the Sighan
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Bakeoff (Emerson, 2005),', has been held four times
since 2004. However, works on relations between
CWS and SMT are scarce.

Generally, two factors need to be considered in
constructing a CWS system. The first one is the
specifications for CWS, i.e., the rules or guidelines
for word segmentation, and the second one is the
CWS methods. There are many CWS specifications
used by different organizations. Unfortunately, these
organizations do not seem to have any intention of
reaching a unified specification. More than five or
six specifications have been used in the four Sighan
Bakeoffs. There is also significant disagreement on
the specifications, although much of their contents is
the same. One of the aims of this work was therefore
to establish whether inconsistencies in specifications
significantly affect the quality of SMT.

The second factor is CWS methods. We grouped
all of the CWS methods into two classes: the class
without out-of-vocabulary (OOV) recognition and
the class with OOV recognition, represented by the
dictionary-based CWS and the CRF-based CWS, re-
spectively. Out-of-vocabulary recognition may have
two-sided effects on SMT performance. The CRF-
based CWS that supports OOV recognition produces
word segmentations with a higher F-score, but a
huge number of new words recognized correctly and
incorrectly that can incur data sparseness in training
the SMT models. On the other hand, the dictionary-
based approach that does not support OOV recogni-
tion produced a lower F-score, but with a relatively
weak data spareness problem. Which approach pro-

'A CWS competition organized by the ACL special interest
group on Chinese.

Proceedings of the Third Workshop on Statistical Machine Translation, pages 216-223,
Columbus, June 2008. (©)2008 Association for Computational Linguistics



Table 1: Examples of disagreement in segmentation guidelines

ChineseName EnglishName Time
AS DENGXIAOPING | GEORGE BUSH 1997YEAR 7MONTH 1DAY
CITYU | DENGXIAOPING GEORGEBUSH 1997 YEAR 7 MONTH 1 DAY
MSR | DENGXIAOPING GEORGEBUSH 1997YEAR7TMONTHI1DAY
PKU | DENG XIAOPING | GEORGEBUSH 1997YEAR 7MONTH 1DAY

Table 2: A second example of disagreement in segmentation guidelines

Composite words

Composite words

AS FUIITSUCOMPANY EUROZONE
CITYU | FUJITSU COMPANY EUROZONE
MSR | FUJIITSUCOMPANY EURO ZONE
PKU | FUJITSU COMPANY EUROZONE

duces a better SMT result is our research interest in
this work.

The performance of CWS is usually measured by
the F-score, while that of SMT is measured using
the BLEU score. Does a CWS with a higher F-
score produce a better translation? In this paper
we answer this question by comparing F-scores with
BLEU scores.

In this work, we also propose approaches to make
use of all the Sighan training data regardless of the
specifications. Two methods are proposed: (1) a
simple combination of all the training data, and (2)
implementing linear interpolation of multiple trans-
lation models. Linear interpolation is widely used in
language modeling for speech recognition. We in-
terpolated multiple translation models generated by
the CWS schemes and found our approaches were
very effective in improving the translations.

2 CWS specifications and corpora from
the second Sighan Bakeoff

A Chinese word is composed of one or more char-
acters. There are no spaces between the words.
Automatic word segmentation is required for ma-
chine translation. Usually a specification is needed
to carry out word segmentation. Unfortunately, there
are many different versions of specifications. Differ-
ent tasks give rise to different requirements and the
CWS specifications must be adjusted accordingly.
For example, shorter segmentation has been shown
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to be better for speech recognition. A composite
word (numbers, dates, times, etc.) is split into char-
acters even if it is one word defined by linguists. In
contrast, longer segmentation is preferred for named
entity recognition consisting of longer character se-
quences, such as the name of people, places, and or-
ganizations.

This work investigated four well-known spec-
ifications created by four different organizations:
Academia Sinica (AS), City University of Hong
Kong (CITYU), Microsoft Research (Beijing)
(MSR), and Beijing University (PKU). These specs
were used in the second Sighan Bakeoff (Emerson,
2005). When we compared the four specifications
and the manual segmentations in the Sighan Bakeoff
training data, we found there were many inconsis-
tencies among the four specifications. Some exam-
ples are shown in Table 1 and 2. For instance, the
AS and PKU specifications are distinct in splitting
both Chinese and English names. We also found the
MSR specification generated more composite words
and grouped longer character sequences into a word.
Using this specification could generate tens of thou-
sands of new words, which can cause data sparse-
ness for SMT.

In addition to using the four specifications, we
also downloaded the training and test corpora of the
second Sighan Bakeoff. We used each of the train-
ing corpora provided to create a CWS scheme and
evaluated the performance of the schemes on our test



data. This enabled us to examine the effect of CWS
specifications on SMT.

We used a Chinese word segmentation tool,
Achilles, to implement word segmentation. Part of
the work using this tool was described by (Zhang
et al., 2006). The approach was reported to achieve
the highest word segmentation accuracy using the
data from the second Sighan Bakeoff. Moreover,
this tool meets our need to test the effect of the two
kinds of CWS approaches for SMT. We can easily
train a dictionary-based and a CRF-based CWS by
using this tool. By turning the program’s option for
the CRF model on and off, we can use the Achilles
as a dictionary-based approach and as a CRF-based
CWS. In fact, the dictionary-based approach is the
default approach for Achilles.

3 Experiments

3.1 SMT resources

We followed the instructions for the 2005 NIST MT
evaluation campaign. Training the translation mod-
els for our SMT system used the available LDC par-
allel data except the UN corpus. To train the lan-
guage models for English, we used all the avail-
able English parallel data plus Xinhua News of the
LDC Gigaword English corpus, LDC2005T12. In
summary, we used 2.4 million parallel sentences for
training the translation model. We used the test data
defined in the NIST MTOS5 evaluation which is de-
fined in the LDC corpus as LDC2006E38. We used
the corpus, LDC2006E43, as the development data
for loglinear model optimization.

We used a phrase-based SMT system that is based
on a log-linear model incorporating multiple fea-
tures. The training and decoding system of our SMT
used the publicly available Pharaoh (Koehn et al.,
2003)?. GIZA++ was used for word alignment.

The Pharaoh decoder was used exclusively in
all the experiments. No additional features but
the defaults defined by Pharaoh were used. The
feature weights were optimized against the BLEU
scores (Och, 2003).

We chose automatic metrics to evaluate CWS and
SMT. We used the F-score for CWS and BLEU for
SMT. The BLEU is BLEU4, computed using the
NIST-provided “mt-eval” script.

Zhttp://www.iccs.informatics.ed.ac.uk/“pkoehn

218

3.2 Implementation of CWS schemes

To determine the effect of CWS on SMT, we cre-
ated 14 CWS schemes which are shown in Ta-
ble 3. Schemes 1 to 12 were implemented using
the in-house tool, Achilles, and schemes 13 and 14
using off-the-shelf tools. The CWS schemes are
named according to the specifications (AS, CITYU,
MSR, PKU), implementing methods (CRF-based or
dictionary-based), and lexicon sources (Sighan or
LDC corpus). The table also shows the results of
segmentation on the SMT training and test data, i.e.,
number of total tokens, unique words, and OOV
words.

We divided the schemes into two groups for sim-
plicity. The first group includes schemes 1 to 12,
which were trained using a specific Sighan corpus.
For example, schemes 1 to 3 were trained using the
AS corpus, schemes 4 to 6 using the CITYU cor-
pus, and so on. The meaning of the name of the
CWS scheme can be derived from the table — the
name is defined by specifications, methods and lexi-
con sources. For example, the CRF-AS scheme per-
forms CRF-based segmentation; and its lexicon is
from the AS corpus provided by the Sighan. The
CRF-AS segmenter can be easily trained, as de-
scribed by Achilles.

The second group contains two schemes 13 and
14. The ICTCLAS is a HHMM-based hierarchical
HMM segmenter (Zhang et al., 2003) that uses the
specifications of PKU. This segmenter incorporates
parts-of-speech information in the probability mod-
els and generates multiple HMM models for solving
segmentation ambiguities. The MSRSEG was de-
veloped by Gao et al. (Gao et al., 2004). This seg-
menter is based on the MSR specifications. It uses a
log-linear model that integrates multiple features.

The segmenters of the first group, dict-AS
and dict-LDC-AS, are two dictionary-based CWS
schemes. They differ in lexicon size and lexicon
extracting source. The former used a lexicon ex-
tracted directly from the Sighan AS training data
while the latter used a lexicon from LDC parallel
corpora. It took some efforts to get the lexicon. First,
we used the CRF-AS to segment the LDC corpora.
We extracted a unique word list from the segmented
data and sorted it in decreasing order according to
word frequency. Because OOV was recognized by



Table 3: Analysis of results of segmentation on LDC training and test data for all CWS schemes

AS, whose lexicon consisted of the lexicon of dict-
AS and new words recognized by CRF-AS, could
improve SMT.

As shown in Table 3, using CRF-AS generated a
huge number of unique words for the training data
and OOV words for the test data. We found that
the CRF-AS generated three times more OOVs for
the test data than the dictionary-based CWS,dict-AS
(see OOVs in Table 3).

Other schemes in the first group were imple-
mented similarly to the “AS”.

Table 3 lists the segmentation statistics for the
training and test data of all the tested CWS schemes,
where “Tokens” indicates the total number of words
in the training data. “Unique words” and “O0OVs”

30nly those words that appeared at least five times in the
lexicon were considered.
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’ No. | CWS schemes Specifications | Methods | Lexicon Tokens Unique words ‘ OOVs ‘
1 | CRF-AS AS CRF Sighan | 47,934,088 413,588 1,193
2 | dict-AS AS Dict Sighan 51,664,675 89,346 237
3 | dict-LDC-AS AS Dict LDC 48,665,364 102,919 273
4 | CRF-CITYU CITYU CRF Sighan | 47,963,541 426,273 1,155
5 | dict-CITYU CITYU Dict Sighan 51,251,729 56,996 362
6 | dict-LDC-CITYU CITYU Dict LDC 48,787,154 102,754 217
7 | CRF-MSR MSR CRF Sighan 46,483,923 523,788 1,297
8 | dict-MSR MSR Dict Sighan 51,302,509 60,247 248
9 | dict-LDC-MSR MSR Dict LDC 47,469,271 102,390 217
10 | CRF-PKU PKU CRF Sighan | 48,022,697 440,114 1,136
11 | dict-PKU PKU Dict Sighan 52,721,809 47,176 211
12 | dict-LDC-PKU PKU Dict LDC 48,721,795 102,213 256
13 | ICTCLAS PKU HHMM - 50,751,402 162,222 835
14 | MSRSEG MSR - - 48,734,113 274,411 1,443

the CRF-AS, a huge word list was generated(see Ta- Table 4: BLEU scores for CWS schemes

ble 3). We chose the most frequent 100,000 words

as the dictionary for the dict-LDC-AS 3. The LM for

the dict-AS wa}s/ trained using the AS corpus while CWS H AS ‘ CITYU ‘ MSR ‘ PRU

the LM for the dict-LDC-AS was trained using the CRF 23.70 | 23.55 | 22.50 23.61

segmented SMT training corpus. dict 23.46 | 23.72 | 23.33 23.61
Therefore, the dict-LDC-AS used a larger lexicon dict-LDC || 23.52 | 23.36 | 23.16 23.74

than the dict-AS. This lexicon contained the most ICTCLAS 3 N i 24.12

frequent OOV words recognized by the CRF-AS. MSRSEG : : 19.72 :

Our aim was to investigate whether the dict-LDC- | BEST [ 23.70 [ 23.72 | 23.33 [ 23.74 (24.12) |

mean the lexicon size of the segmented training data
and the unknown words in the test data, respectively.

3.3 Effect of CWS specifications on SMT

Our first concern was the effect of CWS specifica-
tions on SMT. The results in Table 4 show the rela-
tionships that were found. The last row gives the
best BLEU scores obtained for each of the CWS
specifications. The scores for AS, CITYU, MSR and
PKU were 23.70 (CRF-AS), 23.72 (dict-CITYU),
23.33 (dict-MSR) and 23.74 (dict-PKU-LDC), re-
spectively. We found there were no observable dif-
ferences between AS, CITYU, and PKU. However,
the specification that produced the worst transla-
tions was the MSR. The MSR specification appears



to have been designed for recognizing named enti-
ties (NE) (See the examples of segmentation in Ta-
ble 1). Many NEs are regarded as words by MSR,
while they are more appropriately split into sepa-
rate words by other specifications. For example, the
long word, “1997YEAR7TMONTHIDAY” (“July 1,
1997”). As a result, the CRF-MSR generated 20%
more words in the vocabulary than the other CWS
schemes in segmenting the SMT training data. The
larger vocabulary can trigger data sparseness prob-
lems and result in SMT degradation. The segmenter,
MSRSEG, produced an even lower BLEU score
(19.72) than the Achilles.

The results were verified by significance
test (Zhang et al., 2004). We found the systems
with the BLEU scores higher than 23.70 were
significantly better than those lower than 23.70.

3.4 Correlation between BLEU score and
F-score

The values of the F-scores and BLEU scores are
listed in parallel in Table 5. We tied the F-scores
and specifications together because comparing the
value of the F-score across specs is meaningless. We
separated the F-score and BLEU score for different
corpus. The F-score was calculated using the Sighan
test data. The CRF-based approach usually gives a
higher F-score, but its corresponding BLEU scores
were not always higher. The F-score and BLEU
score correlated well for ICTCLAS and CRF-AS
but less well for CRF-CITYU, CRF-PKU and CRF-
MSR. Obviously, there is no strong correlation be-
tween the F-score and BLEU score.

4 Effect of combining multiple CWS
schemes

We used the Sighan Bakeoff corpora of different
CWS specifications separately in the previous ex-
periments. Here, we propose two approaches to us-
ing all the resources combined. The first approach
is to concatenate all the training data of the Sighan
Bakeoff, regardless of the specifications and train-
ing a new CWS for segmenting SMT training data.
The second approach involves linear integration of
translation models. We found that both approaches
produced an improvement in translation quality.

220

4.1 Effect of combining training data from
multiple CWS specifications

The CWS specifications are very different and the
corresponding Sighan training data are segmented
in different ways. We used these data separately
in the previous work as if they were incompatible.
However, creating data manually is laborious and
costly. It would therefore be a significant advan-
tage if all the data could be used, regardless of the
different specifications. We therefore created a new
CWS scheme, called “dict-hybrid”. This CWS was
trained by concatenating all the Sighan Bakeoff cor-
pora regardless of the different specifications. The
“dict-hybrid” was trained using Achilles. It uses a
dictionary-based approach, and its lexicon and lan-
guage model were obtained as follows.

First, we created a hybrid corpus by combining
all the Sighan training corpora: AS, CITYU, MSR,
PKU. The hybrid corpus was used to train a CRF-
based CWS. This CWS was then used to segment
the SMT training corpus and then we extracted a
lexicon of 100,000 from the top frequent words of
the segmented SMT corpus. This lexicon was used
as the lexicon of the “dict-hybrid.” The LM of “dict-
hybrid” was also trained on the segmented corpus.
Note a lexicon and a LM are the only needed re-
sources for building a dictionary-based CWS, like
the “dict-hybrid.” (Zhang et al., 2006)

We used the “dict-hybrid” to segment the SMT
training corpus and test data. This segmentation
generated 49,546,231 tokens, 112,072 unique words
for the training data and 693 OOV for the test data.

The segmentation data were used for training a
new SMT model. We tested the model using the
same approach and found the BLEU score obtained
by this CWS scheme was 23.91. This score was
better than those in Table 4 obtained by any of the
Achilles CWS schemes except ICTCLAS. There-
fore, the CWS scheme “dict-hybrid” produced better
translations than other schemes implemented using
Achilles, indicating that using multiple CWS cor-
pora can improve SMT even if their specifications
are different.

Significance testing also showed that the results
for ICTCLAS and “dict-hybrid” were not signifi-
cantly different. The results of “dict-hybrid” are sig-
nificantly better than those in the Table 4 which have



Table 5: Correlation between F-score and BLEU

PKU MSR

F-score | BLEU F-score | BLEU

CRF 0.939 | 23.61 CRF 0954 | 22.50
dict 0.930 | 23.61 dict 0.947 23.22
dict-LDC 0.931 23.74 dict-LDC 0.928 23.16
ICTCLAS 0.948 24.12 MSRSEG || 0.969 19.72

CITYU AS

F-score | BLEU F-score | BLEU

CRF 0.920 | 23.55 CRF 0.922 | 23.70
dict 0.873 23.72 dict 0.896 | 23.46
dict-LDC 0.886 | 23.36 dict-LDC 0.878 23.52

a BLEU score lower than 23.70.

4.2 Effect of feature interpolation of
translation models

We investigated the effect of linearly integrating
multiple features of the same type. We generated
multiple translation models by using different word
segmenters. Each translation model corresponded to
a word segmenter. The same type of features as in
the log-linear model were added linearly. For exam-
ple, the phrase translation model p(e|f) can be lin-
early interpolated as, p(e|f) = Z,-S:1 a;pi(elf) where
pi(elf) is the phrase translation model correspond-
ing to the i-th CWSs. «; is the weight, and S is the
total number of models. Zf: yai = 1.

as can be obtained by maximizing the likelihood
or BLEU scores of the development data. Optimiz-
ing the « has been described elsewhere (Foster and
Kuhn, 2007). p(e|f) is the phrase translation model
generated.

In addition to the phrase translation model, we
used the same approach to integrate three other
features: phrase inverse probability p(fle), lexical
probability lex(e|f, a), and lexical inverse probabil-
ity lex(fle, a).

We integrated the CWS schemes ranked in the
top five in Table 4: ICTCLAS, dict-hybrid, dict-
LDC-PKU, dict-CITYU, and CRF-AS. We labeled
the five schemes A, B, C, D, and E, respectively,
as shown in Table 6. The first line of Table 6 rep-
resents the test data segmented by the five CWS
schemes. “tst-A” means the test data was segmented
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by ICTCLAS. “tst-B” means the test data segmented
by “dict-hybrid”, and so on. The second line gives
baseline results showing the original results with-
out the use of feature integration. For different test
data, the baseline is different. The baseline of ICT-
CLAS was tested on “tst-A” only. The baseline of
“dict-hybrid” was tested on “tst-B” only. From the
third line we gradually added a translation model
to the models used in the baseline. For example,
“A+B” integrates models made using ICTCLAS and
“dict-hybrid.” Each integration models were tested
only on the test data participated in the integration.
Hence, some slots in Table 6 are blank.

We did not carry out parameter optimization with
regards to the as. Instead, we used equal as for all
the features. For example, all as equal 0.5 for A+B,
and 0.25 for A+B+C+D. Each cell in Table 6 indi-
cates the BLEU score of the integration in relation
to the test data. We found our approach improved
the baseline results significantly. The more models
integrated, the better the results. The improvement
was positive for all of the test data. With regards to
the integration, if a phrase pair exists in one model
only, we suppose the values of probabilities are zero
in other models.

To better understand the effects of feature inter-
polation, we blended the features of the translation
models, as shown in Table 7, by simply combining
the phrase pairs without probability interpolation.
When we merged two models, we defined one model
as the master model and the other as the supple-
mentary model. Only phrase pairs that were in the



supplementary models but not in the master model
were appended to the master model. Their feature
probabilities were not changed. Hence, the com-
bined model was a blend of phrase pairs from the
master model and supplementary model. There was
no probability integration, that was significantly dif-
ferent from the feature interpolation approach. For
each set of test data in Table 7, the master model
was the model using the same CWS as the test data.
While there was one row for each type of combina-
tion, the cells in the row contained different models.
For example, “A+B” for test data “A” uses “A” as the
master model and “B” as the supplementary model,
while the opposite holds for test data “B”.

Comparing Table 6 and 7 showed that feature
interpolation outperformed feature blending. Fea-
ture interpolation yielded surprisingly good results.
The performance consistently improved when more
models were integrated, but this was not the case
for feature blending. This shows that probability
integration is very effective. Increasing the size of
phrase pairs, as feature blending does, is not as ef-
fective.

We used equal values for the as. Optimal values
may be obtained using the optimization approach
of maximizing BLEU or the likelihood of develop-
ment data as has been reported previously (Foster
and Kuhn, 2007). However, optimization is compu-
tationally expensive and the effect was not satisfac-
tory. Therefore, we decided not optimizing the as in
this work.

5 Related work and Discussions

CWS has been the subject of intensive research
in recent years, as is evident from the last
four international evaluations, the Sighan Bake-
offs, and many approaches have been proposed
over the past decade. Segmentation performance
has been improved significantly, from the earli-
est maximal match (dictionary-based) approaches to
CRF (Peng and McCallum, 2004) approach. We
used dictionary-based and CRF-based CWS ap-
proaches to demonstrate the effect of CWS on SMT,
both without and with OOV recognition.

SMT is a very complicated system to study. Its
response to CWS schemes is intractable and it is
very hard to use one or two measures to describe
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the relationship between CWS and SMT, in a similar
way to describing the relationship between the align-
ment error rate (AER) and SMT (Fraser and Marcu,
2007). The CWS and SMT are related by a series of
factors such as the specifications, OOVs, lexicons,
and F-scores. None of these factors can be directly
related to the SMT. While we have completed many
experiments, based on changing the CWS specifica-
tions and methods used, to determine the relation-
ship between CWS and SMT, we have not estab-
lished any overwhelming rules. However, we be-
lieve the following guidelines are appropriate in con-
sidering a CWS system for SMT. Firstly, the F-score
is not a reliable guide to SMT quality. A very high
F-score may produce the lowest quality translations,
as was found for the MSRSEG. Secondly, it is better
to design a specification with smaller word units to
reduce data sparseness. Specifications like those for
MSR will produce an inferior translation. Thirdly,
do not use a huge lexicon for word segmentation.
A huge lexicon will result in data sparseness and
segmentation complexity. And lastly, using multi-
ple word segmentation results and approaches does
work. We used two approaches that combined mul-
tiple word segmentation - dict-hybrid and feature in-
tegration - and both improved the translations signif-
icantly.

The BLEU scores in our experiments were rela-
tively low in comparison with current state-of-the art
results. However, our system was very similar to the
system (Koehn et al., 2005) that gave a BLEU score
of 24.3, comparable to ours. The BLEU score can
be raised if we do post-editing, use more data for
language modeling and other methods.

6 Conclusions

We investigated the effect of CWS on SMT from
two points of view. Firstly, we analyzed multiple
CWS specifications and built a CWS for each one to
examine how they affected translations. Secondly,
we investigated the advantages and disadvantages of
various CWS approaches, both dictionary-based and
CRF-based, and built CWSs using these approaches
to examine their effect on translations.

We proposed a new approach to linear interpo-
lation of translation features. This approach pro-
duced a significant improvement in translation and



Table 6: Feature interpolation of translation models: A=ICTCLAS, B=dict-hybrid, C=dict-PKU-LDC, D=dict-CITYU, E=CRF-AS

Model [ tst-A [ tst-B [ tst-C | tst-D | tst-E |
Baseline 24.12 | 2391 | 23.74 | 23.72 | 23.70
A+B 24.25 | 24.20
A+B+C 2449 | 24.31 | 23.84
A+B+C+D | 24.60 | 24.43 | 24.05 | 24.27
A+B+C+D+E | 24.61 | 24.55 | 24.16 | 24.39 | 24.17
Table 7: Feature blending of translation models
Model [ tst-A | tst-B | tst-C | tst-D | tst-E |
Baseline 2412 | 2391 | 23.74 | 23.72 | 23.70
A+B 24.20 | 24.24
A+B+C 24.27 | 24.14 | 23.69
A+B+C+D | 23.92 | 24.29 | 23.61 | 24.00
A+B+C+D+E | 23.86 | 24.31 | 23.69 | 24.05 | 23.76

achieved the best BLEU score of all the CWS
schemes.

We have published a much more detailed pa-
per (Zhang et al., 2008) to describe the relations be-
tween CWS and SMT.
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Abstract

Previous work has shown that Chinese word seg-
mentation is useful for machine translation to En-
glish, yet the way different segmentation strategies
affect MT is still poorly understood. In this pa-
per, we demonstrate that optimizing segmentation
for an existing segmentation standard does not al-
ways yield better MT performance. We find that
other factors such as segmentation consistency and
granularity of Chinese “words” can be more impor-
tant for machine translation. Based on these find-
ings, we implement methods inside a conditional
random field segmenter that directly optimize seg-
mentation granularity with respect to the MT task,
providing an improvement of 0.73 BLEU. We also
show that improving segmentation consistency us-
ing external lexicon and proper noun features yields
a 0.32 BLEU increase.

1 Introduction

Word segmentation is considered an important first
step for Chinese natural language processing tasks,
because Chinese words can be composed of multi-
ple characters but with no space appearing between
words. Almost all tasks could be expected to ben-
efit by treating the character sequence “AKA4£” to-
gether, with the meaning smallpox, rather than deal-
ing with the individual characters “X” (sky) and
“It” (flower). Without a standardized notion of a
word, traditionally, the task of Chinese word seg-
mentation starts from designing a segmentation stan-
dard based on linguistic and task intuitions, and then
aiming to building segmenters that output words that
conform to the standard. One widely used standard
is the Penn Chinese Treebank (CTB) Segmentation
Standard (Xue et al., 2005).

It has been recognized that different NLP ap-
plications have different needs for segmentation.
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Chinese information retrieval (IR) systems benefit
from a segmentation that breaks compound words
into shorter “words” (Peng et al., 2002), parallel-
ing the IR gains from compound splitting in lan-
guages like German (Hollink et al., 2004), whereas
automatic speech recognition (ASR) systems prefer
having longer words in the speech lexicon (Gao et
al., 2005). However, despite a decade of very in-
tense work on Chinese to English machine transla-
tion (MT), the way in which Chinese word segmen-
tation affects MT performance is very poorly under-
stood. With current statistical phrase-based MT sys-
tems, one might hypothesize that segmenting into
small chunks, including perhaps even working with
individual characters would be optimal. This is be-
cause the role of a phrase table is to build domain
and application appropriate larger chunks that are
semantically coherent in the translation process. For
example, even if the word for smallpox is treated as
two one-character words, they can still appear in a
phrase like “X {t—smallpox™, so that smallpox
will still be a candidate translation when the system
translates “X “f£”. Nevertheless, Xu et al. (2004)
show that an MT system with a word segmenter out-
performs a system working with individual charac-
ters in an alignment template approach. On differ-
ent language pairs, (Koehn and Knight, 2003) and
(Habash and Sadat, 2006) showed that data-driven
methods for splitting and preprocessing can improve
Arabic-English and German-English MT.

Beyond this, there has been no finer-grained anal-
ysis of what style and size of word segmentation is
optimal for MT. Moreover, most discussion of seg-
mentation for other tasks relates to the size units to
identify in the segmentation standard: whether to
join or split noun compounds, for instance. People
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generally assume that improvements in a system’s
word segmentation accuracy will be monotonically
reflected in overall system performance. This is the
assumption that justifies the concerted recent work
on the independent task of Chinese word segmenta-
tion evaluation at SIGHAN and other venues. How-
ever, we show that this assumption is false: aspects
of segmenters other than error rate are more criti-
cal to their performance when embedded in an MT
system. Unless these issues are attended to, sim-
ple baseline segmenters can be more effective inside
an MT system than more complex machine learning
based models, with much lower word segmentation
error rate.

In this paper, we show that even having a ba-
sic word segmenter helps MT performance, and we
analyze why building an MT system over individ-
ual characters doesn’t function as well. Based on
an analysis of baseline MT results, we pin down
four issues of word segmentation that can be im-
proved to get better MT performance. (i) While a
feature-based segmenter, like a support vector ma-
chine or conditional random field (CRF) model, may
have very good aggregate performance, inconsistent
context-specific segmentation decisions can be quite
harmful to MT system performance. (ii) A perceived
strength of feature-based systems is that they can
generate out-of-vocabulary (OOV) words, but these
can hurt MT performance, when they could have
been split into subparts from which the meaning of
the whole can be roughly compositionally derived.
(iii) Conversely, splitting OOV words into non-
compositional subparts can be very harmful to an
MT system: it is better to produce such OOV items
than to split them into unrelated character sequences
that are known to the system. One big source of such
OOV words is named entities. (iv) Since the opti-
mal granularity of words for phrase-based MT is un-
known, we can benefit from a model which provides
a knob for adjusting average word size.

We build several different models to address these
issues and to improve segmentation for the benefit of
MT. First, we emphasize lexicon-based features in
a feature-based sequence classifier to deal with seg-
mentation inconsistency and over-generating OOV
words. Having lexicon-based features reduced the
MT training lexicon by 29.5%, reduced the MT test
data OOV rate by 34.1%, and led to a 0.38 BLEU
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point gain on the test data (MTO0S5). Second, we ex-
tend the CRF label set of our CRF segmenter to iden-
tify proper nouns. This gives 3.3% relative improve-
ment on the OOV recall rate, and a 0.32 improve-
ment in BLEU. Finally, we tune the CRF model to
generate shorter or longer words to directly optimize
the performance of MT. For MT, we found that it
is preferred to have words slightly shorter than the
CTB standard.

The paper is organized as follows: we describe
the experimental settings for the segmentation task
and the task in Section 2. In Section 3.1 we demon-
strate that it is helpful to have word segmenters for
MT, but that segmentation performance does not di-
rectly correlate with MT performance. We analyze
what characteristics of word segmenters most affect
MT performance in Section 3.2. In Section 4 and
5 we describe how we tune a CRF model to fit the
“word” granularity and also how we incorporate ex-
ternal lexicon and information about named entities
for better MT performance.

2 Experimental Setting

2.1 Chinese Word Segmentation

For directly evaluating segmentation performance,
we train each segmenter with the SIGHAN Bake-
off 2006 training data (the UPUC data set) and then
evaluate on the test data. The training data contains
509K words, and the test data has 155K words. The
percentage of words in the test data that are unseen
in the training data is 8.8%. Detail of the Bakeoff
data sets is in (Levow, 2006). To understand how
each segmenter learns about OOV words, we will
report the F measure, the in-vocabulary (IV) recall
rate as well as OOV recall rate of each segmenter.

2.2 Phrase-based Chinese-to-English MT

The MT system used in this paper is Moses, a state-
of-the-art phrase-based system (Koehn et al., 2003).
We build phrase translations by first acquiring bidi-
rectional GIZA++ (Och and Ney, 2003) alignments,
and using Moses’ grow-diag alignment symmetriza-
tion heuristic.! We set the maximum phrase length
to a large value (10), because some segmenters
described later in this paper will result in shorter

'In our experiments, this heuristic consistently performed
better than the default, grow-diag-final.



words, therefore it is more comparable if we in-
crease the maximum phrase length. During decod-
ing, we incorporate the standard eight feature func-
tions of Moses as well as the lexicalized reordering
model. We tuned the parameters of these features
with Minimum Error Rate Training (MERT) (Och,
2003) on the NIST MTO03 Evaluation data set (919
sentences), and then test the MT performance on
NIST MT03 and MTO05 Evaluation data (878 and
1082 sentences, respectively). We report the MT
performance using the original BLEU metric (Pap-
ineni et al., 2001). All BLEU scores in this paper are
uncased.

The MT training data was subsampled from
GALE Year 2 training data using a collection
of character 5-grams and smaller n-grams drawn
from all segmentations of the test data. Since
the MT training data is subsampled with charac-
ter n-grams, it is not biased towards any particular
word segmentation. The MT training data contains
1,140,693 sentence pairs; on the Chinese side there
are 60,573,223 non-whitespace characters, and the
English sentences have 40,629,997 words.

Our main source for training our five-gram lan-
guage model was the English Gigaword corpus, and
we also included close to one million English sen-
tences taken from LDC parallel texts: GALE Year 1
training data (excluding FOUO data), Sinorama,
AsiaNet, and Hong Kong news. We restricted the
Gigaword corpus to a subsample of 25 million sen-
tences, because of memory constraints.

3 Understanding Chinese Word
Segmentation for Phrase-based MT

In this section, we experiment with three types
of segmenters — character-based, lexicon-based and
feature-based — to explore what kind of characteris-
tics are useful for segmentation for MT.

3.1 Character-based, Lexicon-based and
Feature-based Segmenters

The training data for the segmenter is two orders of
magnitude smaller than for the MT system, it is not
terribly well matched to it in terms of genre and
variety, and the information an MT system learns
about alignment of Chinese to English might be the
basis for a task appropriate segmentation style for
Chinese-English MT. A phrase-based MT system
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Segmentation Performance

Segmenter F measure | OOV Recall | IV Recall

CharBased 0.334 0.012 0.485

MaxMatch 0.828 0.012 0.951
MT Performance

Segmenter || MTO3 (dev) | MTOS (test)

CharBased 30.81 29.36

MaxMatch 31.95 30.73

Table 1: CharBased vs. MaxMatch

like Moses can extract “phrases” (sequences of to-
kens) from a word alignment and the system can
construct the words that are useful. These observa-
tions suggest the first hypothesis.

Hypothesis 1. A phrase table should capture word
segmentation. Character-based segmentation for
MT should not underperform a lexicon-based seg-
mentation, and might outperform it.

Observation In the experiments we conducted,
we found that the phrase table cannot capture every-
thing a Chinese word segmenter can do, and there-
fore having word segmentation helps phrase-based
MT systems. 2

To show that having word segmentation helps
MT, we compare a lexicon-based maximum-
matching segmenter with character-based segmen-
tation (treating each Chinese character as a word).
The lexicon-based segmenter finds words by greed-
ily matching the longest words in the lexicon in a
left-to-right fashion. We will later refer to this seg-
menter as MaxMatch. The MaxMatch segmenter is a
simple and common baseline for the Chinese word
segmentation task.

The segmentation performance of MaxMatch is
not very satisfying because it cannot generalize to
capture words it has never seen before. How-
ever, having a basic segmenter like MaxMatch still
gives the phrase-based MT system a win over the
character-based segmentation (treating each Chinese
character as a word). We will refer to the character-
based segmentation as CharBased.

In Table 1, we can see that on the Chinese word
segmentation task, having MaxMatch is obviously
better than not trying to identify Chinese words at
all (CharBased). As for MT performance, in Ta-
ble 1 we see that having a segmenter, even as sim-

ZDifferent phrase extraction heuristics might affect the re-
sults. In our experiments, grow-diag outperforms both one-to-
many and many-to-one for both MaxMatch and CharBased. We
report the results only on grow-diag.



ple as MaxMatch, can help phrase-based MT system
by about 1.37 BLEU points on all 1082 sentences
of the test data (MTO05). Also, we tested the per-
formance on 828 sentences of MTO05 where all el-
ements are in vocabulary® for both MaxMatch and
CharBased. MaxMatch achieved 32.09 BLEU and
CharBased achieved 30.28 BLEU, which shows that
on the sentences where all elements are in vocabu-
lary, there MaxMatch is still significantly better than
CharBased. Therefore, Hypothesis 1 is refuted.
Analysis We hypothesized in Hypothesis 1 that
the phrase table in a phrase-based MT system should
be able to capture the meaning by building “phrases”
on top of character sequences. Based on the experi-
mental result in Table 1, we see that using character-
based segmentation (CharBased) actually performs
reasonably well, which indicates that the phrase ta-
ble does capture the meaning of character sequences
to a certain extent. However, the results also show
that there is still some benefit in having word seg-
mentation for MT. We analyzed the decoded out-
put of both systems (CharBased and MaxMatch) on
the development set (MTO03). We found that the ad-
vantage of MaxMatch over CharBased is two-fold,
(i) lexical: it enhances the ability to disambiguate
the case when a character has very different meaning
in different contexts, and (ii) reordering: it is easier
to move one unit around than having to move two
consecutive units at the same time. Having words as
the basic units helps the reordering model.

For the first advantage, one example is the char-
acter “4”, which can both mean “intelligence”, or
an abbreviation for Chile (% #]). The comparison
between CharBased and MaxMatch is listed in Ta-
ble 2. The word ‘K4 (dementia) is unknown for
both segmenters. However, MaxMatch gave a better
translation of the character #. The issue here is not
that the “%”—“intelligence” entry never appears in
the phrase table of CharBased. The real issue is,
when % means Chile, it is usually followed by the
character F||. So by grouping them together, Max-
Match avoided falsely increasing the probability of
translating the stand-alone % into Chile. Based on
our analysis, this ambiguity occurs the most when
the character-based system is dealing with a rare or
unseen character sequence in the training data, and
also occurs more often when dealing with translit-

3Except for dates and numbers.
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Reference translation:

scientists complete sequencing of the chromosome linked to
early dementia

CharBased segmented input:

B R MR A I I O AR SE HE P
MaxMatch segmented input:

TG A MR AT A E I B O AR SR P
Translation with CharBased segmentation:

scientists at the beginning of the stake of chile lost the genome
sequence completed

Translation with MaxMatch segmentation:

scientists at stake for the early loss of intellectual syndrome
chromosome completed sequencing

Table 2: An example showing that character-based segmenta-
tion provides weaker ability to distinguish character with mul-
tiple unrelated meanings.

erations. The reason is that characters composing
a transliterated foreign named entity usually doesn’t
preserve their meanings; they are just used to com-
pose a Chinese word that sounds similar to the orig-
inal word — much more like using a character seg-
mentation of English words. Another example of
this kind is “Pu] H-v2% WF 2R [CRE” (Alzheimer’s dis-
ease). The MT system using CharBased segmenta-
tion tends to translate some characters individually
and drop others; while the system using MaxMatch
segmentation is more likely to translate it right.

The second advantage of having a segmenter like
the lexicon-based MaxMatch is that it helps the re-
ordering model. Results in Table 1 are with the
linear distortion limit defaulted to 6. Since words
in CharBased are inherently shorter than MaxMatch,
having the same distortion limit means CharBased
is limited to a smaller context than MaxMatch. To
make a fairer comparison, we set the linear distor-
tion limit in Moses to unlimited, removed the lexi-
calized reordering model, and retested both systems.
With this setting, MaxMatch is 0.46 BLEU point bet-
ter than CharBased (29.62 to 29.16) on MTO03. This
result suggests that having word segmentation does
affect how the reordering model works in a phrase-
based system.

Hypothesis 2. Better Segmentation Performance
Should Lead to Better MT Performance

Observation We have shown in Hypothesis 1 that
it is helpful to segment Chinese texts into words
first. In order to decide a segmenter to use, the
most intuitive thing to do is to find one that gives
higher F measure on segmentation. Our experiments
show that higher F measure does not necessarily



lead to higher BLEU score. In order to contrast
with the simple maximum matching lexicon-based
model (MaxMatch), we built another segmenter with
a CRF model. CRF is a statistical sequence model-
ing framework introduced by Lafferty et al. (2001),
and was first used for the Chinese word segmenta-
tion task by Peng et al. (2004), who treated word
segmentation as a binary decision task. We opti-
mized the parameters with a quasi-Newton method,
and used Gaussian priors to prevent overfitting.

The probability assigned to a label sequence for a
particular sequence of characters by a CRF is given
by the equation:

1 T K
palylx) = RGXPZ Y Afi(X.yi-1,y0,t) (D
t=1k=1

x is a sequence of T unsegmented characters, Z(x) is
the partition function that ensures that Equation 1 is
a probability distribution, {f; }X_, is a set of feature
functions, and y is the sequence of binary predic-
tions for the sentence, where the prediction y, = +1
indicates the ¢-th character of the sequence is pre-
ceded by a space, and where y; = —1 indicates there
is none. We trained a CRF model with a set of ba-
sic features: character identity features of the current
character, previous character and next character, and
the conjunction of previous and current characters in
the zero-order templates. We will refer to this seg-
menter as CRF-basic.

Table 3 shows that the feature-based segmenter
CRF-basic outperforms the lexicon-based MaxMatch
by 5.9% relative F measure. Comparing the OOV re-
call rate and the IV recall rate, the reason is that CRF-
basic wins a lot on the OOV recall rate. We see that
a feature-based segmenter like CRF-basic clearly has
stronger ability to recognize unseen words. On
MT performance, however, CRF-basic is 0.38 BLEU
points worse than MaxMatch on the test set. In Sec-
tion 3.2, we will look at how the MT training and test
data are segmented by each segmenter, and provide
statistics and analysis for why certain segmenters are
better than others.

3.2 Consistency Analysis of Different
Segmenters

In Section 3.1 we have refuted two hypotheses. Now
we know that: (i) phrase table construction does not
fully capture what a word segmenter can do. Thus it
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Segmentation Performance

Segmenter F measure | OOV Recall | IV Recall
CRF-basic 0.877 0.502 0.926
MaxMatch 0.828 0.012 0.951
CRF-Lex 0.940 0.729 0.970
MT Performance
Segmenter || MTO3 (dev) | MTOS (test)
CRF-basic 33.01 30.35
MaxMatch 31.95 30.73
CRF-Lex 32.70 30.95

Table 3: CRF-basic vs MaxMatch

Segmenter || #MT Training Lexicon Size | #MT Test Lexicon Size
CRF-basic 583147 5443
MaxMatch 39040 5083

CRF-Lex 411406 5164

MT Test Lexicon OOV rate Conditional Entropy

CRF-basic 7.40% 0.2306
MaxMatch 0.49% 0.1788

CRF-Lex 4.88% 0.1010

Table 4: MT Lexicon Statistics and Conditional Entropy of Seg-
mentation Variations of three segmetners

is useful to have word segmentation for MT. (ii) a
higher F measure segmenter does not necessarily
outperforms on the MT task.

To understand what factors other than segmen-
tation F measure can affect MT performance, we
introduce another CRF segmenter CRF-Lex that in-
cludes lexicon-based features by using external lex-
icons. More details of CRF-Lex will be described
in Section 5.1. From Table 3, we see that the seg-
mentation F measure is that CRF-Lex > CRF-basic >
MaxMatch. And now we know that the better seg-
mentation F measure does not always lead to better
MT BLEU score, because of in terms of MT perfor-
mance, CRF-Lex > MaxMatch > CRF-basic.

In Table 4, we list some statistics of each seg-
menter to explain this phenomenon. First we look
at the lexicon size of the MT training and test data.
While segmenting the MT data, CRF-basic gener-
ates an MT training lexicon size of 583K unique
word tokens, and MaxMatch has a much smaller lex-
icon size of 39K. CRF-Lex performs best on MT,
but the MT training lexicon size and test lexicon
OOV rate is still pretty high compared to MaxMatch.
Only examining the MT training and test lexicon
size still doesn’t fully explain why CRF-Lex outper-
forms MaxMatch. MaxMatch generates a smaller MT
lexicon and lower OOV rate, but for MT it wasn’t
better than CRF-Lex, which has a bigger lexicon and
higher OOV rate. In order to understand why Max-
Match performs worse on MT than CRF-Lex but bet-



ter than CRF-basic, we use conditional entropy of
segmentation variations to measure consistency.

We use the gold segmentation of the SIGHAN
test data as a guideline. For every work type w;,
we collect all the different pattern variations v;; in
the segmentation we want to examine. For exam-
ple, for a word “ABC” in the gold segmentation, we
look at how it is segmented with a segmenter. There
are many possibilities. If we use ¢, and ¢, to indi-
cate other Chinese characters and .. to indicate white
spaces, “c;,ABC.c,” is the correct segmentation,
because the three characters are properly segmented
from both sides, and they are concatenated with each
other. It can also be segmented as “c,.A_BC.c,”,
which means although the boundary is correct, the
first character is separated from the other two. Or,
it can be segmented as “c,A_BCc,”, which means
the first character was actually part of the previous
word, while BC are the beginning of the next word.
Every time a particular word type w; appears in the
text, we consider a segmenter more consistent if it
can segment w; in the same way every time, but it
doesn’t necessarily have to be the same as the gold
standard segmentation. For example, if “ABC” is a
Chinese person name which appears 100 times in the
gold standard data, and one segmenter segment it as
cx-A_BC_cy 100 times, then this segmenter is still
considered to be very consistent, even if it doesn’t
exactly match the gold standard segmentation. Us-
ing this intuition, the conditional entropy of segmen-
tation variations H(V|W) is defined as follows:
H(V’W) = — ZP(W,’) ZP(V,']'|W,') IOgP(V,'j|W,')

wi Vij
= =Y. ) P(vij,wi)logP(vij{wi)
Wi Vij

Now we can look at the overall conditional en-
tropy H(V|W) to compare the consistency of each
segmenter. In Table 4, we can see that even though
MaxMatch has a much smaller MT lexicon size than
CRF-Lex, when we examine the consistency of how
MaxMatch segments in context, we find the condi-
tional entropy is much higher than CRF-Lex. We can
also see that CRF-basic has a higher conditional en-
tropy than the other two. The conditional entropy
H(V|W) shows how consistent each segmenter is,
and it correlates with the MT performance in Ta-
ble 4. Note that consistency is only one of the com-
peting factors of how good a segmentation is for
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MT performance. For example, a character-based
segmentation will always have the best consistency
possible, since every word ABC will just have one
pattern: ¢,.A_B_C.c,. But from Section 3.1 we
see that CharBased performs worse than both Max-
Match and CRF-basic on MT, because having word
segmentation can help the granularity of the Chinese
lexicon match that of the English lexicon.

In conclusion, for MT performance, it is helpful
to have consistent segmentation, while still having a
word segmentation matching the granularity of the
segmented Chinese lexicon and the English lexicon.

4 Optimal Average Token Length for MT

We have shown earlier that word-level segmentation
vastly outperforms character based segmentation in
MT evaluations. Since the word segmentation stan-
dard under consideration (Chinese Treebank (Xue
et al., 2005)) was neither specifically designed nor
optimized for MT, it seems reasonable to investi-
gate whether any segmentation granularity in con-
tinuum between character-level and CTB-style seg-
mentation is more effective for MT. In this section,
we present a technique for directly optimizing a seg-
mentation property—characters per token average—
for translation quality, which yields significant im-
provements in MT performance.

In order to calibrate the average word length pro-
duced by our CRF segmenter—i.e., to adjust the rate
of word boundary predictions (y; = +1), we apply
a relatively simple technique (Minkov et al., 2006)
originally devised for adjusting the precision/recall
tradeoff of any sequential classifier. Specifically, the
weight vector w and feature vector of a trained lin-
ear sequence classifier are augmented at test time
to include new class-conditional feature functions to
bias the classifier towards particular class labels. In
our case, since we wish to increase the frequency of
word boundaries, we add a feature function:

1 if y, =+1
Jo(X,1-1,¥1,1) = { 0 otherwise

Its weight Ay controls the extent of which the classi-
fier will make positive predictions, with very large
positive Ay values causing only positive predic-
tions (i.e., character-based segmentation) and large
negative values effectively disabling segmentation
boundaries. Table 5 displays how changes of the



Ay | —1 0 1 2 4 8 32
len | 1.64 162 161 159 155 137 1

Table 5: Effect of the bias parameter Ay on the average number
of character per token on MT data.

bias parameter Ay affect segmentation granularity.*
Since we are interested in analyzing the different
regimes of MT performance between CTB segmen-
tation and character-based, we performed a grid
search in the range between A9 = 0 (maximum-
likelihood estimate) and Ag = 32 (a value that is
large enough to produce only positive predictions).
For each Ay value, we ran an entire MT training and
testing cycle, i.e., we re-segmented the entire train-
ing data, ran GIZA++, acquired phrasal translations
that abide to this new segmentation, and ran MERT
and evaluations on segmented data using the same
Ap values.

BLEU[%)] scores
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Figure 1: A bias towards more segment boundaries (19 > 0)
yields better MT performance and worse segmentation results.

Segmentation and MT results are displayed in
Figure 1. First, we observe that an adjustment of
the precision and recall tradeoff by setting nega-

4Note that character-per-token averages provided in the ta-
ble consider each non-Chinese word (e.g., foreign names, num-
bers) as one character, since our segmentation post-processing
prevents these tokens from being segmented.
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tive bias values (49 = —2) slightly improves seg-
mentation performance. We also notice that rais-
ing Ay yields relatively consistent improvements in
MT performance, yet causes segmentation perfor-
mance (F measure) to be increasingly worse. While
the latter finding is not particularly surprising, it fur-
ther confirms that segmentation and MT evaluations
can yield rather different outcomes. We chose the
Ao = 2 on another dev set (MT02). On the test set
MTO3, Ay = 2 yields 31.47 BLEU, which represents
a quite large improvement compared to the unbiased
segmenter (30.95 BLEU). Further reducing the av-
erage number of characters per token yields gradual
drops of performance until character-level segmen-
tation (Ao > 32, 29.36 BLEU).

Here are some examples of how setting A9 = 2
shortens the words in a way that can help MT.

e separating adjectives and pre-modifying adverbs:
IR K (very big) — {R(very) K(big)

e separating nouns and pre-modifying adjectives:
10K (high blood pressure)
— 11 (high) 1. JE(blood pressure)

e separating compound nouns:
W B (Department of Internal Affairs)
— W (Internal Affairs) #5(Department).

S Improving Segmentation Consistency of
a Feature-based Sequence Model for
Segmentation

In Section 3.1 we showed that a statistical sequence
model with rich features can generalize better than
maximum matching segmenters. However, it also
inconsistently over-generates a big MT training lexi-
con and OOV words in MT test data, and thus causes
a problem for MT. To improve a feature-based se-
quence model for MT, we propose 4 different ap-
proaches to deal with named entities, optimal length
of word for MT and joint search for segmentation
and MT decoding.
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One way to improve the consistency of the CRF
model is to make use of external lexicons (which
are not part of the segmentation training data) to
add lexicon-based features. All the features we use
are listed in Table 6. Our linguistic features are
adopted from (Ng and Low, 2004) and (Tseng et
al., 2005). There are three categories of features:

Making Use of External Lexicons



Lexicon-based Features Linguistic Features

D) Logn©@)on€[=2,1] | @1) Conel[-2,1]

(12) Lyw(Chnel-21 | @2 CuiCunel-1,1]

(U3) Lea(C)ne[-2,1] | 23) CpaCunell,2]

(14) LE,,d(C,]) +LEnd<CI]> (24) Single(Cn),n € [72. 1]
+LEna(Cr) (2.5)  UnknownBigram(C_,Cp)

(1.5)  Lgna(C—2) +Lgna(C-1) | (2.6)  ProductiveAf fixes(C_y,Co)
+Lpegin(Co) + Lyria(Co) | (27)  Reduplication(C_1,C,),n € [0,1]

(1.6)  Lgna(C-2) + Lgna(C-1)
+Lpegin(C-1)
+Lpegin(Co) 4 Latia(Co)

Table 6: Features for CRF-Lex

character identity n-grams, morphological and char-
acter reduplication features. Our lexicon-based fea-
tures are adopted from (Shi and Wang, 2007), where
Lpegin(Co), Lumia(Co) and Lg,uq(Co) represent the
maximum length of words found in a lexicon that
contain the current character as either the first, mid-
dle or last character, and we group any length equal
or longer than 6 together. The linguistic features
help capturing words that were unseen to the seg-
menter; while the lexicon-based features constrain
the segmenter with external knowledge of what se-
quences are likely to be words.

We built a CRF segmenter with all the features
listed in Table 6 (CRF-Lex). The external lexicons
we used for the lexicon-based features come from
various sources including named entities collected
from Wikipedia and the Chinese section of the UN
website, named entities collected by Harbin Institute
of Technology, the ADSO dictionary, EMM News
Explorer, Online Chinese Tools, Online Dictionary
from Peking University and HowNet. There are
423,224 distinct entries in all the external lexicons.

The MT lexicon consistency of CRF-Lex in Table
4 shows that the MT training lexicon size has been
reduced by 29.5% and the MT test data OOV rate is
reduced by 34.1%.

5.2 Joint training of Word Segmentation and
Proper Noun Tagging

Named entities are an important source for OOV
words, and in particular are ones which it is bad to
break into pieces (particularly for foreign names).
Therefore, we use the proper noun (NR) part-of-
speech tag information from CTB to extend the label
sets of our CRF model from 2 to 4 ({beginning of a
word, continuation of a word} x {NR, not NR}).
This is similar to the “all-at-once, character-based”
POS tagging in (Ng and Low, 2004), except that
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Segmentation Performance

Segmenter F measure | OOV Recall | IV Recall
CRF-Lex-NR 0.943 0.753 0.970
CRF-Lex 0.940 0.729 0.970
MT Performance
Segmenter MTO3 (dev) | MTOS (test)
CRF-Lex-NR 32.96 31.27
CRF-Lex 32.70 30.95

Table 7: CRF-Lex-NR vs CRF-Lex

we are only tagging proper nouns. We call the 4-
label extension CRF-Lex-NR. The segmentation and
MT performance of CRF-Lex-NR is listed in Table 7.
With the 4-label extension, the OOV recall rate im-
proved by 3.29%; while the IV recall rate stays the
same. Similar to (Ng and Low, 2004), we found the
overall F measure only goes up a tiny bit, but we do
find a significant OOV recall rate improvement.

On the MT performance, CRF-Lex-NR has a 0.32
BLEU gain on the test set MTO05. In addition to the
BLEU improvement, CRF-Lex-NR also provides ex-
tra information about proper nouns, which can be
combined with postprocessing named entity transla-
tion modules to further improve MT performance.

6 Conclusion

In this paper, we investigated what segmentation
properties can improve machine translation perfor-
mance. First, we found that neither character-based
nor a standard word segmentation standard are opti-
mal for MT, and show that an intermediate granular-
ity is much more effective. Using an already com-
petitive CRF segmentation model, we directly opti-
mize segmentation granularity for translation qual-
ity, and obtain an improvement of 0.73 BLEU point
on MTOS over our lexicon-based segmentation base-
line. Second, we augment our CRF model with
lexicon and proper noun features in order to im-
prove segmentation consistency, which provide a
0.32 BLEU point improvement.
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