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Introduction

The ACL 2008 Workshop on Statistical Machine Translation (WMT-08) took place on Thursday, June
19 in Columbus, Ohio, United States, immediately following the annual meeting of the Association for
Computational Linguistics, which was hosted by the Ohio State University.

This is the third time this workshop has been held. It has its root in the ACL 2005 Workshop on Building
and Using Parallel Texts In the following years the Workshop on Statistical Machine Translation was
held at HLT-NAACL 2006 in New York City, US, and at ACL 2007 in Prague, Czech Republic.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
workshop we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages and languages with partial
free word order.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation
we conducted a shared task that brought together machine translation systems for an evaluation on
previously unseen data. This year’s task resembled the shared tasks of previous years in many ways,
but also included Hungarian-English and Spanish-German as new language pairs. In addition, we
evaluated submitted systems against new test sets from the newswire domain.

The results of the shared task were announced at the workshop, and these proceedings also include an
overview paper for the shared task that summarizes the results, as well as provides information about
the data used and any procedures that were followed in conducting or scoring the task. In addition,
there are short papers from each participating team that describe their underlying system in some detail.

Due to the large number of high quality submission for the full paper track, shared task submissions
were presented as posters. The poster session was held in the afternoon and gave participants of the
shared task the opportunity to present their approaches. The rest of the day was devoted to oral paper
presentations and Daniel Marcu’s invited talk in the afternoon.

Like in previous years, we have received a far larger number of submission than we could accept for
presentation. This year we have received 18 full paper submissions and 26 shared task submissions.
In total WMT-08 featured 12 full paper oral presentations and 25 shared task poster presentations.
The invited talk was given by Daniel Marcu of the Information Sciences Institute at the University of
Southern California.

We would like to thank the members of the Program Committee for their timely reviews. We also would
like to thank the participants of the shared task and all the other volunteers who helped with the manual
evaluations. We also acknowledge the financial support of the shared task by the EuroMatrix project
funded by the European Commission (6th Framework Programme).

Chris Callison-Burch, Philipp Koehn, Christof Monz, Josh Schroeder, and Cameron Shaw Fordyce

Co-Organizers
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Graeme Blackwood, Adrià de Gispert, Jamie Brunning and William Byrne

Effects of Morphological Analysis in Translation between German and English
Sara Stymne, Maria Holmqvist and Lars Ahrenberg

Towards better Machine Translation Quality for the German-English Language Pairs
Philipp Koehn, Abhishek Arun and Hieu Hoang

xii



Thursday, June 19, 2008 (continued)

Phrase-Based and Deep Syntactic English-to-Czech Statistical Machine Translation
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Abstract

The treatment of ‘spurious’ words of source
language is an important problem but often
ignored in the discussion on phrase-based
SMT. This paper explains why it is impor-
tant and why it is not a trivial problem, and
proposes three models to handle spurious
source words. Experiments show that any
source word deletion model can improve a
phrase-based system by at least 1.6 BLEU
points and the most sophisticated model
improves by nearly 2 BLEU points. This
paper also explores the impact of training
data size and training data domain/genre on
source word deletion.

1 Introduction

It is widely known that translation is by no
means word-to-word conversion. Not only be-
cause sometimes a word in some language trans-
lates as more than one word in another language,
also every language has some ‘spurious’ words
which do not have any counterpart in other lan-
guages. Consequently, an MT system should be
able to identify the spurious words of the source
language and not translate them, as well as to gen-
erate the spurious words of the target language.
This paper focuses on the first task and studies
how it can be handled in phrase-based SMT.

An immediate reaction to the proposal of inves-
tigating source word deletion (henceforth SWD)
is: Is SWD itself worth our attention? Isn’t it a
trivial task that can be handled easily by existing
techniques? One of the reasons why we need to
pay attention to SWD is its significant improve-
ment to translation performance, which will be

shown by the experiments results in section 4.2.
Another reason is that SWD is not a trivial task.
While some researchers think that the spurious
words of a language are merely function words
or grammatical particles, which can be handled
by some simple heuristics or statistical means,
there are in fact some tricky cases of SWD which
need sophisticated solution. Consider the follow-
ing example in Chinese-to-English translation: in
English we have the subordinate clause “accord-
ing to NP”, where NP refers to some source of
information. The Chinese equivalent of this
clause can sometimes be “ACCORDING-TO/Êâ
NP EXPRESS/,+”; that is, in Chinese we could
have a clause rather than a noun phrase following
the preposition ACCORDING-TO/Êâ. There-
fore, when translating Chinese into English, the
content word EXPRESS/,+ should be consid-
ered spurious and not to be translated. Of course,
the verb EXPRESS/,+ is not spurious in other
contexts. It is an example that SWD is not only
about a few function words, and that the solu-
tion to SWD has to take context-sensitive factors
into account. Moreover, the solution needed for
such tricky cases seems to be beyond the scope
of current phrase-based SMT, unless we have a
very large amount of training data which cov-
ers all possible variations of the Chinese pattern
“ACCORDING-TO/Êâ NP EXPRESS/,+”.

Despite the obvious need for handling spuri-
ous source words, it is surprising that phrase-
based SMT, which is a major approach to SMT,
does not well address the problem. There are
two possible ways for a phrase-based system to
deal with SWD. The first one is to allow a source
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language phrase to translate to nothing. How-
ever, no existing literature has mentioned such
a possibility and discussed the modifications re-
quired by such an extension. The second way is
to capture SWD within the phrase pairs in trans-
lation table. That is, suppose there is a foreign
phrase F̃ = (fAfBfC) and an English phrase
Ẽ = (eAeC), where fA is aligned to eA and fC

to eC , then the phrase pair (F̃ , Ẽ) tacitly deletes
the spurious word fB . Such a SWD mechanism
fails when data sparseness becomes a problem. If
the training data does not have any word sequence
containing fB , then the spurious fB cannot asso-
ciate with other words to form a phrase pair, and
therefore cannot be deleted tacitly in some phrase
pair. Rather, the decoder can only give a phrase
segmentation that treats fB itself as a phrase, and
this phrase cannot translate into nothing, as far
as the SMT training and decoding procedure re-
ported by existing literature are used. In sum, the
current mechanism of phrase-based SMT is not
capable of handling all cases of SWD.

In this paper, we will present, in section 3, three
SWD models and elaborate how to apply each
of them to phrase-based SMT. Experiment set-
tings are described in section 4.1, followed by the
report and analysis of experiment results, using
BLEU as evaluation metric, in section 4.2, which
also discusses the impact of training data size and
training data domain on SWD models. Before
making our conclusions, the effect of SWD on an-
other evaluation metric, viz. METEOR, is exam-
ined in section 5.

2 Literature Review

Research work in SMT seldom treats SWD as
a problem separated from other factors in trans-
lation. However, it can be found in differ-
ent SMT paradigms the mechanism of handling
SWD. As to the pioneering IBM word-based
SMT models (Brown et al., 1990), IBM mod-
els 3, 4 and 5 handle spurious source words by
considering them as corresponding to a particular
EMPTY word token on the English side, and by the
fertility model which allows the English EMPTY

to generate a certain number of foreign words.
As to the hierarchical phrase-based ap-

proach (Chiang, 2007), its hierarchical rules are
more powerful in SWD than the phrase pairs

in conventional phrase-based approach. For
instance, the “ACCORDING-TO/Êâ NP EX-
PRESS/,+” example in the last section can be
handled easily by the hierarchical rule

X →<Êâ X,+, according to X > .

In general, if the deletion of a source word
depends on some context cues, then the hier-
archical approach is, at least in principle, ca-
pable of handling it correctly. However, it is
still confronted by the same problem as the con-
ventional phrase-based approach regarding those
words whose ‘spuriousness’ does not depend on
any context.

3 Source Word Deletion Models

This section presents a number of solutions to the
problem of SWD. These solutions share the same
property that a specific empty symbol ε on the tar-
get language side is posited and any source word
is allowed to translate into ε. This symbol is in-
visible in every module of the decoder except the
translation model. That is, ε is not counted when
calculating language model score, word penalty
and any other feature values, and it is omitted in
the final output of the decoder. It is only used to
delete spurious source words and refine transla-
tion model scores accordingly.

It must be noted that in our approach phrases
comprising more than one source word are not al-
lowed to translate into ε. This constraint is based
on our subjective evaluation of alignment matrix,
which indicates that the un-alignment of a con-
tinuous sequence of two or more source words is
far less accurate than the un-alignment of a sin-
gle source word lying within aligned neighbors.
Consequently, in order to treat a source word as
spurious, the decoder must give a phrase segmen-
tation that treats the word itself as a phrase.

Another important modification to the phrase-
based architecture is a new feature added to the
log-linear model. The new feature, ε-penalty, rep-
resents how many source words translate into ε.
The purpose of this feature is the same as that
of the feature of word penalty. As many features
used in the log-linear model have values of log-
arithm of probability, candidate translations with
more words have, in general, lower scores, and
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Model 1 P (ε)
Model 2 P (ε|f)
Model 3 PCRF (ε|~F (f)

Table 1: Summary of the Three SWD Models

therefore the decoder has a bias towards shorter
translations. Word penalty (in fact, it should be
renamed as word reward) is used to neutralize
this bias. Similarly, the more source words trans-
late into ε, the shorter the translation will be,
and therefore the higher score the translation will
have. The ε-penalty is proposed to neutralize the
bias towards shorter translations.

The core of the solutions is the SWD model,
which calculates P (ε|f), the probability distribu-
tion of translating some source word f to ε. Three
SWD models will be elaborated in the following
subsections. They differ from each other by the
conditions of the probability distribution, as sum-
marized in Table 1. Model 1 is a uniform prob-
ability distribution that does not take the source
word f into account. Model 2 is a simple proba-
bility distribution conditioned on the lexical form
of f only. Model 3 is a more complicated distribu-
tion conditioned on a feature vector of f , and the
distribution is estimated by the method of Condi-
tional Random Field.

3.1 Model 1: Uniform Probability

The first model assumes a uniform probability
of translation to ε. This model is inspired by
the HMM-based alignment model (Och and Ney,
2000a), which posits a probability P0 for align-
ment of some source word to the empty word
on the target language side, and weighs all other
alignment probabilities by the factor 1 − P0. In
the same style, SWD model 1 posits a probability
P (ε) for the translation of any source word to ε.
The probabilities of normal phrase pairs should
be weighed accordingly. For a source phrase
containing only one word, its weight is simply
P (ε̄) = 1 − P (ε). As to a source phrase con-
taining more than one word, it implies that every
word in the phrase does not translate into ε, and
therefore the weighing factor P (ε̄) should be mul-
tiplied as many times as the number of words in
the source phrase. In sum, for any phrase pair

< F̃ , Ẽ >, its probability is

P (Ẽ|F̃ ) =

{
P (ε) ifẼ = (ε)
P (ε̄)|F̃ |PT (Ẽ|F̃ ) otherwise

where PT (Ẽ|F̃ ) is the probability of the phrase
pair as registered in the translation table, and |F̃ |
is the length of the phrase F̃ . The estimation of
P (ε) is done by MLE:

P (ε) =
number of unaligned source word tokens

number of source word tokens
.

3.2 Model 2: EMPTY as Normal Word
Model 1 assumes that every word is as likely to be
spurious as any other word. Definitely this is not
a reasonable assumption, since certain function
words and grammatical particles are more likely
to be spurious than other words. Therefore, in our
second SWD model the probability of translating
a source word f to ε is conditioned on f itself.

This probability, P (ε|f), is in the same form as
the probability of a normal phrase pair, P (Ẽ|F̃ ),
if we consider ε as some special phrase of the tar-
get language and f as a source language phrase
on its own. Thus P (ε|f) can be estimated and
recorded in the same way as the probability of
normal phrase pairs. During the phase of phrase
enumeration, in addition to enumerating all nor-
mal phrase pairs, we also enumerate all unaligned
source words f and add phrase pairs of the form
< (f), (ε) >. These special phrase pairs, TO-
EMPTY phrase pairs, are fed to the module of
phrase scoring along with the normal phrase pairs.
Both types of phrase pairs are then stored in the
translation table with corresponding phrase trans-
lation probabilities. It can be seen that, since the
probabilities of normal phrase pairs are estimated
in the same procedure as those of TO-EMPTY

phrase pairs, they do not need re-weighing as in
the case of SWD model 1.

3.3 Model 3: Context-sensitive Model
Although model 2 is much more informative than
model 1, it is still unsatisfactory if we consider
the problem of SWD as a problem of tagging.
The decoder can be conceived as if it carries out
a tagging task over the source language sentence:
each source word is tagged either as “spurious” or
“non-spurious”. Under such a perspective, SWD
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model 2 is merely a unigram tagging model, and
it uses only one feature template, viz. the lex-
ical form of the source word in hand. Such a
model can by no means encode any contextual
information, and therefore it cannot handle the
“ACCORDING-TO/Êâ NP EXPRESS/,+” ex-
ample in section 1.

An obvious solution to this limitation is a more
powerful tagging model augmented with context-
sensitive feature templates. Inspired by research
work like (Lafferty et al., 2001) and (Sha and
Pereira, 2003), our SWD model 3 uses first-order
Conditional Random Field (CRF) to tackle the
tagging task.1 The CRF model uses the follow-
ing feature templates:

1. the lexical form and the POS of the foreign
word f itself;

2. the lexical forms and the POSs of f−2, f−1,
f+1, and f+2, where f−2 and f−1 are the two
words to the left of f , and f+1 and f+2 are
the two words to the right of f ;

3. the lexical form and the POS of the head
word of f ;

4. the lexical forms and the POSs of the depen-
dent words of f .

The lexical forms are the major source of infor-
mation whereas the POSs are employed to allevi-
ate data sparseness. The neighboring words are
used to capture local context information. For ex-
ample, in Chinese there is often a comma after
verbs like “said” or “stated”, and such a comma
is not translated to any word or punctuation in
English. These spurious commas are therefore
identified by their immediate left neighbors. The
head and dependent words are employed to cap-
ture non-local context information found by some
dependency parser. For the “ACCORDING-TO/Ê
â NP EXPRESS/,+” example in section 1,
the Chinese word ACCORDING-TO/Êâ is the
head word of EXPRESS/,+. The spurious to-
ken of EXPRESS/,+ in this pattern can be dis-
tinguished from the non-spurious tokens through
the feature template of head word.

1Maximum Entropy was also tried in our experiments but
its performance is not as good as CRF.

The training data for the CRF model comprises
the alignment matrices of the bilingual training
data for the MT system. A source word (token)
in the training data is tagged as “non-spurious” if
it is aligned to some target word(s), otherwise it is
tagged as “spurious”. The sentences in the train-
ing data are also POS-tagged and parsed by some
dependency parser, so that each word can be as-
signed values for the POS-based feature templates
as well as the feature templates of head word and
dependency words.

The trained CRF model can then be used to
augment the decoder to tackle the SWD problem.
An input source sentence should first be POS-
tagged and parsed for assigning feature values.
The probability for f being spurious, P (ε|f), is
then calculated by the trained CRF model as

PCRF (spurious|~F (f)).

The probability for f being non-spurious is sim-
ply 1 − P (ε|f). For a normal phrase pair
< F̃ , Ẽ > recorded in the translation table,
its phrase translation probability and the lexical
weight should be re-weighed by the probabilities
of non-spuriousness. The weighing factor is

∏

fiεF̃

(1− P (ε|fi)),

since the translation of F̃ into Ẽ means the de-
coder considers every word in F̃ as non-spurious.

4 Experiments

4.1 Experiment Settings
A series of experiments were run to compare the
performance of the three SWD models against the
baseline, which is the standard phrase-based ap-
proach to SMT as elaborated in (Koehn et al.,
2003). The experiments are about Chinese-to-
English translation. The bilingual training data
is the one for NIST MT-2006. The GIGAWORD
corpus is used for training language model. The
development/test corpora are based on the test
sets for NIST MT-2005/6.

The alignment matrices of the training data are
produced by the GIZA++ (Och and Ney, 2000b)
word alignment package with its default settings.
The subsequent construction of translation table
was done in exactly the same way as explained
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in (Koehn et al., 2003). For SWD model 2,
the phrase enumeration step is modified as de-
scribed in section 3.2. We used the Stanford
parser (Klein and Manning, 2003) with its default
Chinese grammar for its POS-tagging as well as
finding the head/dependent words of all source
words. The CRF toolkit used for model 3 is
CRF++2. The training data for the CRF model
should be the same as that for translation table
construction. However, since there are too many
instances (every single word in the training data
is an instance) with a huge feature space, no pub-
licly available CRF toolkit can handle the entire
training set of NIST MT-2006.3 Therefore, we
can use at most only about one-third of the NIST
training set (comprising the FBIS, B1, and T10
sections) for CRF training.

The decoder in the experiments is our re-
implementation of HIERO (Chiang, 2007), aug-
mented with a 5-gram language model and a re-
ordering model based on (Zhang et al., 2007).
Note that no hierarchical rule is used with the de-
coder; the phrase pairs used are still those used
in conventional phrase-based SMT. Note also that
the decoder does not translate OOV at all even
in the baseline case, and thus the SWD models
do not improve performance simply by removing
OOVs.

In order to test the effect of training data size on
the performance of the SWD models, three varia-
tions of training data were used:

FBIS Only the FBIS section of the NIST training
set is used as training data (for both transla-
tion table and the CRF model in model 3).
This section constitutes about 10% of the en-
tire NIST training set. The purpose of this
variation is to test the performance of each
model when very small amount of data are
available.

BFT Only the B1, FBIS, and T10 sections of the
NIST training set are used as training data.
These sections are about one-third of the en-
tire NIST training set. The purpose of this

2http://crfpp.sourceforge.net/
3Apart from CRF++, we also tried FLEX-

CRF (http://flexcrfs.sourceforge.net) and MALLET

(http://mallet.cs.umass.edu).

Data baseline model 1 model 2 model 3
FBIS 28.01 29.71 29.48 29.64
BFT 29.82 31.55 31.61 31.75
NIST 29.77 31.39 31.33 31.71

Table 2: BLEU scores in Experiment 1: NIST’05 as
dev and NIST’06 as test

variation is to test each model when medium
size of data are available.4

NIST All the sections of the NIST training set
are used. The purpose of this variation is to
test each model when a large amount of data
are available.

(Case-insensitive) BLEU-4 (Papineni et al.,
2002) is used as the evaluation metric. In each
test in our experiments, maximum BLEU training
were run 10 times, and thus there are 10 BLEU
scores for the test set. In the following we will
report the mean scores only.

4.2 Experiment Results and Analysis
Table 2 shows the results of the first experiment,
which uses the NIST MT-2005 test set as develop-
ment data and the NIST MT-2006 test set as test
data. The most obvious observation is that any
SWD model achieves much higher BLEU score
than the baseline, as there is at least 1.6 BLEU
point improvement in each case, and in some case
the improvement of using SWD is nearly 2 BLEU
points. This clearly proves the importance of
SWD in phrase-based SMT.

The difference between the performance of the
various SWD models is much smaller. Yet there
are still some noticeable facts. The first one is
that model 1 gives the best result in the case of
using only FBIS as training data but it fails to
do so when more training data is available. This
phenomenon is not strange since model 2 and
model 3 are conditioned on more information and
therefore they need more training data.

The second observation is about the strength of
SWD model 3, which achieves the best BLEU
score in both the BFT and NIST cases. While
its improvement over models 1 and 2 is marginal
in the case of BFT, its performance in the NIST

4Note also that the BFT data set is the largest training
data that the CRF model in model 3 can handle.
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case is remarkable. A suspicion to the strength of
model 3 is that in the NIST case both models 1
and 2 use the entire NIST training set for esti-
mating P (ε), while model 3 uses only the BFT
sections to train its CRF model. It may be that
the BFT sections are more consistent with the test
data set than the other NIST sections, and there-
fore a SWD model trained on BFT sections only
is better than that trained on the entire NIST. This
conjecture is supported by the fact that in all four
settings the BLEU scores in the NIST case are
lower than those in the BFT case, which suggests
that other NIST sections are noisy. While it is im-
possible to test model 3 with the entire NIST, it is
possible to restrict the data for the estimation of
P (ε|f) in model 1 to the BFT sections only and
check if such a restriction helps.5 We estimated
the uniform probability P (ε) from only the BFT
sections and used it with the translation table con-
structed from the complete NIST training set. The
BLEU score thus obtained is 31.24, which is even
lower than the score (31.39) of the original case
of using the entire NIST for both translation table
and P (ε|f) estimation. In sum, the strength of
model 3 is not simply due to the choice of train-
ing data.

The test set used in Experiment 1 distinguishes
itself from the development data and the training
data by its characteristics of combining text from
different genres. There are three sources of the
NIST MT-2006 test set, viz. “newswire”, “news-
group”, and “broadcast news”, while our devel-
opment data and the NIST training set comprises
only newswire text and text of similar style. It is
an interesting question whether SWD only works
for some genres (say, newswire) but not for other
genres. In fact, it is dubious whether SWD fits the
test set to the same extent as it fits the develop-
ment set. That is, perhaps SWD contributes to the
improvement in Experiment 1 simply by improv-
ing the translation of the development set which is
composed of newswire text only, and SWD may
not benefit the translation of the test data at all.
In order to test this conjecture, we ran Experi-
ment 2, in which the SWD models were still ap-
plied to the development data during training, but

5Unfortunately this way does not work for model 2 as
the estimation of P (ε|f) and the construction of translation
table are tied together.

Data model 1 model 2 model 3
FBIS 29.85 29.91 29.95
BFT 31.73 31.84 32.08
NIST 31.70 31.82 32.05

Table 3: BLEU scores in Experiment 2, which is the
same as Experiment 1 but no word is deleted for test
corpus. Note: the baseline scores are the same as the
baselines in Experiment 1 (Table 2).

all SWD models stopped working when translat-
ing the test data with the trained parameters. The
results are shown in Table 3. These results are
very discouraging if we compare each cell in Ta-
ble 3 against the corresponding cell in Table 2: in
all cases SWD seems harmful to the translation of
the test data. It is tempting to accept the conclu-
sion that SWD works for newswire text only.

To scrutinize the problem, we split up the test
data set into two parts, viz. the newswire sec-
tion and the non-newswire section, and ran ex-
periments separately. Table 4 shows the results
of Experiment 3, in which the development data
is still the NIST MT-2005 test set and the test
data is the newswire section of NIST MT-2006
test set. It is confirmed that if test data shares
the same genre as the training/development data,
then SWD does improve translation performance
a lot. It is also observed that more sophisticated
SWD models perform better when provided with
sufficient training data, and that model 3 exhibits
remarkable improvement when it comes to the
NIST case.

Of course, the figures in Table 5, which shows
the results of Experiment 4 where the non-
newswire section of NIST MT-2006 test set is
used as test data, still leave us the doubt that SWD
is useful for a particular genre only. After all, it
is reasonable to assume that a model trained from
data of a particular domain can give good perfor-
mance only to data of the same domain. On the
other hand, the language model is another cause
of the poor performance, as the GIGAWORD cor-
pus is also of the newswire style.

While we cannot prove the value of SWD with
respect to training data of other genres in the
mean time, we could test the effect of using de-
velopment data of other genres. In our last ex-
periment, the first halves of both the newswire
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apply SWD for test set no SWD for test set
Data model 1 model 2 model 3 model 1 model 2 model 3
FBIS 30.81 30.81 30.68 29.23 29.61 29.46
BFT 33.57 33.74 33.71 31.88 31.87 32.25
NIST 33.65 34.01 34.42 32.14 32.59 32.87

Table 4: BLEU scores in Experiment 3, which is the same as Experiments 1 and 2 but only the newswire section
of NIST’06 test set is used. Note: the baseline scores are the same as the baselines in Experiment 1 (Table 2).

apply SWD for test set no SWD for test set
Data model 1 model 2 model 3 model 1 model 2 model 3
FBIS 29.19 28.86 29.16 30.07 29.67 30.08
BFT 30.62 30.64 30.86 31.66 31.83 32.00
NIST 30.34 30.10 30.46 31.50 31.45 31.66

Table 5: BLEU scores in Experiment 4, which is the same as Experiments 1 and 2 but only the non-newswire
section of NIST’06 test set is used. Note: the baseline scores are the same as the baselines in Experiment 1
(Table 2).

Data baseline model 1 model 2 model 3
FBIS 26.87 27.79 27.51 27.61
BFT 29.11 30.38 30.49 30.41
NIST 29.34 30.63 30.95 31.00

Table 6: BLEU scores in Experiment 5: which is the
same as Experiment 1 but uses half of NIST’06 as de-
velopment set and another half of NIST’06 as test set.

and non-newswire sections of NIST MT-2006 test
set are combined to form the new development
data, and the second halves of the two sections
are combined to form the new test data. The new
development data is therefore consistent with the
new test data. If SWD, or at least a SWD model
from newswire, is harmful to the non-newswire
section, which constitutes about 60% of the de-
velopment/test data, then it will be either that the
parameter training process minimizes the impact
of SWD, or that the SWD model will make the
parameter training process fail to search for good
parameter values. The consequence of either case
is that the baseline setting should produce similar
or even higher BLEU score than the settings that
employ some SWD model. Experiment results, as
shown in Table 6, illustrate that SWD is still very
useful even when both development and test sets
contain texts of different genres from the training
text. It is also observed, however, that the three
SWD models give rise to roughly the same BLEU

scores, indicating that the SWD training data do
not fit the test/development data very well as even
the more sophisticated models are not benefited
from more data.

5 Experiments using METEOR

The results in the last section are all evaluated us-
ing the BLEU metric only. It is dubious whether
SWD is useful regarding recall-oriented metrics
like METEOR (Banerjee and Lavie, 2005), since
SWD removes information in source sentences.
This suspicion is to certain extent confirmed by
our application of METEOR to the translation
outputs of Experiment 1 (c.f. Table 7), which
shows that all SWD models achieve lower ME-
TEOR scores than the baseline. However, SWD is
not entirely harmful to METEOR: if SWD is ap-
plied to parameter tuning only but not for the test
set, (i.e. Experiment 2), even higher METEOR
scores can be obtained. This puzzling observa-
tion may be because the parameters of the de-
coder are optimized with respect to BLEU score,
and SWD benefits parameter tuning by improv-
ing BLEU score. In future experiments, maxi-
mum METEOR training should be used instead
of maximum BLEU training so as to examine if
SWD is really useful for parameter tuning.

7



Experiment 1 Experiment 2
SWD for both dev/test SWD for dev only

Data baseline model 1 model 2 model 3 model 1 model 2 model 3
FBIS 50.07 47.90 49.83 49.34 51.58 51.08 51.17
BFT 52.47 50.55 51.89 52.10 54.72 54.43 54.30
NIST 52.12 49.86 50.97 51.59 54.14 53.82 54.01

Table 7: METEOR scores in Experiments 1 and 2

6 Conclusion and Future Work

In this paper, we have explained why the han-
dling of spurious source words is not a trivial
problem and how important it is. Three solu-
tions, with increasing sophistication, to the prob-
lem of SWD are presented. Experiment results
show that, in our setting of using NIST MT-2006
test set, any SWD model leads to an improvement
of at least 1.6 BLEU points, and SWD model 3,
which makes use of contextual information, can
improve up to nearly 2 BLEU points. If only
the newswire section of the test set is considered,
SWD model 3 is even more superior to the other
two SWD models.

The effect of training data size on SWD has
also been examined, and it is found that more
sophisticated SWD models do not outperform
unless they are provided with sufficient amount
of data. As to the effect of training data do-
main/genre on SWD, it is clear that SWD models
trained on text of certain genre perform the best
when applied to text of the same genre. While
it is infeasible for the time being to test if SWD
works well for non-newswire style of training
data, we managed to illustrate that SWD based on
newswire text still to certain extent benefits the
training and translation of non-newswire text.

In future, two extensions of our system are
needed for further examination of SWD. The first
one is already mentioned in the last section: max-
imum METEOR training should be implemented
in order to fully test the effect of SWD regard-
ing METEOR. The second extension is about the
weighing factor in models 1 and 3. The current
implementation assumes that all source words
in a normal phrase pair need to be weighed by
1− P (ε). However, in fact some source words in
a source phrase are tacitly deleted (as explained
in the Introduction). Thus the word alignment in-

formation within phrase pairs need to be recorded
and the weighing of a normal phrase pair should
be done in accordance with such alignment infor-
mation.

References
Brown, P., J. Cocke, S. Della Pietra, V. Della Pietra,

F. Jelinek, J. Lafferty, R. Mercer, and P. Roossin.
1990. A Statistical Approach to Machine Transla-
tion Computational Linguistics, 16(2).

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An Automatic Metric for MT Evaluation with Im-
proved Correlation with Human Judgments. Pro-
ceedings of Workshop on Evaluation Measures for
MT and/or Summarization at ACL 2005.

David Chiang. 2007. Hierarchical Phrase-based
Translation. Computational Linguistics, 33(2).

Dan Klein and Christopher D. Manning. 2003. Ac-
curate Unlexicalized Parsing. Proceedings for ACL
2003.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical Phrase-based Translation. Proceedings
for HLT-NAACL 2003.

John Lafferty, Andrew McCallum, and Fernando
Pereira 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. Proceedings for 18th International
Conf. on Machine Learning.

Franz J. Och, and Hermann Ney. 2000. A comparison
of alignment models for statistical machine transla-
tion. Proceedings of COLING 2000.

Franz J. Och, and Hermann Ney. 2000. Improved
Statistical Alignment Models. Proceedings for ACL
2000.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: a Method for Auto-
matic Evaluation of Machine Translation. Proceed-
ings for ACL 2002.

Fei Sha, Fernando Pereira. 2003. Shallow parsing
with conditional random fields. Proceedings of
NAACL 2003.

Dongdong Zhang, Mu Li, Chi-Ho Li and Ming
Zhou. 2007. Phrase Reordering Model Integrat-
ing Syntactic Knowledge for SMT. Proceedings for
EMNLP 2007.

8



Proceedings of the Third Workshop on Statistical Machine Translation, pages 9–17,
Columbus, June 2008. c©2008 Association for Computational Linguistics

Rich Source-Side Context for Statistical Machine Translation

Kevin Gimpel and Noah A. Smith
Language Technologies Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{kgimpel,nasmith}@cs.cmu.edu

Abstract

We explore the augmentation of statistical ma-
chine translation models with features of the
context of each phrase to be translated. This
work extends several existing threads of re-
search in statistical MT, including the use of
context in example-based machine translation
(Carl and Way, 2003) and the incorporation of
word sense disambiguation into a translation
model (Chan et al., 2007). The context fea-
tures we consider use surrounding words and
part-of-speech tags, local syntactic structure,
and other properties of the source language
sentence to help predict each phrase’s transla-
tion. Our approach requires very little compu-
tation beyond the standard phrase extraction
algorithm and scales well to large data sce-
narios. We report significant improvements
in automatic evaluation scores for Chinese-
to-English and English-to-German translation,
and also describe our entry in the WMT08
shared task based on this approach.

1 Introduction

Machine translation (MT) by statistical modeling of
bilingual phrases is one of the most successful ap-
proaches in the past few years. Phrase-based MT
systems are straightforward to train from parallel
corpora (Koehn et al., 2003) and, like the origi-
nal IBM models (Brown et al., 1990), benefit from
standard language models built on large monolin-
gual, target-language corpora (Brants et al., 2007).
Many of these systems perform well in competitive
evaluations and scale well to large-data situations

(NIST, 2006; Callison-Burch et al., 2007). End-to-
end phrase-based MT systems can be built entirely
from freely-available tools (Koehn et al., 2007).

We follow the approach of Koehn et al. (2003),
in which we translate a source-language sentence f
into the target-language sentence ê that maximizes a
linear combination of features and weights:1

〈ê, â〉 = argmax
〈e,a〉

score(e,a,f) (1)

= argmax
〈e,a〉

M∑
m=1

λmhm(e,a,f) (2)

where a represents the segmentation of e and f
into phrases and a correspondence between phrases,
and each hm is a R-valued feature with learned
weight λm. The translation is typically found us-
ing beam search (Koehn et al., 2003). The weights
〈λ1, ..., λM 〉 are typically learned to directly mini-
mize a standard evaluation criterion on development
data (e.g., the BLEU score; Papineni et al., (2002))
using numerical search (Och, 2003).

Many features are used in phrase-based MT, but
nearly ubiquitous are estimates of the conditional
translation probabilities p(ej

i | f `
k) and p(f `

k | ej
i )

for each phrase pair 〈ej
i ,f

l
k〉 in the candidate sen-

tence pair.2 In this paper, we add and evaluate fea-
1In the statistical MT literature, this is often referred to as a

“log-linear model,” but since the score is normalized during nei-
ther parameter training nor decoding, and is never interpreted as
a log-probability, it is essentially a linear combination of feature
functions. Since many of the features are actually probabilities,
this linear combination is closer to a mixture model.

2We will use xj
i to denote the subsequence of x containing

the ith through jth elements of x, inclusive.
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tures that condition on additional context features on
the source (f ) side:

p(ej
i | Phrase = f `

k,Context = 〈fk−1
1 ,fF

`+1, ...〉)

The advantage of considering context is well-
known and exploited in the example-based MT com-
munity (Carl and Way, 2003). Recently researchers
have begun to use source phrase context informa-
tion in statistical MT systems (Stroppa et al., 2007).
Statistical NLP researchers understand that condi-
tioning a probability model on more information is
helpful only if there are sufficient training data to ac-
curately estimate the context probabilities.3 Sparse
data are often the death of elaborate models, though
this can be remedied through careful smoothing.

In this paper we leverage the existing linear
model (Equation 2) to bring source-side context into
phrase-based MT in a way that is robust to data
sparseness. We interpret the linear model as a mix-
ture of many probability estimates based on different
context features, some of which may be very sparse.
The mixture coefficients are trained in the usual way
(“minimum error-rate training,” Och, 2003), so that
the additional context is exploited when it is useful
and ignored when it isn’t.

The paper proceeds as follows. We first review re-
lated work that enriches statistical translation mod-
els using context (§2). We then propose a set
of source-side features to be incorporated into the
translation model, including the novel use of syntac-
tic context from source-side parse trees and global
position within f (§3). We explain why analogous
target-side features pose a computational challenge
(§4). Specific modifications to the standard training
and evaluation paradigm are presented in §5. Exper-
imental results are reported in §6.

2 Related Work

Stroppa et al. (2007) added souce-side context fea-
tures to a phrase-based translation system, including
conditional probabilities of the same form that we
use. They consider up to two words and/or POS tags
of context on either side. Because of the aforemen-
tioned data sparseness problem, they use a decision-

3An illustrative example is the debate over the use of bilex-
icalized grammar rules in statistical parsing (Gildea, 2001;
Bikel, 2004).

tree classifier that implicitly smooths relative fre-
quency estimates. The method improved over a stan-
dard phrase-based baseline trained on small amounts
of data (< 50K sentence pairs) for Italian → English
and Chinese → English. We explore a significantly
larger space of context features, a smoothing method
that more naturally fits into the widely used, error-
driven linear model, and report a more comprehen-
sive experimental evaluation (including feature com-
parison and scaling up to very large datasets).

Recent research on the use of word-sense dis-
ambiguation in machine translation also points to-
ward our approach. For example, Vickrey et al.
(2005) built classifiers inspired by those used in
word sense disambiguation to fill in blanks in
a partially-completed translation. Giménez and
Màrquez (2007) extended the work by considering
phrases and moved to full translation instead of fill-
ing in target-side blanks. They trained an SVM for
each source language phrase using local features of
the sentences in which the phrases appear. Carpuat
and Wu (2007) and Chan et al. (2007) embedded
state-of-the-art word sense disambiguation modules
into statistical MT systems, achieving performance
improvements under several automatic measures for
Chinese → English translation.

Our approach is also reminiscent of example-
based machine translation (Nagao, 1984; Somers,
1999; Carl and Way, 2003), which has for many
years emphasized use of the context in which source
phrases appear when translating them. Indeed, like
the example-based community, we do not begin with
any set of assumptions about which kinds of phrases
require additional disambiguation (cf. the applica-
tion of word-sense disambiguation, which is moti-
vated by lexical ambiguity). Our feature-rich ap-
proach is omnivorous and can exploit any linguistic
analysis of an input sentence.

3 Source-Side Context Features

Adding features to the linear model (Equation 2)
that consider more of the source sentence requires
changing the decoder very little, if at all. The reason
is that the source sentence is fully observed, so the
information to be predicted is the same as before—
the difference is that we are using more clues to
carry out the prediction.
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We see this as an opportunity to include many
more features in phrase-based MT without increas-
ing the cost of decoding at runtime. This discussion
is reminiscent of an advantage gained by moving
from hidden Markov models to conditional random
fields for sequence labeling tasks. While the same
core algorithm is used for decoding with both mod-
els, a CRF allows inclusion of features that consider
the entire observed sequence—i.e., more of the ob-
servable context of each label to be predicted. Al-
though this same advantage was already obtained
in statistical MT through the transition from “noisy
channel” translation models to (log-)linear models,
the customary set of features used in most phrase-
based systems does not take full advantage of the
observed data.

The standard approach to estimating the phrase
translation conditional probability features is via rel-
ative frequencies (here e and f are phrases):

p(e | f) =
count(e,f)∑
e′ count(e′,f)

Our new features all take the form p(e |
f ,f context), where e is the target language phrase,
f is the source language phrase, and f context is the
context of the source language phrase in the sentence
in which it was observed. Like the context-bare con-
ditional probabilities, we estimate probability fea-
tures using relative frequencies:

p(e | f ,f context) =
count(e,f ,f context)∑
e′ count(e′,f ,f context)

Since we expect that adding conditioning vari-
ables will lead to sparser counts and therefore more
zero estimates, we compute features for many dif-
ferent types of context. To combine the many
differently-conditioned features into a single model,
we provide them as features to the linear model
(Equation 2) and use minimum error-rate training
(Och, 2003) to obtain interpolation weights λm.
This is similar to an interpolation of backed-off es-
timates, if we imagine that all of the different con-
texts are differently-backed off estimates of the com-
plete context. The error-driven weight training ef-
fectively smooths one implicit context-rich estimate
p(e | f ,f context) so that all of the backed-off es-

timates are taken into account, including the orig-
inal p(e | f). Our approach is asymmetrical; we
have not, for example, estimated features of the form
p(f ,f context | e).

We next discuss the specific source-side context
features used in our model.

3.1 Lexical Context Features
The most obvious kind of context of a source phrase
f `

k is the m-length sequence before it (fk−1
k−m) and

the m-length sequence after it (f `+m
`+1 ). We include

context features for m ∈ {1, 2}, padding sentences
with m special symbols at the beginning and at the
end. For each value of m, we include three features:

• p(e | f ,fk−1
k−m), the left lexical context;

• p(e | f ,f `+m
`+1 ), the right lexical context;

• p(e | f ,fk−1
k−m,f `+m

`+1 ), both sides.

3.2 Shallow Syntactic Features
Lexical context features, especially when m > 1,
are expected to be sparse. Representing the context
by part-of-speech (POS) tags is one way to over-
come that sparseness. We used the same set of the
lexical context features described above, but with
POS tags replacing words in the context. We also
include a feature which conditions on the POS tag
sequence of the actual phrase being translated.

3.3 Syntactic Features
If a robust parser is available for the source lan-
guage, we can include context features from parse
trees. We used the following parse tree features:

• Is the phrase (exactly) a constituent?

• What is the nonterminal label of the lowest node
in the parse tree that covers the phrase?

• What is the nonterminal label or POS of the high-
est nonterminal node that ends immediately be-
fore the phrase? Begins immediately after the
phrase?

• Is the phrase strictly to the left of the root word,
does it contain the root word, or is it strictly to
the right of the root word? (Requires a parse with
head annotations.)

We also used a feature that conditions on both fea-
tures in the third bullet point above.

11



S[support] Syntactic Features:
Not a constituent
NP covers phrase
VBP to left
PP to right
Right of root word

PP

Shallow

Lexical

Phrase

PP

NP

VP

IN     DT       NN        ,  PRP VBP     DT   NN   IN  DT      NN         IN     NN     CC    NN    , ...

NP
SBAR

NPNPNP

NP

..... .

...

Positional Features:
Not at start
Not at end
Second fifth of sentence
Covers 18.5% of sentence
  (quantized to 20%)

Against this background ,  we   support   the report  of  the committee   on transport and tourism , which...

In dieser Hinsicht unterstützen wir   den Bericht des Ausschusses   für Verkehr und Fremdenverkehr , in...

Syntactic

NP

VBP

PP

Figure 1: A (partial) sentence pair from the WMT07 Europarl training corpus. Processing of the data (parsing, word
alignment) was done as discussed in §6. The phrase pair of interest is boxed and context features are shown in dotted
shapes. The context features help determine whether the phrase should be translated as “der Bericht des Ausschusses”
(nominative case) or “den Bericht des Ausschusses” (accusative case). See text for details.

3.4 Positional Features
We include features based on the position of the
phrase in the source sentence, the phrase length, and
the sentence length. These features use information
from the entire source sentence, but are not syntac-
tic. For a phrase f `

k in a sentence f of length n:

• Is the phrase at the start of the sentence (k = 1)?

• Is the phrase at the end of the sentence (` = n)?

• A quantization of r = k+ `−k+1
2

n , the relative po-
sition in (0, 1) of the phrase’s midpoint within f .
We choose the smallest q ∈ {0.2, 0.4, 0.6, 0.8, 1}
such that q > r.

• A quantization of c = `−k+1
n , the fraction of the

words in f that are covered by the phrase. We
choose the smallest q ∈ { 1

40 , 1
20 . 1

10 , 1
5 , 1

3 , 1} such
that q > c.

An illustration of the context features is shown
in Fig. 1. Consider the phrase pair “the report
of the committee”/“den Bericht des Ausschusses”
extracted by our English → German baseline MT
system (described in §6.3). The German word
“Bericht” is a masculine noun; therefore, it takes the
article “der” in the nominative case, “den” in the ac-
cusative case, and “dem” in the dative case. These
three translations are indeed available in the phrase
table for “the report of the committee” (see Table 1,
“no context” column), with relatively high entropy.

The choice between “den” and “der” must be made
by the language model alone.

Knowing that the phrase follows a verb, or ap-
pears to the right of the sentence’s root word, or
within the second fifth of the sentence should help.
Indeed, a probability distribution that conditions on
context features gives more peaked distributions that
give higher probability to the correct translation,
given this context, and lower probability given some
other contexts (see Table 1).

4 Why Not Target-Side Context?

While source context is straightforward to exploit
in a model, including target-side context features
breaks one of the key independence assumptions
made by phrase-based translation models: the trans-
lations of the source-side phrases are conditionally
independent of each other, given f , thereby requir-
ing new algorithms for decoding (Marino et al.,
2006).

We suggest that target-side context may already
be well accounted for in current MT systems. In-
deed, language models pay attention to the local
context of phrases, as do reordering models. The re-
cent emphasis on improving these components of a
translation system (Brants et al., 2007) is likely due
in part to the widespread availability of NLP tools
for the language that is most frequently the target:
English. We will demonstrate that NLP tools (tag-
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Shallow: 2 POS on left Syntax: of root Positional: rel. pos.
g no context ∗“PRP VBP” “VBN IN” ∗right left ∗2nd fifth 1st fifth

den bericht des ausschusses 0.3125 1.0000 0.3333 0.5000 0.0000 0.6000 0.0000
der bericht des ausschusses 0.3125 0.0000 0.0000 0.1000 0.6667 0.2000 0.6667
dem bericht des ausschusses 0.2500 0.0000 0.6667 0.3000 0.1667 0.0000 0.1667

Table 1: Phrase table entries for “the report of the committee” and their scores under different contexts. These are the
top three phrases in the baseline English → German system (“no context” column). Contexts from the source sentence
in Fig. 1 (starred) predict correctly; we show also alternative contexts that give very different distributions.

gers and parsers) for the source side can be used to
improve the translation model, exploiting analysis
tools for other languages.

5 Implementation

The additional data required to compute the context
features is extracted along with the phrase pairs dur-
ing execution of the standard phrase extraction algo-
rithm, affecting phrase extraction and scoring time
by a constant factor.

We avoid the need to modify the standard phrase-
based decoder to handle context features by append-
ing a unique identifier to each token in the sentences
to be translated. Then, we pre-compute a phrase ta-
ble for the phrases in these sentences according to
the phrase contexts. To avoid extremely long lists
of translations of common tokens, we filter the gen-
erated phrase tables, removing entries for which the
estimate of p(e | f) < c, for some small c. In our
experiments, we fixed c = 0.0002. This filtering
reduced time for experimentation dramatically and
had no apparent effect on the translation output. We
did not perform any filtering for the baseline system.

6 Experiments

In this section we present experimental results using
our context-endowed phrase translation model with
a variety of different context features, on Chinese →

Chinese → English (UN)
Context features BLEU NIST METEOR
None 0.3426 7.740 0.6416
Lexical 0.3678 8.107 0.6627
Shallow 0.3473 7.724 0.6452
Lexical + Shallow 0.3669 8.117 0.6609
Syntactic 0.3523 7.791 0.6481
Positional 0.3480 7.764 0.6446
All 0.3620 7.953 0.6570

Table 2: Chinese → English experiments: training and
testing on unseen UN data. Boldface marks scores signf-
icantly higher than “None.”

English, German → English, and English → Ger-
man translation tasks. Dataset details are given in
Appendices A (Chinese) and B (German).

Baseline We use the Moses MT system (Koehn et
al., 2007) as a baseline and closely follow the ex-
ample training procedure given for the WMT2007
and 2008 shared tasks.4 In particular, we perform
word alignment in each direction using GIZA++
(Och and Ney, 2003), apply the “grow-diag-final-
and” heuristic for symmetrization with maximum
phrase length of 7. In addition to the two phrase
translation conditionals p(e | f) and p(f | e), we
use lexical translation probabilities in each direction,
a word penalty, a phrase penalty, a length-based re-
ordering model, a lexicalized reordering model, and
an n-gram language model, SRILM implementation
(Stolcke, 2002) with modified Kneser-Ney smooth-
ing (Chen and Goodman, 1998). Minimum error-
rate (MER) training (Och, 2003) was applied to ob-
tain weights (λm in Equation 2) for these features.
A recaser is trained on the target side of the paral-
lel corpus using the script provided with Moses. All
output is recased and detokenized prior to evalua-
tion.

Evaluation We evaluate translation output using
three automatic evaluation measures: BLEU (Pap-
ineni et al., 2002), NIST (Doddington, 2002), and
METEOR (Banerjee and Lavie, 2005, version 0.6).5

All measures used were the case-sensitive, corpus-
level versions. The version of BLEU used was that
provided by NIST and was also used as the evalu-
ation measure for MER training. Significance was
tested using a paired bootstrap (Koehn, 2004) with

4http://www.statmt.org/wmt08
5METEOR details: For English, we use exact matching,

Porter stemming, and WordNet synonym matching. For Ger-
man, we use exact matching and Porter stemming. These are
the same settings that were used to evaluate systems for the
WMT07 shared task.
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Chinese → English
Testing on UN Testing on News (NIST 2003)

Context features BLEU NIST METEOR BLEU NIST METEOR
Training on in-domain data only:

None 0.3426 7.740 0.6416 0.2686 8.085 0.5346
Training on all data:

None 0.3347 7.618 0.6352 0.2663 7.800 0.5213
Lexical 0.3543 7.942 0.6612 0.2580 7.867 0.5242
Shallow: ≤ 1 POS tag 0.3279 7.427 0.6380 0.2683 8.361 0.5471
Shallow: ≤ 2 POS tags 0.3341 7.529 0.6403 0.2654 7.937 0.5263
Lexical + Shallow 0.3535 7.965 0.6584 0.2691 7.917 0.5276
Syntactic 0.3424 7.704 0.6483 0.2640 8.198 0.5390
Lexical + Syntactic 0.3565 7.916 0.6574 0.2626 7.776 0.5205
Positional 0.3300 7.473 0.6385 0.2682 7.869 0.5252
All 0.3457 7.932 0.6550 0.2641 7.793 0.5224
Feature selection (see Sec. 6.4) 0.3536 7.878 0.6525 0.2779 8.147 0.5330

Table 3: Chinese → English experiments: first row shows baseline performance when training only on in-domain
data for each task; all other rows show results when training on all data (UN and News). Left half shows results when
tuning and testing on UN test sets; right half shows results when tuning on NIST 2004 News test set and testing on
NIST 2003. Boldface marks scores that are significantly higher than the first row, in-domain baseline.

1000 samples (p < 0.05).6

6.1 Chinese → English
For our Chinese → English experiments, two kinds
of data were used: UN proceedings, and newswire
as used in NIST evaluations.

UN Data UN data results are reported in Ta-
ble 2. Significant improvements are obtained on all
three evaluation measures—e.g., more than 2 BLEU
points—using lexical or lexical and shallow fea-
tures. While improvements are smaller for other fea-
tures and feature combinations, performance is not
harmed by conditioning on context features, with
one very minor exception (shallow features slighly
harm the NIST score). Note that using syntactic fea-
tures gave 1 BLEU point of improvement.

News Data In News data experiments, none of our
features obtained BLEU performance statistically
distinguishable from the baseline of 0.2686 BLEU
(neither better, nor worse). The News training cor-
pus is less than half the size of the UN training cor-
pus (in words); unsurprisingly, the context features
were too sparse to be helpful. Further, newswire are
less formulaic and repetitive than UN proceedings,
so contexts do not generalize as well from training

6Code implementing this test for these metrics can be freely
downloaded at http://www.ark.cs.cmu.edu/MT.

to test data. Fortunately, our “error-minimizing mix-
ture” approach protects the BLEU score, which the
λm are tuned to optimize.

Combined UN + News Data Our next experi-
ment used all of the available training data (> 200M
words on each side) to train the models, in-domain
λm tuning, and testing for each domain separately;
see Table 3. Without context features, training
on mixed-domain data consistently harms perfor-
mance. With contexts that include lexical features,
the mixed-domain model significantly outperforms
the in-domain baseline for UN data. These results
suggest that context features enable better use of out-
of-domain data, an important advantage for statis-
tical MT since parallel data often arise from very
different sources than those of “real-world” transla-
tion scenarios. On News data, context features did
not give a significant advantage on the BLEU score,
though syntactic and ≤ 1 POS contexts did give
significant NIST and METEOR improvements over
the in-domain baseline. Small sets of automatically
selected context features, discussed in Section 6.4,
were more consistently successful for these data.

6.2 German → English
We do not report full results for this task, because
the context features neither helped nor hurt perfor-
mance significantly. We believe this is due to data
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English → German
Context features BLEU NIST METEOR
None 0.2018 5.874 0.2753
Lexical 0.1958 5.884 0.2703
Shallow 0.1989 5.833 0.2731
Syntactic 0.2024 5.945 0.2777
Positional 0.2008 5.860 0.2733
Lex. + Shal. + Syn. 0.2000 5.959 0.2764
All 0.1996 5.868 0.2738
Feature selection 0.2055 5.939 0.2778

Table 4: English → German experiments: training and
testing on Europarl data. Boldface marks scores signifi-
cantly higher than “None.”

sparseness resulting from the size of the training cor-
pus (26M German words), German’s relatively rich
morphology, and the challenges of German parsing.

6.3 English → German

English → German results are shown in Table 4.
The baseline system here is highly competitive, hav-
ing scored higher on automatic evaluation mea-
sures than any other system in the WMT07 shared
task (Callison-Burch et al., 2007). Among the fea-
ture categories, the largest improvement is achieved
when syntactic context features are included. Com-
paring with the German → English experiment, we
attribute this effect to the high accuracy of the En-
glish parser compared to the German parser.

6.4 Feature Selection

Translation performance does not always increase
when features are added to the model. This mo-
tivates the use of feature selection algorithms to
choose a subset of features to optimize perfor-
mance. We experimented with several feature se-
lection algorithms based on information-theoretic
quantities computed among the source phrase, the
target phrase, and the context, but found that a sim-
ple forward variable selection algorithm (Guyon and
Elisseeff, 2003) worked best. In this procedure, we
start with no context features and, at each iteration,
add the single feature that results in the largest in-
crease in BLEU score on the unseen development
test data after λm tuning. The algorithm terminates
if no features are left or if none result in an increase
in BLEU. We ran this algorithm to completion for
the two Chinese → English tune/test sets (training

on all data in each case) and the English → German
task; see Tables 3 and 4. In all cases, the algorithm
finishes after ≤ 4 evaluations.

Feature selection for Chinese → English (UN)
first chose the lexical feature “1 word on each side,”
then the positional feature indicating which fifth of
the sentence contains the phrase, and finally the lex-
ical feature “1 word on right.” For News, the fea-
tures chosen were the shallow syntactic feature “1
POS on each side,” then the positional beginning-
of-sentence feature, then the position relative to the
root (a syntactic feature). Features selected for En-
glish → German were the shallow syntactic feature
“2 POS on left,” then the lexical feature “1 word on
right.”

This simple procedure led to the best BLEU
scores for the Chinese → English News task and
the English → German task, showing that only a
few well-chosen context features are required to give
significant improvements over the baseline zero-
context model. On Chinese News, our BLEU score
of 0.2779 is significantly better than the in-domain
baseline system score of 0.2686.

6.5 WMT08 Shared Task: English → German
Since we began this research before the release
of the data for the WMT08 shared task, we per-
formed the majority of our experiments using the
data released for the WMT07 shared task (see Ap-
pendix B). To prepare our entry for the 2008 shared
task, we trained a baseline system on the 2008 data
using a nearly identical configuration.7 We exper-
imented with several context feature sets, targeting
the features that performed best in our earlier exper-
iments. In addition to the devtest06 data, we trans-
lated the 2007 Europarl test set to see how our fea-
ture selection results would transfer to new data. We
found the best-performing feature set from our ear-
lier experiments to also perform competitively on
the new test data; Table 5 shows results consistent
with experiments above.

7 Future Work

In future work, we plan to apply more sophisticated
learning algorithms to rich-feature phrase table esti-

7The only differences were the use of a larger max sentence
length threshold of 55 tokens instead of 50, and the use of the
better-performing “englishFactored” Stanford parser model.
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devtest06 test07 test08
System BLEU NIST METEOR BLEU NIST METEOR BLEU NIST METEOR
Baseline 0.2009 5.866 0.2719 0.2051 5.957 0.2782 0.2003 5.889 0.2720
Context 0.2039 5.941 0.2784 0.2088 6.036 0.2826 0.2016 5.956 0.2772

Table 5: English → German shared task system results using WMT08 Europarl parallel data for training, dev06 for
tuning, and three test sets, including the final 2008 test set. The row labeled “Context” uses the top-performing feature
set {2 POS on left, 1 word on right}. Boldface marks scores that are significantly higher than the baseline.

mation. Context features can also be used as condi-
tioning variables in other components of translation
models, including the lexicalized reordering model
and the lexical translation model in the Moses MT
system, or hierarchical or syntactic models (Chiang,
2005). Additional linguistic analysis (e.g., morpho-
logical disambiguation, named entity recognition,
semantic role labeling) can be used to define new
context features.

8 Conclusion

We have described a straightforward, scalable
method for improving phrase translation models by
modeling features of a phrase’s source-side context.
Our method allows incorporation of features from
any kind of source-side annotation and barely affects
the decoding algorithm. Experiments show perfor-
mance rivaling or exceeding strong, state-of-the-art
baselines on standard translation tasks. Automatic
feature selection can be used to achieve performance
gains with just two or three context features. Per-
formance is strongest when large in-domain training
sets and high-accuracy NLP tools for the source lan-
guage are available.
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A Dataset Details (Chinese-English)

We trained on data from the NIST MT 2008
constrained Chinese-English track: Sinorama
(LDC2005T10), FBIS (LDC2003E14), Hong

Kong Hansards and news (LDC2004T08),
Xinhua (LDC2002E18), and financial news
(LDC2006E26)—total 2.5M sents., 66M Chinese
words, 68M English. The newswire portion of the
NIST 2004 test set and the full NIST 2003 test
set were used for newswire tuning and testing,
respectively (∼900 sents. each). We also used
the United Nations parallel text (LDC2004E12),
divided into training (4.7M sents.; words: 136M
Chinese, 144M English), tuning (2K sents.), and test
sets (2K sents.). We removed sentence pairs where
either side was longer than 80 words, segmented all
Chinese text automatically,8 and parsed using the
Stanford parser with the pre-trained “xinhuaPCFG”
model (Klein and Manning, 2003). Trigram lan-
guage models were trained on the English side
of the parallel corpus along with approximately
115M words from the Xinhua section of the English
Gigaword corpus (LDC2005T12), years 1995–2000
(total 326M words).

B Dataset Details (German-English)

For German ↔ English experiments, we used data
provided for the WMT 2007 shared task (1.1M
sents., 26M German words, 27M English). The Eu-
roparl tuning and development test sets from the
WMT 2007 shared task were used for tuning and
testing (2K sents. each). We removed sentence
pairs where either side was longer than 50 words and
parsed the German and English data using the Stan-
ford parser (Klein and Manning, 2003) (with pre-
trained “germanFactored” and “englishPCFG” mod-
els). 5-gram language models were trained on the
entire target side of the parallel corpus (37M Ger-
man words, 38M English).

8Available at http://projectile.is.cs.cmu.
edu/research/public/tools/segmentation/
lrsegmenter/lrSegmenter.perl.
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Abstract

In this paper a new discriminative word align-
ment method is presented. This approach
models directly the alignment matrix by a con-
ditional random field (CRF) and so no restric-
tions to the alignments have to be made. Fur-
thermore, it is easy to add features and so all
available information can be used. Since the
structure of the CRFs can get complex, the in-
ference can only be done approximately and
the standard algorithms had to be adapted. In
addition, different methods to train the model
have been developed. Using this approach the
alignment quality could be improved by up
to 23 percent for 3 different language pairs
compared to a combination of both IBM4-
alignments. Furthermore the word alignment
was used to generate new phrase tables. These
could improve the translation quality signifi-
cantly.

1 Introduction

In machine translation parallel corpora are one very
important knowledge source. These corpora are of-
ten aligned at the sentence level, but to use them
in the systems in most cases a word alignment is
needed. Therefore, for a given source sentence fJ

1

and a given target sentence eI1 a set of links (j, i) has
to be found, which describes which source word fj

is translated into which target word ei.
Most SMT systems use the freely available

GIZA++-Toolkit to generate the word alignment.
This toolkit implements the IBM- and HMM-
models introduced in (Brown et al., 1993; Vogel et
al., 1996). They have the advantage that they are

trained unsupervised and are well suited for a noisy-
channel approach. But it is difficult to include addi-
tional features into these models.

In recent years several authors (Moore et al.,
2006; Lacoste-Julien et al., 2006; Blunsom and
Cohn, 2006) proposed discriminative word align-
ment frameworks and showed that this leads to im-
proved alignment quality. In contrast to generative
models, these models need a small amount of hand-
aligned data. But it is easy to add features to these
models, so all available knowledge sources can be
used to find the best alignment.

The discriminative model presented in this pa-
per uses a conditional random field (CRF) to model
the alignment matrix. By modeling the matrix no
restrictions to the alignment are required and even
n:m alignments can be generated. Furthermore, this
makes the model symmetric, so the model will pro-
duce the same alignment no matter which language
is selected as source and which as target language.
In contrast, in generative models the alignment is a
function where a source word aligns to at most one
target word. So the alignment is asymmetric.

The training of this discriminative model has to be
done on hand-aligned data. Different methods were
tested. First, the common maximum-likelihood ap-
proach was used. In addition to this, a method to
optimize the weights directly towards a word align-
ment metric was developed.

The paper is structured as follows: Section 2 and
3 present the model and the training. In Section 4
the model is evaluated in the word alignment task as
well as in the translation task. The related work and
the conclusion are given in Sections 5 and 6.
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Figure 1: Alignment Example

2 The Model

In the approach presented here the word alignment
matrix is modeled by a conditional random field
(CRF). A CRF is an unidirectional graphical model.
It models the conditional distribution over random
variables. In most applications like (Tseng et al.,
2005; Sha and Pereira, 2003), a sequential model is
used. But to model the alignment matrix the graphi-
cal structure of the model is more complex.

The alignment matrix is described by a random
variable yji for every source and target word pair
(fj , ei). These variables can have two values, 0
and 1, indicating whether these words are transla-
tions of each other or not. An example is shown
in Figure 1. Gray circles represent variables with
value 1, white circles stand for variables with value
0. Consequently, a word with zero fertility is indi-
rectly modeled by setting all associated random vari-
ables to a value of 0.

The structure of the CRF is described by a fac-
tored graph like it was done, for example, in (Lan
et al., 2006). In this bipartite graph there are two
different types of nodes. First, there are hidden
nodes, which correspond to the random variables.
The second type of nodes are the factored nodes c
. These are not drawn in Figure 1 to keep the pic-
ture clear, but they are shown in Figure 2. They
define a potential Φc on the random variables Vc

they are connected to. This potential is used to
describe the probability of an alignment based on
the information encoded in the features. This po-
tential is a log-linear combination of some features

Fc(Vc) = (f1(Vc), . . . , fn(Vc)) and it can be written
as:

Φc(Vc) = exp(Θ ∗ Fc(Vc)) = exp(
∑
k

θk ∗ fk(Vc))

(1)
with the weights Θ. Then the probability of an
assignment of the random variables, which corre-
sponds to a word alignment, can be expressed as:

pΘ(y|e, f) =
1

Z(e, f)

∏
c∈VFN

Φc(Vc) (2)

with VFN the set of all factored nodes in the graph,
and the normalization factor Z(e, f) defined as:

Z(e, f) =
∑
Y

∏
c∈VFN

Φc(Vc) (3)

where Y is the set of all possible alignments.
In the presented model there are four different

types of factored nodes corresponding to four groups
of features.

2.1 Features

One main advantage of the discriminative frame-
work is the ability to use all available knowledge
sources by introducing additional features. Differ-
ent features have been developed to capture different
aspects of the word-alignment.

The first group of features are those that depend
only on the source and target words and may there-
fore be called local features. Consequently, the
factored node corresponding to such a feature is
connected to one random variable only (see Figure
2(a)). The lexical features, which represent the lexi-
cal translation probability of the words belong to this
group. In our experiments the IBM4-lexica in both
directions were used. Furthermore, there are source
and target normalized lexical features for every lexi-
con. The source normalized feature, for example, is
normalized in a way, that all translation probabilities
of one source word to target words in the sentences
sum up to one as shown in equation 4.

psourceN (fj , ei) =
plex(fj , ei)∑

1≤j≤J plex(fj , ei)
(4)

ptargetN (fj , ei) =
plex(fj , ei)∑

1≤i≤I plex(fj , ei)
(5)
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Figure 2: Different features

(a) Local features (b) Fertility features (c) First order features

They compare the possible translations in one sen-
tence similar to the rank feature used in the approach
presented by Moore (2006). In addition, the follow-
ing local features are used: The relative distance of
the sentence positions of both words. This should
help to aligned words that occur several times in the
sentence. The relative edit distance between source
and target word was used to improve the align-
ment of cognates. Furthermore a feature indicating
if source and target words are identical was added
to the system. This helps to align dates, numbers
and names, which are quite difficult to align using
only lexical features since they occur quite rarely.
In some of our experiments the links of the IBM4-
alignments are used as an additional local feature.
In the experiments this leads to 22 features. Lastly,
there are indicator features for every possible com-
bination of Parts-of-Speech(POS)-tags and for Nw

high frequency words. In the experiments the 50
most frequent words were used, which lead to 2500
features and around 1440 POS-based features were
used. The POS-feature can help to align words, for
which the lexical features are weak.

The next group of features are the fertility fea-
tures. They model the probability that a word trans-
lates into one, two, three or more words, or does not
have any translation at all. The corresponding fac-
tored node for a source word is connected to all I
random variables representing the links to the target
words, and the node for a target word is connected
to all the J nodes for the links to source words (s.
Figure 2(b)). In this group of features there are two
different types. First, there are indicator features for
the different fertilities. To reduce the complexity of
the calculation this is only done up to a given max-
imal fertility Nf and there is an additional indicator
feature for all fertilities larger than Nf . This is an

extension of the empty word indicator feature used
in other discriminative word alignment models. Fur-
thermore, there is a real-valued feature, which can
use the GIZA++ probabilities for the different fer-
tilities. This has the advantage compared to the in-
dicator feature that the fertility probabilities are not
the same for all words. But here again, all fertilities
larger than a givenNf are not considered separately.
In the evaluation Nf = 3 was selected. So 12 fertil-
ity features were used in the experiments.

The first-order features model the first-order de-
pendencies between the different links. They are
grouped into different directions. The factored node
for the direction (s, t) is connected to the variable
nodes yji and y(j+s)(i+t). For example, the most
common direction is (1, 1), which describes the sit-
uation that if the words at positions j and i are
aligned, also the immediate successor words in both
sentences are aligned as shown in Figure 2(c). In
the default configuration the directions (1, 1), (2, 1),
(1, 2) and (1,−1) are used. So this feature is able to
explicitly model short jumps in the alignment, like
in the directions (2, 1) and (1, 2) as well as crossing
links like in the directions (1,−1). Furthermore, it
can be used to improve the fertility modeling. If a
word has got a fertility of two, it is often aligned to
two consecutive words. Therefore, for example in
the Chinese-English system the directions (1, 0) and
(0, 1) were used in addition. This does not mean,
that other directions in the alignment are not possi-
ble, but other jumps in the alignment do not improve
the probability of the alignment. For every direction,
an indicator feature that both links are active and an
additional one, which also depends on the POS-pair
of the first word pair is used. For a configuration
with 4 directions this leads to 4 indicator features
and, for example, 5760 POS-based features.
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The last group of features are phrase features,
which are introduced to model context dependen-
cies. First a training corpus is aligned. Then, groups
of source and target words are extracted. Words
build a group, if all source words in the group are
aligned to all target words. The relative frequency
of this alignment is used as the feature and indicator
features for 1 : 1, 1 : n, n : 1 and n : m alignments.
The corresponding factored node is connected to all
links that are important for this group.

2.2 Alignment

The structure of the described CRF is quite complex
and there are many loops in the graphical structure,
so the inference cannot be done exactly. For exam-
ple, the random variables y(1,1) and y(1,2) as well as
y(2,1) and y(2,2) are connected by the source fertil-
ity nodes of the words f1 and f2. Furthermore the
variables y(1,1) and y(2,1) as well as y(1,2) and y(2,2)

are connected by the target fertility nodes. So these
nodes build a loop as shown in Figure 2(b). The first
order feature nodes generate loops as well. Conse-
quently an approximation algorithm has to be used.
We use the belief propagation algorithm introduced
in (Pearl, 1966). In this algorithm messages consist-
ing of a pair of two values are passed along the edges
between the factored and hidden nodes for several it-
erations. In each iterations first messages from the
hidden nodes to the connected factored nodes are
sent. These messages describe the belief about the
value of the hidden node calculated from the incom-
ing messages of the other connected factored nodes.
Afterwards the messages from the factored nodes
to the connected hidden nodes are send. They are
calculated from the potential and the other incom-
ing messages. This algorithm is not exact in loopy
graphs and it is not even possible to prove that it con-
verges, but in (Yedidia et al., 2003) it was shown,
that this algorithm leads to good results.

The algorithm cannot be used directly, since the
calculation of the message sent from a factored node
to a random variable has an exponential runtime
in the number of connected random variables. Al-
though we limit the number of considered fertili-
ties, the number of connected random variables can
still be quite large for the fertility features and the
phrase features, especially in long sentences. To re-
duce this complexity, we leverage the fact that the

potential can only have a small number of different
values. This will be shown for the fertility feature
node. For a more detailed description we refer to
(Niehues, 2007). The message sent from a factored
node to a random variable is defined in the algorithm
as:

mc→(j,i)(v) =
∑
Vc/v

Φc(Vc) (6)

∏
(j,i)′∈N(c)/(j,i)

n(j,i)′→c(v
′)

where Vc is the set of random variables connected
to the factored node and

∑
Vc/v is the sum over all

possible values of Vc where the random variable yji

has the the value v. So the value for the message is
calculated by looking at every possible combination
of the other incoming messages. Then the belief for
this combination is multiplied with the potential of
this combination. This can be rewritten, since the
potential only depends on how many links are active,
not on which ones are active.

mc→(j,i)(v) =
Nf∑
n=0

Φc(n+ v) ∗ α(n) (7)

+ Φc(Nf + 1) ∗ α(Nf + 1)

with α(n) the belief for a fertility of n of the other
connected nodes and α(Nf +1) the belief for a fertil-
ity bigger than Nf with Φc(Nf + 1) the correspond-
ing potential. The belief for a configuration of some
random variables is calculated by the product over
all out-going messages. So α(n) is calculated by the
sum over all possible configurations that lead to a
fertility of n over these products.

α(n) =
∑

Vc/v:|Vc|=n

∏
(j,i)′∈Vc/(j,i)

n(j,i)′→c(v
′)

α(Nf + 1) =
∑

Vc/v:|Vc|>Nf

∏
(j,i)′∈Vc/(j,i)

n(j,i)′→c(v
′)

The values of the sums can be calculated in linear
time using dynamic programming.

3 Training

The weights of the CRFs are trained using a gradient
descent for a fixed number of iterations, since this
approach leads already to quite good results. In the
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experiments 200 iterations turned out to be a good
number.

The default criteria to train CRFs is to maximize
the log-likelihood of the correct solution, which is
given by a manually created gold standard align-
ment. Therefore, the feature values of the gold stan-
dard alignment and the expectation values have to be
calculated for every factored node. This can be done
using again the belief propagation algorithm.

Often, this hand-aligned data is annotated with
sure and possible links and it would be nice, if the
training method could use this additional informa-
tion. So we developed a method to optimize the
CRFs towards the alignment error rate (AER) or the
F-score with sure and possible links as introduced
in (Fraser and Marcu, 2007). The advantage of the
F-score is, that there is an additional parameter α,
which allows to bias the metric more towards pre-
cision or more towards recall. To be able to use
a gradient descent method to optimize the weights,
the derivation of the word alignment metric with re-
spect to these weights must be computed. This can-
not be done for the mentioned metrics since they are
not smooth functions. We follow (Gao et al., 2006;
Suzuki et al., 2006) and approximate the metrics us-
ing the sigmoid function. The sigmoid function uses
the probabilities for every link calculated by the be-
lief propagation algorithm.

In our experiments we compared the maximum
likelihood method and the optimization towards the
AER. We also tested combinations of both. The best
results were obtained when the weights were first
trained using the ML method and the resulting fac-
tors were used as initial values for the AER opti-
mization. Another problem is that the POS-based
features and high frequency word features have a
lot more parameters than all other features and with
these two types of features overfitting seems to be a
bigger problem. Therefore, these features are only
used in a third optimization step, in which they are
optimized towards the AER, keeping all other fea-
ture weights constant. Initial results using a Gaus-
sian prior showed no improvement.

4 Evaluation

The word alignment quality of this approach was
tested on three different language pairs. On the

Spanish-English task the hand-aligned data provided
by the TALP Research Center (Lambert et al., 2005)
was used. As proposed, 100 sentences were used as
development data and 400 as test data. The so called
“Final Text Edition of the European Parliament Pro-
ceedings” consisting of 1.4 million sentences and
this hand-aligned data was used as training corpus.
The POS-tags were generated by the Brill-Tagger
(Brill, 1995) and the FreeLing-Tagger (Asterias et
al., 2006) for the English and the Spanish text re-
spectively. To limit the number of different tags for
Spanish we grouped them according to the first 2
characters in the tag names.

A second group of experiments was done on
an English-French text. The data from the 2003
NAACL shared task (Mihalcea and Pedersen, 2003)
was used. This data consists of 1.1 million sen-
tences, a validation set of 37 sentences and a test
set of 447 sentences, which have been hand-aligned
(Och and Ney, 2003). For the English POS-tags
again the Brill Tagger was used. For the French side,
the TreeTagger (Schmid, 1994) was used.

Finally, to test our alignment approach with lan-
guages that differ more in structure a Chinese-
English task was selected. As hand-aligned data
3160 sentences aligned only with sure links were
used (LDC2006E93). This was split up into 2000
sentences of test data and 1160 sentences of devel-
opment data. In some experiments only the first
200 sentences of the development data were used to
speed up the training process. The FBIS-corpus was
used as training corpus and all Chinese sentences
were word segmented with the Stanford Segmenter
(Tseng et al., 2005). The POS-tags for both sides
were generated with the Stanford Parser (Klein and
Manning, 2003).

4.1 Word alignment quality

The GIZA++-toolkit was used to train a baseline
system. The models and alignment information
were then used as additional knowledge source for
the discriminative word alignment. For the first two
tasks, all heuristics of the Pharaoh-Toolkit (Koehn
et al., 2003) as well as the refined heuristic (Och and
Ney, 2003) to combine both IBM4-alignments were
tested and the best ones are shown in the tables. For
the Chinese task only the grow-diag-final heuristic
was used.
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Table 1: AER-Results on EN-ES task

Name Dev Test
IBM4 Source-Target 21.49
IBM4 Target-Source 19.23
IBM4 grow-diag 16.48
DWA IBM1 15.26 20.82
+ IBM4 14.23 18.67
+ GIZA-fert. 13.28 18.02
+ Link feature 12.26 15.97
+ POS 9.21 15.36
+ Phrase feature 8.84 14.77

Table 2: AER-Results on EN-FR task

Name Dev Test
IBM4 Source-Target 8.6
IBM4 Target-Source 9.86
IBM4 intersection 5.38
DWA IBM1 5.54 6.37
+ HFRQ/POS 3.67 5.57
+ Link Feature 3.13 4.80
+ IBM4 3.60 4.60
+ Phrase feature 3.32 4.30

The results measured in AER of the discrimina-
tive word alignment for the English-Spanish task are
shown in Table 1. In the experiments systems using
different knowledge sources were evaluated. The
first system used only the IBM1-lexica of both di-
rections as well as the high frequent word features.
Then the IBM4-lexica were used instead and in
the next system the GIZA++-fertilities were added.
As next knowledge source the links of both IBM4-
alignments were added. Furthermore, the system
could be improved by using also the POS-tags. For
the last system, the whole EPPS-corpus was aligned
with the previous system and the phrases were ex-
tracted. Using them as additional features, the best
AER of 14.77 could be reached. This is an improve-
ment of 1.71 AER points or 10% relative to the best
baseline system.

Similar experiments have also been done for the
English-French task. The results measured in AER
are shown in Table 2. The IBM4 system uses
the IBM4 lexica and links instead of the IBM1s

Table 3: AER-Results on CH-EN task

Name Test
IBM4 Source-target 44.94
IBM4 Target-source 37.43
IBM4 Grow-diag-final 35.04
DWA IBM4 30.97
- similarity 30.24
+ Add. directions 27.96
+ Big dev 27.26
+ Phrase feature 27.00
+ Phrase feature(high P.) 26.90

and adds the GIZA++-fertilities. For the “phrase
feature”-system the corpus was aligned with the
“IBM4”-system and the phrases were extracted.
This led to the best result with an AER of 4.30. This
is 1.08 points or 20% relative improvement over the
best generative system. One reason, why less knowl-
edge sources are needed to be as good as the base-
line system, may be that there are many possible
links in the reference alignment and the discrimina-
tive framework can better adapt to this style. So a
system using only features generated by the IBM1-
model could already reach an AER of 4.80.

In Table 3 results for the Chinese-English align-
ment task are shown1. The first system was only
trained on the smaller development set and used the
same knowledge source than the “IBM4”-systems
in the last experiment. The system could be im-
proved a little bit by removing the similarity fea-
ture and adding the directions (0, 1) and (1, 0) to
the model. Then the same system was trained on
the bigger development set. Again the parallel cor-
pus was aligned with the discriminative word align-
ment system, once trained towards AER and once
more towards precision, and phrases were extracted.
Overall, an improvement by 8.14 points or 23% over
the baseline system could be achieved.

These experiments show, that every knowledge
source that is available should be used. For all lan-
guages pairs additional knowledge sources lead to
an improvement in the word alignment quality. A
problem of the discriminative framework is, that
hand-aligned data is needed for training. So the

1For this task no results on the development task are given
since different development sets were used
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Table 4: Translation results for EN-ES

Name Dev Test
Baseline 40.04 47.73

DWA 41.62 48.13

Table 5: Translation results for CH-EN

Name Dev Test
Baseline 27.13 22.56

AER 27.63 23.85∗

F0.3 26.34 22.35
F0.7 26.40 23.52∗

Phrase feature AER 25.84 23.42∗

Phrase feature F0.7 26.41 23.92∗

French-English dev set may be too small, since the
best system on the development set does not cor-
respond to the best system on the test set. And as
shown in the Chinese-English task additional data
can improve the alignment quality.

4.2 Translation quality

Since the main application of the word alignment is
statistical machine translation, the aim was not only
to generate better alignments measured in AER, but
also to generate better translations. Therefore, the
word alignment was used to extract phrases and use
them then in the translation system. In all translation
experiments the beam decoder as described in (Vo-
gel, 2003) was used together with a 3-gram language
model and the results are reported in the BLUE met-
ric. For test set translations the statistical signifi-
cance of the results was tested using the bootstrap
technique as described in (Zhang and Vogel, 2004).
The baseline system used the phrases build with the
Pharaoh-Toolkit.

The new word alignment was tested on the
English-Spanish translation task using the TC-Star
07 development and test data. The discriminative
word alignment (DWA) used the configuration de-
noted by +POS system in Table 1. With this con-
figuration it took around 4 hours to align 100K sen-
tences. But, of course, generating the alignment can
be parallelized to speed up the process. As shown
in Table 4 the new word alignment could generate
better translations as measured in BLEU scores.

For the Chinese-English task some experiments
were made to study the effect of different training
schemes. Results are shown in Table 5. The sys-
tems used the MT’03 eval set as development data
and the NIST part of the MT’06 eval set was used as
test set. Scores significantly better than the baseline
system are mark by a ∗. The first three systems used
a discriminative word alignment generated with the
configuration as the one described as “+ big dev”-
system in Table 3. The first one was optimized to-
wards AER, the other two were trained towards the
F-score with an α-value of 0.3 (recall-biased) and
0.7 (precision-biased) respectively. A higher pre-
cision word alignment generates fewer alignment
links, but a larger phrase table. For this task, the
precision seems to be more important. So the sys-
tem trained towards the AER and the F-score with
an α-value of 0.7 performed better than the other
systems. The phrase features gave improved perfor-
mance only when optimized towards the F-score, but
not when optimized towards the AER.

5 Comparison to other work

Several discriminative word alignment approaches
have been presented in recent years. The one most
similar to ours is the one presented by Blunsom
and Cohn (2006). They also used CRFs, but they
used two linear-chain CRFs, one for every direc-
tions. Consequently, they could find the optimal so-
lution for each individual CRF, but they still needed
the heuristics to combine both alignments. They
reached an AER of 5.29 using the IBM4-alignment
on the English-French task (compared to 4.30 of our
approach).

Lacoste-Julien et al. (2006) enriched the bipartite
matching problem to model also larger fertilities and
first-or der dependencies. They could reach an AER
of 3.8 on the same task, but only if they also included
the posteriors of the model of Liang et al. (2006).
Using only the IBM4-alignment they generated an
alignment with an AER of 4.5. But they did not use
any POS-based features in their experiments.

Finally, Moore et al. (2006) used a log-linear
model for the features and performed a beam search.
They could reach an AER as low as 3.7 with both
types of alignment information. But they presented
no results using only the IBM4-alignment features.
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6 Conclusion

In this paper a new discriminative word alignment
model was presented. It uses a conditional random
field to model directly the alignment matrix. There-
fore, the algorithms used in the CRFs had to be
adapted to be able to model dependencies between
many random variables. Different methods to train
the model have been developed. Optimizing the F-
score allows to generate alignments focusing more
on precision or on recall. For the model a multitude
of features using the different knowledge sources
have been developed. The experiments showed that
the performance could be improved by using these
additional knowledge sources. Furthermore, the use
of a general machine learning framework like the
CRFs enables this alignment approach to benefit
from future improvements in CRFs in other areas.

Experiments on 3 different language pairs have
shown that word alignment quality as well as trans-
lation quality could be improved. In the translation
experiments it was shown that the improvement is
significant at a significance level of 5%.
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Abstract

Minimum error rate training (MERT) is a
widely used learning procedure for statistical
machine translation models. We contrast three
search strategies for MERT: Powell’s method,
the variant of coordinate descent found in the
Moses MERT utility, and a novel stochastic
method. It is shown that the stochastic method
obtains test set gains of +0.98 BLEU on MT03
and +0.61 BLEU on MT05. We also present
a method for regularizing the MERT objec-
tive that achieves statistically significant gains
when combined with both Powell’s method
and coordinate descent.

1 Introduction

Och (2003) introduced minimum error rate training
(MERT) as an alternative training regime to the con-
ditional likelihood objective previously used with
log-linear translation models (Och & Ney, 2002).
This approach attempts to improve translation qual-
ity by optimizing an automatic translation evalua-
tion metric, such as the BLEU score (Papineni et al.,
2002). This is accomplished by either directly walk-
ing the error surface provided by an evaluation met-
ric w.r.t. the model weights or by using gradient-
based techniques on a continuous approximation of
such a surface. While the former is piecewise con-
stant and thus cannot be optimized using gradient
techniques, Och (2003) provides an approach that
performs such training efficiently.

In this paper we explore a number of variations on
MERT. First, it is shown that performance gains can
be had by making use of a stochastic search strategy
as compare to that obtained by Powell’s method and

coordinate descent. Subsequently, results are pre-
sented for two regularization strategies1. Both allow
coordinate descent and Powell’s method to achieve
performance that is on par with stochastic search.

In what follows, we briefly review minimum er-
ror rate training, introduce our stochastic search and
regularization strategies, and then present experi-
mental results.

2 Minimum Error Rate Training

Let F be a collection of foreign sentences to be
translated, with individual sentences f0, f1, . . . ,
fn. For each fi, the surface form of an indi-
vidual candidate translation is given by ei with
hidden state hi associated with the derivation of
ei from fi. Each ei is drawn from E , which
represents all possible strings our translation sys-
tem can produce. The (ei,hi, fi) triples are con-
verted into vectors of m feature functions by
Ψ : E ×H ×F → Rm whose dot product with the
weight vector w assigns a score to each triple.
The idealized translation process then is to find the
highest scoring pair (ei,hi) for each fi, or rather
(ei,hi) = argmax(e∈E,h∈H) w ·Ψ(e,h, f).

The aggregate argmax for the entire data set F is
given by equation (1)2. This gives Ew which repre-
sents the set of translations selected by the model for
data set F when parameterized by the weight vec-
tor w. Let’s assume we have an automated mea-
sure of translation quality ` that maps the collec-

1While we prefer the term regularization, the strategies pre-
sented here could also be referred to as smoothing methods.

2Here, the translation of the entire data set is treated as a
single structured prediction problem using the feature function
vector Ψ(E,H,F) =

Pn
i Ψ(ei,hi, fi)
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id Translation log(PTM(f |e)) log(PLM(e)) BLEU-2
e1 This is it -1.2 -0.1 29.64
e2 This is small house -0.2 -1.2 63.59
e3 This is miniscule building -1.6 -0.9 31.79
e4 This is a small house -0.1 -0.9 100.00
ref This is a small house

Table 1: Four hypothetical translations and their corresponding log model scores from a translation model PTM (f |e)
and a language model PLM (e), along with their BLEU-2 scores according to the given reference translation. The
MERT error surface for these translations is given in figure 1.

tion of translations Ew onto some real valued loss,
` : En → R. For instance, in the experiments that
follow, the loss corresponds to 1 minus the BLEU
score assigned to Ew for a given collection of refer-
ence translations.

(Ew,Hw) = argmax
(E∈En,H∈Hn)

w ·Ψ(E,H,F) (1)

Using n-best lists produced by a decoder to ap-
proximate En and Hn, MERT searches for the
weight vector w∗ that minimizes the loss `. Let-
ting Ẽw denote the result of the translation argmax
w.r.t. the approximate hypothesis space, the MERT
search is then expressed by equation (2). Notice the
objective function being optimized is equivalent to
the loss assigned by the automatic measure of trans-
lation quality, i.e. O(w) = `(Ẽw).

w∗ = argmin
w

`(Ẽw) (2)

After performing the parameter search, the de-
coder is then re-run using the weights w∗ to produce
a new set of n-best lists, which are then concate-
nated with the prior n-best lists in order to obtain a
better approximation of En and Hn. The parameter
search given in (2) can then be performed over the
improved approximation. This process repeats un-
til either no novel entries are produced for the com-
bined n-best lists or the weights change by less than
some ε across iterations.

Unlike the objective functions associated with
other popular learning algorithms, the objective O
is piecewise constant over its entire domain. That
is, while small perturbations in the weights, w, will
change the score assigned by w ·Ψ(e,h, f) to each
triple, (e,h, f), such perturbations will generally not

change the ranking between the pair selected by the
argmax, (e∗,h∗) = argmax w ·Ψ(e,h, f), and any
given competing pair (e′,h′). However, at certain
critical points, the score assigned to some compet-
ing pair (e′,h′) will exceed that assigned to the
prior winner (e∗wold ,h

∗
wold

). At this point, the pair
returned by argmax w ·Ψ(e,h, f) will change and
loss ` will be evaluated using the newly selected e′.

Figure 1: MERT objective for the translations given
in table 1. Regions are labeled with the translation
that dominates within it, i.e. argmax w ·Ψ(e, f),
and with their corresponding objective values,
1− `(argmax w ·Ψ(e, f)).

This is illustrated in figure (1), which plots the
MERT objective function for a simple model with
two parameters, wtm & wlm, and for which the
space of possible translations, E , consists of the four
sentences given in table 13. Here, the loss ` is de-

3For this example, we ignore the latent variables, h, associ-
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fined as 1.0−BLEU-2(e). That is, ` is the differ-
ence between a perfect BLEU score and the BLEU
score calculated for each translation using unigram
and bi-gram counts.

The surface can be visualized as a collection of
plateaus that all meet at the origin and then extend
off into infinity. The latter property illustrates that
the objective is scale invariant w.r.t. the weight vec-
tor w. That is, since any vector w′ = λw ∀λ>0 will
still result in the same relative rankings of all pos-
sible translations according to w ·Ψ(e,h, f), such
scaling will not change the translation selected by
the argmax. At the boundaries between regions, the
objective is undefined, as 2 or more candidates are
assigned identical scores by the model. Thus, it is
unclear what should be returned by the argmax for
subsequent scoring by `.

Since the objective is piecewise constant, it can-
not be minimized using gradient descent or even the
sub-gradient method. Two applicable methods in-
clude downhill simplex and Powell’s method (Press
et al., 2007). The former attempts to find a lo-
cal minimum in an n dimensional space by itera-
tively shrinking or growing an n+ 1 vertex simplex4

based on the objective values of the current vertex
points and select nearby points. In contrast, Pow-
ell’s method operates by starting with a single point
in weight space, and then performing a series of line
minimizations until no more progress can be made.
In this paper, we focus on line minimization based
techniques, such as Powell’s method.

2.1 Global minimum along a line
Even without gradient information, numerous meth-
ods can be used to find, or approximately find, local
minima along a line. However, by exploiting the fact
that the underlying scores assigned to competing hy-
potheses, w ·Ψ(e,h, f), vary linearly w.r.t. changes
in the weight vector, w, Och (2003) proposed a strat-
egy for finding the global minimum along any given
search direction.

The insight behind the algorithm is as follows.
Let’s assume we are examining two competing

ated with the derivation of each e from the foreign sentence f .
If included, such variables would only change the graph in that
multiple different derivations would be possible for each ej . If
present, the graph could then include disjoint regions that all
map to the same ej and thus the same objective value.

4A simplex can be thought of as a generalization of a triangle
to arbitrary dimensional spaces.

Figure 2: Illustration of how the model score assigned
to each candidate translation varies during a line search
along the coordinate direction wlm with a starting point
of (wtm, wlm) = (1.0, 0.5). Each plotted line corre-
sponds to the model score for one of the translation candi-
dates. The vertical bands are labeled with the hypothesis
that dominates in that region. The transitions between
bands result from the dotted intersections between 1-best
lines.

translation/derivation pairs, (e1,h1) & (e2,h2).
Further, let’s say the score assigned by the
model to (e1,h1) is greater than (e2,h2), i.e.
w ·Ψ(e1,h1, f) > w ·Ψ(e2,h2, f). Since the
scores of the two vary linearly along any search
direction, d, we can find the point at which the
model’s relative preference for the competing
pairs switches as p = w·Ψ(e1,h1,f)−w·Ψ(e2,h2,f)

d·Ψ(e2,h2,f)−d·Ψ(e1,h1,f)
.

At this particular point, we have the equality
(pd + w) ·Ψ(e1,h1, f) = (pd + w) ·Ψ(e2,h2, f),
or rather the point at which the scores assigned
by the model to the candidates intersect along
search direction d5. Such points correspond to
the boundaries between adjacent plateaus in the
objective, as prior to the boundary the loss function
` is computed using the translation, e1, and after the
boundary it is computed using e2.

To find the global minimum for a search direc-
tion d, we move along d and for each plateau we

5Notice that, this point only exists if the slopes of the
candidates’ model scores along d are not equivalent, i.e. if
d ·Ψ(e2,h2, f) 6= d ·Ψ(e1,h1, f).
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Translation m b 1-best
e1 -0.1 -1.25 (0.86,+∞]
e2 -1.2 -0.8 (-0.83,0.88)
e3 -0.9 -2.05 n/a
e4 -0.9 -0.55 [−∞,-0.83]

Table 2: Slopes, m, intercepts, b, and 1-best ranges
for the 4 translations given in table 1 during a line
search along the coordinate wlm, with a starting point of
(wtm, wlm) = (1.0, 0.5). This line search in illustrated
in figure(2).

identify all the points at which the score assigned
by the model to the current 1-best translation inter-
sects the score assigned to competing translations.
At the closest such intersection, we have a new 1-
best translation. Moving to the plateau associated
with this new 1-best, we then repeat the search for
the nearest subsequent intersection. This continues
until we know what the 1-best translations are for all
points along d. The global minimum can then be
found by examining ` once for each of these.

Let’s return briefly to our earlier example given in
table 1. Starting at position (wtm, wlm) = (1.0, 0.5)
and searching along the wlm coordinate, i.e.
(dtm, dlm) = (0.0, 1.0), table 2 gives the line
search slopes, m = d ·Ψ(e,h, f), and intercepts,
b = w ·Ψ(e,h, f), for each of the four candidate
translations. Using the procedure just described, we
can then find what range of values along d each
candidate translation is assigned the highest rela-
tive model score. Figure 2 illustrates how the score
assigned by the model to each of the translations
changes as we move along d. Each of the banded re-
gions corresponds to a plateau in the objective, and
each of the top most line intersections represents the
transition from one plateau to the next. Note that,
while the surface that is defined by the line segments
with the highest classifier score for each region is
convex, this is not a convex optimization problem as
we are optimizing over the loss ` rather than classi-
fier score.

Pseudocode for the line search is given in algo-
rithm 1. Letting n denote the number of foreign sen-
tences, f , in a dataset, and having m denote the size
of the individual n-best lists, |l|, the time complexity
of the algorithm is given by O(nm2). This is seen
in that each time we check for the nearest intersec-
tion to the current 1-best for some n-best list l, we

Algorithm 1 Och (2003)’s line search method to
find the global minimum in the loss, `, when start-
ing at the point w and searching along the direction
d using the candidate translations given in the col-
lection of n-best lists L.

Input: L, w, d, `
I ⇐ {}
for l ∈ L do

for e ∈ l do
m{e} ⇐ e.features · d
b{e} ⇐ e.features · w

end for
bestn⇐ argmaxe∈l m{e} {b{e} breaks ties}
loop

bestn+1 = argmine∈l max
(

0, b{bestn}−b{e}
m{e}−m{bestn}

)

intercept⇐ max
(

0, b{bestn}−b{bestn+1}
m{bestn+1}−m{bestn}

)

if intercept > 0 then
add(I, intercept)

else
break

end if
end loop

end for
add(I, max(I) + 2ε)
ibest = argmini∈I eval`(L,w + (i− ε) · d)
return w + (ibest − ε) · d

must calculate its intersection with all other candi-
date translations that have yet to be selected as the
1-best. And, for each of the n n-best lists, this may
have to be done up to m− 1 times.

2.2 Search Strategies

In this section, we review two search strategies that,
in conjunction with the line search just described,
can be used to drive MERT. The first, Powell’s
method, was advocated by Och (2003) when MERT
was first introduced for statistical machine transla-
tion. The second, which we call Koehn-coordinate
descent (KCD)6, is used by the MERT utility pack-
aged with the popular Moses statistical machine
translation system (Koehn et al., 2007).

6Moses uses David Chiang’s CMERT package. Within the
source file mert.c, the function that implements the overall
search strategy, optimize koehn(), is based on Philipp Koehn’s
Perl script for MERT optimization that was distributed with
Pharaoh.
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2.2.1 Powell’s Method
Powell’s method (Press et al., 2007) attempts to

efficiently search the objective by constructing a set
of mutually non-interfering search directions. The
basic procedure is as follows: (i) A collection of
search directions is initialized to be the coordinates
of the space being searched; (ii) The objective is
minimized by looping through the search directions
and performing a line minimization for each; (iii) A
new search direction is constructed that summarizes
the cumulative direction of the progress made dur-
ing step (ii) (i.e., dnew = wpreii −wpostii). After
a line minimization is performed along dnew, it is
used to replace one of the existing search directions.
(iv) The process repeats until no more progress can
be made. For a quadratic function of n variables,
this procedure comes with the guarantee that it will
reach the minimum within n iterations of the outer
loop. However, since Powell’s method is usually ap-
plied to non-quadratic optimization problems, a typ-
ical implementation will forego the quadratic con-
vergence guarantees in favor of a heuristic scheme
that allows for better navigation of complex sur-
faces.

2.2.2 Koehn’s Coordinate Descent
KCD is a variant of coordinate descent that, at

each iteration, moves along the coordinate which al-
lows for the most progress in the objective. In or-
der to determine which coordinate this is, the rou-
tine performs a trial line minimization along each. It
then updates the weight vector with the one that it
found to be most successful. While much less so-
phisticated that Powell, our results indicate that this
method may be marginally more effective at opti-
mizing the MERT objective7.

3 Extensions

In this section we present and motivate two novel
extensions to MERT. The first is a stochastic alterna-
tive to the Powell and KCD search strategies, while
the second is an efficient method for regularizing the
objective.

7While we are not aware of any previously published results
that demonstrate this, it is likely that we were not the first to
make this discovery as even though Moses’ MERT implemen-
tation includes a vestigial implementation of Powell’s method,
the code is hardwired to call optimize koehn rather than the rou-
tine for Powell.

3.1 Random Search Directions

One significant advantage of Powell’s algorithm
over coordinate descent is that it can optimize along
diagonal search directions in weight space. That is,
given a model with a dozen or so features, it can
explore gains that are to be had by simultaneously
varying two or more of the feature weights. In gen-
eral, the diagonals that Powell’s method constructs
allow it to walk objective functions more efficiently
than coordinate descent (Press et al., 2007). How-
ever, given that we have a line search algorithm
that will find the global minima along any given
search direction, diagonal search may be of even
more value. That is, similar to ridge phenomenon
that arise in traditional hill climbing search, it is pos-
sible that there are points in the objective that are the
global minimum along any given coordinate direc-
tion, but are not the global minimum along diagonal
directions.

However, one substantial disadvantage for Pow-
ell is that the assumptions it uses to build up the di-
agonal search directions do not hold in the present
context. Specifically, the search directions are built
up under the assumption that near a minimum the
surface looks approximately quadratic and that we
are performing local line minimizations within such
regions. However, since we are performing global
line minimizations, it is possible for the algorithm to
jump from the region around one minima to another.
If Powell’s method has already started to tune its
search directions for the prior minima, it will likely
be less effective in its efforts to search the new re-
gion. To this extent, coordinate descent will be more
robust than Powell as it has no assumptions that are
violated when such a jump occurs.

One way of salvaging Powell’s algorithm in this
context would be to incorporate additional heuris-
tics that detect when the algorithm has jumped from
the region around one minima to another. When
this occurs, the search directions could be reset to
the coordinates of the space. However, we opt for a
simpler solution, which like Powell’s algorithm per-
forms searches along diagonals in the space, but that
like coordinate descent is sufficiently simple that the
algorithm will not be confused by sudden jumps be-
tween regions.

Specifically, the search procedure chooses di-
rections at random such that each component
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Figure 3: Regularization during line search - using, from left to right: (i) the maximum loss of adjacent plateaus, (ii)
the average loss of adjacent plateaus, (iii) no regularization. Each set of bars represents adjacent plateaus along the line
being searched, with the height of the bars representing their associated loss. The vertical lines indicate the surrogate
loss values used for the center region under each of the schemes (i-iii).

is distributed according to a Gaussian8, d s.t.
di ∼ N(0, 1). This allows the procedure to mini-
mize along diagonal search directions, while making
essentially no assumptions regarding the character-
istics of the objective or the relationship between a
series of sequential line minimizations. In the results
that follow, we show that, perhaps surprisingly, this
simple procedure outperforms both KCD and Pow-
ell’s method.

3.2 Regularization
One potential drawback of MERT, as it is typically
implemented, is that it attempts to find the best pos-
sible set of parameters for a training set without
making any explicit efforts to find a set of param-
eters that can be expected to generalize well. For
example, let’s say that for some objective there is
a very deep but narrow minima that is surrounded
on all sides by very bad objective values. That
is, the BLEU score at the minima might be 39.1
while all surrounding plateaus have a BLEU score
that is < 10. Intuitively, such a minima would be a
very bad solution, as the resulting parameters would
likely exhibit very poor generalization to other data
sets. This could be avoided by regularizing the sur-
face in order to eliminate such spurious minima.

One candidate for performing such regularization
is the continuous approximation of the MERT objec-
tive, O = Epw(`). Och (2003) claimed that this ap-
proximation achieved essentially equivalent perfor-
mance to that obtained when directly using the loss
as the objective,O = `. However, Zens et al. (2007)
found thatO = Epw(`) achieved substantially better
test set performance thanO = `, even though it per-
forms slightly worse on the data used to train the
parameters. Similarly, Smith and Eisner (2006) re-
ported test set gains for the related technique of min-
imum risk annealing, which incorporates a temper-

8However, we speculate that similar results could be ob-
tained using a uniform distribution over (−1, 1)

ature parameter that trades off between the smooth-
ness of the objective and the degree it reflects the
underlying piecewise constant error surface. How-
ever, the most straightforward implementation of
such methods requires a loss that can be applied at
the sentence level. If the evaluation metric of inter-
est does not have this property (e.g. BLEU), the loss
must be approximated using some surrogate, with
successful learning then being tied to how well the
surrogate captures the critical properties of the un-
derlying loss.

The techniques of Zens et al. (2007) & Smith
and Eisner (2006) regularize by implicitly smooth-
ing over nearby plateaus in the error surface. We
propose an alternative scheme that operates directly
on the piecewise constant objective and that miti-
gates the problem of spurious local minima by ex-
plicitly smoothing over adjacent plateaus during the
line search. That is, when assessing the desirabil-
ity of any given plateau, we examine a fixed win-
dow w of adjacent plateaus along the direction be-
ing searched and combine their evaluation scores.
We explore two combination methods, max and
average. The former, max, assigns each plateau an
objective value that is equal to the maximum objec-
tive value in its surrounding window, while average
assigns a plateau an objective value that is equal to
its window’s average. Figure 3 illustrates both meth-
ods for regularizing the plateaus and contrasts them
with the case where no regularization is used. No-
tice that, while both methods discount spurious pits
in the objective, average still does place some value
on isolated deep plateaus, and max discounts them
completely.

Note that one potential weakness of this scheme
is the value assigned by the regularized objective
to any given point differs depending on the direc-
tion being searched. As such, it has the potential to
wreak havoc on methods such as Powell’s, which ef-
fectively attempt to learn about the curvature of the
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objective from a sequence of line minimizations.

4 Experiments

Three sets of experiments were performed. For the
first set, we compare the performance of Powell’s
method, KCD, and our novel stochastic search strat-
egy. We then evaluate the performance of all three
methods when the objective is regularized using the
average of adjacent plateaus for window sizes vary-
ing from 3 to 7. Finally, we repeat the regularization
experiment, but using the maximum objective value
from the adjacent plateaus. These experiments were
performed using the Chinese English evaluation data
provided for NIST MT eval 2002, 2003, and 2005.
MT02 was used as a dev set for MERT learning,
while MT03 and MT05 were used as our test sets.

For all experiments, MERT training was per-
formed using n-best lists from the decoder of size
100. During each iteration, the MERT search was
performed once with a starting point of the weights
used to generate the most recent set of n-best lists
and then 5 more times using randomly selected start-
ing points9. Of these, we retain the weights from
the search that obtained the lowest objective value.
Training continued until either decoding produced
no novel entries for the combined n-best lists or none
of the parameter values changed by more than 1e-5
across subsequent iterations.

4.1 System

Experiments were run using a right-to-left beam
search decoder that achieves a matching BLEU
score to Moses (Koehn et al., 2007) over a variety
of data sets. Moreover, when using the same under-
lying model, the two decoders only produce transla-
tions that differ by one or more words 0.2% of the
time. We made use of a stack size of 50 as it al-
lowed for faster experiments while only performing
modestly worse than a stack of 200. The distortion
limit was set to 6. And, we retrieved 20 translation
options for each unique source phrase.

Our phrase table was built using 1, 140, 693 sen-
tence pairs sampled from the GALE Y2 training

9Only 5 random restarts were used due to time constraints.
Ideally, a sizable number of random restarts should be used in
order to minimize the degree to which the results are influenced
by some runs receiving starting points that are better in general
or perhaps better/worse w.r.t. their specific optimization strat-
egy.

Method Dev Test Test
MT02 MT03 MT05

KCD 30.967 30.778 29.580
Powell 30.638 30.692 29.780
Random 31.681 31.754 30.191

Table 3: BLEU scores obtained by models trained using
the three different parameter search strategies: Powell’s
method, KCD, and stochastic search.

data. The Chinese data was word segmented us-
ing the GALE Y2 retest release of the Stanford
CRF segmenter (Tseng et al., 2005). Phrases were
extracted using the typical approach described in
Koehn et al. (2003) of running GIZA++ (Och &
Ney, 2003) in both directions and then merging
the alignments using the grow-diag-final heuristic.
From the merged alignments we also extracted a bi-
directional lexical reordering model conditioned on
the source and the target phrases (Tillmann, 2004)
(Koehn et al., 2007). A 5-gram language model
was created using the SRI language modeling toolkit
(Stolcke, 2002) and trained using the Gigaword cor-
pus and English sentences from the parallel data.

5 Results

As illustrated in table 3, Powell’s method and KCD
achieve a very similar level of performance, with
KCD modestly outperforming Powell on the MT03
test set while Powell modestly outperforms coordi-
nate descent on the MT05 test set. Moreover, the
fact that Powell’s algorithm did not perform better
than KCD on the training data10, and in fact actually
performed modestly worse, suggests that Powell’s
additional search machinery does not provide much
benefit for MERT objectives.

Similarly, the fact that the stochastic search ob-
tains a much higher dev set score than either Pow-
ell or KCD indicates that it is doing a better job
of optimizing the objective than either of the two
alternatives. These gains suggest that stochastic
search does make better use of the global minimum
line search than the alternative methods. Or, alter-
natively, it strengthens the claim that the method
succeeds at combining one of the critical strengths

10This indicates that Powell failed to find a deeper minima
in the objective, since recall that the unregularized objective is
equivalent to the model’s dev set performance.
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Method Window Dev Test Test
Avg MT02 MT03 MT05

Coordinate none 30.967 30.778 29.580
3 31.665 31.675 30.266
5 31.317 31.229 30.182
7 31.205 31.824 30.149

Powell none 30.638 30.692 29.780
3 31.333 31.412 29.890
5 31.748 31.777 30.334
7 31.249 31.571 30.161

Random none 31.681 31.754 30.191
3 31.548 31.778 30.263
5 31.336 31.647 30.415
7 30.501 29.336 28.372

Method Window Dev Test Test
Max MT02 MT03 MT05

Coordinate none 30.967 30.778 29.580
3 31.536 31.927 30.334
5 31.484 31.702 29.687
7 31.627 31.294 30.199

Powell none 30.638 30.692 29.780
3 31.428 30.944 29.598
5 31.407 31.596 30.090
7 30.870 30.911 29.620

Random none 31.681 31.754 30.191
3 31.179 30.898 29.529
5 30.903 31.666 29.963
7 31.920 31.906 30.674

Table 4: BLEU scores obtained when regularizing using the average loss of adjacent plateaus, left, and the maximum
loss of adjacent plateaus, right. The none entry for each search strategy represents the baseline where no regularization
is used. Statistically significant test set gains, p < 0.01, over the respective baselines are in bold face.

of Powell’s method, diagonal search, with coordi-
nate descent’s robustness to the sudden jumps be-
tween regions that result from global line minimiza-
tion. Using an approximate randomization test for
statistical significance (Riezler & Maxwell, 2005),
and with KCD as a baseline, the gains obtained
by stochastic search on MT03 are statistically sig-
nificant (p = 0.002), as are the gains on MT05
(p = 0.005).

Table 4 indicates that performing regularization
by either averaging or taking the maximum of adja-
cent plateaus during the line search leads to gains for
both Powell’s method and KCD. However, no reli-
able additional gains appear to be had when stochas-
tic search is combined with regularization.

It may seem surprising that the regularization
gains for Powell & KCD are seen not only in the test
sets but on the dev set as well. That is, in typical ap-
plications, regularization slightly decreases perfor-
mance on the data used to train the model. However,
this trend can in part be accounted for by the fact that
during training, MERT is using n-best lists for objec-
tive evaluations rather than the more expensive pro-
cess of running the decoder for each point that needs
to be checked. As such, during each iteration of
training, the decoding performance of the model ac-
tually represents its generalization performance rel-
ative to what was learned from the n-best lists cre-
ated during prior iterations. Moreover, better gen-
eralization from the prior n-best lists can also help

drive subsequent learning as there will then be more
high quality translations on the n-best lists used for
future iterations of learning. Additionally, regular-
ization can reduce search errors by reducing the risk
of getting stuck in spurious low loss pits that are in
otherwise bad regions of the space.

6 Conclusions

We have presented two methods for improving the
performance of MERT. The first is a novel stochas-
tic search strategy that appears to make better use of
Och (2003)’s algorithm for finding the global min-
imum along any given search direction than either
coordinate descent or Powell’s method. The sec-
ond is a simple regularization scheme that leads to
performance gains for both coordinate descent and
Powell’s method. However, no further gains are ob-
tained by combining the stochastic search with reg-
ularization of the objective.

One quirk of the regularization scheme presented
here is that the regularization applied to any given
point in the objective varies depending upon what
direction the point is approached from. We are
currently looking at other similar regularization
schemes that maintain consistent objective values
regardless of the search direction.
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Abstract

We present an extensive experimental study
of a Statistical Machine Translation system,
Moses (Koehn et al., 2007), from the point
of view of its learning capabilities. Very ac-
curate learning curves are obtained, by us-
ing high-performance computing, and extrap-
olations are provided of the projected perfor-
mance of the system under different condi-
tions. We provide a discussion of learning
curves, and we suggest that: 1) the represen-
tation power of the system is not currently a
limitation to its performance, 2) the inference
of its models from finite sets of i.i.d. data
is responsible for current performance limita-
tions, 3) it is unlikely that increasing dataset
sizes will result in significant improvements
(at least in traditional i.i.d. setting), 4) it is un-
likely that novel statistical estimation methods
will result in significant improvements. The
current performance wall is mostly a conse-
quence of Zipf’s law, and this should be taken
into account when designing a statistical ma-
chine translation system. A few possible re-
search directions are discussed as a result of
this investigation, most notably the integra-
tion of linguistic rules into the model inference
phase, and the development of active learning
procedures.

1 Introduction and Background

The performance of every learning system is the re-
sult of (at least) two combined effects: the repre-
sentation power of the hypothesis class, determin-
ing how well the system can approximate the target
behaviour; and statistical effects, determining how

well the system can approximate the best element of
the hypothesis class, based on finite and noisy train-
ing information. The two effects interact, with richer
classes being better approximators of the target be-
haviour but requiring more training data to reliably
identify the best hypothesis. The resulting trade-
off, equally well known in statistics and in machine
learning, can be expressed in terms of bias variance,
capacity-control, or model selection. Various theo-
ries on learning curves have been proposed to deal
with it, where a learning curve is a plot describing
performance as a function of some parameters, typ-
ically training set size.

In the context of Statistical Machine Translation
(SMT), where large bilingual corpora are used to
train adaptive software to translate text, this task is
further complicated by the peculiar distribution un-
derlying the data, where the probability of encoun-
tering new words or expressions never vanishes. If
we want to understand the potential and limitations
of the current technology, we need to understand the
interplay between these two factors affecting perfor-
mance. In an age where the creation of intelligent
behaviour is increasingly data driven, this is a ques-
tion of great importance to all of Artificial Intelli-
gence.

These observations lead us to an analysis of learn-
ing curves in machine translation, and to a number of
related questions, including an analysis of the flexi-
bility of the representation class used, an analysis of
the stability of the models with respect to perturba-
tions of the parameters, and an analysis of the com-
putational resources needed to train these systems.

Using the open source package Moses (Koehn et
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al., 2007) and the Spanish-English Europarl corpus
(Koehn, 2005) we have performed a complete inves-
tigation of the influence of training set size on the
quality of translations and on the cost of training; the
influence of several design choices; the role of data
sizes in training various components of the system.
We use this data to inform a discussion about learn-
ing curves. An analysis of learning curves has pre-
viously been proposed by (Al-Onaizan et al., 1999).
Recent advances in software, data availability and
computing power have enabled us to undertake the
present study, where very accurate curves are ob-
tained on a large corpus.

Since our goal was to obtain high accuracy learn-
ing curves, that can be trusted both for compar-
ing different system settings, and to extrapolate per-
formance under unseen conditions, we conducted a
large-scale series of tests, to reduce uncertainty in
the estimations and to obtain the strongest possible
signals. This was only possible, to the degree of ac-
curacy needed by our analysis, by the extensive use
of a high performance computer cluster over several
weeks of computation.

One of our key findings is that the current per-
formance is not limited by the representation power
of the hypothesis class, but rather by model estima-
tion from data. And that increasing of the size of
the dataset is not likely to bridge that gap (at least
not for realistic amounts in the i.i.d. setting), nor is
the development of new parameter estimation prin-
ciples. The main limitation seems to be a direct
consequence of Zipf’s law, and the introduction of
constraints from linguistics seems to be an unavoid-
able step, to help the system in the identification of
the optimal models without resorting to massive in-
creases in training data, which would also result in
significantly higher training times, and model sizes.

2 Statistical Machine Translation

What is the best function class to map Spanish doc-
uments into English documents? This is a question
of linguistic nature, and has been the subject of a
long debate. The de-facto answer came during the
1990’s from the research community on Statistical
Machine Translation, who made use of statistical
tools based on a noisy channel model originally de-
veloped for speech recognition (Brown et al., 1994;

Och and Weber, 1998; R.Zens et al., 2002; Och and
Ney, 2001; Koehn et al., 2003). A Markovian lan-
guage model, based on phrases rather than words,
coupled with a phrase-to-phrase translation table are
at the heart of most modern systems. Translating a
text amounts to computing the most likely transla-
tion based on the available model parameters. Infer-
ring the parameters of these models from bilingual
corpora is a matter of statistics. By model inference
we mean the task of extracting all tables, parameters
and functions, from the corpus, that will be used to
translate.

How far can this representation take us towards
the target of achieving human-quality translations?
Are the current limitations due to the approximation
error of this representation, or to lack of sufficient
training data? How much space for improvement
is there, given new data or new statistical estima-
tion methods or given different models with differ-
ent complexities?

We investigate both the approximation and the es-
timation components of the error in machine transla-
tion systems. After analysing the two contributions,
we focus on the role of various design choices in
determining the statistical part of the error. We in-
vestigate learning curves, measuring both the role of
the training set and the optimization set size, as well
as the importance of accuracy in the numeric param-
eters.

We also address the trade-off between accuracy
and computational cost. We perform a complete
analysis of Moses as a learning system, assessing the
various contributions to its performance and where
improvements are more likely, and assessing com-
putational and statistical aspects of the system.

A general discussion of learning curves in Moses-
like systems and an extrapolation of performance
are provided, showing that the estimation gap is un-
likely to be closed by adding more data in realistic
amounts.

3 Experimental Setup

We have performed a large number of detailed ex-
periments. In this paper we report just a few, leaving
the complete account of our benchmarking to a full
journal version (Turchi et al., In preparation). Three
experiments allow us to assess the most promis-
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ing directions of research, from a machine learning
point of view.

1. Learning curve showing translation perfor-
mance as a function of training set size, where
translation is performed on unseen sentences.
The curves, describing the statistical part of the
performance, are seen to grow very slowly with
training set size.

2. Learning curve showing translation perfor-
mance as a function of training set size, where
translation is performed on known sentences.
This was done to verify that the hypothesis
class is indeed capable of representing high
quality translations in the idealized case when
all the necessary phrases have been observed
in training phase. By limiting phrase length
to 7 words, and using test sentences mostly
longer than 20 words, we have ensured that this
was a genuine task of decoding. We observed
that translation in these idealized conditions is
worse than human translation, but much better
than machine translation of unseen sentences.

3. Plot of performance of a model when the nu-
meric parameters are corrupted by an increas-
ing amount of noise. This was done to simu-
late the effect of inaccurate parameter estima-
tion algorithms (due either to imprecise objec-
tive functions, or to lack of sufficient statistics
from the corpus). We were surprised to observe
that accurate estimation of these parameters ac-
counts for at most 10% of the final score. It is
the actual list of phrases that forms the bulk of
the knowledge in the system.

We conclude that the availability of the right mod-
els in the system would allow the system to have a
much higher performance, but these models will not
come from increased datasets or estimation proce-
dures. Instead, they will come from the results of ei-
ther the introduction of linguistic knowledge, or the
introduction of query algorithms, themselves result-
ing necessarily from confidence estimation meth-
ods. Hence these appear to be the two most pressing
questions in this research area.

3.1 Software

Moses (Koehn et al., 2007) is a complete translation
toolkit for academic purposes. It provides all the
components needed to create a machine translation
system from one language to another. It contains dif-
ferent modules to preprocess data, train the language
models and the translation models. These mod-
els can be tuned using minimum error rate training
(Och, 2003). Moses uses standard external tools for
some of these tasks, such as GIZA++ (Och and Ney,
2003) for word alignments and SRILM (Stolcke,
2002) for language modeling. Notice that Moses is a
very sophisticated system, capable of learning trans-
lation tables, language models and decoding param-
eters from data. We analyse the contribution of each
component to the overall score.

Given a parallel training corpus, Moses prepro-
cesses it removing long sentences, lowercasing and
tokenizing sentences. These sentences are used to
train the language and translation models. This
phase requires several steps as aligning words, com-
puting the lexical translation, extracting phrases,
scoring the phrases and creating the reordering
model. When the models have been created, the de-
velopment set is used to run the minimum error rate
training algorithm to optimize their weights. We re-
fer to that step as the optimization step in the rest of
the paper. Test set is used to evaluate the quality of
models on the data. The translated sentences are em-
bedded in a sgm format, such that the quality of the
translation can be evaluated using the most common
machine translation scores. Moses provides BLEU
(K.Papineni et al., 2001) and NIST (Doddington,
2002), but Meteor (Banerjee and Lavie, 2005; Lavie
and Agarwal, 2007) and TER (Snover et al., 2006)
can easily be used instead. NIST is used in this paper
as evaluation score after we observed its high corre-
lation to the other scores on the corpus (Turchi et al.,
In preparation).

All experiments have been run using the default
parameter configuration of Moses. It means that
Giza++ has used IBM model 1, 2, 3, and 4 with
number of iterations for model 1 equal to 5, model
2 equal to 0, model 3 and 4 equal to 3; SRILM
has used n-gram order equal to 3 and the Kneser-
Ney smoothing algorithm; Mert has been run fix-
ing to 100 the number of nbest target sentence for
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each develop sentence, and it stops when none of
the weights changed more than 1e-05 or the nbest
list does not change.

The training, development and test set sentences
are tokenized and lowercased. The maximum num-
ber of tokens for each sentence in the training pair
has been set to 50, whilst no limit is applied to the
development or test set. TMs were limited to a
phrase-length of 7 words and LMs were limited to
3.

3.2 Data

The Europarl Release v3 Spanish-English corpus
has been used for the experiments. All the pairs of
sentences are extracted from the proceedings of the
European Parliament.

This dataset is made of three sets of pairs of sen-
tences. Each of them has a different role:training,
development and test set. The training set contains
1,259,914 pairs, while there are 2,000 pairs for de-
velopment and test sets.

This work contains several experiments on differ-
ent types and sizes of data set. To be consistent
and to avoid anomalies due to overfitting or par-
ticular data combinations, each set of pairs of sen-
tences have been randomly sampled. The number of
pairs is fixed and a software selects them randomly
from the whole original training, development or test
set using a uniform distribution (bootstrap). Redun-
dancy of pairs is allowed inside each subset.

3.3 Hardware

All the experiments have been run on a cluster ma-
chine, http://www.acrc.bris.ac.uk/acrc/hpc.htm. It
includes 96 nodes each with two dual-core opteron
processors, 8 GB of RAM memory per node (2 GB
per core); 4 thick nodes each with four dual-core
opteron processors, 32 GB of RAM memory per
node (4 GB per core); ClearSpeed accelerator boards
on the thick nodes; SilverStorm Infiniband high-
speed connectivity throughout for parallel code mes-
sage passing; General Parallel File System (GPFS)
providing data access from all the nodes; storage -
11 terabytes. Each experiment has been run using
one core and allocating 4Gb of RAM.

4 Experiments

4.1 Experiment 1: role of training set size on
performance on new sentences

In this section we analyse how performance is af-
fected by training set size, by creating learning
curves (NIST score vs training set size).

We have created subsets of the complete corpus
by sub-sampling sentences from a uniform distribu-
tion, with replacement. We have created 10 random
subsets for each of the 20 chosen sizes, where each
size represents 5%, 10%, etc of the complete cor-
pus. For each subset a new instance of the SMT
system has been created, for a total of 200 mod-
els. These have been optimized using a fixed size
development set (of 2,000 sentences, not included
in any other phase of the experiment). Two hun-
dred experiments have then been run on an indepen-
dent test set (of 2,000 sentences, also not included in
any other phase of the experiment). This allowed us
to calculate the mean and variance of NIST scores.
This has been done for the models with and without
the optimization step, hence producing the learning
curves with error bars plotted in Figure 1, represent-
ing translation performance versus training set size,
in the two cases.

The growth of the learning curve follows a typi-
cal pattern, growing fast at first, then slowing down
(traditional learning curves are power laws, in theo-
retical models). In this case it appears to be grow-
ing even slower than a power law, which would be
a surprise under traditional statistical learning the-
ory models. In any case, the addition of massive
amounts of data from the same distribution will re-
sult into smaller improvements in the performance.
The small error bars that we have obtained also al-
low us to neatly observe the benefits of the optimiza-
tion phase, which are small but clearly significant.

4.2 Experiment 2: role of training set size on
performance on known sentences

The performance of a learning system depends both
on the statistical estimation issues discussed in the
previous subsection, and on functional approxima-
tion issues: how well can the function class repro-
duce the desired behaviour? In order to measure this
quantity, we have performed an experiment much
like the one described above, with one key differ-
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Figure 1: ”Not Optimized” has been obtained using a
fixed test set and no optimization phase. ”Optimized”
using a fixed test set and the optimization phase.

ence: the test set was selected randomly from the
training set (after cleaning phase). In this way we
are guaranteed that the system has seen all the nec-
essary information in training phase, and we can as-
sess its limitations in these very ideal conditions.
We are aware this condition is extremely idealized
and it will never happen in real life, but we wanted
to have an upper bound on the performance achiev-
able by this architecture if access to ideal data was
not an issue. We also made sure that the perfor-
mance on translating training sentences was not due
to simple memorization of the entire sentence, ver-
ifying that the vast majority of the sentences were
not present in the translation table (where the max-
imal phrase size was 7), not even in reduced form.
Under these favourable conditions, the system ob-
tained a NIST score of around 11, against a score
of about 7.5 on unseen sentences. This suggests
that the phrase-based Markov-chain representation
is sufficiently rich to obtain a high score, if the nec-
essary information is contained in the translation and
language models.

For each model to be tested on known sentences,
we have sampled ten subsets of 2,000 sentences each
from the training set.

The ”Optimized, Test on Training Set” learn-
ing curve, see figure 2, represents a possible upper
bound on the best performance of this SMT sys-
tem, since it has been computed in favourable con-
ditions. It does suggest that this hypothesis class

has the power of approximating the target behaviour
more accurately than we could think based on per-
formance on unseen sentences. If the right informa-
tion has been seen, the system can reconstruct the
sentences rather accurately. The NIST score com-
puted using the reference sentences as target sen-
tences is around 15, we identify the relative curve as
”Human Translation”. At this point, it seems likely
that the process with which we learn the necessary
tables representing the knowledge of the system is
responsible for the performance limitations.

The gap between the ”Optimized, Test on Train-
ing Set” and the ”Optimized” curves is even more in-
teresting if related to the slow growth rate in the pre-
vious learning curve: although the system can repre-
sent internally a good model of translation, it seems
unlikely that this will ever be inferred by increasing
the size of training datasets in realistic amounts.

The training step results in various forms of
knowledge: translation table, language model and
parameters from the optimization. The internal
models learnt by the system are essentially lists
of phrases, with probabilities associated to them.
Which of these components is mostly responsible
for performance limitations?

4.3 Experiment 3: effect on performance of
increasing noise levels in parameters

Much research has focused on devising improved
principles for the statistical estimation of the pa-
rameters in language and translation models. The
introduction of discriminative graphical models has
marked a departure from traditional maximum like-
lihood estimation principles, and various approaches
have been proposed.

The question is: how much information is con-
tained in the fine grain structure of the probabilities
estimated by the model? Is the performance improv-
ing with more data because certain parameters are
estimated better, or just because the lists are grow-
ing? In the second case, it is likely that more sophis-
ticated statistical algorithms to improve the estima-
tion of probabilities will have limited impact.

In order to simulate the effect of inaccurate esti-
mation of the numeric parameters, we have added
increasing amount of noise to them. This can either
represent the effect of insufficient statistics in esti-
mating them, or the use of imperfect parameter esti-
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mation biases. We have corrupted the parameters in
the language and translation models, by adding in-
creasing levels of noise to them, and measured the
effect of this on performance.

One model trained with 62,995 pairs of sentences
has been chosen from the experiments in Section
4.1. A percentage of noise has been added to each
probability in the language model, including condi-
tional probability and back off, translation model,
bidirectional translation probabilities and lexical-
ized weighting. Given a probabilityp and a percent-
age of noise,pn, a value has been randomly selected
from the interval [-x,+x], wherex = p * pn, and
added top. If this quantity is bigger than one it has
been approximated to one. Different values of per-
centage have been used. For each value ofpn, five
experiment have been run. The optimization step
has not been run.

We see from Figure 3 that the performance does
not seem to depend crucially on the fine structure of
the parameter vectors, and that even a large addition
of noise (100%) produces a 10% decline in NIST
score. This suggests that it is the list itself, rather
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models has been perturbed adding a percentage of noise.
This learning curve reports the not optimized NIST score
versus the percentage of perturbation applied. These re-
sults have been obtained using a fixed training set size
equal to 62,995 pairs of sentences.
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Figure 4: Training and tuning user time vs training set
size. Time quantities are expressed in minutes.

than the probabilities in it, that controls the perfor-
mance. Different estimation methods can produce
different parameters, but this does not seem to mat-
ter very much. The creation of a more complete list
of words, however, seems to be the key to improve
the score. Combined with the previous findings, this
would mean that neither more data nor better statis-
tics will bridge the performance gap. The solution
might have to be found elsewhere, and in our Dis-
cussion section we outline a few possible avenues.

5 Computational Cost

The computational cost of models creation and
development-phase has been measured during the
creation of the learning curves. Despite its efficiency
in terms of data usage, the development phase has a
high cost in computational terms, if compared with
the cost of creating the complete language and trans-
lation models.

For each experiment, the user CPU time is com-
puted as the sum of the user time of the main process
and the user time of the children.

These quantities are collected for training, devel-
opment, testing and evaluation phases. In figure 4,
training and tuning user times are plotted as a func-
tion of the training set size. It is evident that increas-
ing the training size causes an increase in training
time in a roughly linear fashion.

It is hard to find a similar relationship for the tun-
ing time of the development phase. In fact, the tun-
ing time is strictly connected with the optimization

algorithm and the sentences in the development set.
We can also see in figure 4 that even a small devel-
opment set size can require a large amount of tun-
ing time. Each point of the tuning time curve has a
big variance. The tuning phase involves translating
the development set many times and hence its cost
depends very weakly on the training set size, since a
large training set leads to larger tables and these lead
to slightly longer test times.

6 Discussion

The impressive capability of current machine trans-
lation systems is not only a testament to an incredi-
bly productive and creative research community, but
can also be seen as a paradigm for other Artificial In-
telligence tasks. Data driven approaches to all main
areas of AI currently deliver the state of the art per-
formance, from summarization to speech recogni-
tion to machine vision to information retrieval. And
statistical learning technology is central to all ap-
proaches to data driven AI.

Understanding how sophisticated behaviour can
be learnt from data is hence not just a concern for
machine learning, or to individual applied commu-
nities, such as Statistical Machine Translation, but
rather a general concern for modern Artificial Intelli-
gence. The analysis of learning curves, and the iden-
tification of the various limitations to performance
is a crucial part of the machine learning method,
and one where statistics and algorithmics interact
closely.

In the case of Statistical Machine Translation, the
analysis of Moses suggests that the current bottle-
neck is the lack of sufficient data, not the function
class used for the representation of translation sys-
tems. The clear gap between performance on train-
ing and testing set, together with the rate of the
learning curves, suggests that improvements may be
possible but not by adding more data in i.i.d. way as
done now. The perturbation analysis suggests that
improved statistical principles are unlikely to make
a big difference either.

Since it is unlikely that sufficient data will be
available by simply sampling a distribution, one
needs to address a few possible ways to transfer
large amounts of knowledge into the system. All of
them lead to open problems either in machine learn-
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ing or in machine translation, most of them having
been already identified by their respective communi-
ties as important questions. They are actively being
worked on.

The gap between performances on training and
on test sets is typically affected by model selection
choices, ultimately controlling the trade off between
overfitting and underfitting. In these experiments the
system used phrases of length 7 or less. Changing
this parameter might reflect on the gap and this is
the focus of our current work.

A research programme naturally follows from
our analysis. The first obvious approach is an ef-
fort to identify or produce datasets on demand (ac-
tive learning, where the learning system can request
translations of specific sentences, to satisfy its infor-
mation needs). This is a classical machine learning
question, that however comes with the need for fur-
ther theoretical work, since it breaks the traditional
i.i.d. assumptions on the origin of data. Further-
more, it would also require an effective way to do
confidence estimation on translations, as traditional
active learning approaches are effectively based on
the identification (or generation) of instances where
there is low confidence in the output (Blatz et al.,
2004; Ueffing and Ney, 2004; Ueffing and Ney,
2005b; Ueffing and Ney, 2005a).

The second natural direction involves the intro-
duction of significant domain knowledge in the form
of linguistic rules, so to dramatically reduce the
amount of data needed to essentially reconstruct
them by using statistics. These rules could take the
form of generation of artificial training data, based
on existing training data, or a posteriori expansion of
translation and language tables. Any way to enforce
linguistic constraints will result in a reduced need
for data, and ultimately in more complete models,
given the same amount of data (Koehn and Hoang,
2007).

Obviously, it is always possible that the identifi-
cation of radically different representations of lan-
guage might introduce totally different constraints
on both approximation and estimation error, and this
might be worth considering.

What is not likely to work. It does not seem that
the introduction of more data will change the situ-
ation significantly, as long as the data is sampled
i.i.d. from the same distribution. It also does not

seem that more flexible versions of Markov mod-
els would be likely to change the situation. Finally,
it does not seem that new and different methods to
estimate probabilities would make much of a differ-
ence. Our perturbation studies show that significant
amounts of noise in the parameters result into very
small variations in the performance. Note also that
the current algorithm is not even working on refin-
ing the probability estimates, as the rate of growth of
the tables suggests that new n-grams are constantly
appearing, reducing the proportion of time spent re-
fining probabilities of old n-grams.

It does seem that the control of the performance
relies on the length of the translation and language
tables. Ways are needed to make these tables grow
much faster as a function of training set size; they
can either involve active selection of documents to
translate, or the incorporation of linguistic rules to
expand the tables without using extra data.

It is important to note that many approaches sug-
gested above are avenues currently being actively
pursued, and this analysis might be useful to decide
which one of them should be given priority.

7 Conclusions

We have started a series of extensive experimental
evaluations of performance of Moses, using high
performance computing, with the goal of under-
standing the system from a machine learning point
of view, and use this information to identify weak-
nesses of the system that can lead to improvements.
We have performed many more experiments that
cannot be reported in this workshop paper, and will
be published in a longer report (Turchi et al., In
preparation). In general, our goal is to extrapolate
the performance of the system under many condi-
tions, to be able to decide which directions of re-
search are most likely to deliver improvements in
performance.
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Abstract

Word alignments that violate syntactic cor-
respondences interfere with the extraction
of string-to-tree transducer rules for syntax-
based machine translation. We present an
algorithm for identifying and deleting incor-
rect word alignment links, using features of
the extracted rules. We obtain gains in both
alignment quality and translation quality in
Chinese-English and Arabic-English transla-
tion experiments relative to a GIZA++ union
baseline.

1 Introduction

1.1 Motivation

Word alignment typically constitutes the first stage
of the statistical machine translation pipeline.
GIZA++ (Och and Ney, 2003), an implementation
of the IBM (Brown et al., 1993) and HMM (?)
alignment models, is the most widely-used align-
ment system. GIZA++unionalignments have been
used in the state-of-the-art syntax-based statistical
MT system described in (Galley et al., 2006) and in
the hierarchical phrase-based system Hiero (Chiang,
2007). GIZA++refinedalignments have been used
in state-of-the-art phrase-based statistical MT sys-
tems such as (Och, 2004); variations on the refined
heuristic have been used by (Koehn et al., 2003)
(diaganddiag-and) and by the phrase-based system
Moses (grow-diag-final) (Koehn et al., 2007).

GIZA++ union alignments have high recall but
low precision, whileintersectionor refined align-

ments have high precision but low recall.1 There are
two natural approaches to improving upon GIZA++
alignments, then: deleting links from union align-
ments, or adding links to intersection or refined
alignments. In this work, we delete links from
GIZA++ union alignments to improve precision.

The low precision of GIZA++ union alignments
poses a particular problem for syntax-based rule ex-
traction algorithms such as (Quirk et al., 2005; Gal-
ley et al., 2006; Huang et al., 2006; Liu et al.,
2006): if the incorrect links violate syntactic corre-
spondences, they force the rule extraction algorithm
to extract rules that are large in size, few in number,
and poor in generalization ability.

Figure 1 illustrates this problem: the dotted line
represents an incorrect link in the GIZA++ union
alignment. Using the rule extraction algorithm de-
scribed in (Galley et al., 2004), we extract the rules
shown in the leftmost column (R1–R4). Rule R1 is
large and unlikely to generalize well. If we delete
the incorrect link in Figure 1, we can extract the
rules shown in the rightmost column (R2–R9): Rule
R1, the largest rule from the initial set, disappears,
and several smaller, more modular rules (R5–R9) re-
place it.

In this work, we present a supervised algorithm
that uses these two features of the extracted rules
(size of largest rule and total number of rules), as
well as a handful of structural and lexical features,
to automatically identify and delete incorrect links
from GIZA++ union alignments. We show that link

1For a complete discussion of alignment symmetrization
heuristics, including union, intersection, and refined, refer to
(Och and Ney, 2003).
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Figure 1: The impact of incorrect alignment links upon rule extraction. Using the original alignment (including all
links shown) leads to the extraction of the tree-to-string transducer rules whose left hand sides are rooted at the solid
boxed nodes in the parse tree (R1, R2, R3, and R4). Deleting the dotted alignment link leads to the omission of rule
R1, the extraction of R9 in its place, the extraction of R2, R3, and R4 as before, and the extraction of additional rules
whose left hand sides are rooted at the dotted boxed nodes in the parse tree (R5, R6, R7, R8).
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deletion improves alignment quality and translation
quality in Chinese-English and Arabic-English MT,
relative to a strong baseline. Our link deletion al-
gorithm is easy to implement, runs quickly, and has
been used by a top-scoring MT system in the Chi-
nese newswire track of the 2008 NIST evaluation.

1.2 Related Work

Recently, discriminative methods for alignment
have rivaled the quality of IBM Model 4 alignments
(Liu et al., 2005; Ittycheriah and Roukos, 2005;
Taskar et al., 2005; Moore et al., 2006; Fraser and
Marcu, 2007b). However, except for (Fraser and
Marcu, 2007b), none of these advances in align-
ment quality has improved translation quality of a
state-of-the-art system. We use a discriminatively
trained model to identify and delete incorrect links,
and demonstrate that these gains in alignment qual-
ity lead to gains in translation quality in a state-
of-the-art syntax-based MT system. In contrast to
the semi-supervised LEAF alignment algorithm of
(Fraser and Marcu, 2007b), which requires 1,500-
2,000 CPUdaysper iteration to align 8.4M Chinese-
English sentences (anonymous, p.c.), link deletion
requires only 450 CPUhoursto re-align such a cor-
pus (after initial alignment by GIZA++, which re-
quires 20-24 CPU days).

Several recent works incorporate syntactic fea-
tures into alignment. (May and Knight, 2007) use
syntactic constraints to re-align a parallel corpus that
has been aligned by GIZA++ as follows: they extract
string-to-tree transducer rules from the corpus, the
target parse trees, and the alignment; discard the ini-
tial alignment; use the extracted rules to construct a
forest of possible string-to-tree derivations for each
string/tree pair in the corpus; use EM to select the
Viterbi derivation tree for each pair; and finally, in-
duce a new alignment from the Viterbi derivations,
using the re-aligned corpus to train a syntax-based
MT system. (May and Knight, 2007) differs from
our approach in two ways: first, the set of possible
re-alignments they consider for each sentence pair is
limited by the initial GIZA++ alignments seen over
the training corpus, while we consider all alignments
that can be reached by deleting links from the ini-
tial GIZA++ alignment for that sentence pair. Sec-
ond, (May and Knight, 2007) use a time-intensive
training algorithm to select the best re-alignment

for each sentence pair, while we use a fast greedy
search to determine which links to delete; in con-
trast to (May and Knight, 2007), who require 400
CPU hours to re-align 330k Chinese-English sen-
tence pairs (anonymous, p.c), link deletion requires
only 18 CPU hours to re-align such a corpus.

(Lopez and Resnik, 2005) and (Denero and Klein,
2007) modify the distortion model of the HMM
alignment model (Vogel et al., 1996) to reflect tree
distance rather than string distance; (Cherry and
Lin, 2006) modify an ITG aligner by introducing
a penalty for induced parses that violate syntac-
tic bracketing constraints. Similarly to these ap-
proaches, we use syntactic bracketing to constrain
alignment, but our work extends beyond improving
alignment quality to improve translation quality as
well.

2 Link Deletion

We propose an algorithm to re-align a parallel bitext
that has been aligned by GIZA++ (IBM Model 4),
then symmetrized using the union heuristic. We then
train a syntax-based translation system on the re-
aligned bitext, and evaluate whether the re-aligned
bitext yields a better translation model than a base-
line system trained on the GIZA++ union aligned
bitext.

2.1 Link Deletion Algorithm

Our algorithm for re-alignment proceeds as follows.
We make a single pass over the corpus. For each sen-
tence pair, we initialize the alignmentA = Ainitial

(the GIZA++ union alignment for that sentence
pair). We represent the score ofA as a weighted
linear combination of featureshi of the alignment
A, the target parse treeparse(e) (a phrase-structure
syntactic representation ofe), and the source string
f :

score(A) =
n∑

i=0

λi · hi(A, parse(e), f)

We define abranchof links to be acontiguous1-
to-many alignment.2 We define two alignments,A

2In Figure 1, the 1-to-many alignment formed by{ýýý)))-
its, ýýý)))- own,ýýý)))-country} constitutes a branch, but the
1-to-many alignment formed by{ñññ���-starts,ñññ���-out,ñññ���-
needs} does not.
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and A′, to beneighborsif they differ only by the
deletion of a link orbranchof links. We consider all
alignmentsA′ in the neighborhoodof A, greedily
deleting the linkl or branch of linksb maximizing
the score of the resulting alignmentA′ = A \ l or
A′ = A \ b. We delete links until no further increase
in the score ofA is possible.3

In section 2.2 we describe the featureshi, and in
section 2.4 we describe how to set the weightsλi.

2.2 Features

2.2.1 Syntactic Features

We use two features of the string-to-tree trans-
ducer rules extracted fromA, parse(e), andf ac-
cording to the rule extraction algorithm described in
(Galley et al., 2004):

ruleCount: Total number of rules extracted from
A, parse(e), and f . As Figure 1 illustrates, in-
correct links violating syntactic brackets tend to de-
creaseruleCount; ruleCount increases from 4 to 8
after deleting the incorrect link.

sizeOfLargestRule: The size, measured in terms
of internal nodes in the target parse tree, of the single
largest rule extracted fromA, parse(e), andf . In
Figure 1, the largest rules in the leftmost and right-
most columns are R1 (with 9 internal nodes) and R9
(with 4 internal nodes), respectively.

2.2.2 Structural Features

wordsUnaligned: Total number of unaligned
words.

1-to-many Links: Total number of links for which
one word is aligned to multiple words, in either di-
rection. In Figure 1, the links{ñññ���-starts,ñññ���-
out,ñññ���-needs} represent a 1-to-many alignment.
1-to-many links appear more frequently in GIZA++
union alignments than in gold alignments, and are
therefore good candidates for deletion. The cate-
gory of 1-to-many links is further subdivided, de-
pending on the degree ofcontiguitythat the link ex-
hibits with its neighbors.4 Each link in a 1-to-many

3While using a dynamic programming algorithm would
likely improve search efficiency and allow link deletion to find
an optimal solution, in practice, the greedy search runs quickly
and improves alignment quality.

4(Deng and Byrne, 2005) observe that, in a manually aligned
Chinese-English corpus, 82% of the Chinese words that are

alignment can have 0, 1, or 2 neighbors, according
to how many links are adjacent to it in the 1-to-many
alignment:

zeroNeighbors: In Figure 1, the linkñññ���-needs
has 0 neighbors.

oneNeighbor: In Figure 1, the linksñññ���-starts
andñññ���-out each have 1 neighbor–namely, each
other.

twoNeighbors: In Figure 1, in the 1-to-many
alignment formed by{ýýý)))-its,ýýý)))-own,ýýý)))-
country}, the link ýýý)))-own has 2 neighbors,
namelyýýý)))-it andýýý)))-country.

2.2.3 Lexical Features

highestLexProbRank: A link ei-fj is “max-
probable fromei to fj” if p(fj |ei) > p(fj′ |ei) for
all alternative wordsfj′ with which ei is aligned
in Ainitial. In Figure 1,p(������|needs) > p(ñññ���|needs), so ������-needs is max-probable for
“needs”. The definition of “max-probable fromfj to
ei” is analogous, and a link is max-probable (nondi-
rectionally) if it is max-probable in either direction.
The value ofhighestLexProbRankis the total num-
ber of max-probable links. The conditional lexical
probabilitiesp(ei|fj) andp(fj |ei) are estimated us-
ing frequencies of aligned word pairs in the high-
precision GIZA++ intersectionalignments for the
training corpus.

2.2.4 History Features

In addition to the above syntactic, structural,
and lexical features ofA, we also incorporate
two features of the link deletion history itself into
Score(A):

linksDeleted: Total number of links deleted
Ainitial thus far. At each iteration, either a link or
a branch of links is deleted.

aligned to multiple English words are aligned to acontiguous
block of English words; similarly, 88% of the English words
that are aligned to multiple Chinese words are aligned to acon-
tiguousblock of Chinese words. Thus, if a Chinese word is cor-
rectly aligned to multiple English words, those English words
are likely to be “neighbors” of each other, and if an English
word is correctly aligned to multiple Chinese words, those Chi-
nese words are likely to be “neighbors” of each other.
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stepsTaken: Total number of iterations thus far in
the search; at each iteration, either a link or a branch
is deleted. This feature serves as a constant cost
function per step taken during link deletion.

2.3 Constraints

Protecting Refined Links from Deletion: Since
GIZA++ refined links have higher precision than
union links5, we do not consider any GIZA++ re-
fined links for deletion.6

Stoplist: In our Chinese-English corpora, the 10
most common English words (excluding punc-
tuation marks) include{a,in,to,of,and,the}, while
the 10 most common Chinese words include
{êêê,444,óóó,ZZZ,{{{}. Of these,{a,the} and {êêê,{{{}
have no explicit translational equivalent in the other
language. These words are aligned with each other
frequently (and erroneously) by GIZA++ union, but
rarely in the gold standard. We delete all links in
the set{a, an, the} × {{{{, êêê} from Ainitial as a
preprocessing step.7

2.4 Perceptron Training

We set the feature weightsλ using a modified ver-
sion of averaged perceptron learning with structured
outputs (Collins, 2002). Following (Moore, 2005),
we initialize the value of our expected most infor-
mative feature (ruleCount) to 1.0, and initialize all
other feature weights to 0. During each pass over the
discriminative training set, we “decode” each sen-
tence pair by greedily deleting links fromAinitial in
order to maximize the score of the resulting align-
ment using the current settings ofλ (for details, refer
to section 2.1).

5On a 400-sentence-pair Chinese-English data set, GIZA++
union alignments have a precision of 77.32 while GIZA++ re-
fined alignments have a precision of 85.26.

6To see how GIZA++ refined alignments compare to
GIZA++ union alignments for syntax-based translation, we
compare systems trained on each set of alignments for Chinese-
English translation taskA. Union alignments result in a test set
BLEU score of 41.17, as compared to only 36.99 for refined.

7The impact upon alignment f-measure of deleting these
stoplist links is small; on Chinese-English Data SetA, the f-
measure of the baseline GIZA++ union alignments on the test
set increases from 63.44 to 63.81 after deleting stoplist links,
while the remaining increase in f-measure from 63.81 to 75.14
(shown in Table 3) is due to the link deletion algorithm itself.

We construct a set of candidate alignments
Acandidates for use in reranking as follows. Starting
with A = Ainitial, we iteratively explore all align-
mentsA′ in the neighborhoodof A, adding each
neighbor to Acandidates, then selecting theneigh-
bor that maximizesScore(A′). When it is no
longer possible to increaseScore(A) by deleting
any links, link deletion concludes and returns the
highest-scoring alignment,A1-best.

In general, Agold /∈ Acandidates; following
(Collins, 2000) and (Charniak and Johnson, 2005)
for parse reranking and (Liang et al., 2006) for trans-
lation reranking, we defineAoracle as alignment in
Acandidates that is mostsimilar to Agold.8 We up-
date each feature weightλi as follows: λi = λi +
hAoracle

i − hA1-best

i .9

Following (Moore, 2005), after each training
pass, we average all the feature weight vectors seen
during the pass, and decode the discriminative train-
ing set using the vector of averaged feature weights.
When alignment quality stops increasing on the dis-
criminative training set, perceptron training ends.10

The weight vector returned by perceptron training is
the average over the training set of all weight vectors
seen during all iterations; averaging reduces overfit-
ting on the training set (Collins, 2002).

3 Experimental Setup

3.1 Data Sets

We evaluate the effect of link deletion upon align-
ment quality and translation quality for two Chinese-
English data sets, and one Arabic-English data set.
Each data set consists of newswire, and contains a
small subset of manually aligned sentence pairs. We
divide the manually aligned subset into a training set
(used to discriminatively set the feature weights for
link deletion) and a test set (used to evaluate the im-
pact of link deletion upon alignment quality). Table
1 lists the source and the size of the manually aligned
training and test sets used for each alignment task.

8We discuss alignment similarity metrics in detail in Section
3.2.

9(Liang et al., 2006) report that, for translation reranking,
suchlocal updates (towards the oracle) outperformboldupdates
(towards the gold standard).

10We discuss alignment quality metrics in detail in Section
3.2.
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Using the feature weights learned on the manually
aligned training set, we then apply link deletion to
the remainder (non-manually aligned) of each bilin-
gual data set, and train a full syntax-based statistical
MT system on these sentence pairs. After maximum
BLEU tuning (Och, 2003a) on a held-out tuning set,
we evaluate translation quality on a held-out test set.
Table 2 lists the source and the size of the training,
tuning, and test sets used for each translation task.

3.2 Evaluation Metrics

AER (Alignment Error Rate) (Och and Ney, 2003)
is the most widely used metric of alignment qual-
ity, but requires gold-standard alignments labelled
with “sure/possible” annotations to compute; lack-
ing such annotations, we can compute alignment f-
measure instead.

However, (Fraser and Marcu, 2007a) show that,
in phrase-based translation, improvements in AER
or f-measure do not necessarily correlate with im-
provements in BLEU score. They propose two mod-
ifications to f-measure: varying the precision/recall
tradeoff, andfully-connectingthe alignment links
before computing f-measure.11

Weighted Fully-Connected F-Measure Given a
hypothesized set of alignment linksH and a gold-
standard set of alignment linksG, we defineH+ =
fullyConnect(H) andG+ = fullyConnect(G),
and then compute:

f -measure(H+) =
1

α
precision(H+) + 1−α

recall(H+)

For phrase-based Chinese-English and Arabic-
English translation tasks, (Fraser and Marcu, 2007a)
obtain the closest correlation between weighted
fully-connected alignment f-measure and BLEU
score usingα=0.5 andα=0.1, respectively. We
use weighted fully-connected alignment f-measure
as the training criterion for link deletion, and to eval-
uate alignment quality on training and test sets.

Rule F-Measure To evaluate the impact of link
deletion upon rule quality, we compare the rule pre-
cision, recall, and f-measure of the rule set extracted

11In Figure 1, the fully-connected version of the alignments
shown would include the links������-starts and������- out.

Language Train Test
Chinese-EnglishA 400 400
Chinese-EnglishB 1500 1500
Arabic-English 1500 1500

Table 1: Size (sentence pairs) of data sets used in align-
ment link deletion tasks

from our hypothesized alignments and a Collins-
style parser against the rule set extracted from gold
alignments and gold parses.

BLEU For all translation tasks, we report case-
insensitive NIST BLEU scores (Papineni et al.,
2002) using 4 references per sentence.

3.3 Experiments

Starting with GIZA++ union (IBM Model 4) align-
ments, we use perceptron training to set the weights
of each feature used in link deletion in order to opti-
mize weighted fully-connected alignment f-measure
(α=0.5 for Chinese-English andα=0.1 for Arabic-
English) on a manually aligned discriminative train-
ing set. We report the (fully-connected) precision,
recall, and weighted alignment f-measure on a held-
out test set after running perceptron training, relative
to the baseline GIZA++ union alignments. Using
the learned feature weights, we then perform link
deletion over the GIZA++ union alignments for the
entire training corpus for each translation task. Us-
ing these alignments, which we refer to as “GIZA++
union + link deletion”, we train a syntax-based trans-
lation system similar to that described in (Galley et
al., 2006). After extracting string-to-tree translation
rules from the aligned, parsed training corpus, the
system assigns weights to each rule via frequency
estimation with smoothing. The rule probabilities,
as well as trigram language model probabilities and
a handful of additional features of each rule, are used
as features during decoding. The feature weights are
tuned using minimum error rate training (Och and
Ney, 2003) to optimize BLEU score on a held-out
development set. We then compare the BLEU score
of this system against a baseline system trained us-
ing GIZA++ union alignments.

To determine which value ofα is most effective
as a training criterion for link deletion, we setα=0.4
(favoring recall), 0.5, and 0.6 (favoring precision),
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Language Train Tune Test1 Test2
Chinese-EnglishA 9.8M/newswire 25.9k/NIST02 29.0k/NIST03 –
Chinese-EnglishB 12.3M/newswire 42.9k/newswire 42.1k/newswire –
Arabic-English 174.8M/newswire 35.8k/NIST04-05 40.3k/NIST04-05 53.0k/newswire

Table 2: Size (English words) and source of data sets used in translation tasks

and compare the effect on translation quality for
Chinese-English data setA.

4 Results

For each translation task, link deletion improves
translation quality relative to a GIZA++ union base-
line. For each alignment task, link deletion tends to
improve fully-connected alignment precision more
than it decreases fully-connected alignment recall,
increasing weighted fully-connected alignment f-
measure overall.

4.1 Chinese-English

On Chinese-English translation taskA, link deletion
increases BLEU score by 1.26 points on tuning and
0.76 points on test (Table 3); on Chinese-English
translation taskB, link deletion increases BLEU
score by 1.38 points on tuning and 0.49 points on
test (Table 3).

4.2 Arabic-English

On the Arabic-English translation task, link dele-
tion improves BLEU score by 0.84 points on tuning,
0.18 points on test1, and 0.56 points on test2 (Ta-
ble 3). Note that the training criterion for Arabic-
English link deletion usesα=0.1; because this pe-
nalizes a loss in recall more heavily than it re-
wards an increase in precision, it is more difficult
to increase weighted fully-connected alignment f-
measure using link deletion for Arabic-English than
for Chinese-English. This difference is reflected in
the average number of links deleted per sentence:
4.19 for Chinese-EnglishB (Table 3), but only 1.35
for Arabic-English (Table 3). Despite this differ-
ence, link deletion improves translation results for
Arabic-English as well.

4.3 Varying α

On Chinese-English data setA, we explore the ef-
fect of varyingα in the weighted fully-connected
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Figure 2: Effect of discriminative training set size on link
deletion accuracy for Chinese-EnglishB, α=0.5

alignment f-measure used as the training criterion
for link deletion. Usingα=0.5 leads to a higher gain
in BLEU score on the test set relative to the base-
line (+0.76 points) than eitherα=0.4 (+0.70 points)
or α=0.6 (+0.67 points).

4.4 Size of Discriminative Training Set

To examine how many manually aligned sentence
pairs are required to set the feature weights reli-
ably, we vary the size of the discriminative training
set from 2-1500 sentence pairs while holding test
set size constant at 1500 sentence pairs; run per-
ceptron training; and record the resulting weighted
fully-connected alignment f-measure on the test set.
Figure 2 illustrates that using 100-200 manually
aligned sentence pairs of training data is sufficient
for Chinese-English; a similarly-sized training set is
also sufficient for Arabic-English.

4.5 Effect of Link Deletion on Extracted Rules

Link deletion increases thesize of the extracted
grammar. To determine how thequality of the ex-
tracted grammar changes, we compute the rule pre-
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Language Alignment Prec Rec α F-measure
Links Del/ Grammar BLEU
Sent Size Tune Test1 Test2

Chi-EngA GIZA++ union 54.76 75.38 0.5 63.44 – 23.4M 41.80 41.17 –

Chi-EngA
GIZA++ union +

79.59 71.16 0.5 75.14 4.77 59.7M 43.06 41.93 –
link deletion

Chi-EngB GIZA++ union 36.61 66.28 0.5 47.16 – 28.9M 39.59 41.39 –

Chi-EngB
GIZA++ union +

65.52 59.28 0.5 62.24 4.19 73.0M 40.97 41.88 –
link deletion

Ara-Eng GIZA++ union 35.34 84.05 0.1 73.87 – 52.4M 54.73 50.9 38.16

Ara-Eng
GIZA++ union +

52.68 79.75 0.1 75.85 1.35 64.9M 55.57 51.08 38.72
link deletion

Table 3: Results of link deletion. Weighted fully-connected alignment f-measure is computed on alignment test sets
(Table 1); BLEU score is computed on translation test sets (Table 2).

Alignment Parse
Rule

Precision Recall F-measure Total Non-Unique
gold gold 100.00 100.00 100.00 12,809
giza++ union collins 50.49 44.23 47.15 11,021
giza++ union+link deletion,α=0.5 collins 47.51 53.20 50.20 13,987
giza++ refined collins 44.20 54.06 48.64 15,182

Table 4: Rule precision, recall, and f-measure of rules extracted from 400 sentence pairs of Chinese-English data

cision, recall, and f-measure of the GIZA++ union
alignments and various link deletion alignments on
a held-out Chinese-English test set of 400 sentence
pairs. Table 4 indicates the total (non-unique) num-
ber of rules extracted for each alignment/parse pair-
ing, as well as the rule precision, recall, and f-
measure of each pair. As more links are deleted,
more rules are extracted–but of those, some are of
good quality and others are of bad quality. Link-
deleted alignments produce rule sets with higher rule
f-measure than either GIZA++ union or GIZA++ re-
fined.

5 Conclusion

We have presented a link deletion algorithm that im-
proves the precision of GIZA++ union alignments
without notably decreasing recall. In addition to lex-
ical and structural features, we use features of the ex-
tracted syntax-based translation rules. Our method
improves alignment quality and translation quality
on Chinese-English and Arabic-English translation
tasks, relative to a GIZA++ union baseline. The
algorithm runs quickly, and is easily applicable to

other language pairs with limited amounts (100-200
sentence pairs) of manually aligned data available.
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Abstract

We describe two methods to improve SMT
accuracy using shallow syntax information.
First, we use chunks to refine the set of word
alignments typically used as a starting point in
SMT systems. Second, we extend anN -gram-
based SMT system with chunk tags to better
account for long-distance reorderings. Exper-
iments are reported on an Arabic-English task
showing significant improvements. A human
error analysis indicates that long-distance re-
orderings are captured effectively.

1 Introduction

Much research has been done on using syntactic in-
formation in statistical machine translation (SMT).
In this paper we usechunks (shallow syntax infor-
mation) to improve anN -gram-based SMT system.
We tackle both the alignment and reordering prob-
lems of a language pair with important differences
in word order (Arabic-English). These differences
lead to noisy word alignments, which lower the ac-
curacy of the derived translation table. Addition-
ally, word order differences, especially those span-
ning long distances and/or including multiple levels
of reordering, are a challenge for SMT decoding.

Two improvements are presented here. First, we
reduce the number of noisy alignments by using the
idea that chunks, like raw words, have a transla-
tion correspondence in the source and target sen-
tences. Hence, word links are constrained (i.e.,
noisy links are pruned) using chunk information.
Second, we introduce rewrite rules which can han-
dle both short/medium and long distance reorder-
ings as well as different degrees of recursive applica-
tion. We build our rules with two different linguistic
annotations, (local) POS tags and (long-spanning)

chunk tags. Despite employing anN -gram-based
SMT system, the methods described here can also
be applied to any phrase-based SMT system. Align-
ment and reordering are similarly used in both ap-
proaches.

In Section 2 we discuss previous related work. In
Section 3, we discuss Arabic linguistic issues and
motivate some of our decisions. In Section 4, we
describe theN -gram based SMT system which we
extend in this paper. Sections 5 and 6 detail the main
contributions of this work. In Section 7, we carry out
evaluation experiments reporting on the accuracy re-
sults and give details of a human evaluation error
analysis.

2 Related Work

In the SMT community, it is widely accepted that
there is a need for structural information to account
for differences in word order between different lan-
guage pairs. Structural information offers a greater
potential to learn generalizations about relationships
between languages than flat-structure models. The
need for these ‘mappings’ is specially relevant when
handling language pairs with very different word or-
der, such as Arabic-English or Chinese-English.

Many alternatives have been proposed on using
syntactic information in SMT systems. They range
from those aiming at harmonizing (monotonizing)
the word order of the considered language pairs by
means of a set of linguistically-motivated reorder-
ing patterns (Xia and McCord, 2004; Collins et
al., 2005) to others considering translation a syn-
chronous parsing process where reorderings intro-
duced in the overall search are syntactically moti-
vated (Galley et al., 2004; Quirk et al., 2005). The
work presented here follows the word order harmo-
nization strategy.
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Collins et al. (2005) describe a technique for pre-
processing German to look more like English syn-
tactically. They used six transformations that are
applied on German parsed text to reorder it before
passing it on to a phrase-based system. They show a
moderate statistically significant improvement. Our
work differs from theirs crucially in that our pre-
processing rules are learned automatically. Xia and
McCord (2004) describe an approach for transla-
tion from French to English, where reordering rules
are acquired automatically using source and target
parses and word alignment. The reordering rules
they use are in a context-free constituency represen-
tation with marked heads. The rules are mostly lexi-
calized. Xia and McCord (2004) use source and tar-
get parses to constrain word alignments used for rule
extraction. Their results show that there is a positive
effect on reordering when the decoder is run mono-
tonically (i.e., without additional distortion-based
reordering). The value of reordering is diminished
if the decoder is run in a non-monotonic way.

Recently, Crego and Mariño (2007b) employ POS
tags to automatically learn reorderings in train-
ing. They allow all possible learned reorderings
to be used to create a lattice that is input to the
decoder, which further improves translation accu-
racy. Similarly, Costa-jussà and Fonollosa (2006)
use statistical word classes to generalize reorder-
ings, which are learned/introduced in a transla-
tion process that transforms the source language
into the target language word order. Zhang et al.
(2007) describe a similar approach using unlexi-
calized context-free chunk tags (XPs) to learn re-
ordering rules for Chinese-English SMT. Crego and
Mariño (2007c) extend their previous work using
syntax trees (dependency parsing) to learn reorder-
ings on a Chinese-English task. Habash (2007)
applies automatically-learned syntactic reordering
rules (for Arabic-English SMT) to preprocess the in-
put before passing it to a phrase-based SMT decoder.

As in (Zhang et al., 2007), (Costa-jussà and
Fonollosa, 2006) and (Crego and Mariño, 2007b),
we employ a word graph for a tight coupling be-
tween reordering and decoding. However, we differ
on the language pair (Arabic-English) and the rules
employed to learn reorderings. Rules are built using
both POS tags and chunk tags in order to balance
the higher generalization power of chunks with the
higher accuracy of POS tags. Additionally, we in-
troduce a method to use chunks for refining word

alignments employed in the system.

3 Arabic Linguistic Issues

Arabic is a morpho-syntactically complex language
with many differences from English. We describe
here three prominent syntactic features of Arabic
that are relevant to Arabic-English translation and
that motivate some of our decisions in this work.

First, Arabic words are morphologically complex
containing clitics whose translations are represented
separately in English and sometimes in a different
order. For instance, possessive pronominal encli-
tics are attached to the noun they modify in Ara-
bic but their translation precedes the English trans-
lation of the noun: kitAbu+hu1 ‘book+his → his
book’. Other clitics include the definite articleAl+
‘ the’, the conjunctionw+ ‘and’ and the preposition
l+ ‘of/for’, among others. We use the Penn Ara-
bic Treebank tokenization scheme which splits three
classes of clitics only. This scheme is compatible
with the chunker we use (Diab et al., 2004).

Secondly, Arabic verb subjects may be: pro-
dropped (verb conjugated), pre-verbal (SVO), or
post-verbal (VSO). The VSO order is quite challeng-
ing in the context of translation to English. For small
noun phrases (NP), small phrase pairs in a phrase ta-
ble and some degree of distortion can easily move
the verb to follow the NP. But this becomes much
less likely with very long NPs that exceed the size
of phrases in a phrase table.

Finally, Arabic adjectival modifiers typically fol-
low their nouns (with a small exception of some su-
perlative adjectives). For example,rajul Tawiyl (lit.
man tall) translates as ‘a tall man’.

These three syntactic features of Arabic-English
translation are not independent of each other. As we
reorder the verb and the subject NP, we also have to
reorder the NP’s adjectival components. This brings
new challenges to previous implementations ofN -
gram based SMT which had worked with language
pairs that are more similar than Arabic and English,
e.g., Spanish and English. Although Spanish is like
Arabic in terms of its noun-adjective order; Spanish
is similar to English in terms of its subject-verb or-
der. Spanish morphology is more complex than En-
glish but not as complex as Arabic: Spanish is like
Arabic in terms of being pro-drop but has a smaller

1All Arabic transliterations in this paper are provided in the
Buckwalter transliteration scheme (Buckwalter, 2004).
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number of clitics. We do not focus on morphology
issues in this work. Table 1 illustrates these dimen-
sions of variations. The more variations, the harder
the translation.

Morph. Subj-Verb Noun-Adj
AR hard VSO, SVO, pro-drop N-A, A-N
ES medium SVO, pro-drop N-A
EN simple SVO A-N

Table 1: Arabic (AR), Spanish (ES) and English (EN)
linguistic features.

4 N-gram-based SMT System

The baseline translation system described in this
paper implements a log-linear combination of six
models: atranslation model, a surface target lan-
guage model, a target tag language model, a word
bonus model, a source-to-target lexicon model, and
a target-to-source lexicon model. In contrast to stan-
dard phrase-based approaches, the translation model
is expressed intuples, bilingual translation units,
and is estimated as anN -gram language model
(Mariño et al., 2006).

4.1 Translation Units

Translation units (or tuples) are extracted after re-
ordering source words following theunfold method
for monotonizing word alignments (Crego et al.,
2005). Figure 1 shows an example of tuple extrac-
tion with the original source-side word order result-
ing in one tuple (regular); and after reordering the
source words resulting in three tuples (unfold).

Figure 1:Regular Vs. Unfold translation units.

In general, the unfold extraction method out-
performs the regular method because it produces
smaller, less sparse and more reusable units, which

is specially relevant for languages with very dif-
ferent word order. On the other hand, the unfold
method needs the input source words to be reordered
during decoding similarly to how source words were
reordered in training. If monotonic decoding were
used with unfolded units, translation hypotheses
would follow the source language word order.

4.2 Reordering Framework

In training time, a set of reordering rules are au-
tomatically learned from word alignments. These
rules are used in decoding time to provide the de-
coder with a set of reordering hypotheses in the form
of a reordering input graph.

Rule Extraction

Following theunfold technique, source side re-
orderings are introduced into the training corpus in
order to harmonize the word order of the source and
target sentences. For each reordering produced in
this step a record is taken in the form of a reorder-
ing rule: ‘s1, ..., sn → i1, ..., in ’, where ‘s1, ..., sn’
is a sequence of of source words, and ‘i1, ..., in ’ is
a sequence of index positions into which the source
words (left-hand side of the rule) are reordered. It is
worth noticing that translation units and reordering
rules are tightly coupled.

The reordering rules described so far can only
handle reorderings of word sequences already seen
in training. In order to improve the generalization
power of these rules, linguistic classes (POS tags,
chunks, syntax trees,etc.) can be used instead of raw
words in the left-hand side of the rules. For example,
the reordering introduced to unfold the alignments
of the regular tuple ‘AEln Almdyr AlEAm →

AlEAm Almdyr AEln’ in Figure 1 can produce
the rule: ‘V BD NN JJ → 2 1 0’, where
the left-hand side of the rule contains the sequence
of POS tags (‘verb noun adjective’) belonging to the
source words involved in reordering.

Search Graph Extension

In decoding, the input sentence is handled as a
word graph. A monotonic search graph contains
a single path, composed of arcs covering the input
words in the original word order. To allow for re-
ordering, the graph is extended with new arcs, cov-
ering the source words in the desired word order. For
a given test sentence, any sequence of input tags ful-
filling a left-hand side reordering rule leads to the
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Figure 2:Linguistic information, reordering graph and translation composition of an Arabic sentence.

addition of a reordering path. Figure 2 shows an ex-
ample of an input search graph extension (middle).
The monotonic search graph is expanded following
three different reordering rules.

5 Rules with Chunk Information

The generalization power of POS-based reordering
rules is somehow limited to short rules (less sparse)
which fail to capture many real examples. Longer
rules are needed to model reorderings between full
(linguistic) phrases, which are not restricted to any
size. In order to capture such long-distance reorder-
ings, we introduce rules with tags referring to arbi-
trary large sequences of words: chunk tags. Chunk-
based rules allow the introduction of chunk tags in
the left-hand side of the rule. For instance, the
rule: ‘V P NP → 1 0’ indicates that a verb
phrase ‘V P ’ preceding a noun phrase ‘NP ’ are to
be swapped. That is, the sequence of words com-
posing the verb phrase are reordered at the end of
the sequence of words composing the noun phrase.

In training, like POS-based rules, a record is taken
in the form of a rule whenever a source reordering is
introduced by theunfold technique. To account for
chunk-based rules, a chunk tag is used instead of the
corresponding POS tags when the words composing
the phrase remain consecutive (not necessarily in the
same order) after reordering. Notice that rules are
built using POS tags as well as chunk tags. Since
both approaches are based on the same reorderings
introduced in training, both POS-based and chunk-
based rules collect the same number of training rule
instances.

Figure 3 illustrates the process of POS-based and
chunk-based rule extraction. Here, the reordering

Figure 3: POS-based and chunk-based Rule extrac-
tion: word-alignments, chunk and POS information (top),
translation units (middle) and reordering rules (bottom)
are shown.

rule is applied over the sequence ‘s2 s3 s4 s5 s6’,
which is transformed into ‘s6 s3 s4 s5 s2’. As
for the chunk rule, the POS tags ‘p3 p4 p5’ of the
POS rule are replaced by the corresponding chunk
tag ‘c2’ since words within the phrase remain con-
secutive after being reordered. The vocabulary of
chunk tags is typically smaller than that of POS tags.
Hence, in order to increase the accuracy of the rules,
we always use the POS tag instead of the chunk tag
for single word chunks. In the example in Figure 3,
the resulting chunk rule contains the POS tag ‘p6’
instead of the corresponding chunk tag ‘c3’.

Any sequence of input POS/chunk tags fulfilling
a left-hand side reordering rule entails the exten-
sion of the permutation graph with a new reorder-
ing path. Figure 2 shows the permutation graph
(middle) computed for an Arabic sentence (top) af-
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ter applying three reordering rules. The best path
is drawn in bold arcs. It is important to notice that
rules arerecursively applied on top of sequences of
already reordered words. Chunk rules are applied
over phrases (sequences of words) which may need
additional reorderings. Larger rules are applied be-
fore shorter ones in order to allow for an easy im-
plementation of recursive reordering. Rules are al-
lowed to match any path of the permutation graph
consisting of a sequence of words in the original or-
der. For example, the sequence ‘Almdyr AlEAm’ is
reordered into ‘AlEAm Almdyr’ following the rule
‘NN JJ → 1 0’ on top of the monotonic path as
well as on top of the path previously reordered by
rule ‘V P NP PP PP NP → 1 2 3 4 0’. In Fig-
ure 2, the best reordering path (bold arcs) could not
be hypothesized without recursive reorderings.

6 Refinement of Word Alignments

As stated earlier, the Arabic-English language pair
presents important word order disparities. These
strong differences make word alignment a very dif-
ficult task, typically producing a large number of
noisy (wrong) alignments. TheN -gram-based SMT
approach suffers highly from the presence of noisy
alignments since translation units are extracted out
of single alignment-based segmentations of training
sentences. Noisy alignments lead to large translation
units, which cause a loss of translation information
and add to sparseness problems.

We propose an alignment refinement method to
reduce the number of wrong alignments. The
method employs two initial alignment sets: one with
high precision, the other with high recall. We use
the Intersection and Union (Och and Ney, 2000)
of both alignment directions2 as the high precision
and high recall alignment sets, respectively. We
will study the effect of various initial alignment sets
(such asgrow-diag-final instead ofUnion) in the
future. The method is based on the fact that linguis-
tic phrases (chunks), like raw words, have transla-
tion correspondences and can therefore be aligned.
We use chunk information to reduce the number
of allowed alignments for a given word. The sim-
ple idea that words in a source chunk are typically
aligned to words in a single possible target chunk is
used to discard alignments which link words from

2We use IBM-1 to IBM-5 models (Brown et al., 1993) im-
plemented with GIZA++ (Och and Ney, 2003).

distant chunks. Since limiting alignments to one-to-
one chunk links is perhaps too strict, we extend the
number of allowed alignments by permitting words
in a chunk to be aligned to words in a target range of
words. This target range is computed as a projection
of the source chunk under consideration. The re-
sulting refined set contains all the Intersection align-
ments and some of the Union.

t1       t2       t3       t4       t5       t6      t7       t8

s3      s4      s5 s6 s7      s8      s9s1     s2

c2’

c2c1 c3 c4

c1’c3’ c4’

Figure 4: Chunk projection: solid link are Intersection
links and all links (solid and dashed) are Union links.

We outline the algorithm next. The method can
be decomposed in two steps. In the first step, using
the Intersection set of alignments and source-side
chunks, each chunk is projected into the target side.
Figure 4 shows an example of word alignment re-
finement. The projectionc′

k of the chunkck is com-
posed of the sequence of consecutive target words
[tleft, tright] which can be determined as follows:

• All target words tj contained in Intersection
links (si, tj) with source wordsi within ck are
considered projection anchors. In the exam-
ple in Figure 4, source words of chunk (c2) are
aligned into the target side by means of two In-
tersection alignments,(s3, t3) and(s4, t5), and
producing two anchors (t3 andt5).

• For each source chunkck, tleft/tright is set by
extending its leftmost/rightmost anchor in the
left/right direction up to the word before the
next anchor (or the first/last word if at sentence
edge). In the example in Figure 4,c′

1, c′

2, c′

3

and c′

4
are respectively[t4, t4], [t2, t6], [t1, t2]

and[t6, t8].

In the second step, for every alignment of the
Union set, the alignment is discarded if it links a
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source wordsi to a target wordtj that falls out of the
projection of the chunk containing the source word.
Notice that all the Intersection links are contained
in the resulting refined set. In the example in Fig-
ure 4, the link(s1, t2) is discarded ast2 falls out of
the projection of chunkc1 ([t4, t4]).

A further refinement can be done using the chunks
of the target side. The same technique is applied by
switching the role of source and target words/chunks
in the algorithm described above and using the out-
put of the basic source-based refinement (described
above) as the high-recall alignment set, i.e., instead
of Union.

7 Evaluation

7.1 Experimental Framework

All of the training data used here is available from
the Linguistic Data Consortium (LDC).3 We use an
Arabic-English parallel corpus4 consisting of 131K
sentence pairs, with approximately 4.1M Arabic to-
kens and 4.4M English tokens. Word alignment is
done with GIZA++ (Och and Ney, 2003). All evalu-
ated systems use the same surface trigram language
model, trained on approximately 340 million words
of English newswire text from the English Giga-
word corpus (LDC2003T05). Additionally, we use
a 5-gram language model computed over the POS
tagged English side of the training corpus. Language
models are implemented using the SRILM toolkit
(Stolcke, 2002).

For Arabic tokenization, we use the Arabic Tree-
Bank tokenization scheme: 4-way normalized seg-
ments into conjunction, particle, word and pronom-
inal clitic. For POS tagging, we use the collapsed
tagset for PATB (24 tags). Tokenization and POS
tagging are done using the publicly available Mor-
phological Analysis and Disambiguation of Arabic
(MADA) tool (Habash and Rambow, 2005). For
chunking Arabic, we use the AMIRA (ASVMT)
toolkit (Diab et al., 2004). English preprocessing
simply included down-casing, separating punctua-
tion from words and splitting off “’s”. The English
side is POS-tagged with TNT(Brants, 2000) and
chunked with the freely available OpenNlp5 tools.

3http://www.ldc.upenn.edu
4The parallel text includes Arabic News (LDC2004T17),

eTIRR (LDC2004E72), English translation of Arabic Treebank
(LDC2005E46), and Ummah (LDC2004T18).

5http://opennlp.sourceforge.net/

We use the standard four-reference NIST MTE-
val data sets for the years 2003, 2004 and 2005
(henceforth MT03, MT04 and MT05, respectively)
for testing and the 2002 data set for tuning.6 BLEU-
4 (Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005) and multiple-reference Word Error
Rate scores are reported. SMT decoding is done us-
ing MARIE,7 a freely availableN -gram-based de-
coder implementing a beam search strategy with dis-
tortion/reordering capabilities (Crego and Mariño,
2007a). Optimization is done with an in-house im-
plementation of the SIMPLEX (Nelder and Mead,
1965) algorithm.

7.2 Results

In this section we assess the accuracy results of the
techniques introduced in this paper for alignment re-
finement and word reordering.

Alignment Refinement Experiment

We contrast three systems built from different
word alignments: (a.) the Union alignment set
of both translation directions (U); (b.) the refined
alignment set, detailed in Section 6, employing only
source-side chunks (rS); (c.) the refined alignment
set employing source as well as target-side chunks
(rST). For this experiment, the system employs ann-
gram bilingual translation model (TM) withn = 3
andn = 4. We also vary the use of a5-gram target-
tag language model (ttLM). The reordering graph is
built using POS-based rules restricted to a maximum
size of6 tokens (POS tags in the left-hand side of the
rule). The results are shown in Table 2.

Results from the refined alignment (rS) system
clearly outperform the results from the alignment
union (U) system. All measures agree in all test sets.
Results further improve when we employ target-side
chunks to refine the alignments (rST), although not
statistically significantly. BLEU95% confidence
intervals for the best configuration (last row) are
±.0162,±.0210 and±.0135 respectively forMT03,
MT04 andMT05.

As anticipated, theN -gram system suffers un-
der high reordering needs when noisy alignments
produce long (sparse) tuples. This can be seen by
the increase in translation unit counts when refined
links are used to alleviate the sparseness problem.
The number of links of each alignment set over all

6http://www.nist.gov/speech/tests/mt/
7http://gps-tsc.upc.es/veu/soft/soft/marie/
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Align TM ttLM BLEU mWER METEOR
MT03

U 3 - .4453 51.94 .6356
rS 3 - .4586 50.67 .6401
rST 3 - .4600 50.64 .6416
rST 4 - .4610 50.20 .6401
rST 4 5 .4689 49.36 .6411

MT04
U 3 - .4244 50.12 .6055
rS 3 - .4317 49.89 .6085
rST 3 - .4375 49.69 .6109
rST 4 - .4370 49.07 .6093
rST 4 5 .4366 48.70 .6092

MT05
U 3 - .4366 50.40 .6306
rS 3 - .4447 49.77 .6353
rST 3 - .4484 49.09 .6386
rST 4 - .4521 48.69 .6377
rST 4 5 .4561 48.07 .6401

Table 2: Evaluation results for experiments on transla-
tion units, alignment and modeling.

training data is5.5M (U), 4.9M (rS) and4.6M

(rST). Using the previous sets, the number of unique
extracted translation units is265.5K (U), 346.3K

(rS) and407.8K (rST). Extending the TM to order
4 and introducing the ttLM seems to further boost
the accuracy results for all sets in terms of mWER
and for MT03 and MT05 only in terms of BLEU.

Chunk Reordering Experiment

We compare POS-based reordering rules with
chunk-based reordering rules under different max-
imum rule-size constraints. Results are obtained us-
ing TM n = 4, ttLM n=5 and rST refinement align-
ment. BLEU scores are shown in Table 3 for all test
sets and rule sizes. Rule size7R indicates that chunk
rules are used with recursive reorderings.

BLEU 2 3 4 5 6 7 8 7R
MT03

POS .4364 .4581 .4656.4690.4689 .4686 .4685 -
Chunk .4426 .4637 .4680 .4698 .4703 .4714 .4714.4725

MT04
POS .4105 .4276 .4332 .4355 .4366 .4362.4368 -
Chunk .4125 .4316 .4358.4381.4373 .4372 .4373 .4364

MT05
POS .4206 .4465 .4532 .4549 .4561 .4562.4565 -
Chunk .4236 .4507 .4561 .4571 .4574 .4575 .4575.4579

Table 3:BLEU scores according to the maximum size of
rules employed.

Table 4 measures the impact of introducing re-
ordering rules limited to a given size (Y axis) on
the permutation graphs of input sentences from the
MT03 data set (composed of663 sentences contain-
ing 18, 325 words). ColumnTotal shows the num-
ber of additional (extended) paths introduced into
the test set permutation graph (i.e., 2, 971 additional
paths of size3 POS tags were introduced). Columns
3 to 8 show the number of moves made in the1-best
translation output according to the size of the move
in words (i.e., 1, 652 moves of size2 words appeared
when considering POS rules of up to size3 words).
The rows in Table 4 correspond to the columns as-
sociated with MT03 in Table 3. Notice that a chunk
tag may refer to multiple words, which explains, for
instance, how42 moves of size4 appear using chunk
rules of size2. Overall, short-size reorderings are far
more abundant than larger ones.

Size Total 2 3 4 [5,6] [7,8] [9,14]
POS rules

2 8, 142 2, 129 - - - - -
3 +2, 971 1, 652 707 - - - -
4 +1, 628 1, 563 631 230 - - -
5 +964 1, 531 615 210 82 - -
6 +730 1, 510 604 200 123 - -
7 +427 1, 497 600 191 121 24 -
8 +159 1, 497 599 191 120 26 -
Chunk rules

2 9, 201 2, 036 118 42 20 1 0
3 +4, 977 1, 603 651 71 42 5 2
4 +1, 855 1, 542 593 200 73 7 0
5 +1, 172 1, 514 578 187 118 15 1
6 +760 1, 495 573 178 130 20 5
7 +393 1, 488 568 173 129 27 10
8 +112 1, 488 568 173 129 27 10
7R +393 1, 405 546 179 152 54 25

Table 4: Reorderings hypothesized and employed in the
1-best translation output according to their size.

Differences in BLEU (Table 3) are very small
across the alternative configurations (POS/chunk). It
seems that larger reorderings, size7 to 14, (shown
in Table 4) introduce very small accuracy variations
when measured using BLEU. POS rules are able to
account for most of the necessary moves (size2 to
6). However, the presence of the larger moves when
considering chunk-based rules (together with accu-
racy improvements) show that long-size reorderings
can only be captured by chunk rules. The largest
moves taken by the decoder using POS rules con-
sist of 2 sequences of8 words (Table 4, column 7,
row 9 minus row 8). The increase in the number of
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long moves when considering recursive chunks (7R)
means that longer chunk rules provide only valid re-
ordering paths if further (recursive) reorderings are
also considered. The corresponding BLEU score
(Table 3, last column) indicates that the new set of
moves improves the resulting accuracy. The gen-
eral lower scores and inconsistent behavior of MT04
compared to MT03/MT05 may be a result of MT04
being a mix of genres (newswire, speeches and edi-
torials).

7.3 Error Analysis

We conducted a human error analysis by compar-
ing the best results from the POS system to those
of the best chunk system. We used a sample of 155
sentences from MT03. In this sample, 25 sentences
(16%) were actually different between the two an-
alyzed systems. The differences were determined
to involve 30 differing reorderings. In all of these
cases, the chunk system made a move, but the POS
system only moved (from source word order) in 60%
of the cases. We manually judged the relative qual-
ity of the move (or lack thereof). We found that
47% of the time, chunk moves were superior to POS
choice. In 27% of the time POS moves were better.
In the rest of the time, the two systems were equally
good or bad. The main challenge for chunk reorder-
ing seems to be the lack of syntactic constraints: in
many cases of errors the chunk reordering did not go
far enough or went too far, breaking up NPs or pass-
ing multiple NPs, respectively. Additional syntactic
features to constrain the reordering model may be
needed.

8 Conclusions and Future Work

In this work we have described two methods to
improve SMT accuracy using shallow syntax in-
formation. First, alignment quality has been im-
proved (in terms of translation accuracy) by prun-
ing out noisy links which do not respect a chunk-to-
chunk alignment correspondence. Second, rewrite
rules built with two different linguistic annotations,
(local) POS tags and (long-spanning) chunk tags,
can handle both short/medium and long distance re-
orderings as well as different degrees of recursive
application. In order to better assess the suitability
of chunk rules we carried out a human error analy-
sis which confirmed that long reorderings were ef-
fectively captured by chunk rules. However, the er-
ror analysis also revealed that additional syntactic

features to constrain the reordering model may be
needed. In the future, we plan to introduce weights
into the permutations graph to more accurately drive
the search process as well as extend the rules with
full syntactic information (parse trees).
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Abstract

We propose three enhancements to the tree-
to-string (TTS) transducer for machine trans-
lation: first-level expansion-based normaliza-
tion for TTS templates, a syntactic align-
ment framework integrating the insertion of
unaligned target words, and subtree-based n-
gram model addressing the tree decomposi-
tion probability. Empirical results show that
these methods improve the performance of a
TTS transducer based on the standard BLEU-
4 metric. We also experiment with semantic
labels in a TTS transducer, and achieve im-
provement over our baseline system.

1 Introduction

Syntax-based statistical machine translation
(SSMT) has achieved significant progress during
recent years, with two threads developing simul-
taneously: the synchronous parsing-based SSMT
(Galley et al., 2006; May and Knight, 2007) and
the tree-to-string (TTS) transducer (Liu et al.,
2006; Huang et al., 2006). Synchronous SSMT
here denotes the systems which accept a source
sentence as the input and generate the translation
and the syntactic structure for both the source and
the translation simultaneously. Such systems are
sometimes also called TTS transducers, but in this
paper, TTS transducer refers to the system which
starts with the syntax tree of a source sentence and
recursively transforms the tree to the target language
based on TTS templates.

In synchronous SSMT, TTS templates are used
similar to the context free grammar used in the stan-
dard CYK parser, thus the syntax is part of the output

and can be thought of as a constraint on the transla-
tion process. In the TTS transducer, since the parse
tree is given, syntax can be thought of as an addi-
tional feature of the input to be used in the transla-
tion. The idea of synchronous SSMT can be traced
back to Wu (1997)’s Stochastic Inversion Transduc-
tion Grammars. A systematic method for extract-
ing TTS templates from parallel corpora was pro-
posed by Galley et al. (2004), and later binarized
by Zhang et al. (2006) for high efficiency and ac-
curacy. In the other track, the TTS transducer orig-
inated from the tree transducer proposed by Rounds
(1970) and Thatcher (1970) independently. Graehl
and Knight (2004) generalized the tree transducer
to the TTS transducer and introduced an EM al-
gorithm to estimate the probability of TTS tem-
plates based on a bilingual corpus with one side
parsed. Liu et al. (2006) and Huang et al. (2006)
then used the TTS transducer on the task of Chinese-
to-English and English-to-Chinese translation, re-
spectively, and achieved decent performance.

Despite the progress SSMT has achieved, it is
still a developing field with many problems un-
solved. For example, the word alignment com-
puted by GIZA++ and used as a basis to extract
the TTS templates in most SSMT systems has been
observed to be a problem for SSMT (DeNero and
Klein, 2007; May and Knight, 2007), due to the
fact that the word-based alignment models are not
aware of the syntactic structure of the sentences and
could produce many syntax-violating word align-
ments. Approaches have been proposed recently to-
wards getting better word alignment and thus bet-
ter TTS templates, such as encoding syntactic struc-
ture information into the HMM-based word align-
ment model DeNero and Klein (2007), and build-
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ing a syntax-based word alignment model May
and Knight (2007) with TTS templates. Unfortu-
nately, neither approach reports end-to-end MT per-
formance based on the syntactic alignment. DeN-
ero and Klein (2007) focus on alignment and do not
present MT results, while May and Knight (2007)
takes the syntactic re-alignment as an input to an EM
algorithm where the unaligned target words are in-
serted into the templates and minimum templates are
combined into bigger templates (Galley et al., 2006).
Thus the improvement they reported is rather indi-
rect, leading us to wonder how much improvement
the syntactic alignment model can directly bring to a
SSMT system. Some other issues of SSMT not fully
addressed before are highlighted below:

1. Normalization of TTS templates. Galley et
al. (2006) mentioned that with only the mini-
mum templates extracted from GHKM (Galley
et al., 2004), normalizing the template proba-
bility based on its tree pattern “can become ex-
tremely biased”, due to the fact that bigger tem-
plates easily get high probabilities. They in-
stead use a joint model where the templates are
normalized based on the root of their tree pat-
terns and show empirical results for that. There
is no systematic comparison of different nor-
malization methods.

2. Decomposition model of a TTS transducer
(or syntactic language model in synchronous
SSMT). There is no explicit modeling for the
decomposition of a syntax tree in the TTS
transducer (or the probability of the syntactic
tree in a synchronous SSMT). Most systems
simply use a uniform model (Liu et al., 2006;
Huang et al., 2006) or implicitly consider it
with a joint model producing both syntax trees
and the translations (Galley et al., 2006).

3. Use of semantics. Using semantic features in
a SSMT is a natural step along the way to-
wards generating more refined models across
languages. The statistical approach to semantic
role labeling has been well studied (Xue and
Palmer, 2004; Ward et al., 2004; Toutanova et
al., 2005), but there is no work attempting to
use such information in SSMT, to our limited
knowledge.

This paper proposes novel methods towards solv-
ing these problems. Specifically, we compare three
ways of normalizing the TTS templates based on the
tree pattern, the root of the tree pattern, and the first-
level expansion of the tree pattern respectively, in
the context of hard counting and EM estimation; we
present a syntactic alignment framework integrating
both the template re-estimation and insertion of un-
aligned target words; we use a subtree-based n-gram
model to address the decomposition of the syntax
trees in TTS transducer (or the syntactic language
model for synchronous SSMT); we use a statistical
classifier to label the semantic roles defined by Prop-
Bank (Palmer et al., 2005) and try different ways of
using the semantic features in a TTS transducer.

We chose the TTS transducer instead of syn-
chronous SSMT for two reasons. First, the decoding
algorithm for the TTS transducer has lower compu-
tational complexity, which makes it easier to inte-
grate a complex decomposition model. Second, the
TTS Transducer can be easily integrated with se-
mantic role features since the syntax tree is present,
and it’s not clear how to do this in a synchronous
SSMT system. The remainder of the paper will
focus on introducing the improved TTS transducer
and is organized as follows: Section 2 describes the
implementation of a basic TTS transducer; Section
3 describes the components of the improved TTS
transducer; Section 4 presents the empirical results
and Section 5 gives the conclusion.

2 A Basic Tree-to-string Transducer for
Machine Translation

The TTS transducer, as a generalization to the finite
state transducer, receives a tree structure as its input
and recursively applies TTS templates to generate
the target string. For simplicity, usually only one
state is used in the TTS transducer, i.e., a TTS tem-
plate will always lead to the same outcome wher-
ever it is used. A TTS template is composed of a
left-hand side (LHS) and a right-hand side (RHS),
where LHS is a subtree pattern and RHS is a se-
quence of the variables and translated words. The
variables in the RHS of a template correspond to the
bottom level non-terminals in the LHS’s subtree pat-
tern, and their relative order indicates the permuta-
tion desired at the point where the template is ap-
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SQ

AUX  NP1 RB  VP2  ?3 

  Is            not

NP1 没有 VP2  ?3

Figure 1: A TTS Template Example

SQ

AUX  NP  RB  VP   ? 

Is

(SQ (AUX is) NP1 (RB not) VP2  ?3) => NP1  没有 VP2 ?3

NN

job

DT

?the

VBN

not finished

(NP (DT the) (NN job)) => 工作
(VP VBN1) => VBN1

(VBN finished) => 完成
(? ?) => ？

    工作     没有 完成 ？

Figure 2: Derivation Example

plied to translate one language to another. The vari-
ables are further transformed and the recursive pro-
cess goes on until there are no variables left. The
formal description of a TTS transducer is described
in Graehl and Knight (2004), and our baseline ap-
proach follows the Extended Tree-to-String Trans-
ducer defined in (Huang et al., 2006). Figure 1 gives
an example of the English-to-Chinese TTS template,
which shows how to translate a skeleton YES/NO
question from English to Chinese. NP 1 and V P 2

are the variables whose relative position in the trans-
lation are determined by the template while their ac-
tual translations are still unknown and dependent on
the subtrees rooted at them; and the English words Is
and not are translated into the Chinese word MeiYou
in the context of the template. The superscripts at-
tached on the variables are used to distinguish the
non-terminals with identical names (if there is any).
Figure 2 shows the steps of transforming the English
sentence “Is the job not finished ?” to the corre-
sponding Chinese.

For a given derivation (decomposition) of a syn-
tax tree, the translation probability is computed as
the product of the templates which generate both

the source syntax trees and the target translations.
In theory, the translation model should sum over
all possible derivations generating the target transla-
tion, but in practice, usually only the best derivation
is considered:

Pr(S|T,D∗) =
∏

t∈D∗

Weight(t)

Here, S denotes the target translation, T denotes the
source syntax tree, and D∗ denotes the best deriva-
tion of T . The implementation of a TTS trans-
ducer can be done either top down with memoiza-
tion to the visited subtrees (Huang et al., 2006), or
with a bottom-up dynamic programming (DP) algo-
rithm (Liu et al., 2006). This paper uses the lat-
ter approach, and the algorithm is sketched in Fig-
ure 3. For the baseline approach, only the translation
model and n-gram model for the target language are
used:

S∗ = argmax
S

Pr(T |S) = argmax
S

Pr(S)Pr(S|T )

Since the n-gram model tends to favor short transla-
tions, a penalty is added to the translation templates
with fewer RHS symbols than LHS leaf symbols:

Penalty(t) = exp(|t.RHS| − |t.LHSLeaf |)

where |t.RHS| denotes the number of symbols in
the RHS of t, and |t.LHSLeaf | denotes the num-
ber of leaves in the LHS of t. The length penalty is
analogous to the length feature widely used in log-
linear models for MT (Huang et al., 2006; Liu et al.,
2006; Och and Ney, 2004). Here we distribute the
penalty into TTS templates for the convenience of
DP, so that we don’t have to generate the N -best list
and do re-ranking. To speed up the decoding, stan-
dard beam search is used.

In Figure 3, BinaryCombine denotes the target-
size binarization (Huang et al., 2006) combination.
The translation candidates of the template’s vari-
ables, as well as its terminals, are combined pair-
wise in the order they appear in the RHS of the
template. fi denotes a combined translation, whose
probability is equal to the product of the probabili-
ties of the component translations, the probability of
the rule, the n-gram probability of connecting the
component translations, and the length penalty of
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Match(v, t): the descendant tree nodes of v, which match the variables in template t
v.sk: the stack associated with tree node v
In(cj , fi): the translation candidate of cj which is chosen to combine fi

———————————————————————————————————
for all tree node v in bottom-up order do

for all template t applicable at v do
{c1, c2, ..., cl}=Match(v, t);
{f1, f2, ..., fm} = BinaryCombine(c1.sk, c2.sk, ..., cn.sk, t);
for i=1:m do

Pr(fi) =
∏l

j=1Pr(In(cj , fi)) · Weight(t)β · Lang(v, t, fi)γ · Penalty(t)α;
Add (fi, P r(fi)) to v.sk;

Prune v.sk;

Figure 3: Decoding Algorithm

the template. α, β and γ are the weights of the length
penalty, the translation model, and the n-gram lan-
guage model, respectively. Each state in the DP
chart denotes the best translation of a tree node with
a certain prefix and suffix. The length of the pre-
fix and the suffix is equal to the length of the n-gram
model minus one. Without the beam pruning, the de-
coding algorithm runs in O(N4(n−1)RPQ), where
N is the vocabulary size of the target language, n is
the length of the n-gram model, R is the maximum
number of templates applicable to one tree node, P
is the maximum number of variables in a template,
and Q is the number of tree nodes in the syntax tree.
The DP algorithm works for most systems in the pa-
per, and only needs to be slightly modified to en-
code the subtree-based n-gram model described in
Section 3.3.

3 Improved Tree-to-string Transducer for
Machine Translation

3.1 Normalization of TTS Templates
Given the story that translations are generated based
on the source syntax trees, the weight of the template
is computed as the probability of the target strings
given the source subtree:

Weight(t) =
#(t)

#(t′ : LHS(t′) = LHS(t))

Such normalization, denoted here as TREE, is used
in most tree-to-string template-based MT systems
(Liu et al., 2007; Liu et al., 2006; Huang et al.,
2006). Galley et al. (2006) proposed an alteration
in synchronous SSMT which addresses the proba-
bility of both the source subtree and the target string

given the root of the source subtree:

Weight(t) =
#(t)

#(t′ : root(t′) = root(t))

This method is denoted as ROOT. Here, we propose
another modification:

Weight(t) =
#(t)

#(t′ : cfg(t′) = cfg(t))
(1)

cfg in Equation 1 denotes the first level expansion
of the source subtree and the method is denoted as
CFG. CFG can be thought of as generating both the
source subtree and the target string given the first
level expansion of the source subtree. TREE focuses
on the conditional probability of the target string
given the source subtree, ROOT focuses on the joint
probability of both the source subtree and the target
string, while CFG, as something of a compromise
between TREE and ROOT, hopefully can achieve a
combined effect of both of them. Compared with
TREE, CFG favors the one-level context-free gram-
mar like templates and gives penalty to the templates
bigger (in terms of the depth of the source subtree)
than that. It makes sense considering that the big
templates, due to their sparseness in the corpus, are
often assigned unduly large probabilities by TREE.

3.2 Syntactic Word Alignment
The idea of building a syntax-based word alignment
model has been explored by May and Knight (2007),
with an algorithm working from the root tree node
down to the leaves, recursively replacing the vari-
ables in the matched tree-to-string templates until
there are no such variables left. The TTS tem-
plates they use are initially gathered using GHKM
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1. Run GIZA++ to get the initial word alignment, use
GHKM to gather translation templates, and com-
pute the initial probability as their normalized fre-
quency.

2. Collect all the one-level subtrees in the training cor-
pus containing only non-terminals and create TTS
templates addressing all the permutations of the
subtrees’ leaves if its spanning factor is not greater
than four, or only the monotonic translation tem-
plate if its spanning factor is greater than four. Col-
lect all the terminal rules in the form of A → B
where A is one source word, B is the consecutive
target word sequence up to three words long, and
A, B occurs in some sentence pairs. These extra
templates are assigned a small probability 10−6.

3. Run the EM algorithm described in (Graehl and
Knight, 2004) with templates obtained in step 1 and
step 2 to re-estimate their probabilities.

4. Use the templates from step 3 to compute the viterbi
word alignment.

5. The templates not occurring in the viterbi deriva-
tion are ignored and the probability of the remain-
ing ones are re-normalized based on their frequency
in the viterbi derivation.

Figure 4: Steps generating the refined TTS templates

(Galley et al., 2004) with the word alignment com-
puted by GIZA++ and re-estimated using EM, ig-
noring the alignment from Giza++. The refined
word alignment is then fed to the expanded GHKM
(Galley et al., 2006), where the TTS templates will
be combined with the unaligned target words and
re-estimated in another EM framework. The syn-
tactic alignment proposed here shares the essence of
May and Knight’s approach, but combines the re-
estimation of the TTS templates and insertion of the
unaligned target words into a single EM framework.
The process is described in Figure 4. The inser-
tion of the unaligned target words is done implicitly
as we include the extra terminal templates in Fig-
ure 4, and the extra non-terminal templates ensure
that we can get a complete derivation forest in the
EM training. The last viterbi alignment step may
seem unnecessary given that we already have the
EM-estimated templates, but in experiments we find
that it produces better result by cutting off the noisy
(usually very big) templates resulting from the poor

alignments of GIZA++.

3.3 Tree Decomposition Model
A deficiency of the translation model for tree-to-
string transducer is that it cannot fully address
the decomposition probability of the source syntax
trees. Though we can say that ROOT/CFG implic-
itly includes the decomposition model, a more di-
rect and explicit modeling of the decomposition is
still desired. Here we propose a novel n-gram-like
model to solve this problem. The probability of a
decomposition (derivation) of a syntax tree is com-
puted as the product of the n-gram probability of
the decomposed subtrees conditioned on their ascen-
dant subtrees. The formal description of the model
is in Equation 2, where D denotes the derivation and
PT (st) denotes the direct parent subtree of st.

Pr(D|T ) =
∏

subtrees
st∈D

Pr(st|PT (st), PT (PT (st)), ...)

(2)
Now, with the decomposition model added in, the
probability of the target string given the source syn-
tax tree is computed as:

Pr(S|T ) = Pr(D∗|T )× Pr(S|T,D∗)

To encode this n-gram probability of the subtrees
in the decoding process, we need to expand the
state space of the dynamic programming algorithm
in Figure 3, so that each state represents not only
the prefix/suffix of the partial translation, but also
the decomposition history of a tree node. For ex-
ample, with a bigram tree model, the states should
include the different subtrees in the LHS of the tem-
plates used to translate a tree node. With bigger n-
grams, more complex history information should be
encoded in the states, and this leads to higher com-
putational complexity. In this paper, we only con-
sider the tree n-gram up to size 2. It is not practi-
cal to search the full state space; instead, we mod-
ify the beam search algorithm in Figure 3 to encode
the decomposition history information. The mod-
ified algorithm for the tree bigram creates a stack
for each tree pattern occurring in the templates ap-
plicable to a tree node. This ensures that for each
tree node, the decompositions headed with differ-
ent subtrees have equal number of translation can-
didates surviving to the upper phase. The function
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Figure 5: Flow graph of the system with all components
integrated

BinaryCombine is almost the same as in Figure 3,
except that the translation candidates (states) of each
tree node are grouped according to their associated
subtrees. The bigram probabilities of the subtrees
can be easily computed with the viterbi derivation in
last subsection. Also, a weight should be assigned
to this component. This tree n-gram model can be
easily adapted and used in synchronous SSMT sys-
tems such as May and Knight (2007), Galley et al.
(2006). The flow graph of the final system with all
the components integrated is shown in Figure 5.

3.4 Use of Semantic Roles
Statistical approaches to MT have gone through
word-based systems, phrase-based systems, and
syntax-based systems. The next generation would
seem to be semantic-based systems. We use Prop-
Bank (Palmer et al., 2005) as the semantic driver in
our TTS transducer because it is built upon the same
corpus (the Penn Treebank) used to train the statisti-
cal parser, and its shallow semantic roles are more
easily integrated into a TTS transducer. A Max-
Entropy classifier, with features following Xue and
Palmer (2004) and Ward et al. (2004), is used to gen-
erate the semantic roles for each verb in the syntax
trees. We then replace the syntactic labels with the
semantic roles so that we have more general tree la-
bels, or combine the semantic roles with the syntac-
tic labels to generate more refined tree node labels.
Though semantic roles are associated with the verbs,
it is not feasible to differentiate the roles of different

NP VP VP NP
(S NP-agent VP) 0.983 0.017

(S NP-patient VP) 0.857 0.143

Table 1: The TREE-based weights of the skeleton tem-
plates with NP in different roles

verbs due to the data sparseness problem. If some
tree nodes are labeled different roles for different
verbs, those semantic roles will be ignored.

A simple example demonstrating the need for se-
mantics in the TTS transducer is that in English-
Chinese translation, the NP VP skeleton phrase is
more likely to be inverted when NP is in a patient
role than when it is in an agent role. Table 1 shows
the TREE-based weights of the 4 translation tem-
plates, computed based on our training corpus. This
shows that the difference caused by the roles of NP
is significant.

4 Experiment

We used 74,597 pairs of English and Chinese sen-
tences in the FBIS data set as our experimental
data, which are further divided into 500 test sen-
tence pairs, 500 development sentence pairs and
73597 training sentence pairs. The test set and de-
velopment set are selected as those sentences hav-
ing fewer than 25 words on the Chinese side. The
translation is from English to Chinese, and Char-
niak (2000)’s parser, trained on the Penn Treebank,
is used to generate the syntax trees for the English
side. The weights of the MT components are op-
timized based on the development set using a grid-
based line search. The Chinese sentence from the se-
lected pair is used as the single reference to tune and
evaluate the MT system with word-based BLEU-4
(Papineni et al., 2002). Huang et al. (2006) used
character-based BLEU as a way of normalizing in-
consistent Chinese word segmentation, but we avoid
this problem as the training, development, and test
data are from the same source.

4.1 Syntax-Based System
The decoding algorithm described in Figure 3 is
used with the different normalization methods de-
scribed in Section 3.1 and the results are summa-
rized in Table 2. The TTS templates are extracted
using GHKM based on the many-to-one alignment
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Baseline Syntactic Alignment Subtree bigram
dev test dev test dev test

TREE 12.29 8.90 13.25 9.65 14.84 10.61
ROOT 12.41 9.66 13.72 10.16 14.24 10.66

CFG 13.27 9.69 14.32 10.29 15.30 10.99
PHARAOH 9.04 7.84

Table 2: BLEU-4 scores of various systems with the syntactic alignment and subtree bigram improvements added
incrementally.

from Chinese to English obtained from GIZA++.
We have tried using alignment in the reverse direc-
tion and the union of both directions, but neither
of them is better than the Chinese-to-English align-
ment. The reason, based on the empirical result,
is simply that the Chinese-to-English alignments
lead to the maximum number of templates using
GHKM. A modified Kneser-Ney bigram model of
the Chinese sentence is trained using SRILM (Stol-
cke, 2002) using the training set. For comparison,
results for Pharaoh (Koehn, 2004), trained and tuned
under the same condition, are also shown in Table 2.
The phrases used in Pharaoh are extracted as the pair
of longest continuous spans in English and Chinese
based on the union of the alignments in both direc-
tion. We tried using alignments of different direc-
tions with Pharaoh, and find that the union gives
the maximum number of phrase pairs and the best
BLEU scores. The results show that the TTS trans-
ducers all outperform Pharaoh, and among them, the
one with CFG normalization works better than the
other two.

We tried the three normalization methods in the
syntactic alignment process in Figure 4, and found
that the initialization (step 1) and viterbi alignment
(step 3 and 4) based on the least biased model
ROOT gave the best performance. Table 2 shows
the results with the final template probability re-
normalized (step 5) using TREE, ROOT and CFG
respectively. We can see that the syntactic align-
ment brings a reasonable improvement for the TTS
transducer no matter what normalization method is
used. To test the effect of the subtree-based n-
gram model, SRILM is used to compute a modi-
fied Kneser-Ney bigram model for the subtree pat-
terns used in the viterbi alignment. The last 3 lines
in Table 2 show the improved results by further in-
corporating the subtree-based bigram model. We

can see that the difference of the three normaliza-
tion methods is lessened and TREE, the weakest nor-
malization in terms of addressing the decomposition
probability, gets the biggest improvement with the
subtree-based bigram model added in.

4.2 Semantic-Based System
Following the standard division, our max-entropy
based SRL classifier is trained and tuned using sec-
tions 2-21 and section 24 of PropBank, respectively.
The F-score we achieved on section 23 is 88.70%.
We repeated the experiments in last section with
the semantic labels generated by the SRL classi-
fier. Table 3 shows the results, comparing the non-
semantic-based systems with similar systems us-
ing the refined and general semantic labels, respec-
tively. Unfortunately, semantic based systems do
not always outperform the syntactic based systems.
We can see that for the baseline systems based on
TREE and ROOT, semantic labels improve the re-
sults, while for the other systems, they are not re-
ally better than the syntactic labels. Our approach
to semantic roles is preliminary; possible improve-
ments include associating role labels with verbs and
backing off to the syntactic-label based models from
semantic-label based TTS templates. In light of our
results, we are optimistic that more sophisticated
use of semantic features can further improve a TTS
transducer’s performance.

5 Conclusion

This paper first proposes three enhancements to the
TTS transducer: first-level expansion-based normal-
ization for TTS templates, a syntactic alignment
framework integrating the insertion of unaligned tar-
get words, and a subtree-based n-gram model ad-
dressing the tree decomposition probability. The ex-
periments show that the first-level expansion-based
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No Semantic Labels Refined Labels General Labels
Syntactic Subtree Syntactic Subtree Syntactic Subtree

Baseline Alignment Bigram Baseline Alignment Bigram Baseline Alignment Bigram
TREE 8.90 9.65 10.61 9.40 10.25 10.42 9.40 10.02 10.47
ROOT 9.66 10.16 10.66 9.89 10.32 10.43 9.82 10.17 10.42

CFG 9.69 10.29 10.99 9.66 10.16 10.33 9.58 10.25 10.59

Table 3: BLEU-4 scores of semantic-based systems on test data. As in Table 2, the syntactic alignment and subtree
bigram improvements are added incrementally within each condition.

normalization for TTS templates is better than the
root-based one and the tree-based one; the syntactic
alignment framework and the n-gram based tree de-
composition model both improve a TTS transducer’s
performance. Our experiments using PropBank se-
mantic roles in the TTS transducer show that the ap-
proach has potential, improving on our baseline sys-
tem. However, adding semantic roles does not im-
prove our best TTS system.

References

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In The Proceedings of the North American
Chapter of the Association for Computational Linguis-
tics, pages 132–139.

John DeNero and Dan Klein. 2007. Tailoring word
alignments to syntactic machine translation. In Pro-
ceedings of ACL-07, pages 17–24.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In Pro-
ceedings of NAACL-04.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Proceed-
ings of COLING/ACL-06, pages 961–968, July.

Jonathan Graehl and Kevin Knight. 2004. Training tree
transducers. In Proceedings of NAACL-04.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
Statistical syntax-directed translation with extended
domain of locality. In Proceedings of the 7th Biennial
Conference of the Association for Machine Translation
in the Americas (AMTA), Boston, MA.

Philipp Koehn. 2004. Pharaoh: a beam search decoder
for phrase-based statistical machine translation mod-
els. In The Sixth Conference of the Association for
Machine Translation in the Americas, pages 115–124.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-
string alignment template for statistical machine trans-
lation. In Proceedings of COLING/ACL-06, Sydney,
Australia, July.

Yang Liu, Yun Huang, Qun Liu, and Shouxun Lin. 2007.
Forest-to-string statistical translation rules. In Pro-
ceedings of ACL-07, Prague.

J. May and K. Knight. 2007. Syntactic re-alignment
models for machine translation. In Proceedings of
EMNLP.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
tion. Computational Linguistics, 30(4).

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1):71–
106.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic eval-
uation of machine translation. In Proceedings of ACL-
02.

William C. Rounds. 1970. Mappings and grammars on
trees. Mathematical Systems Theory, 4(3):257–287.

Andreas Stolcke. 2002. Srilm - an extensible language
modeling toolkit. In International Conference on Spo-
ken Language Processing, volume 2, pages 901–904.

J. W. Thatcher. 1970. Generalized2 sequential machine
maps. J. Comput. System Sci., 4:339–367.

Kristina Toutanova, Aria Haghighi, and Christopher
Manning. 2005. Joint learning improves semantic role
labeling. In Proceedings of ACL-05, pages 589–596.

Wayne Ward, Kadri Hacioglu, James Martin, , and Dan
Jurafsky. 2004. Shallow semantic parsing using sup-
port vector machines. In Proceedings of EMNLP.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Nianwen Xue and Martha Palmer. 2004. Calibrating
features for semantic role labeling. In Proceedings of
EMNLP.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for machine
translation. In Proceedings of NAACL-06, pages 256–
263.

69



Proceedings of the Third Workshop on Statistical Machine Translation, pages 70–106,
Columbus, June 2008. c©2008 Association for Computational Linguistics

Further Meta-Evaluation of Machine Translation

Chris Callison-Burch
Johns Hopkins University
ccb cs jhu edu

Cameron Fordyce
camfordyce gmail com

Philipp Koehn
University of Edinburgh
pkoehn inf ed ac uk

Christof Monz
Queen Mary, University of London
christof dcs qmul ac uk

Josh Schroeder
University of Edinburgh

j schroeder ed ac uk

Abstract

This paper analyzes the translation qual-
ity of machine translation systems for 10
language pairs translating between Czech,
English, French, German, Hungarian, and
Spanish. We report the translation quality
of over 30 diverse translation systems based
on a large-scale manual evaluation involv-
ing hundreds of hours of effort. We use the
human judgments of the systems to analyze
automatic evaluation metrics for translation
quality, and we report the strength of the cor-
relation with human judgments at both the
system-level and at the sentence-level. We
validate our manual evaluation methodol-
ogy by measuring intra- and inter-annotator
agreement, and collecting timing informa-
tion.

1 Introduction

This paper presents the results the shared tasks of the
2008 ACL Workshop on Statistical Machine Trans-
lation, which builds on two past workshops (Koehn
and Monz, 2006; Callison-Burch et al., 2007). There
were two shared tasks this year: a translation task
which evaluated translation between 10 pairs of Eu-
ropean languages, and an evaluation task which ex-
amines automatic evaluation metrics.

There were a number of differences between this
year’s workshop and last year’s workshop:

• Test set selection – Instead of creating our test
set by reserving a portion of the training data,
we instead hired translators to translate a set of

newspaper articles from a number of different
sources. This out-of-domain test set contrasts
with the in-domain Europarl test set.

• New language pairs – We evaluated the qual-
ity of Hungarian-English machine translation.
Hungarian is a challenging language because it
is agglutinative, has many cases and verb con-
jugations, and has freer word order. German-
Spanish was our first language pair that did not
include English, but was not manually evalu-
ated since it attracted minimal participation.

• System combination – Saarland University
entered a system combination over a number
of rule-based MT systems, and provided their
output, which were also treated as fully fledged
entries in the manual evaluation. Three addi-
tional groups were invited to apply their system
combination algorithms to all systems.

• Refined manual evaluation – Because last
year’s study indicated that fluency and ade-
quacy judgments were slow and unreliable, we
dropped them from manual evaluation. We re-
placed them with yes/no judgments about the
acceptability of translations of shorter phrases.

• Sentence-level correlation – In addition to
measuring the correlation of automatic evalu-
ation metrics with human judgments at the sys-
tem level, we also measured how consistent
they were with the human rankings of individ-
ual sentences.

The remainder of this paper is organized as fol-
lows: Section 2 gives an overview of the shared
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translation task, describing the test sets, the mate-
rials that were provided to participants, and a list of
the groups who participated. Section 3 describes the
manual evaluation of the translations, including in-
formation about the different types of judgments that
were solicited and how much data was collected.
Section 4 presents the results of the manual eval-
uation. Section 5 gives an overview of the shared
evaluation task, describes which automatic metrics
were submitted, and tells how they were evaluated.
Section 6 presents the results of the evaluation task.
Section 7 validates the manual evaluation methodol-
ogy.

2 Overview of the shared translation task

The shared translation task consisted of 10 language
pairs: English to German, German to English, En-
glish to Spanish, Spanish to English, English to
French, French to English, English to Czech, Czech
to English, Hungarian to English, and German to
Spanish. Each language pair had two test sets drawn
from the proceedings of the European parliament, or
from newspaper articles.1

2.1 Test data

The test data for this year’s task differed from previ-
ous years’ data. Instead of only reserving a portion
of the training data as the test set, we hired people
to translate news articles that were drawn from a va-
riety of sources during November and December of
2007. We refer to this as the News test set. A total
of 90 articles were selected, 15 each from a variety
of Czech-, English-, French-, German-, Hungarian-
and Spanish-language news sites:2

Hungarian: Napi (3 documents), Index (2),
Origo (5), Népszabadság (2), HVG (2),
Uniospez (1)

Czech: Aktuálně (1), iHNed (4), Lidovky (7),
Novinky (3)

French: Liberation (4), Le Figaro (4), Dernieres
Nouvelles (2), Les Echos (3), Canoe (2)

1For Czech news editorials replaced the European parlia-
ment transcripts as the second test set, and for Hungarian the
newspaper articles was the only test set.

2For more details see the XML test files. The docid tag
gives the source and the date for each document in the test set,
and the origlang tag indicates the original source language.

Original source language avg. BLEU
Hungarian 8.8
German 11.0
Czech 15.2

Spanish 17.3
English 17.7
French 18.6

Table 1: Difficulty of the test set parts based on the
original language. For each part, we average BLEU

scores from the Edinburgh systems for 12 language
pairs of the shared task.

Spanish: Cinco Dias (7), ABC.es (3), El Mundo (5)
English: BBC (3), Scotsman (3), Economist (3),

Times (3), New York Times (3)
German: Financial Times Deutschland (3), Süd-

deutsche Zeitung (3), Welt (3), Frankfurter All-
gemeine Zeitung (3), Spiegel (3)

The translations were created by the members of
EuroMatrix consortium who hired a mix of profes-
sional and non-professional translators. All trans-
lators were fluent or native speakers of both lan-
guages, and all translations were proofread by a na-
tive speaker of the target language. All of the trans-
lations were done directly, and not via an intermedi-
ate language. So for instance, each of the 15 Hun-
garian articles were translated into Czech, English,
French, German and Spanish. The total cost of cre-
ating the 6 test sets consisting of 2,051 sentences
in each language was approximately 17,200 euros
(around 26,500 dollars at current exchange rates, at
slightly more than 10c/word).

Having a test set that is balanced in six differ-
ent source languages and translated across six lan-
guages raises some interesting questions. For in-
stance, is it easier, when the machine translation sys-
tem translates in the same direction as the human
translator? We found no conclusive evidence that
shows this. What is striking, however, that the parts
differ dramatically in difficulty, based on the orig-
inal source language. For instance the Edinburgh
French-English system has a BLEU score of 26.8 on
the part that was originally Spanish, but a score of on
9.7 on the part that was originally Hungarian. For
average scores for each original language, see Ta-
ble 1.
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In order to remain consistent with previous eval-
uations, we also created a Europarl test set. The
Europarl test data was again drawn from the tran-
scripts of EU parliamentary proceedings from the
fourth quarter of 2000, which is excluded from the
Europarl training data. Our rationale behind invest-
ing a considerable sum to create the News test set
was that we believe that it more accurately repre-
sents the quality of systems’ translations than when
we simply hold out a portion of the training data
as the test set, as with the Europarl set. For in-
stance, statistical systems are heavily optimized to
their training data, and do not perform as well on
out-of-domain data (Koehn and Schroeder, 2007).
Having both the News test set and the Europarl test
set allows us to contrast the performance of systems
on in-domain and out-of-domain data, and provides
a fairer comparison between systems trained on the
Europarl corpus and systems that were developed
without it.

2.2 Provided materials
To lower the barrier of entry for newcomers to the
field, we provided a complete baseline MT system,
along with data resources. We provided:

• sentence-aligned training corpora
• language model data
• development and dev-test sets
• Moses open source toolkit for phrase-based sta-

tistical translation (Koehn et al., 2007)

The performance of this baseline system is similar
to the best submissions in last year’s shared task.

The training materials are described in Figure 1.

2.3 Submitted systems
We received submissions from 23 groups from 18
institutions, as listed in Table 2. We also eval-
uated seven additional commercial rule-based MT
systems, bringing the total to 30 systems. This is
a significant increase over last year’s shared task,
where there were submissions from 15 groups from
14 institutions. Of the 15 groups that participated in
last year’s shared task, 11 groups returned this year.
One of the goals of the workshop was to attract sub-
missions from newcomers to the field, and we are
please to have attracted many smaller groups, some
as small as a single graduate student and her adviser.

The 30 submitted systems represent a broad
range of approaches to statistical machine transla-
tion. These include statistical phrase-based and rule-
based (RBMT) systems (which together made up the
bulk of the entries), and also hybrid machine trans-
lation, and statistical tree-based systems. For most
language pairs, we assembled a solid representation
of the state of the art in machine translation.

In addition to individual systems being entered,
this year we also solicited a number of entries which
combined the results of other systems. We invited
researchers at BBN, Carnegie Mellon University,
and the University of Edinburgh to apply their sys-
tem combination algorithms to all of the systems
submitted to shared translation task. We designated
the translations of the Europarl set as the develop-
ment data for combination techniques which weight
each system.3 CMU combined the French-English
systems, BBN combined the French-English and
German-English systems, and Edinburgh submitted
combinations for the French-English and German-
English systems as well as a multi-source system
combination which combined all systems which
translated from any language pair into English for
the News test set. The University of Saarland also
produced a system combination over six commercial
RBMT systems (Eisele et al., 2008). Saarland gra-
ciously provided the output of these systems, which
we manually evaluated alongside all other entries.

For more on the participating systems, please re-
fer to the respective system descriptions in the pro-
ceedings of the workshop.

3 Human evaluation

As with last year’s workshop, we placed greater em-
phasis on the human evaluation than on the auto-
matic evaluation metric scores. It is our contention
that automatic measures are an imperfect substitute
for human assessment of translation quality. There-
fore, rather than select an official automatic eval-
uation metric like the NIST Machine Translation
Workshop does (Przybocki and Peterson, 2008), we
define the manual evaluation to be primary, and use

3Since the performance of systems varied significantly be-
tween the Europarl and News test sets, such weighting might
not be optimal. However this was a level playing field, since
none of the individual systems had development data for the
News set either.
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Europarl Training Corpus

Spanish↔ English French↔ English German↔ English German↔ Spanish
Sentences 1,258,778 1,288,074 1,266,520 1,237,537

Words 36,424,186 35,060,653 38,784,144 36,046,219 33,404,503 35,259,758 32,652,649 35,780,165
Distinct words 149,159 96,746 119,437 97,571 301,006 96,802 298,040 148,206

News Commentary Training Corpus

Spanish↔ English French↔ English German↔ English German↔ Spanish
Sentences 64,308 55,030 72,291 63,312

Words 1,759,972 1,544,633 1,528,159 1,329,940 1,784,456 1,718,561 1,597,152 1,751,215
Distinct words 52,832 38,787 42,385 36,032 84,700 40,553 78,658 52,397

Hunglish Training Corpus CzEng Training Corpus

Hungarian↔ English
Sentences 1,517,584

Words 26,082,667 31,458,540
Distinct words 717,198 192,901

Czech↔ English
Sentences 1,096,940

Words 15,336,783 17,909,979
Distinct words 339,683 129,176

Europarl Language Model Data

English Spanish French German
Sentence 1,412,546 1,426,427 1,438,435 1,467,291
Words 34,501,453 36,147,902 35,680,827 32,069,151

Distinct words 100,826 155,579 124,149 314,990

Europarl test set

English Spanish French German
Sentences 2,000

Words 60,185 61,790 64,378 56,624
Distinct words 6,050 7,814 7,361 8,844

News Commentary test set

English Czech
Sentences 2,028

Words 45,520 39,384
Distinct words 7,163 12,570

News Test Set

English Spanish French German Czech Hungarian
Sentences 2,051

Words 43,482 47,155 46,183 41,175 36,359 35,513
Distinct words 7,807 8,973 8,898 10,569 12,732 13,144

Figure 1: Properties of the training and test sets used in the shared task. The training data is drawn from the
Europarl corpus and from the Project Syndicate, a web site which collects political commentary in multiple
languages. For Czech and Hungarian we use other available parallel corpora. Note that the number of
words is computed based on the provided tokenizer and that the number of distinct words is the based on
lowercased tokens.
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ID Participant
BBN-COMBO BBN system combination (Rosti et al., 2008)
CMU-COMBO Carnegie Mellon University system combination (Jayaraman and Lavie, 2005)
CMU-GIMPEL Carnegie Mellon University Gimpel (Gimpel and Smith, 2008)

CMU-SMT Carnegie Mellon University SMT (Bach et al., 2008)
CMU-STATXFER Carnegie Mellon University Stat-XFER (Hanneman et al., 2008)

CU-TECTOMT Charles University TectoMT (Zabokrtsky et al., 2008)
CU-BOJAR Charles University Bojar (Bojar and Hajič, 2008)

CUED Cambridge University (Blackwood et al., 2008)
DCU Dublin City University (Tinsley et al., 2008)

LIMSI LIMSI (Déchelotte et al., 2008)
LIU Linköping University (Stymne et al., 2008)

LIUM-SYSTRAN LIUM / Systran (Schwenk et al., 2008)
MLOGIC Morphologic (Novák et al., 2008)

PCT a commercial MT provider from the Czech Republic
RBMT1–6 Babelfish, Lingenio, Lucy, OpenLogos, ProMT, SDL (ordering anonymized)

SAAR University of Saarbruecken (Eisele et al., 2008)
SYSTRAN Systran (Dugast et al., 2008)

UCB University of California at Berkeley (Nakov, 2008)
UCL University College London (Wang and Shawe-Taylor, 2008)

UEDIN University of Edinburgh (Koehn et al., 2008)
UEDIN-COMBO University of Edinburgh system combination (Josh Schroeder)

UMD University of Maryland (Dyer, 2007)
UPC Universitat Politecnica de Catalunya, Barcelona (Khalilov et al., 2008)
UW University of Washington (Axelrod et al., 2008)

XEROX Xerox Research Centre Europe (Nikoulina and Dymetman, 2008)

Table 2: Participants in the shared translation task. Not all groups participated in all language pairs.
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the human judgments to validate automatic metrics.
Manual evaluation is time consuming, and it re-

quires a monumental effort to conduct it on the
scale of our workshop. We distributed the work-
load across a number of people, including shared
task participants, interested volunteers, and a small
number of paid annotators. More than 100 people
participated in the manual evaluation, with 75 peo-
ple putting in more than an hour’s worth of effort,
and 25 putting in more than four hours. A collective
total of 266 hours of labor was invested.

We wanted to ensure that we were using our anno-
tators’ time effectively, so we carefully designed the
manual evaluation process. In our analysis of last
year’s manual evaluation we found that the NIST-
style fluency and adequacy scores (LDC, 2005) were
overly time consuming and inconsistent.4 We there-
fore abandoned this method of evaluating the trans-
lations.

We asked people to evaluate the systems’ output
in three different ways:

• Ranking translated sentences relative to each
other

• Ranking the translations of syntactic con-
stituents drawn from the source sentence

• Assigning absolute yes or no judgments to the
translations of the syntactic constituents.

The manual evaluation software asked for re-
peated judgments from the same individual, and had
multiple people judge the same item, and logged the
time it took to complete each judgment. This al-
lowed us to measure intra- and inter-annotator agree-
ment, and to analyze the average amount of time it
takes to collect the different kinds of judgments. Our
analysis is presented in Section 7.

3.1 Ranking translations of sentences
Ranking translations relative to each other is a rela-
tively intuitive and straightforward task. We there-
fore kept the instructions simple. The instructions
for this task were:

4It took 26 seconds on average to assign fluency and ade-
quacy scores to a single sentence, and the inter-annotator agree-
ment had a Kappa of between .225–.25, meaning that annotators
assigned the same scores to identical sentences less than 40% of
the time.

Rank each whole sentence translation
from Best to Worst relative to the other
choices (ties are allowed).

Ranking several translations at a time is a variant
of force choice judgments where a pair of systems
is presented and an annotator is asked “Is A better
than B, worse than B, or equal to B.” In our exper-
iments, annotators were shown five translations at a
time, except for the Hungarian and Czech language
pairs where there were fewer than five system sub-
missions. In most cases there were more than 5 sys-
tems submissions. We did not attempt to get a com-
plete ordering over the systems, and instead relied
on random selection and a reasonably large sample
size to make the comparisons fair.

?
people

's
Iraq

to
services

basic
other

and
,

care
health

,
food

provide
cannot

it
if

occupation
its

sustain
US
the

Can

?kö
nn

en
an

bi
et

en
Di

en
st

le
ist

un
ge

n
gr

un
dl

eg
en

de
an

de
re

un
d

G
es

un
dh

ei
ts

fü
rs

or
ge

,Na
hr

un
g

ni
ch

t
Vo

lk
ira

kis
ch

en
de

m
siewe

nn
,US

A
di

e
Kö

nn
en

au
fre

ch
te

rh
al

te
n

Be
se

tz
un

g
  ih

re

Re
fe

re
nc

e 
tra

ns
la

tio
n

NP

NP

NP

VP NP

VP

S

S

CNP

NP

Constituents selected 
for evaluation

Target phrases
highlighted via

word alignments

Parsed source
sentence
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Language Pair Test Set Constituent Rank Yes/No Judgments Sentence Ranking
English-German Europarl 2,032 2,034 1,004

News 2,170 2,221 1,115
German-English Europarl 1,705 1,674 819

News 1,938 1,881 1,944
English-Spanish Europarl 1,200 1,247 615

News 1,396 1,398 700
Spanish-English Europarl 1,855 1,921 948

News 2,063 1,939 1,896
English-French Europarl 1,248 1,265 674

News 1,741 1,734 843
French-English Europarl 1,829 1,841 909

News 2,467 2,500 2,671
English-Czech News 2,069 2,070 1,045

Commentary 1,840 1,815 932
Czech-English News 0 0 1,400

Commentary 0 0 1,731
Hungarian-English News 0 0 937
All-English News 0 0 4,868

Totals 25,553 25,540 25,051

Table 3: The number of items that were judged for each task during the manual evaluation. The All-English
judgments were reused in the News task for individual language pairs.

3.2 Ranking translations of syntactic
constituents

We continued the constituent-based evaluation that
we piloted last year, wherein we solicited judgments
about the translations of short phrases within sen-
tences rather than whole sentences. We parsed the
source language sentence, selected syntactic con-
stituents from the tree, and had people judge the
translations of those syntactic phrases. In order to
draw judges’ attention to these regions, we high-
lighted the selected source phrases and the corre-
sponding phrases in the translations. The corre-
sponding phrases in the translations were located via
automatic word alignments.

Figure 2 illustrates how the source and reference
phrases are highlighted via automatic word align-
ments. The same is done for sentence and each
of the system translations. The English, French,
German and Spanish test sets were automatically
parsed using high quality parsers for those languages
(Bikel, 2002; Arun and Keller, 2005; Dubey, 2005;
Bick, 2006).

The word alignments were created with Giza++

(Och and Ney, 2003) applied to a parallel corpus
containing the complete Europarl training data, plus
sets of 4,051 sentence pairs created by pairing the
test sentences with the reference translations, and
the test sentences paired with each of the system
translations. The phrases in the translations were
located using standard phrase extraction techniques
(Koehn et al., 2003). Because the word-alignments
were created automatically, and because the phrase
extraction is heuristic, the phrases that were selected
may not exactly correspond to the translations of the
selected source phrase. We noted this in the instruc-
tions to judges:

Rank each constituent translation from
Best to Worst relative to the other choices
(ties are allowed). Grade only the high-
lighted part of each translation.

Please note that segments are selected au-
tomatically, and they should be taken as
an approximate guide. They might in-
clude extra words that are not in the actual
alignment, or miss words on either end.
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The criteria that we used to select which con-
stituents to evaluate were:

• The constituent could not be the whole source
sentence

• The constituent had to be longer three words,
and be no longer than 15 words

• The constituent had to have a corresponding
phrase with a consistent word alignment in
each of the translations

The final criterion helped reduce the number of
alignment errors, but may have biased the sample
to phrases that are more easily aligned.

3.3 Yes/No judgments for the translations of
syntactic constituents

This year we introduced a variant on the constituent-
based evaluation, where instead of asking judges
to rank the translations of phrases relative to each
other, we asked them to indicate which phrasal trans-
lations were acceptable and which were not.

Decide if the highlighted part of each
translation is acceptable, given the refer-
ence. This should not be a relative judg-
ment against the other system translations.

The instructions also contained the same caveat
about the automatic alignments as above. For each
phrase the judges could click on “Yes”, “No”, or
“Not Sure.” The number of times people clicked on
“Not Sure” varied by language pair and task. It was
selected as few as 5% of the time for the English-
Spanish News task to as many as 12.5% for the
Czech-English News task.

3.4 Collecting judgments
We collected judgments using a web-based tool that
presented judges with batches of each type of eval-
uation. We presented them with five screens of sen-
tence rankings, ten screens of constituent rankings,
and ten screen of yes/no judgments. The order of the
types of evaluation were randomized.

In order to measure intra-annotator agreement
10% of the items were repeated and evaluated twice
by each judge. In order to measure inter-annotator
agreement 40% of the items were randomly drawn

from a common pool that was shared across all
annotators so that we would have items that were
judged by multiple annotators.

Judges were allowed to select whichever data set
they wanted, and to evaluate translations into what-
ever languages they were proficient in. Shared task
participants were excluded from judging their own
systems.

In addition to evaluation each language pair indi-
vidually, we also combined all system translations
into English for the News test set, taking advantage
of the fact that our test sets were parallel across all
languages. This allowed us to gather interesting data
about the difficulty of translating from different lan-
guages into English.

Table 3 gives a summary of the number of judg-
ments that we collected for translations of individ-
ual sentences. We evaluated 14 translation tasks
with three different types of judgments for most of
them, for a total of 46 different conditions. In to-
tal we collected over 75,000 judgments. Despite the
large number of conditions we managed to collect
between 1,000–2,000 judgments for the constituent-
based evaluation, and several hundred to several
thousand judgments for the sentence ranking tasks.

4 Translation task results

Tables 4, 5, and 6 summarize the results of the hu-
man evaluation of the quality of the machine trans-
lation systems. Table 4 gives the results for the man-
ual evaluation which ranked the translations of sen-
tences. It shows the average number of times that
systems were judged to be better than or equal to
any other system. Table 5 similarly summarizes
the results for the manual evaluation which ranked
the translations of syntactic constituents. Table 6
shows how many times on average a system’s trans-
lated constituents were judged to be acceptable in
the Yes/No evaluation. The bolded items indicate
the system that performed the best for each task un-
der that particular evaluate metric.

Table 7 summaries the results for the All-English
task that we introduced this year. Appendix C gives
an extremely detailed pairwise comparison between
each of the systems, along with an indication of
whether the differences are statistically significant.

The highest ranking entry for the All-English task
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was the University of Edinburgh’s system combina-
tion entry. It uses a technique similar to Rosti et
al. (2007) to perform system combination. Like the
other system combination entrants, it was tuned on
the Europarl test set and tested on the News test set,
using systems that submitted entries to both tasks.

The University of Edinburgh’s system combi-
nation went beyond other approaches by combin-
ing output from multiple languages pairs (French-
English, German-English and Spanish-English),
resulting in 37 component systems. Rather
than weighting individual systems, it incorporated
weighted features that indicated which language the
system was originally translating from. This entry
was part of ongoing research in multi-lingual, multi-
source translation. Since there was no official multi-
lingual system combination track, this entry should
be viewed only as a contrastive data point.

We analyzed the All-English judgments to see
which source languages were preferred more often,
thinking that this might be a good indication of how
challenging it is for current MT systems to trans-
late from each of the languages into English. For
this analysis we collapsed all of the entries derived
from one source language into an equivalence class,
and judged them against the others. Therefore, all
French systems were judged against all German sys-
tems, and so on. We found that French systems were
judged to be better than or equal to other systems
69% of the time, Spanish systems 64% of the time,
German systems 47% of the time, Czech systems
39% of the time, and Hungarian systems 29% of the
time.

We performed a similar analysis by collapsing the
RBMT systems into one equivalence class, and the
other systems into another. We evaluated how well
these two classes did on the sentence ranking task
for each language pair and test set, and found that
RBMT was a surprisingly good approach in many
of the conditions. RBMT generally did better on the
News test set and for translations into German, sug-
gesting that SMT’s forte is in test sets where it has
appropriate tuning data and for language pairs with
less reordering than between German and English.
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UEDIN-COMBOxx .717 SAARfr .584
LIUM-SYSTRAN-Cfr .708 SAAR-Cde .574

RBMT5fr .706 RBMT4de .573
UEDIN-COMBOfr .704 CUEDes .572

LIUM-SYSTRANfr .702 RBMT3de .552
RBMT4es .699 CMU-SMTes .548

LIMSIfr .699 UCBes .547
BBN-COMBOfr .695 LIMSIes .537

SAARes .678 RBMT6de .509
CUED-CONTRASTes .674 RBMT5de .493

CMU-COMBOfr .661 LIMSIde .469
UEDINes .654 LIUde .447
CUEDfr .652 SAARde .445

CUED-CONTRASTfr .638 CMU-STATXFRfr .444
RBMT4fr .637 UMDcz .429

UPCes .633 BBN-COMBOde .407
RBMT3es .628 UEDINde .402
RBMT2de .627 MORPHOLOGIChu .387

SAAR-CONTRASTfr .624 DCUcz .380
UEDINfr .616 UEDIN-COMBOde .327

RBMT6fr .615 UEDINcz .293
RBMT6es .615 CMU-STATXFERde .280
RBMT3fr .612 UEDINhu .188

Table 7: The average number of times that each
system was judged to be better than or equal to all
other systems in the sentence ranking task for the
All-English condition. The subscript indicates the
source language of the system.

5 Shared evaluation task overview

The manual evaluation data provides a rich source
of information beyond simply analyzing the qual-
ity of translations produced by different systems. In
particular, it is especially useful for validating the
automatic metrics which are frequently used by the
machine translation research community. We con-
tinued the shared task which we debuted last year,
by examining how well various automatic metrics
correlate with human judgments.

In addition to examining how well the automatic
evaluation metrics predict human judgments at the
system-level, this year we have also started to mea-
sure their ability to predict sentence-level judg-
ments.

The automatic metrics that were evaluated in this
year’s shared task were the following:

• Bleu (Papineni et al., 2002)—Bleu remains the
de facto standard in machine translation eval-
uation. It calculates n-gram precision and a
brevity penalty, and can make use of multi-
ple reference translations as a way of capturing

some of the allowable variation in translation.
We use a single reference translation in our ex-
periments.

• Meteor (Agarwal and Lavie, 2008)—Meteor
measures precision and recall for unigrams and
applies a fragmentation penalty. It uses flex-
ible word matching based on stemming and
WordNet-synonymy. A number of variants are
investigated here: meteor-baseline and meteor-
ranking are optimized for correlation with ad-
equacy and ranking judgments respectively.
mbleu and mter are Bleu and TER computed
using the flexible matching used in Meteor.

• Gimenez and Marquez (2008) measure over-
lapping grammatical dependency relationships
(DP), semantic roles (SR), and discourse repre-
sentations (DR). The authors further investigate
combining these with other metrics including
TER, Bleu, GTM, Rouge, and Meteor (ULC
and ULCh).

• Popovic and Ney (2007) automatically eval-
uate translation quality by examining se-
quences of parts of speech, rather than
words. They calculate Bleu (posbleu) and
F-measure (pos4gramFmeasure) by matching
part of speech 4grams in a hypothesis transla-
tion against the reference translation.

In addition to the above metrics, which scored
the translations on both the system-level5 and the
sentence-level, there were a number of metrics
which focused on the sentence-level:

• Albrecht and Hwa (2008) use support vector re-
gression to score translations using past WMT
manual assessment data as training examples.
The metric uses features derived from target-
side language models and machine-generated
translations (svm-pseudo-ref) as well as refer-
ence human translations (svm-human-ref).

• Duh (2008) similarly used support vector ma-
chines to predict an ordering over a set of

5We provide the scores assigned to each system by these
metrics in Appendix A.
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system translations (svm-rank). Features in-
cluded in Duh (2008)’s training were sentence-
level BLEU scores and intra-set ranks com-
puted from the entire set of translations.

• USaar’s evaluation metric (alignment-prob)
uses Giza++ to align outputs of multiple sys-
tems with the corresponding reference transla-
tions, with a bias towards identical one-to-one
alignments through a suitably augmented cor-
pus. The Model4 log probabilities in both di-
rections are added and normalized to a scale
between 0 and 1.

5.1 Measuring system-level correlation
To measure the correlation of the automatic metrics
with the human judgments of translation quality at
the system-level we used Spearman’s rank correla-
tion coefficient ρ. We converted the raw scores as-
signed each system into ranks. We assigned a rank-
ing to the systems for each of the three types of man-
ual evaluation based on:

• The percent of time that the sentences it pro-
duced were judged to be better than or equal to
the translations of any other system.

• The percent of time that its constituent transla-
tions were judged to be better than or equal to
the translations of any other system.

• The percent of time that its constituent transla-
tions were judged to be acceptable.

We calculated ρ three times for each automatic met-
ric, comparing it to each type of human evaluation.
Since there were no ties ρ can be calculated using
the simplified equation:

ρ = 1− 6
∑

d2
i

n(n2 − 1)

where di is the difference between the rank for
systemi and n is the number of systems. The pos-
sible values of ρ range between 1 (where all systems
are ranked in the same order) and−1 (where the sys-
tems are ranked in the reverse order). Thus an auto-
matic evaluation metric with a higher value for ρ is
making predictions that are more similar to the hu-
man judgments than an automatic evaluation metric
with a lower ρ.
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meteor-ranking .81 .72 .77 .76
ULCh .68 .79 .82 .76

meteor-baseline .77 .75 .74 .75
posbleu .77 .8 .66 .74

pos4gramFmeasure .75 .62 .82 .73
ULC .66 .67 .84 .72

DR .79 .55 .76 .70
SR .79 .53 .76 .69
DP .57 .79 .65 .67

mbleu .61 .77 .56 .65
mter .47 .72 .68 .62
bleu .61 .59 .44 .54

svm-rank .21 .24 .35 .27

Table 8: Average system-level correlations for the
automatic evaluation metrics on translations into En-
glish

5.2 Measuring consistency at the sentence-level

Measuring sentence-level correlation under our hu-
man evaluation framework was made complicated
by the fact that we abandoned the fluency and ad-
equacy judgments which are intended to be abso-
lute scales. Some previous work has focused on
developing automatic metrics which predict human
ranking at the sentence-level (Kulesza and Shieber,
2004; Albrecht and Hwa, 2007a; Albrecht and Hwa,
2007b). Such work generally used the 5-point flu-
ency and adequacy scales to combine the transla-
tions of all sentences into a single ranked list. This
list could be compared against the scores assigned
by automatic metrics and used to calculate corre-
lation coefficients. We did not gather any absolute
scores and thus cannot compare translations across
different sentences. Given the seemingly unreliable
fluency and adequacy assignments that people make
even for translations of the same sentences, it may
be dubious to assume that their scoring will be reli-
able across sentences.

The data points that we have available consist of a
set of 6,400 human judgments each ranking the out-
put of 5 systems. It’s straightforward to construct a
ranking of each of those 5 systems using the scores
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posbleu .57 .78 .80 .72
bleu .54 .79 .6 .64

meteor-ranking .55 .74 .55 .61
meteor-baseline .42 .78 .57 .59

pos4gramFmeasure .37 .49 .79 .55
mter .54 .50 .55 .53

svm-rank .55 .56 .46 .52
mbleu .63 .47 .43 .51

Table 9: Average system-level correlations for the
automatic evaluation metrics on translations into
French, German and Spanish

assigned to their translations of that sentence by the
automatic evaluation metrics. When the automatic
scores have been retrieved, we have 6,400 pairs of
ranked lists containing 5 items. How best to treat
these is an open discussion, and certainly warrants
further thought. It does not seem like a good idea
to calculate ρ for each pair of ranked list, because
5 items is an insufficient number to get a reliable
correlation coefficient and its unclear if averaging
over all 6,400 lists would make sense. Furthermore,
many of the human judgments of 5 contained ties,
further complicating matters.

Therefore rather than calculating a correlation co-
efficient at the sentence-level we instead ascertained
how consistent the automatic metrics were with the
human judgments. The way that we calculated con-
sistency was the following: for every pairwise com-
parison of two systems on a single sentence by a per-
son, we counted the automatic metric as being con-
sistent if the relative scores were the same (i.e. the
metric assigned a higher score to the higher ranked
system). We divided this by the total number of pair-
wise comparisons to get a percentage. Because the
systems generally assign real numbers as scores, we
excluded pairs that the human annotators ranked as
ties.

6 Evaluation task results

Tables 8 and 9 report the system-level ρ for each au-
tomatic evaluation metric, averaged over all trans-
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DP .514 .527 .536
DR .500 .511 .530
SR .498 .489 .511

ULC .559 .554 .561
ULCh .562 .542 .542

alignment-prob .517 .538 .535
mbleu .505 .516 .544

meteor-baseline .512 .520 .542
meteor-ranking .512 .517 .539

mter .436 .471 .480
pos4gramFmeasure .495 .517 .52

posbleu .435 .43 .454
svm-human-ref .542 .541 .552
svm-pseudo-ref .538 .538 .543

svm-rank .493 .499 .497

Table 10: The percent of time that each automatic
metric was consistent with human judgments for
translations into English

lations directions into English and out of English6

For the into English direction the Meteor score with
its parameters tuned on adequacy judgments had
the strongest correlation with ranking the transla-
tions of whole sentences. It was tied with the com-
bined method of Gimenez and Marquez (2008) for
the highest correlation over all three types of human
judgments. Bleu was the second to lowest ranked
overall, though this may have been due in part to the
fact that we were using test sets which had only a
single reference translation, since the cost of creat-
ing multiple references was prohibitively expensive
(see Section 2.1).

In the reverse direction, for translations out of En-
glish into the other languages, Bleu does consider-
ably better, placing second overall after the part-of-
speech variant on it proposed by Popovic and Ney
(2007). Yet another variant of Bleu which utilizes
Meteor’s flexible matching has the strongest corre-
lation for sentence-level ranking. Appendix B gives
a break down of the correlations for each of the lan-

6Tables 8 and 9 exclude the Spanish-English News Task,
since it had a negative correlation with most of the automatic
metrics. See Tables 19 and 20.
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mbleu 0.520 0.521 0.52
meteor-baseline 0.514 0.494 0.520
meteor-ranking 0.522 0.501 0.534

mter 0.454 0.441 0.457
pos4gramFmeasure 0.515 0.525 0.512

posbleu 0.436 0.446 0.416
svm-rank 0.514 0.531 0.51

Table 11: The percent of time that each automatic
metric was consistent with human judgments for
translations into other languages

guage pairs and test sets.
Tables 10 and 11 report the consistency of the au-

tomatic evaluation metrics with human judgments
on a sentence-by-sentence basis, rather than on the
system level. For the translations into English the
ULC metric (which itself combines many other met-
rics) had the strongest correlation with human judg-
ments, correctly predicting the human ranking of a
each pair of system translations of a sentence more
than half the time. This is dramatically higher than
the chance baseline, which is not .5, since it must
correctly rank a list of systems rather than a pair. For
the reverse direction meteor-ranking performs very
strongly. The svn-rank which had the lowest over-
all correlation at the system level does the best at
consistently predicting the translations of syntactic
constituents into other languages.

7 Validation and analysis of the manual
evaluation

In addition to scoring the shared task entries, we also
continued on our campaign for improving the pro-
cess of manual evaluation.

7.1 Inter- and Intra-annotator agreement

We measured pairwise agreement among annotators
using the kappa coefficient (K) which is widely used
in computational linguistics for measuring agree-
ment in category judgments (Carletta, 1996). It is
defined as

K =
P (A)− P (E)

1− P (E)

Evaluation type P (A) P (E) K

Sentence ranking .578 .333 .367
Constituent ranking .671 .333 .506
Constituent (w/identicals) .678 .333 .517
Yes/No judgments .821 .5 .642
Yes/No (w/identicals) .825 .5 .649

Table 12: Kappa coefficient values representing the
inter-annotator agreement for the different types of
manual evaluation

Evaluation type P (A) P (E) K

Sentence ranking .691 .333 .537
Constituent ranking .825 .333 .737
Constituent (w/identicals) .832 .333 .748
Yes/No judgments .928 .5 .855
Yes/No (w/identicals) .930 .5 .861

Table 13: Kappa coefficient values for intra-
annotator agreement for the different types of man-
ual evaluation

where P (A) is the proportion of times that the an-
notators agree, and P (E) is the proportion of time
that they would agree by chance. We define chance
agreement for ranking tasks as 1

3 since there are
three possible outcomes when ranking the output of
a pair of systems: A > B, A = B, A < B, and for
the Yes/No judgments as 1

2 since we ignored those
items marked “Not Sure”.

For inter-annotator agreement we calculated
P (A) for the yes/no judgments by examining all
items that were annotated by two or more annota-
tors, and calculating the proportion of time they as-
signed identical scores to the same items. For the
ranking tasks we calculated P (A) by examining all
pairs of systems which had been judged by two or
more judges, and calculated the proportion of time
that they agreed that A > B, A = B, or A < B.
For intra-annotator agreement we did similarly, but
gathered items that were annotated on multiple oc-
casions by a single annotator.

Table 12 gives K values for inter-annotator agree-
ment, and Table 13 gives K values for intra-
annotator agreement. These give an indication of
how often different judges agree, and how often sin-
gle judges are consistent for repeated judgments, re-
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spectively. The interpretation of Kappa varies, but
according to Landis and Koch (1977), 0−.2 is slight,
.2− .4 is fair, .4− .6 is moderate, .6− .8 is substan-
tial and the rest almost perfect. The inter-annotator
agreement for the sentence ranking task was fair, for
the constituent ranking it was moderate and for the
yes/no judgments it was substantial.7 For the intra-
annotator agreement K indicated that people had
moderate consistency with their previous judgments
on the sentence ranking task, substantial consistency
with their previous constituent ranking judgments,
and nearly perfect consistency with their previous
yes/no judgments.

These K values indicate that people are able to
more reliably make simple yes/no judgments about
the translations of short phrases than they are to
rank phrases or whole sentences. While this is an
interesting observation, we do not recommend do-
ing away with the sentence ranking judgments. The
higher agreement on the constituent-based evalua-
tion may be influenced based on the selection cri-
teria for which phrases were selected for evalua-
tion (see Section 3.2). Additionally, the judgments
of the short phrases are not a great substitute for
sentence-level rankings, at least in the way we col-
lected them. The average correlation coefficient be-
tween the constituent-based judgments with the sen-
tence ranking judgments is only ρ = 0.51. Tables
19 and 20 give a detailed break down of the cor-
relation of the different types of human judgments
with each other on each translation task. It may
be possible to select phrases in such a way that the
constituent-based evaluations are a better substitute
for the sentence-based ranking, for instance by se-
lecting more of constituents from each sentence, or
attempting to cover most of the words in each sen-
tence in a phrase-by-phrase manner. This warrants
further investigation. It might also be worthwhile to
refine the instructions given to annotators about how
to rank the translations of sentences to try to improve
their agreement, which is currently lower than we
would like it to be (although it is substantially bet-
ter than the previous fluency and adequacy scores,

7Note that for the constituent-based evaluations we verified
that the high K was not trivially due to identical phrasal trans-
lations. We excluded screens where all five phrasal translations
presented to the annotator were identical, and report both num-
bers.
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Figure 3: Distributions of the amount of time it took
to judge single sentences for the three types of man-
ual evaluation

which had a K < .25 in last year’s evaluation).

7.2 Timing

We used the web interface to collect timing infor-
mation. The server recorded the time when a set of
sentences was given to a judge and the time when
the judge returned the sentences. It took annotators
an average of 18 seconds per sentence to rank a list
of sentences.8 It took an average of 10 seconds per
sentence for them to rank constituents, and an av-
erage of 8.5 seconds per sentence for them to make
yes/no judgments. Figure 3 shows the distribution
of times for these tasks.

These timing figures indicate that the tasks which
the annotators were the most reliable on (yes/no
judgments and constituent ranking) were also much
quicker to complete than the ones they were less re-
liable on (ranking sentences). Given that they are
faster at judging short phrases, they can do propor-
tionally more of them. For instance, we could collect
211 yes/no judgments in the same amount of time
that it would take us to collect 100 sentence ranking
judgments. However, this is partially offset by the
fact that many of the translations of shorter phrases
are identical, which means that we have to collect
more judgments in order to distinguish between two
systems.

8Sets which took longer than 5 minutes were excluded from
these calculations, because there was a strong chance that anno-
tators were interrupted while completing the task.
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7.3 The potential for re-usability of human
judgments

One strong advantage of the yes/no judgments over
the ranking judgments is their potential for reuse.
We have invested hundreds of hours worth of effort
evaluating the output of the translation systems sub-
mitted to this year’s workshop and last year’s work-
shop. While the judgments that we collected pro-
vide a wealth of information for developing auto-
matic evaluation metrics, we cannot not re-use them
to evaluate our translation systems after we update
their parameters or change their behavior in anyway.
The reason for this is that altered systems will pro-
duce different translations than the ones that we have
judged, so our relative rankings of sentences will no
longer be applicable. However, the translations of
short phrases are more likely to be repeated than the
translations of whole sentences.

Therefore if we collect a large number of yes/no
judgments for short phrases, we could build up a
database that contains information about what frag-
mentary translations are acceptable for each sen-
tence in our test corpus. When we change our sys-
tem and want to evaluate it, we do not need to man-
ually evaluate those segments that match against the
database, and could instead have people evaluate
only those phrasal translations which are new. Ac-
cumulating these judgments over time would give
a very reliable idea of what alternative translations
were allowable. This would be useful because it
could alleviate the problems associated with Bleu
failing to recognize allowable variation in translation
when multiple reference translations are not avail-
able (Callison-Burch et al., 2006). A large database
of human judgments might also be useful as an
objective function for minimum error rate training
(Och, 2003) or in other system development tasks.

8 Conclusions

Similar to previous editions of this workshop we car-
ried out an extensive manual and automatic evalua-
tion of machine translation performance for trans-
lating from European languages into English, and
vice versa. One important aspect in which this year’s
shared task differed from previous years was the in-
troduction of an additional newswire test set that
was different in nature to the training data. We

also added new language pairs to our evaluation:
Hungarian-English and German-Spanish.

As in previous years we were pleased to notice an
increase in the number of participants. This year we
received submissions from 23 groups from 18 insti-
tutions. In addition, we evaluated seven commercial
rule-based MT systems.

The goal of this shared-task is two-fold: First we
want to compare state-of-the-art machine translation
systems, and secondly we aim to measure to what
extent different evaluation metrics can be used to as-
sess MT quality.

With respect to MT quality we noticed that the in-
troduction of test sets from a different domain did
have an impact on the ranking of systems. We ob-
served that rule-based systems generally did better
on the News test set. Overall, it cannot be con-
cluded that one approach clearly outperforms other
approaches, as systems performed differently on the
various translation tasks. One general observation is
that for the tasks where statistical combination ap-
proaches participated, they tended to score relatively
high, in particular with respect to Bleu.

With respect to measuring the correlation between
automated evaluation metrics and human judgments
we found that using Meteor and ULCh (which uti-
lizes a variety of metrics, including Meteor) resulted
in the highest Spearman correlation scores on aver-
age, when translating into English. When translat-
ing from English into French, German, and Spanish,
Bleu and posbleu resulted in the highest correlations
with human judgments.

Finally, we investigated inter- and intra-annotator
agreement of human judgments using Kappa coef-
ficients. We noticed that ranking whole sentences
results in relatively low Kappa coefficients, mean-
ing that there is only fair agreement between the as-
sessors. Constituent ranking and acceptability judg-
ments on the other hand show moderate and substan-
tial inter-annotator agreement, respectively. Intra-
annotator agreement was substantial to almost per-
fect, except for the sentence ranking assessment
where agreement was only moderate. Although it
is difficult to draw exact conclusions from this, one
might wonder whether the sentence ranking task is
simply too complex, involving too many aspects ac-
cording to which translations can be ranked.

The huge wealth of the data generated by this
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workshop, including the human judgments, system
translations and automatic scores, is available at
http://www.statmt.org/wmt08/ for other
researchers to analyze.
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English-Czech News Commentary Task
CU-BOJAR 0.15 0.21 0.43 0.35 0.28 4.57

CU-BOJAR-CONTRAST-1 0.04 0.11 0.32 0.25 0.18 0.90
CU-BOJAR-CONTRAST-2 0.14 0.2 0.42 0.34 0.27 2.86

CU-TECTOMT 0.09 0.15 0.37 0.29 0.23 2.13
PC-TRANSLATOR 0.08 0.14 0.35 0.28 0.19 2.09

UEDIN 0.12 0.18 0.4 0.32 0.25 2.28
English-Czech News Task

CU-BOJAR 0.11 0.18 0.37 0.3 0.18 4.72
CU-BOJAR-CONTRAST-1 0.02 0.10 0.26 0.2 0.12 0.80
CU-BOJAR-CONTRAST-2 0.09 0.16 0.35 0.28 0.15 2.65

CU-TECTOMT 0.06 0.13 0.32 0.25 0.16 2.14
PC-TRANSLATOR 0.08 0.14 0.33 0.26 0.14 2.40

UEDIN 0.08 0.15 0.34 0.27 0.15 2.13

Table 14: Automatic evaluation metric for translations into Czech
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English-French News Task
LIMSI 0.2 0.26 0.16 0.34 0.33 0.48 0.44 0.43 9.74

LIUM-SYSTRAN 0.20 0.26 0.16 0.35 0.34 0.49 0.44 0.44 7.38
LIUM-SYSTRAN-CONTRAST 0.20 0.26 0.16 0.35 0.34 0.48 0.44 0.44 7.02

RBMT1 0.13 0.19 0.12 0.28 0.24 0.42 0.37 0.35 5.46
RBMT3 0.17 0.23 0.14 0.31 0.31 0.45 0.4 0.40 5.60
RBMT4 0.19 0.24 0.15 0.33 0.32 0.48 0.43 0.43 6.80
RBMT5 0.17 0.23 0.14 0.32 0.31 0.47 0.42 0.42 6.15
RBMT6 0.16 0.22 0.13 0.32 0.3 0.46 0.40 0.41 5.60

SAAR 0.15 0.22 0.15 0.33 0.28 0.46 0.41 0.42 6.12
SAAR-CONTRAST 0.17 0.23 0.15 0.33 0.30 0.47 0.42 0.41 5.50

UEDIN 0.16 0.23 0.14 0.32 0.32 0.44 0.39 0.38 4.79
XEROX 0.13 0.2 0.12 0.29 0.29 0.41 0.34 0.34 3.91

XEROX-CONTRAST 0.13 0.2 0.12 0.29 0.29 0.41 0.35 0.35 3.86
English-French Europarl Task

LIMSI 0.32 0.36 0.24 0.42 0.44 0.56 0.53 0.53 8.84
LIUM-SYSTRAN 0.32 0.36 0.24 0.42 0.45 0.56 0.53 0.53 7.46

LIUM-SYSTRAN-CONTRAST 0.31 0.36 0.23 0.42 0.44 0.56 0.52 0.53 6.69
RBMT1 0.15 0.20 0.13 0.29 0.26 0.44 0.4 0.37 3.89
RBMT3 0.18 0.24 0.15 0.34 0.33 0.47 0.42 0.43 4.13
RBMT4 0.2 0.25 0.17 0.35 0.35 0.5 0.45 0.45 4.70
RBMT5 0.12 0.16 0.09 0.22 0.06 0.37 0.32 0.32 3.01
RBMT6 0.17 0.23 0.14 0.33 0.32 0.47 0.42 0.42 3.93

SAAR 0.26 0.29 0.21 0.41 0.34 0.53 0.49 0.48 7.75
SAAR-CONTRAST 0.28 0.32 0.23 0.41 0.39 0.55 0.51 0.52 6.45

UCL 0.24 0.28 0.19 0.37 0.41 0.49 0.44 0.42 4.16
UEDIN 0.30 0.35 0.23 0.42 0.43 0.54 0.51 0.51 6.56

Table 15: Automatic evaluation metric for translations into French
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English-German News Task
LIMSI 0.11 0.18 0.19 0.45 0.22 0.36 0.29 0.28 7.83

LIU 0.10 0.17 0.18 0.44 0.24 0.36 0.28 0.27 4.03
RBMT1 0.12 0.18 0.18 0.44 0.22 0.39 0.33 0.32 5.42
RBMT2 0.13 0.19 0.20 0.46 0.24 0.4 0.33 0.33 5.76
RBMT3 0.12 0.18 0.19 0.44 0.24 0.39 0.32 0.32 4.70
RBMT4 0.14 0.19 0.2 0.46 0.25 0.41 0.35 0.34 5.58
RBMT5 0.11 0.17 0.17 0.43 0.21 0.38 0.31 0.31 4.49
RBMT6 0.10 0.16 0.17 0.43 0.2 0.37 0.3 0.29 4.81

SAAR 0.13 0.19 0.19 0.44 0.27 0.38 0.31 0.3 4.04
SAAR-CONTRAST 0.12 0.18 0.18 0.43 0.26 0.37 0.3 0.28 3.71

UEDIN 0.12 0.17 0.18 0.45 0.23 0.37 0.30 0.29 4.37
English-German Europarl Task

CMU-GIMPEL 0.20 0.24 0.27 0.54 0.32 0.43 0.37 0.37 9.54
LIMSI 0.20 0.24 0.27 0.53 0.32 0.43 0.37 0.37 6.97

LIU 0.2 0.24 0.27 0.53 0.32 0.43 0.38 0.37 6.95
RBMT1 0.11 0.16 0.16 0.42 0.19 0.38 0.32 0.32 5.01
RBMT2 0.12 0.17 0.19 0.46 0.21 0.39 0.32 0.31 5.93
RBMT3 0.11 0.16 0.17 0.43 0.21 0.38 0.31 0.30 4.75
RBMT4 0.12 0.17 0.18 0.45 0.22 0.41 0.34 0.33 5.42
RBMT5 0.1 0.14 0.16 0.42 0.19 0.39 0.32 0.31 4.42
RBMT6 0.09 0.14 0.15 0.42 0.18 0.38 0.30 0.29 4.40

SAAR 0.20 0.25 0.26 0.53 0.32 0.43 0.38 0.37 6.67
SAAR-CONTRAST 0.2 0.24 0.26 0.52 0.31 0.43 0.37 0.37 6.35

UCL 0.16 0.20 0.23 0.49 0.31 0.4 0.33 0.31 5.12
UEDIN 0.21 0.25 0.27 0.54 0.32 0.44 0.38 0.38 7.02

English-Spanish News Task
CMU-SMT 0.19 0.24 0.25 0.34 0.32 0.32 0.25 0.26 8.34

LIMSI 0.19 0.25 0.26 0.34 0.34 0.33 0.26 0.26 5.92
RBMT1 0.16 0.22 0.23 0.32 0.30 0.31 0.23 0.23 5.36
RBMT3 0.19 0.24 0.25 0.33 0.34 0.33 0.26 0.26 5.42
RBMT4 0.21 0.26 0.26 0.34 0.35 0.34 0.28 0.28 6.36
RBMT5 0.18 0.24 0.25 0.33 0.32 0.33 0.26 0.26 5.84
RBMT6 0.19 0.24 0.24 0.33 0.33 0.32 0.25 0.26 5.42

SAAR 0.20 0.27 0.26 0.34 0.37 0.34 0.28 0.28 5.04
SAAR-CONTRAST 0.2 0.26 0.25 0.34 0.37 0.34 0.27 0.27 4.86

UCB 0.20 0.26 0.26 0.34 0.34 0.33 0.26 0.27 5.70
UEDIN 0.18 0.25 0.25 0.33 0.35 0.33 0.26 0.26 4.30

UPC 0.18 0.23 0.24 0.32 0.35 0.32 0.25 0.24 3.97
English-Spanish Europarl Task

CMU-SMT 0.32 0.36 0.33 0.42 0.45 0.40 0.35 0.36 0.10
LIMSI 0.31 0.36 0.33 0.42 0.45 0.4 0.35 0.35 7.80

RBMT1 0.16 0.22 0.24 0.32 0.31 0.32 0.25 0.25 4.47
RBMT3 0.20 0.25 0.25 0.34 0.35 0.33 0.27 0.27 4.66
RBMT4 0.21 0.25 0.26 0.34 0.36 0.34 0.28 0.28 4.85
RBMT5 0.18 0.24 0.25 0.34 0.33 0.34 0.27 0.27 5.03
RBMT6 0.18 0.23 0.25 0.33 0.33 0.33 0.26 0.26 4.57

SAAR 0.31 0.35 0.33 0.41 0.44 0.40 0.35 0.35 7.59
SAAR-CONTRAST 0.30 0.34 0.33 0.41 0.44 0.4 0.34 0.35 7.42

UCL 0.25 0.29 0.29 0.37 0.43 0.36 0.29 0.29 4.67
UEDIN 0.32 0.36 0.33 0.42 0.45 0.40 0.35 0.35 7.25

UPC 0.30 0.34 0.32 0.40 0.46 0.4 0.35 0.34 6.18
UW 0.32 0.36 0.33 0.42 0.45 0.40 0.35 0.35 7.36

UW-CONTRAST 0.32 0.35 0.33 0.42 0.45 0.40 0.35 0.36 7.21

Table 16: Automatic evaluation metric for translations into German and Spanish
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Spanish-English Europarl Task
CMU-SMT 0.34 0.44 0.26 0.29 0.33 0.33 0.39 0.59 0.48 0.51 0.52 0.48 0.48 9.72

CUED 0.33 0.43 0.25 0.29 0.33 0.32 0.38 0.59 0.48 0.50 0.51 0.47 0.47 7.41
CUED-CONTRAST 0.34 0.44 0.26 0.29 0.33 0.33 0.39 0.59 0.48 0.51 0.52 0.48 0.48 7.00

DCU 0.34 0.43 0.25 0.29 0.33 0.32 0.38 0.59 0.48 0.50 0.51 0.47 0.48 6.78
LIMSI 0.34 0.44 0.26 0.29 0.33 0.33 0.39 0.59 0.48 0.51 0.52 0.48 0.48 6.73

RBMT3 0.26 0.37 0.19 0.22 0.27 0.19 0.26 0.51 0.41 0.36 0.45 0.4 0.39 5.46
RBMT4 0.26 0.37 0.19 0.22 0.27 0.18 0.26 0.52 0.42 0.36 0.45 0.39 0.38 5.57
RBMT5 0.25 0.36 0.18 0.22 0.27 0.18 0.25 0.51 0.41 0.36 0.44 0.39 0.38 4.74
RBMT6 0.24 0.34 0.18 0.21 0.26 0.17 0.25 0.51 0.41 0.36 0.44 0.38 0.37 4.71

SAAR 0.34 0.44 0.26 0.29 0.33 0.32 0.39 0.59 0.48 0.51 0.52 0.49 0.48 6.30
SAAR-CONTRAST 0.33 0.43 0.25 0.28 0.33 0.30 0.37 0.59 0.48 0.47 0.51 0.47 0.46 7.33

UCL 0.29 0.4 0.21 0.25 0.29 0.25 0.32 0.55 0.43 0.47 0.47 0.42 0.4 4.02
UEDIN 0.34 0.44 0.26 0.29 0.33 0.33 0.39 0.59 0.48 0.50 0.52 0.48 0.48 6.61

UPC 0.33 0.43 0.25 0.28 0.33 0.32 0.38 0.59 0.48 0.5 0.52 0.48 0.48 6.82
French-English News Task

BBN-COMBO 0.27 0.37 0.2 0.23 0.28 0.21 n/a n/a n/a n/a n/a n/a n/a n/a
CMU-COMBO 0.26 0.36 0.18 0.22 0.27 0.19 n/a n/a n/a n/a n/a n/a n/a n/a

CMU-COMBO-CONTRAST n/a n/a n/a n/a n/a 0.19 n/a n/a n/a n/a n/a n/a n/a n/a
CMU-STATXFER 0.21 0.32 0.14 0.19 0.23 0.14 0.22 0.48 0.39 0.28 0.38 0.32 0.30 9.91

CMU-STATXFER-CONTRAST 0.21 0.30 0.14 0.18 0.23 0.14 0.21 0.47 0.38 0.26 0.38 0.31 0.29 6.47
CUED 0.25 0.35 0.17 0.21 0.26 0.18 0.27 0.51 0.41 0.37 0.41 0.35 0.34 6.34

CUED-CONTRAST 0.26 0.37 0.18 0.22 0.27 0.19 0.28 0.52 0.42 0.38 0.42 0.37 0.36 6.29
LIMSI 0.26 0.37 0.18 0.22 0.27 0.20 0.28 0.51 0.40 0.40 0.43 0.38 0.37 5.75

LIUM-SYSTRAN 0.27 0.38 0.19 0.23 0.27 0.21 0.29 0.51 0.41 0.41 0.44 0.39 0.38 6.32
LIUM-SYSTRAN-CONTRAST 0.27 0.38 0.19 0.23 0.28 0.21 0.29 0.51 0.41 0.41 0.44 0.39 0.38 5.93

RBMT3 0.24 0.36 0.17 0.21 0.26 0.16 0.24 0.49 0.40 0.29 0.42 0.36 0.34 7.61
RBMT4 0.25 0.37 0.17 0.21 0.26 0.17 0.25 0.49 0.4 0.33 0.42 0.36 0.35 6.17
RBMT5 0.25 0.37 0.18 0.22 0.27 0.18 0.25 0.51 0.41 0.33 0.43 0.37 0.36 6.97
RBMT6 0.24 0.36 0.17 0.21 0.26 0.16 0.24 0.49 0.39 0.30 0.41 0.35 0.34 6.51

SAAR 0.24 0.14 0.17 0.19 0.22 0.15 0.24 0.47 0.37 0.39 0.39 0.32 0.31 3.22
SAAR-CONTRAST 0.26 0.36 0.18 0.22 0.27 0.17 0.27 0.51 0.41 0.36 0.41 0.35 0.35 6.01

UEDIN 0.25 0.36 0.17 0.21 0.26 0.18 0.26 0.51 0.41 0.35 0.42 0.36 0.35 5.97
UEDIN-COMBO 0.26 0.36 0.18 0.23 0.27 n/a n/a n/a n/a n/a n/a n/a n/a n/a

French-English Europarl Task
CMU-STATXFER 0.24 0.34 0.18 0.22 0.26 0.2 0.26 0.52 0.42 0.37 0.42 0.36 0.35 9.85

CMU-STATXFER-CONTRAST 0.25 0.34 0.19 0.22 0.26 0.2 0.26 0.53 0.42 0.38 0.42 0.36 0.35 7.10
CUED 0.34 0.44 0.26 0.29 0.33 0.32 0.38 0.59 0.48 0.50 0.51 0.47 0.47 0.11

CUED-CONTRAST 0.34 0.44 0.26 0.29 0.34 0.32 0.39 0.59 0.48 0.51 0.51 0.47 0.47 9.34
DCU 0.33 0.43 0.25 0.28 0.33 0.31 0.37 0.58 0.47 0.49 0.50 0.46 0.46 9.16

LIMSI 0.34 0.44 0.26 0.29 0.34 0.33 0.39 0.59 0.48 0.51 0.52 0.48 0.48 9.59
LIUM-SYSTRAN 0.35 0.45 0.27 0.3 0.34 0.33 0.39 0.59 0.48 0.51 0.52 0.48 0.49 9.75

LIUM-SYSTRAN-CONTRAST 0.34 0.44 0.26 0.29 0.34 0.33 0.39 0.59 0.48 0.50 0.52 0.48 0.48 9.23
RBMT3 0.25 0.36 0.10 0.20 0.24 0.17 0.25 0.51 0.41 0.35 0.43 0.37 0.36 7.36
RBMT4 0.27 0.36 0.19 0.22 0.27 0.18 0.26 0.51 0.41 0.37 0.43 0.38 0.37 5.92
RBMT5 0.27 0.38 0.21 0.23 0.28 0.20 0.28 0.53 0.43 0.4 0.45 0.4 0.39 7.20
RBMT6 0.24 0.35 0.18 0.21 0.26 0.16 0.24 0.5 0.40 0.35 0.42 0.36 0.35 5.96

SAAR 0.32 0.41 0.23 0.27 0.31 0.27 0.33 0.54 0.43 0.49 0.49 0.44 0.41 4.76
SAAR-CONTRAST 0.33 0.43 0.25 0.28 0.33 0.3 0.36 0.58 0.48 0.47 0.51 0.47 0.46 0.10

SYSTRAN 0.3 0.4 0.23 0.26 0.30 0.26 0.34 0.55 0.45 0.46 0.48 0.43 0.43 7.01
UCL 0.3 0.40 0.22 0.26 0.3 0.26 0.32 0.55 0.44 0.47 0.47 0.42 0.41 6.35

UEDIN 0.34 0.44 0.26 0.29 0.33 0.33 0.39 0.59 0.48 0.50 0.52 0.48 0.48 9.41

Table 17: Automatic evaluation metric for translations into English
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Czech-English News Commentary Task
DCU 0.25 0.34 0.18 0.22 0.27 0.21 0.29 0.54 0.44 0.42 0.42 0.36 0.36 2.45

SYSTRAN 0.19 0.28 0.12 0.17 0.21 0.15 0.23 0.45 0.36 0.34 0.36 0.29 0.29 0.76
UEDIN 0.24 0.31 0.16 0.21 0.25 0.22 0.30 0.54 0.44 0.43 0.41 0.35 0.35 1.37

UMD 0.26 0.34 0.19 0.23 0.28 0.24 0.33 0.56 0.45 0.49 0.44 0.39 0.38 1.41
Czech-English News Task

DCU 0.19 0.30 0.13 0.17 0.22 0.12 0.22 0.45 0.35 0.32 0.36 0.28 0.28 1.78
UEDIN 0.19 0.28 0.12 0.17 0.21 0.12 0.21 0.44 0.34 0.32 0.35 0.27 0.27 0.65

UMD 0.2 0.29 0.12 0.18 0.22 0.13 0.22 0.44 0.34 0.36 0.36 0.29 0.27 0.52
German-English News Task

BBN-COMBO 0.23 0.34 0.14 0.21 0.25 0.18 n/a n/a n/a n/a n/a n/a n/a n/a
CMU-STATXFER 0.16 0.27 0.09 0.15 0.19 0.11 0.18 0.43 0.34 0.25 0.33 0.25 0.24 7.84

LIMSI 0.22 0.33 0.13 0.19 0.23 0.17 0.25 0.47 0.37 0.36 0.4 0.33 0.32 5.58
LIU 0.21 0.32 0.06 0.18 0.22 0.15 0.24 0.48 0.38 0.33 0.38 0.31 0.31 5.51

RBMT1 0.22 0.33 0.14 0.19 0.23 0.14 0.22 0.44 0.35 0.28 0.37 0.31 0.30 6.13
RBMT2 0.24 0.37 0.17 0.21 0.26 0.15 0.24 0.5 0.40 0.31 0.4 0.33 0.32 7.14
RBMT3 0.24 0.37 0.16 0.21 0.26 0.16 0.24 0.49 0.4 0.32 0.41 0.34 0.34 6.97
RBMT4 0.25 0.38 0.17 0.21 0.27 0.16 0.25 0.50 0.40 0.34 0.41 0.35 0.34 7.03
RBMT5 0.23 0.36 0.15 0.20 0.25 0.15 0.23 0.48 0.39 0.32 0.4 0.33 0.32 5.94
RBMT6 0.22 0.34 0.14 0.19 0.24 0.14 0.22 0.47 0.38 0.31 0.39 0.32 0.31 5.65

SAAR 0.22 0.33 0.14 0.2 0.24 0.15 0.24 0.47 0.37 0.36 0.39 0.32 0.31 4.67
SAAR-CONTRAST 0.24 0.35 0.16 0.21 0.25 0.17 0.26 0.5 0.4 0.36 0.4 0.33 0.33 5.80

SAAR-CONTRAST-2 0.21 0.33 0.14 0.19 0.23 0.15 0.24 0.47 0.37 0.36 0.39 0.32 0.31 4.80
UEDIN 0.23 0.34 0.09 0.19 0.23 0.16 0.25 0.48 0.39 0.35 0.4 0.33 0.33 5.72

German-English Europarl Task
CMU-STATXFER 0.2 0.31 0.12 0.19 0.22 0.17 0.23 0.49 0.39 0.34 0.39 0.32 0.31 7.11

LIMSI 0.28 0.38 0.18 0.24 0.28 0.27 0.33 0.55 0.44 0.43 0.47 0.42 0.42 8.04
LIU 0.28 0.39 0.09 0.23 0.26 0.27 0.33 0.55 0.44 0.44 0.47 0.43 0.43 7.46

RBMT1 0.21 0.3 0.14 0.18 0.22 0.12 0.19 0.42 0.33 0.27 0.36 0.30 0.28 4.61
RBMT2 0.24 0.35 0.16 0.20 0.25 0.14 0.23 0.49 0.39 0.32 0.39 0.33 0.32 5.42
RBMT3 0.24 0.35 0.16 0.20 0.25 0.15 0.23 0.48 0.39 0.32 0.40 0.34 0.33 5.43
RBMT4 0.24 0.36 0.15 0.20 0.25 0.14 0.23 0.49 0.39 0.34 0.41 0.34 0.34 5.11
RBMT5 0.23 0.34 0.15 0.2 0.24 0.14 0.22 0.48 0.38 0.33 0.4 0.33 0.32 4.55
RBMT6 0.22 0.33 0.13 0.18 0.23 0.13 0.21 0.47 0.37 0.31 0.38 0.31 0.31 4.08

SAAR 0.29 0.39 0.19 0.25 0.28 0.27 0.33 0.55 0.44 0.43 0.47 0.42 0.42 7.32
SAAR-CONTRAST 0.28 0.37 0.18 0.24 0.28 0.26 0.32 0.54 0.43 0.43 0.47 0.42 0.42 6.77

UCL 0.24 0.36 0.16 0.22 0.25 0.2 0.25 0.49 0.39 0.41 0.42 0.35 0.32 4.26
UEDIN 0.30 0.41 0.20 0.26 0.3 0.28 0.34 0.56 0.45 0.45 0.48 0.44 0.44 7.96

Spanish-English News Task
CMU-SMT 0.24 0.35 0.17 0.21 0.25 0.18 0.26 0.48 0.38 0.39 0.41 0.35 0.34 8.00

CUED 0.25 0.36 0.17 0.21 0.26 0.19 0.28 0.50 0.40 0.38 0.42 0.36 0.36 6.03
CUED-CONTRAST 0.26 0.37 0.18 0.22 0.27 0.21 0.3 0.52 0.42 0.39 0.44 0.38 0.38 6.27

LIMSI 0.26 0.37 0.18 0.22 0.27 0.20 0.28 0.50 0.4 0.41 0.43 0.38 0.37 4.93
RBMT3 0.25 0.38 0.17 0.22 0.27 0.18 0.26 0.50 0.41 0.32 0.43 0.38 0.36 7.54
RBMT4 0.26 0.38 0.18 0.22 0.27 0.18 0.26 0.51 0.42 0.32 0.44 0.39 0.37 7.81
RBMT5 0.26 0.38 0.08 0.20 0.25 0.2 0.27 0.51 0.42 0.33 0.44 0.38 0.37 6.89
RBMT6 0.25 0.36 0.17 0.21 0.26 0.18 0.25 0.51 0.41 0.33 0.43 0.37 0.36 6.83

SAAR 0.26 0.37 0.19 0.22 0.27 0.19 0.29 0.51 0.41 0.39 0.43 0.37 0.37 5.23
SAAR-CONTRAST 0.26 0.37 0.18 0.22 0.27 0.19 0.28 0.51 0.41 0.37 0.42 0.37 0.36 5.95

UCB 0.25 0.35 0.17 0.21 0.26 0.19 0.27 0.5 0.39 0.39 0.42 0.36 0.35 4.40
UEDIN 0.24 0.35 0.17 0.21 0.26 0.18 0.27 0.50 0.40 0.36 0.41 0.35 0.34 5.07

UEDIN-COMBO 0.27 0.36 0.19 0.23 0.27 n/a n/a n/a n/a n/a n/a n/a n/a n/a
UPC 0.25 0.36 0.17 0.21 0.26 0.19 0.26 0.49 0.39 0.4 0.43 0.37 0.36 4.38

Table 18: Automatic evaluation metric for translations into English

92



B Break down of correlation for each task
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All-English News Task
RANK 1 n/a n/a 0.83 0.73 0.83 0.83 0.87 0.71 0.7 0.82 0.79 0.41 0.79 0.8 0.80 0.25

French-English News Task
RANK 1 0.69 0.63 0.92 0.83 0.89 0.90 0.90 0.81 0.80 0.88 0.80 0.57 0.87 0.9 0.9 –

0.21
CONST — 1 0.81 0.83 0.52 0.81 0.86 0.81 0.93 0.9 0.76 0.64 0.73 0.69 0.72 0.85 –

0.52
YES/NO — — 1 0.71 0.57 0.76 0.77 0.74 0.79 0.75 0.67 0.59 0.62 0.66 0.67 0.79 –

0.26
French-English Europarl Task

RANK 1 0.95 0.9 0.94 0.95 0.93 0.95 0.93 0.92 0.90 0.88 0.87 0.92 0.94 0.94 0.91 0.50
CONST — 1 0.91 0.97 0.97 0.98 0.98 0.97 0.97 0.96 0.97 0.95 0.96 0.97 0.97 0.96 0.56

YES/NO — — 1 0.94 0.94 0.94 0.96 0.96 0.96 0.97 0.92 0.93 0.92 0.95 0.95 0.97 0.47
German-English News Task

RANK 1 0.56 0.56 0.85 0.93 0.92 0.85 0.95 0.12 0.09 0.83 0.89 –
0.11

0.63 0.60 0.58 0.36

CONST — 1 0.48 0.54 0.48 0.59 0.66 0.57 0.64 0.65 0.61 0.55 0.51 0.57 0.63 0.56 –
0.02

YES/NO — — 1 0.68 0.61 0.69 0.73 0.67 0.60 0.41 0.54 0.56 0.33 0.79 0.83 0.70 0.08
German-English Europarl Task

RANK 1 0.63 0.81 0.76 0.59 0.46 0.57 0.60 0.30 0.39 0.40 0.66 0.25 0.53 0.53 0.64 0.35
CONST — 1 0.78 0.87 0.92 0.51 0.83 0.86 0.69 0.69 0.76 0.80 0.69 0.88 0.88 0.88 0.61

YES/NO — — 1 0.88 0.77 0.48 0.77 0.78 0.66 0.67 0.64 0.86 0.58 0.74 0.74 0.85 0.78
Spanish-English News Task

RANK 1 –
0.07

0.44 0.75 0.76 0.68 0.71 0.81 0.19 0.01 0.66 0.63 –
0.12

0.73 0.76 0.66 0.36

CONST — 1 0.66 –
0.03

–
0.44

0.29 0.29 0.14 0.45 0.66 –
0.11

–
0.33

0.77 –
0.37

–
0.34

0.16 –
0.58

YES/NO — — 1 0.29 0.05 0.73 0.64 0.55 0.48 0.47 0.09 –
0.11

0.71 0.06 0.1 0.39 –
0.43

Spanish-English Europarl Task
RANK 1 0.69 0.76 0.78 0.73 0.73 0.8 0.77 0.78 0.79 0.83 0.84 0.77 0.73 0.73 0.80 0.87

CONST — 1 0.68 0.76 0.77 0.75 0.69 0.73 0.64 0.67 0.64 0.68 0.73 0.78 0.78 0.73 0.56
YES/NO — — 1 0.94 0.93 0.95 0.96 0.95 0.98 0.97 0.91 0.91 0.95 0.94 0.94 0.98 0.69

Table 19: Correlation of automatic evaluation metrics with the three types of human judgments for transla-
tion into English
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English-French News Task
RANK 1 0.55 0.48 0.73 0.62 0.3 0.47 0.56 0.69 0.69 0.66 0.72

CONST — 1 0.35 0.49 0.47 0.39 0.49 0.24 0.59 0.59 0.58 0.45
YES/NO — — 1 0.81 0.92 0.71 0.73 0.78 0.73 0.73 0.76 0.76

English-French Europarl Task
RANK 1 0.98 0.88 0.95 0.95 0.95 0.95 0.90 0.97 0.97 0.93 0.93

CONST — 1 0.94 0.98 0.98 0.98 0.98 0.93 1 1 0.97 0.91
YES/NO — — 1 0.97 0.97 0.97 0.97 0.92 0.95 0.95 0.92 0.83

English-German News Task
RANK 1 0.57 0.71 0.58 0.42 0.43 0.13 0.25 0.90 0.90 0.90 0.32

CONST — 1 0.78 0.75 0.83 0.82 0.55 0.60 0.72 0.72 0.72 0.58
YES/NO — — 1 0.62 0.54 0.51 0.36 0.23 0.75 0.75 0.75 0.76

English-German Europarl Task
RANK 1 0.28 0.57 0.36 0.36 0.42 0.39 0.26 0.38 0.38 0.50 0.56

CONST — 1 0.87 0.88 0.88 0.91 0.90 0.93 0.88 0.88 0.80 0.85
YES/NO — — 1 0.89 0.89 0.96 0.96 0.84 0.86 0.86 0.87 0.98

English-Spanish News Task
RANK 1 –

0.30
0.49 –

0.04
–
0.47

–
0.25

–
0.29

–
0.33

–
0.19

–
0.19

–
0.07

0.02

CONST — 1 0.43 0.79 0.61 0.64 0.56 0.2 0.59 0.59 0.55 0.56
YES/NO — — 1 0.55 0.41 0.43 0.31 0.13 0.65 0.65 0.72 0.16

English-Spanish Europarl Task
RANK 1 0.90 0.63 0.8 0.83 0.84 0.83 0.73 0.79 0.79 0.76 0.80

CONST — 1 0.73 0.84 0.86 0.81 0.8 0.74 0.84 0.83 0.84 0.86
YES/NO — — 1 0.68 0.75 0.66 0.67 0.90 0.67 0.66 0.73 0.68

Table 20: Correlation of automatic evaluation metrics with the three types of human judgments for transla-
tion into other languages
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C Pairwise system comparisons by human judges

The following tables show pairwise comparisons between systems for each language pair, test set, and
manual evaluation type. The numbers in each of the tables’ cells indicate the percent of that the system in
that column was judged to be better than the system in that row. Bolding indicates the winner of the two
systems. The difference between 100 and the sum of the complimentary cells is the percent of time that the
two systems were judged to be equal.

Because there were so many systems and data conditions the significance of each pairwise comparison
needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine differ-
ences (rather than differences that are attributable to chance). In the following tables ? indicates statistical
significance at p <= 0.05 and † indicates statistical significance at p <= 0.01, according to the Sign Test.
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BBN-CMB 0.32 0.18† 0.21 0.42 0.37 0.29 0.24 0.33 0.48 0.48 0.32 0.29 0.44 0.48 0.21
CMU-CMB 0.50 0.26 0.29 0.42 0.4 0.44 0.48 0.49 0.38 0.45 0.55 0.32 0.34 0.34 0.46
CMU-XFR 0.67† 0.44 0.60? 0.75† 0.58 0.73† 0.62 0.59 0.54 0.77† 0.48 0.54 0.65? 0.71† 0.58

CUED 0.46 0.41 0.20? 0.47 0.56 0.47 0.51? 0.41 0.54 0.57 0.37 0.43 0.61 0.39 0.15
CUED-C 0.27 0.22 0.08† 0.20 0.31 0.54 0.52? 0.32 0.52 0.50 0.31 0.40 0.38 0.30 0.52

LIMSI 0.34 0.4 0.29 0.31 0.41 0.23? 0.52 0.38 0.50 0.39 0.49 0.42 0.32 0.26 0.30
LIUM-SYS 0.37 0.32 0.13† 0.39 0.27 0.60? 0.24 0.44 0.46 0.46 0.33 0.24? 0.25 0.30 0.19

LI-SYS-C 0.40 0.26 0.24 0.20? 0.13? 0.30 0.24 0.44 0.42 0.43 0.35 0.21? 0.30 0.30 0.31
RBMT3 0.46 0.43 0.26 0.38 0.46 0.48 0.39 0.39 0.41 0.44 0.26 0.36 0.50 0.68? 0.44
RBMT4 0.36 0.33 0.31 0.36 0.39 0.35 0.50 0.45 0.45 0.49 0.40 0.35 0.57 0.51 0.53
RBMT5 0.37 0.33 0.12† 0.32 0.33 0.33 0.39 0.46 0.25 0.22 0.21 0.37 0.44 0.49 0.57
RBMT6 0.50 0.33 0.37 0.34 0.50 0.39 0.44 0.50 0.48 0.37 0.55 0.42 0.48 0.41 0.41

SAAR 0.50 0.46 0.37 0.38 0.44 0.52 0.6? 0.54? 0.44 0.53 0.44 0.29 0.34 0.52 0.50
SAAR-C 0.31 0.47 0.23? 0.30 0.24 0.51 0.50 0.47 0.25 0.31 0.33 0.35 0.26 0.47 0.38

UED 0.35 0.37 0.13† 0.39 0.55 0.50 0.50 0.43 0.24? 0.37 0.36 0.41 0.31 0.47 0.36
UED-CMB 0.57 0.36 0.16 0.46 0.38 0.30 0.63 0.39 0.39 0.37 0.35 0.53 0.27 0.48 0.36

> OTHERS 0.43 0.37 0.22 0.34 0.41 0.44 0.45 0.45 0.4 0.42 0.47 0.37 0.34 0.43 0.44 0.42
≥ OTHERS 0.66 0.59 0.38 0.55 0.64 0.63 0.66 0.69 0.58 0.58 0.65 0.57 0.54 0.64 0.61 0.61

Table 21: Sentence-level ranking for the French-English News Task.
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CMU-XFR 0.53 0.50 0.74† 0.79? 0.55 0.46 0.50 0.36 0.73 0.92† 0.36 0.44 0.77?

CUED 0.29 0.42 0.29 0.48 0.16† 0.53 0.16† 0.18† 0.18? 0.55 0.06† 0.21 0.38
DCU 0.46 0.29 0.38 0.47 0.37 0.27 0.24 0.29 0.35 0.55 0.18 0.25 0.50

LIMSI 0.11† 0.21 0.44 0.11 0.12† 0.17 0.29 0.05† 0.30 0.32 0.19 0.29 0.33
LIUM-SYS 0.14? 0.16 0.24 0.32 0.06† 0.13 0.22 0.12† 0.14† 0.33 0.20? 0.26 0.32

RBMT3 0.36 0.79† 0.58 0.88† 0.72† 0.40 0.57 0.21 0.67 0.72† 0.50 0.54 0.67
RBMT4 0.50 0.40 0.64 0.67 0.56 0.40 0.42 0.21† 0.52 0.67 0.33 0.47 0.75
RBMT5 0.38 0.79† 0.60 0.57 0.56 0.24 0.42 0.26 0.48 0.72† 0.50 0.46 0.60
RBMT6 0.54 0.79† 0.67 0.77† 0.82† 0.47 0.79† 0.53 0.71? 0.83† 0.56 0.47 0.77†

SAAR 0.27 0.59? 0.57 0.47 0.71† 0.22 0.29 0.48 0.18? 0.50 0.35 0.23 0.50
SAAR-C 0.04† 0.15 0.31 0.39 0.48 0.14† 0.24 0.21† 0.08† 0.21 0.17† 0.20 0.57

SYSTRAN 0.50 0.81† 0.65 0.52 0.64? 0.38 0.62 0.33 0.32 0.41 0.71† 0.56 0.55
UCL 0.31 0.64 0.56 0.57 0.47 0.46 0.40 0.39 0.27 0.55 0.60 0.44 0.47
UED 0.24? 0.43 0.35 0.33 0.42 0.28 0.25 0.33 0.15† 0.29 0.26 0.25 0.27

> OTHERS 0.32 0.50 0.5 0.54 0.55 0.28 0.4 0.35 0.21 0.41 0.59 0.32 0.35 0.55
≥ OTHERS 0.42 0.7 0.64 0.78 0.79 0.40 0.50 0.48 0.32 0.58 0.75 0.47 0.52 0.71

Table 22: Sentence-level ranking for the French-English Europarl Task.
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LIMSI 0.29 0.25 0.60† 0.52 0.48 0.13 0.30 0.13? 0.17?

LIUM-SYSTRAN 0.36 0.41 0.51 0.41 0.53 0.22 0.26 0.27 0.04†

RBMT3 0.56 0.34 0.48 0.52 0.40 0.31 0.53 0.37 0.11†

RBMT4 0.13† 0.36 0.31 0.29 0.19? 0.26 0.15† 0.17† 0.09†

RBMT5 0.33 0.35 0.29 0.42 0.26 0.17† 0.32 0.17† 0.12†

RBMT6 0.42 0.38 0.37 0.43? 0.44 0.32 0.32 0.28 0.11†

SAAR 0.56 0.52 0.51 0.56 0.69† 0.41 0.33 0.46 0.3
SAAR-CONTRAST 0.55 0.44 0.33 0.63† 0.56 0.46 0.21 0.41 0.22?

UEDIN 0.48? 0.48 0.41 0.60† 0.65† 0.53 0.41 0.43 0.09†

XEROX 0.63? 0.74† 0.78† 0.74† 0.71† 0.75† 0.44 0.64? 0.63†
> OTHERS 0.44 0.43 0.41 0.54 0.53 0.43 0.28 0.37 0.32 0.13
≥ OTHERS 0.67 0.66 0.60 0.78 0.73 0.66 0.51 0.57 0.55 0.32

Table 23: Sentence-level ranking for the English-French News Task.
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LIMSI 0.23 0.21? 0.32 0.10† 0.15† 0.35 0.27 0.15† 0.17
LIUM-SYSTRAN 0.28 0.39 0.11† 0.21? 0.22 0.40 0.19† 0.15

RBMT3 0.75? 0.59 0.38 0.39 0.49 0.70† 0.81† 0.47 0.81†
RBMT4 0.64 0.36 0.28 0.24? 0.18 0.61 0.48 0.42 0.50
RBMT5 0.85† 0.89† 0.49 0.62? 0.67? 0.78† 0.91† 0.63? 0.93†

RBMT6 0.85† 0.62? 0.26 0.42 0.24? 0.83† 0.82† 0.47 0.68†

SAAR 0.41 0.52 0.17† 0.30 0.11† 0.06† 0.41 0.11† 0.41
SAAR-CONTRAST 0.47 0.40 0.11† 0.26 0.03† 0.06† 0.32 0.27 0.26

UCL 0.80† 0.70† 0.42 0.47 0.22? 0.44 0.71† 0.61 0.78†

UEDIN 0.46 0.41 0.11† 0.33 0.04† 0.15† 0.32 0.36 0.03†

> OTHERS 0.62 0.54 0.26 0.4 0.17 0.27 0.56 0.6 0.32 0.54
≥ OTHERS 0.79 0.78 0.42 0.61 0.26 0.44 0.74 0.79 0.44 0.77

Table 24: Sentence-level ranking for the English-French Europarl Task.
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BBN-COMBO 0.1† 0.22 0.37 0.62? 0.69† 0.74? 0.66† 0.41 0.63? 0.60? 0.35 0.40
CMU-STATXFER 0.71† 0.44 0.54 0.76† 0.79† 0.73† 0.74† 0.80† 0.62† 0.65† 0.54† 0.37

LIMSI 0.44 0.24 0.41 0.67? 0.65† 0.69† 0.54 0.50 0.50 0.63 0.38 0.22
LIU 0.37 0.27 0.34 0.55? 0.56 0.61† 0.50 0.45 0.48 0.56 0.32 0.34

RBMT2 0.21? 0.14† 0.31? 0.20? 0.27 0.43 0.29 0.34 0.30 0.13† 0.25† 0.24?

RBMT3 0.18† 0.13† 0.19† 0.27 0.56 0.37 0.33 0.32 0.29 0.29 0.19† 0.17†

RBMT4 0.22? 0.12† 0.17† 0.18† 0.46 0.51 0.3 0.31 0.18† 0.26? 0.28 0.17†

RBMT5 0.22† 0.12† 0.32 0.36 0.58 0.51 0.40 0.29 0.23? 0.37 0.3 0.28
RBMT6 0.55 0.08† 0.40 0.4 0.51 0.51 0.47 0.51 0.49 0.52 0.22? 0.43

SAAR 0.23? 0.21† 0.40 0.39 0.52 0.50 0.61† 0.53? 0.38 0.50? 0.26? 0.13?

SAAR-CONTRAST 0.23? 0.19† 0.3 0.37 0.71† 0.37 0.60? 0.37 0.33 0.17? 0.48 0.13?

UEDIN 0.23 0.13† 0.38 0.3 0.68† 0.65† 0.55 0.59 0.64? 0.67? 0.38 0.42
UEDIN-COMBO 0.35 0.41 0.59 0.50 0.72? 0.66† 0.83† 0.56 0.52 0.50? 0.67? 0.38

> OTHERS 0.32 0.17 0.34 0.35 0.61 0.56 0.57 0.49 0.45 0.41 0.46 0.33 0.28
≥ OTHERS 0.51 0.35 0.52 0.56 0.74 0.73 0.73 0.67 0.59 0.61 0.65 0.55 0.44

Table 25: Sentence-level ranking for the German-English News Task.
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CMU-STATXFER 0.57? 0.77† 0.53 0.71† 0.69† 0.50 0.58 0.82† 0.46 0.75†

LIMSI 0.17? 0.35 0.71? 0.63 0.76? 0.50 0.59 0.52 0.23 0.67†

LIU 0.14† 0.35 0.50 0.29 0.67 0.3 0.42 0.35 0.27 0.57
RBMT2 0.27 0.24? 0.46 0.39 0.33 0.36 0.42 0.50 0.33 0.46
RBMT3 0.23† 0.3 0.57 0.45 0.40 0.31 0.38 0.56 0.32 0.55
RBMT4 0.22† 0.19? 0.29 0.50 0.48 0.39 0.48 0.41 0.32 0.61
RBMT5 0.40 0.40 0.56 0.54 0.57 0.52 0.3 0.48 0.29? 0.54
RBMT6 0.27 0.32 0.48 0.46 0.53 0.44 0.51 0.55 0.36 0.61

SAAR 0.12† 0.19 0.30 0.44 0.41 0.48 0.32 0.42 0.20† 0.40
UCL 0.35 0.54 0.46 0.63 0.61 0.68 0.68? 0.61 0.63† 0.65†

UEDIN 0.22† 0.17† 0.32 0.42 0.42 0.36 0.41 0.27 0.40 0.23†

> OTHERS 0.24 0.32 0.46 0.51 0.51 0.53 0.43 0.43 0.53 0.30 0.58
≥ OTHERS 0.36 0.49 0.61 0.63 0.6 0.61 0.54 0.54 0.68 0.42 0.68

Table 26: Sentence-level ranking for the German-English Europarl Task.
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LIMSI 0.44 0.8† 0.67† 0.81† 0.76† 0.63† 0.53 0.47?

LIU 0.29 0.80† 0.68† 0.81† 0.62† 0.63† 0.25 0.31
RBMT2 0.13† 0.07† 0.35 0.33 0.32? 0.20† 0.17† 0.09†

RBMT3 0.18† 0.27† 0.50 0.52 0.45 0.29† 0.26 0.21†

RBMT4 0.09† 0.12† 0.47 0.30 0.42 0.22† 0.15† 0.17†

RBMT5 0.12† 0.26† 0.59? 0.42 0.40 0.33 0.28 0.24†

RBMT6 0.25† 0.22† 0.6† 0.61† 0.63† 0.50 0.36 0.33
SAAR 0.28 0.63 0.66† 0.56 0.7† 0.62 0.46 0.45

UEDIN 0.24? 0.42 0.75† 0.66† 0.73† 0.68† 0.51 0.36
> OTHERS 0.19 0.28 0.64 0.54 0.61 0.54 0.40 0.3 0.27
≥ OTHERS 0.36 0.43 0.79 0.66 0.75 0.67 0.56 0.46 0.44

Table 27: Sentence-level ranking for the English-German News Task.
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CMU-GIMPEL 0.29 0.28 0.41 0.49 0.56 0.44 0.24† 0.09? 0.24? 0.52
LIMSI 0.45 0.31 0.48 0.45 0.54 0.40 0.35 0.40 0.29? 0.47

LIU 0.34 0.47 0.56 0.44 0.65? 0.37 0.30 0.31 0.19† 0.50
RBMT2 0.51 0.48 0.41 0.41 0.48 0.22† 0.24? 0.62 0.26? 0.43
RBMT3 0.40 0.50 0.47 0.47 0.60 0.33 0.3? 0.11 0.26? 0.50
RBMT4 0.39 0.37 0.27? 0.41 0.35 0.22† 0.14† 0.25 0.33 0.46
RBMT5 0.49 0.47 0.54 0.64† 0.60 0.64† 0.32 0.47 0.45 0.64†

RBMT6 0.71† 0.50 0.58 0.57? 0.65? 0.74† 0.46 0.41 0.36 0.60
SAAR 0.73? 0.40 0.39 0.39 0.78 0.58 0.47 0.35 0.31 0.50

UCL 0.61? 0.6? 0.67† 0.59? 0.68? 0.64 0.53 0.51 0.62 0.70†

UEDIN 0.25 0.27 0.30 0.52 0.41 0.49 0.26† 0.31 0.25 0.23†

> OTHERS 0.47 0.43 0.43 0.51 0.51 0.59 0.36 0.3 0.37 0.3 0.54
≥ OTHERS 0.61 0.58 0.58 0.62 0.58 0.68 0.47 0.43 0.53 0.39 0.67

Table 28: Sentence-level ranking for the English-German Europarl Task.
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CMU-SMT 0.41 0.62? 0.33 0.54? 0.57† 0.42 0.46 0.46 0.29 0.34 0.37
CUED 0.29 0.24 0.27 0.54? 0.76† 0.61? 0.50 0.39 0.46 0.26 0.42

CUED-CONTRAST 0.19? 0.24 0.23 0.47 0.48 0.28 0.41 0.37 0.26 0.26 0.33
LIMSI 0.33 0.30 0.51 0.41 0.56† 0.47 0.41 0.46 0.33 0.37 0.43

RBMT3 0.19? 0.23? 0.37 0.43 0.39 0.28 0.3 0.33 0.39 0.30 0.49
RBMT4 0.19† 0.14† 0.27 0.21† 0.27 0.21† 0.30 0.27 0.17† 0.29? 0.23?

RBMT5 0.37 0.19? 0.56 0.35 0.47 0.57† 0.56 0.43 0.24? 0.35 0.52
RBMT6 0.41 0.30 0.29 0.39 0.43 0.50 0.25 0.46 0.34 0.44 0.46

SAAR 0.29 0.25 0.43 0.32 0.50 0.42 0.33 0.31 0.2? 0.26 0.3
UCB 0.29 0.36 0.52 0.49 0.46 0.61† 0.6? 0.41 0.56? 0.39 0.28

UEDIN 0.39 0.37 0.52 0.30 0.50 0.61? 0.58 0.39 0.46 0.24 0.44
UPC 0.26 0.36 0.47 0.35 0.40 0.59? 0.32 0.42 0.46 0.33 0.41

> OTHERS 0.29 0.28 0.43 0.34 0.45 0.55 0.39 0.40 0.42 0.29 0.34 0.39
≥ OTHERS 0.57 0.56 0.67 0.58 0.67 0.77 0.58 0.61 0.67 0.54 0.56 0.60

Table 29: Sentence-level ranking for the Spanish-English News Task.
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CMU-SMT 0.36 0.38 0.37 0.10† 0.20† 0.14† 0.32 0.39 0.22 0.25 0.38
CUED 0.40 0.38 0.53 0.33 0.30 0.30 0.20† 0.32 0.08† 0.36 0.29

DCU 0.34 0.38 0.46 0.32 0.19? 0.26? 0.21? 0.32 0.33 0.25 0.46
LIMSI 0.31 0.30 0.21 0.05† 0.09† 0.15† 0.18? 0.24 0.10† 0.19 0.48

RBMT3 0.83† 0.62 0.58 0.73† 0.56 0.25 0.37 0.60† 0.31 0.66? 0.78†

RBMT4 0.73† 0.54 0.76? 0.74† 0.28 0.38 0.24 0.53 0.29 0.56 0.65?

RBMT5 0.79† 0.55 0.67? 0.75† 0.58 0.57 0.59? 0.70† 0.44 0.71? 0.67
RBMT6 0.52 0.77† 0.66? 0.68? 0.42 0.49 0.18? 0.55 0.41 0.54 0.71

SAAR 0.43 0.42 0.41 0.47 0.20† 0.32 0.17† 0.30 0.22? 0.35 0.32
UCL 0.56 0.71† 0.56 0.70† 0.42 0.57 0.33 0.44 0.59? 0.81† 0.67

UEDIN 0.28 0.46 0.39 0.31 0.29? 0.42 0.25? 0.39 0.35 0.15† 0.40
UPC 0.44 0.39 0.43 0.36 0.07† 0.23? 0.24 0.29 0.27 0.20 0.40

> OTHERS 0.50 0.5 0.49 0.53 0.28 0.36 0.24 0.32 0.44 0.26 0.45 0.51
≥ OTHERS 0.71 0.68 0.68 0.78 0.43 0.49 0.35 0.47 0.67 0.43 0.66 0.69

Table 30: Sentence-level ranking for the Spanish-English Europarl Task.
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CMU-SMT 0.39 0.57 0.52? 0.62† 0.56? 0.50 0.41 0.42 0.56†
LIMSI 0.42 0.56 0.53 0.63? 0.58 0.32 0.39 0.35 0.35

RBMT3 0.23 0.3 0.34 0.46 0.50 0.39 0.17 0.21† 0.06?

RBMT4 0.25? 0.30 0.47 0.31 0.35 0.38 0.36 0.32 0.19
RBMT5 0.21† 0.20? 0.28 0.42 0.42 0.29? 0.24 0.17† 0.23
RBMT6 0.23? 0.23 0.31 0.41 0.42 0.23? 0.19 0.24? 0.24

SAAR 0.36 0.52 0.39 0.43 0.67? 0.54? 0.36 0.29 0.42
UCB 0.37 0.39 0.52 0.39 0.49 0.52 0.46 0.27 0.25

UEDIN 0.35 0.48 0.62† 0.48 0.64† 0.61? 0.50 0.47 0.53?

UPC 0.11† 0.41 0.63? 0.48 0.50 0.57 0.42 0.63 0.06?

> OTHERS 0.28 0.36 0.47 0.45 0.52 0.51 0.38 0.34 0.27 0.33
≥ OTHERS 0.49 0.54 0.68 0.67 0.72 0.72 0.55 0.59 0.48 0.60

Table 31: Sentence-level ranking for the English-Spanish News Task.
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CMU-SMT 0.28 0.47 0.33 0.17† 0.26 0.50 0.25 0.48? 0.44 0.28
LIMSI 0.38 0.19? 0.33 0.16? 0.23 0.33 0.14† 0.14 0.35 0.32

RBMT3 0.42 0.62? 0.42 0.36 0.29 0.54 0.28 0.39 0.50 0.75†
RBMT4 0.46 0.47 0.42 0.19 0.31 0.61 0.50 0.40 0.50 0.57
RBMT5 0.70† 0.64? 0.59 0.48 0.35 0.65? 0.52 0.64 0.61 0.63?

RBMT6 0.63 0.58 0.47 0.56 0.50 0.78† 0.32 0.58 0.33 0.71?

SAAR 0.33 0.40 0.33 0.30 0.23? 0.19† 0.20 0.27 0.24 0.33
UCL 0.46 0.64† 0.41 0.46 0.36 0.41 0.60 0.65? 0.42 0.57?

UEDIN 0.09? 0.29 0.48 0.45 0.28 0.27 0.41 0.19? 0.25 0.17
UPC 0.22 0.40 0.50 0.43 0.28 0.40 0.52 0.26 0.56 0.58
UW 0.44 0.32 0.06† 0.29 0.17? 0.21? 0.33 0.14? 0.33 0.33

> OTHERS 0.43 0.46 0.4 0.4 0.26 0.28 0.53 0.28 0.46 0.4 0.49
≥ OTHERS 0.67 0.74 0.55 0.56 0.41 0.44 0.72 0.50 0.71 0.59 0.74

Table 32: Sentence-level ranking for the English-Spanish Europarl Task.

DCU UEDIN UMD

DCU 0.26† 0.4
UEDIN 0.37† 0.46†

UMD 0.4 0.31†

> OTHERS 0.38 0.28 0.43
≥ OTHERS 0.68 0.58 0.65

Table 33: Sentence-level ranking for the Czech-English News Task.

DCU SYSTRAN UEDIN UMD

DCU 0.21† 0.19† 0.37
SYSTRAN 0.59† 0.47† 0.61†

UEDIN 0.42† 0.27† 0.50†

UMD 0.38 0.18† 0.29†

> OTHERS 0.46 0.22 0.31 0.49
≥ OTHERS 0.75 0.45 0.60 0.72

Table 34: Sentence-level ranking for the Czech-English Commentary Task.

CU-BOJAR CU-TECTOMT PC-TRANSLATOR UEDIN

CU-BOJAR 0.32† 0.51† 0.27†

CU-TECTOMT 0.52† 0.58† 0.42
PC-TRANSLATOR 0.35† 0.25† 0.26†

UEDIN 0.5† 0.40 0.59†
> OTHERS 0.45 0.32 0.56 0.32
≥ OTHERS 0.63 0.49 0.72 0.50

Table 35: Sentence-level ranking for the English-Czech News Task.

CU-BOJAR CU-TECTOMT PC-TRANSLATOR UEDIN

CU-BOJAR 0.28† 0.38 0.19†

CU-TECTOMT 0.58† 0.53† 0.43
PC-TRANSLATOR 0.45 0.3† 0.26†

UEDIN 0.60† 0.37 0.56†
> OTHERS 0.54 0.32 0.49 0.29
≥ OTHERS 0.71 0.49 0.66 0.49

Table 36: Sentence-level ranking for the English-Czech Commentary Task.
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MLOGIC UEDIN

MORPHOLOGIC 0.15†

UEDIN 0.68†
> OTHERS 0.68 0.15
≥ OTHERS 0.85 0.32

Table 37: Sentence-level ranking for the Hungarian-English News Task.
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CMU-XFR 0.37 0.49† 0.62† 0.57† 0.61† 0.49 0.49 0.48? 0.41 0.56† 0.39 0.46?

CUED 0.28 0.21 0.30 0.30 0.13 0.28 0.18 0.27 0.28 0.31 0.34 0.18
CUED-C 0.2† 0.11 0.30? 0.19 0.33 0.18† 0.21 0.24 0.2† 0.2? 0.17? 0.24

LIMSI 0.13† 0.20 0.13? 0.27 0.22 0.23 0.24 0.2 0.20? 0.16? 0.23 0.22
LIUM-SYS 0.18† 0.17 0.27 0.17 0.20 0.18? 0.41 0.29 0.24 0.26 0.22 0.26

LI-SYS-C 0.18† 0.28 0.24 0.25 0.07 0.33 0.2? 0.27 0.18† 0.23 0.25 0.19
RBMT3 0.28 0.34 0.52† 0.28 0.40? 0.37 0.27 0.46† 0.27 0.30 0.39 0.34
RBMT4 0.29 0.40 0.34 0.31 0.39 0.43? 0.33 0.34 0.34 0.27 0.41 0.31
RBMT5 0.22? 0.24 0.34 0.3 0.27 0.43 0.14† 0.24 0.13? 0.32 0.32 0.32
RBMT6 0.3 0.41 0.50† 0.39? 0.33 0.58† 0.3 0.33 0.37? 0.33 0.52? 0.37

SAAR 0.27† 0.33 0.43? 0.37? 0.4 0.42 0.41 0.36 0.32 0.41 0.23 0.41
SAAR-C 0.28 0.32 0.38? 0.27 0.27 0.45 0.23 0.21 0.20 0.23? 0.18 0.19

UED 0.19? 0.15 0.20 0.25 0.29 0.19 0.28 0.27 0.19 0.24 0.21 0.26
> OTHERS 0.24 0.27 0.33 0.32 0.32 0.37 0.29 0.28 0.30 0.27 0.29 0.31 0.29
≥ OTHERS 0.51 0.75 0.79 0.80 0.77 0.78 0.65 0.66 0.73 0.62 0.64 0.74 0.77

Table 38: Constituent ranking for the French-English News Task
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CMU-XFR 0.42† 0.4† 0.37? 0.54† 0.16? 0.21 0.41 0.23 0.49† 0.42† 0.34 0.45 0.50†

CUED 0.03† 0.13 0.08 0.14 0.13† 0.13† 0.08† 0.05† 0.08 0.04 0.15 0.11 0.07
DCU 0.09† 0.08 0.10 0.12 0.06† 0.20 0.31 0.16† 0.14 0.22 0.13 0.10 0.16

LIMSI 0.1? 0.05 0.19 0.05 0.04† 0.08† 0.19 0.11† 0.18 0.09 0.05† 0.05†

LIUM-SYS 0.03† 0.14 0.19 0.07 0 0.08? 0.03† 0.05† 0.03† 0.09 0.15 0.14 0.08
RBMT3 0.44? 0.61† 0.50† 0.58† 0.56† 0.41? 0.38 0.32 0.37 0.53† 0.44 0.50? 0.58†

RBMT4 0.39 0.44† 0.43 0.45† 0.35? 0.12? 0.31 0.23 0.42 0.39 0.33 0.32 0.35
RBMT5 0.19 0.47† 0.29 0.35 0.37† 0.18 0.17 0.23 0.35 0.33 0.19 0.46 0.40
RBMT6 0.36 0.65† 0.54† 0.48† 0.55† 0.26 0.40 0.50 0.50† 0.52† 0.47? 0.60† 0.44

SAAR 0.07† 0.25 0.24 0.18 0.37† 0.23 0.36 0.23 0.12† 0.12 0.23 0.13 0.37?

SAAR-C 0.09† 0.18 0.12 0.16 0.16 0.09† 0.18 0.2 0.06† 0.12 0.09 0.14 0.15
SYSTRAN 0.34 0.40 0.21 0.38† 0.23 0.25 0.36 0.22 0.15? 0.23 0.28 0.31 0.30?

UCL 0.25 0.34 0.28 0.31† 0.19 0.11? 0.24 0.23 0.11† 0.24 0.31 0.34 0.37?

UED 0.10† 0.10 0.16 0.05 0.08 0.03† 0.15 0.14 0.18 0.07? 0.13 0.07? 0.11?

> OTHERS 0.2 0.32 0.27 0.28 0.28 0.12 0.22 0.25 0.15 0.26 0.27 0.22 0.25 0.28
≥ OTHERS 0.63 0.91 0.85 0.91 0.92 0.52 0.65 0.7 0.52 0.78 0.87 0.71 0.74 0.89

Table 39: Constituent ranking for the French-English Europarl Task
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LIMSI 0.27 0.43 0.43 0.29 0.53? 0.32 0.37 0.30 0.14†

LIUM-SYSTRAN 0.09 0.33 0.36 0.18 0.35 0.16? 0.25 0.22 0.13†

RBMT3 0.36 0.33 0.22 0.31 0.28 0.4 0.26 0.26? 0.20†

RBMT4 0.25 0.26 0.30 0.23 0.16† 0.28 0.26 0.24 0.13†

RBMT5 0.31 0.33 0.22 0.28 0.17 0.27 0.25 0.23 0.13†

RBMT6 0.26? 0.30 0.31 0.38† 0.32 0.33 0.36 0.39 0.25?

SAAR 0.32 0.41? 0.35 0.38 0.32 0.28 0.14 0.23 0.11†

SAAR-CONTRAST 0.25 0.26 0.36 0.30 0.33 0.36 0.05 0.22 0.13†

UEDIN 0.29 0.34 0.45? 0.4 0.33 0.40 0.31 0.35 0.13†

XEROX 0.66† 0.55† 0.61† 0.65† 0.58† 0.51? 0.53† 0.57† 0.45†
> OTHERS 0.31 0.34 0.38 0.38 0.33 0.33 0.3 0.31 0.29 0.15
≥ OTHERS 0.65 0.76 0.72 0.77 0.76 0.67 0.73 0.75 0.66 0.44

Table 40: Constituent ranking for the English-French News Task
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LIMSI 0.14 0.09† 0.10† 0.24 0.11† 0.13 0.08† 0.12
LIUM-SYSTRAN 0.19† 0.19? 0.15 0.12† 0.06 0.06† 0.09

RBMT3 0.65† 0.59† 0.33 0.43 0.32 0.50? 0.39 0.46†

RBMT4 0.53† 0.47? 0.19 0.27 0.18? 0.33 0.38 0.39
RBMT5 0.48 0.38 0.32 0.48 0.47 0.55† 0.44 0.51†

RBMT6 0.54† 0.49† 0.32 0.41? 0.26 0.52† 0.45 0.58†

SAAR 0.21 0.17 0.23? 0.25 0.21† 0.17† 0.19 0.13
UCL 0.37† 0.33† 0.38 0.35 0.36 0.32 0.34 0.31†

UEDIN 0.12 0.11 0.17† 0.23 0.13† 0.13† 0.07 0.07†

> OTHERS 0.38 0.36 0.25 0.30 0.26 0.24 0.33 0.27 0.34
≥ OTHERS 0.88 0.88 0.56 0.68 0.55 0.56 0.81 0.66 0.87

Table 41: Constituent ranking for the English-French Europarl Task
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CMU-STATXFER 0.47† 0.44 0.52† 0.53† 0.57† 0.49? 0.41 0.49 0.58† 0.49†

LIMSI 0.17† 0.18 0.35 0.34 0.40 0.33 0.43 0.19 0.28 0.19
LIU 0.25 0.3 0.37 0.35 0.44 0.28 0.40 0.21 0.33 0.32?

RBMT2 0.19† 0.26 0.30 0.19 0.32 0.16? 0.20 0.26 0.23 0.21
RBMT3 0.22† 0.36 0.26 0.23 0.24 0.23 0.14† 0.15 0.28 0.29
RBMT4 0.20† 0.35 0.23 0.21 0.24 0.22 0.19? 0.36 0.32 0.31
RBMT5 0.26? 0.28 0.38 0.34? 0.31 0.35 0.26 0.3 0.43† 0.35
RBMT6 0.38 0.37 0.39 0.34 0.44† 0.4? 0.30 0.28 0.26 0.38

SAAR 0.29 0.22 0.37 0.29 0.10 0.28 0.19 0.22 0.26 0.18
SAAR-CONTRAST 0.18† 0.33 0.29 0.19 0.22 0.24 0.15† 0.26 0.18 0.23

UEDIN 0.11† 0.3 0.13? 0.23 0.35 0.3 0.2 0.37 0.30 0.31
> OTHERS 0.22 0.33 0.3 0.31 0.32 0.35 0.25 0.29 0.28 0.33 0.30
≥ OTHERS 0.50 0.72 0.67 0.77 0.76 0.74 0.67 0.64 0.76 0.78 0.74

Table 42: Constituent ranking for the German-English News Task
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CMU-STATXFER 0.51† 0.51† 0.38 0.38 0.41 0.37 0.44 0.48† 0.39 0.6†

LIMSI 0.18† 0.22 0.3 0.30 0.23 0.22† 0.32 0.27 0.18? 0.29
LIU 0.14† 0.22 0.26? 0.32 0.22? 0.16† 0.31 0.20 0.08† 0.12

RBMT2 0.38 0.51 0.52? 0.40 0.32 0.25 0.31 0.51 0.40 0.7†

RBMT3 0.32 0.42 0.45 0.28 0.46 0.16 0.20? 0.56† 0.38 0.43
RBMT4 0.32 0.45 0.52? 0.31 0.24 0.13† 0.30 0.49† 0.44 0.48?

RBMT5 0.44 0.57† 0.53† 0.34 0.31 0.43† 0.19 0.54† 0.39 0.54†
RBMT6 0.33 0.51 0.48 0.33 0.47? 0.33 0.33 0.47? 0.42 0.51?

SAAR 0.12† 0.1 0.15 0.26 0.09† 0.19† 0.17† 0.23? 0.11† 0.14
UCL 0.30 0.43? 0.49† 0.40 0.40 0.30 0.41 0.39 0.38† 0.51†

UEDIN 0.11† 0.16 0.12 0.18† 0.25 0.2? 0.18† 0.23? 0.14 0.12†

> OTHERS 0.27 0.40 0.41 0.31 0.32 0.32 0.25 0.3 0.41 0.30 0.44
≥ OTHERS 0.55 0.75 0.8 0.58 0.64 0.64 0.58 0.59 0.84 0.60 0.83

Table 43: Constituent ranking for the German-English Europarl Task
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LIMSI 0.29 0.46 0.45 0.37 0.36 0.29† 0.33 0.22
LIU 0.32 0.53† 0.45? 0.51† 0.5? 0.38 0.31 0.36

RBMT2 0.33 0.32† 0.29 0.29 0.20† 0.25† 0.28 0.28†

RBMT3 0.34 0.3? 0.4 0.33 0.3? 0.34 0.20? 0.27†

RBMT4 0.26 0.25† 0.31 0.3 0.23? 0.23† 0.20? 0.21†

RBMT5 0.46 0.33? 0.55† 0.46? 0.40? 0.32 0.32 0.29†

RBMT6 0.52† 0.40 0.47† 0.44 0.53† 0.40 0.27 0.37
SAAR 0.38 0.3 0.39 0.42? 0.44? 0.40 0.44 0.34

UEDIN 0.30 0.24 0.53† 0.52† 0.51† 0.56† 0.45 0.36
> OTHERS 0.36 0.31 0.46 0.41 0.42 0.37 0.33 0.28 0.29
≥ OTHERS 0.65 0.57 0.72 0.68 0.75 0.60 0.56 0.61 0.56

Table 44: Constituent ranking for the English-German News Task
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CMU-GIMPEL 0.12 0.27 0.21† 0.30 0.21† 0.27? 0.21† 0.22 0.22 0.23
LIMSI 0.22 0.22 0.34 0.29? 0.29† 0.23† 0.29† 0.2 0.21 0.19

LIU 0.18 0.2 0.20† 0.25? 0.17† 0.16† 0.12† 0.28 0.21 0.18
RBMT2 0.54† 0.41 0.62† 0.28 0.33 0.35 0.28 0.61? 0.43 0.47†

RBMT3 0.47 0.47? 0.47? 0.4 0.33 0.32 0.28 0.56? 0.47 0.48†

RBMT4 0.52† 0.57† 0.52† 0.42 0.32 0.27? 0.28 0.47 0.45 0.39
RBMT5 0.49? 0.57† 0.65† 0.42 0.38 0.48? 0.31 0.76† 0.51 0.52†

RBMT6 0.51† 0.54† 0.60† 0.41 0.39 0.40 0.41 0.51? 0.53? 0.51†

SAAR 0.24 0.29 0.17 0.26? 0.22? 0.25 0.20† 0.21? 0.31 0.12
UCL 0.28 0.32 0.29 0.33 0.38 0.32 0.32 0.29? 0.19 0.30

UEDIN 0.1 0.13 0.22 0.2† 0.18† 0.22 0.21† 0.18† 0.15 0.17
> OTHERS 0.37 0.37 0.42 0.32 0.30 0.31 0.28 0.25 0.39 0.35 0.35
≥ OTHERS 0.77 0.75 0.81 0.58 0.59 0.58 0.51 0.52 0.77 0.69 0.82

Table 45: Constituent ranking for the English-German Europarl Task
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CMU-SMT 0.19 0.17 0.26 0.38 0.27 0.45 0.32 0.35 0.27 0.26 0.2
CUED 0.21 0.21 0.24 0.24 0.2 0.34 0.25 0.27 0.18 0.26 0.21

CUED-CONTRAST 0.17 0.08 0.12 0.24 0.23? 0.27 0.25 0.21 0.12 0.11 0.26
LIMSI 0.17 0.25 0.26 0.34 0.18† 0.33 0.33 0.31 0.17 0.26 0.23

RBMT3 0.29 0.31 0.35 0.37 0.21 0.4 0.31 0.32 0.43 0.42 0.52?

RBMT4 0.38 0.34 0.54? 0.47† 0.35 0.24 0.32 0.46† 0.37 0.40 0.53
RBMT5 0.24 0.31 0.40 0.33 0.25 0.18 0.31 0.33 0.32 0.28 0.38
RBMT6 0.33 0.29 0.28 0.33 0.26 0.27 0.16 0.26 0.3 0.39 0.41

SAAR 0.26 0.27 0.33 0.26 0.21 0.12† 0.25 0.24 0.20 0.28 0.20
UCB 0.25 0.30 0.23 0.27 0.31 0.27 0.40 0.34 0.28 0.32 0.26

UEDIN 0.19 0.20 0.19 0.24 0.27 0.33 0.31 0.27 0.21 0.21 0.25
UPC 0.1 0.21 0.17 0.2 0.22? 0.28 0.4 0.24 0.29 0.30 0.2

> OTHERS 0.24 0.25 0.28 0.28 0.28 0.23 0.33 0.29 0.3 0.26 0.3 0.32
≥ OTHERS 0.72 0.76 0.82 0.74 0.64 0.61 0.7 0.70 0.76 0.71 0.76 0.76

Table 46: Constituent ranking for the Spanish-English News Task
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CMU-SMT 0.2 0.20 0.1 0.1† 0.18† 0.04† 0.18† 0.16 0.17 0.19 0.19
CUED 0.18 0.13 0.19 0.14† 0.12† 0.1† 0.2? 0.13 0.12? 0.22 0.12

DCU 0.15 0.13 0.11 0.09† 0.10† 0.13† 0.09† 0.19 0.15? 0.14 0.15
LIMSI 0.03 0.15 0.16 0.19† 0.18† 0.15† 0.19† 0.19 0.08† 0.07 0.22

RBMT3 0.7† 0.73† 0.59† 0.49† 0.19 0.36 0.22 0.62† 0.55? 0.68† 0.73†

RBMT4 0.55† 0.62† 0.51† 0.55† 0.23 0.22 0.17 0.56† 0.43 0.56† 0.44?

RBMT5 0.60† 0.61† 0.53† 0.61† 0.32 0.38 0.28 0.63† 0.53 0.7† 0.59†

RBMT6 0.52† 0.48? 0.51† 0.49† 0.23 0.26 0.19 0.49† 0.53? 0.52† 0.50†

SAAR 0.14 0.10 0.12 0.15 0.10† 0.12† 0.05† 0.07† 0.14? 0.05 0.18
UCL 0.38 0.37? 0.46? 0.45† 0.28? 0.32 0.29 0.24? 0.38? 0.38? 0.36

UEDIN 0.06 0.14 0.14 0.18 0.15† 0.16† 0.05† 0.16† 0.15 0.10? 0.21
UPC 0.19 0.12 0.20 0.12 0.07† 0.17? 0.09† 0.14† 0.04 0.17 0.14

> OTHERS 0.32 0.33 0.32 0.32 0.17 0.2 0.15 0.17 0.33 0.28 0.34 0.35
≥ OTHERS 0.85 0.85 0.87 0.85 0.46 0.56 0.47 0.57 0.89 0.65 0.87 0.87

Table 47: Constituent ranking for the Spanish-English Europarl Task
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CMU-SMT 0.20 0.36 0.37 0.24† 0.36 0.32 0.21 0.17 0.27
LIMSI 0.23 0.4 0.46? 0.33 0.39 0.31 0.23 0.17 0.18

RBMT3 0.33 0.35 0.22 0.19† 0.3 0.31 0.49 0.34 0.22
RBMT4 0.30 0.25? 0.25 0.17? 0.17? 0.24 0.19† 0.34 0.30
RBMT5 0.53† 0.42 0.50† 0.41? 0.35 0.50? 0.44 0.37 0.29
RBMT6 0.36 0.35 0.34 0.39? 0.32 0.35 0.36 0.37 0.38

SAAR 0.33 0.36 0.38 0.28 0.24? 0.38 0.29 0.22? 0.24
UCB 0.32 0.29 0.35 0.54† 0.33 0.45 0.31 0.19 0.29

UEDIN 0.29 0.33 0.36 0.42 0.42 0.39 0.45? 0.30 0.44
UPC 0.36 0.42 0.50 0.49 0.42 0.44 0.51 0.21 0.26

> OTHERS 0.34 0.33 0.38 0.39 0.29 0.35 0.36 0.31 0.27 0.29
≥ OTHERS 0.72 0.69 0.69 0.75 0.57 0.64 0.7 0.65 0.63 0.6

Table 48: Constituent ranking for the English-Spanish News Task
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CMU-SMT 0.13 0.10† 0.21? 0.2† 0.2† 0.26 0.22 0.13 0.16 0.14
LIMSI 0.17 0.24 0.16† 0.20† 0.13† 0.21 0.06† 0.09 0.14 0.08

RBMT3 0.64† 0.45 0.24 0.30 0.21 0.57† 0.56 0.58? 0.32 0.58†

RBMT4 0.54? 0.52† 0.42 0.26 0.24 0.50? 0.35 0.43 0.47 0.44
RBMT5 0.61† 0.68† 0.46 0.44 0.37 0.64† 0.50 0.63† 0.62† 0.54
RBMT6 0.57† 0.48† 0.39 0.33 0.25 0.52† 0.33 0.54† 0.46 0.46

SAAR 0.19 0.14 0.07† 0.19? 0.09† 0.14† 0.13† 0.17 0.26 0.18
UCL 0.43 0.46† 0.29 0.37 0.38 0.42 0.49† 0.37? 0.48 0.40

UEDIN 0.15 0.11 0.24? 0.20 0.13† 0.17† 0.30 0.14? 0.20 0.20
UPC 0.26 0.05 0.35 0.25 0.16† 0.23 0.34 0.21 0.23 0.10
UW 0.14 0.14 0.17† 0.22 0.23 0.2 0.32 0.20 0.20 0.35

> OTHERS 0.37 0.32 0.28 0.26 0.22 0.23 0.42 0.27 0.35 0.35 0.33
≥ OTHERS 0.83 0.86 0.56 0.59 0.46 0.57 0.85 0.59 0.82 0.78 0.79

Table 49: Constituent ranking for the English-Spanish Europarl Task

CU-BOJAR CU-TECTOMT PC-TRANSLATOR UEDIN
CU-BOJAR 0.33 0.41 0.28?

CU-TECTOMT 0.37 0.42† 0.36
PC-TRANSLATOR 0.34 0.31† 0.32†

UEDIN 0.37? 0.37 0.43†
> OTHERS 0.36 0.34 0.42 0.32
≥ OTHERS 0.66 0.62 0.67 0.61

Table 50: Constituent ranking for the English-Czech News Task

CU-BOJAR CU-TECTOMT PC-TRANSLATOR UEDIN

CU-BOJAR 0.25† 0.33† 0.22†

CU-TECTOMT 0.50† 0.44† 0.45
PC-TRANSLATOR 0.47† 0.3† 0.40

UEDIN 0.39† 0.37 0.39
> OTHERS 0.45 0.31 0.39 0.36
≥ OTHERS 0.73 0.54 0.61 0.61

Table 51: Constituent ranking for the English-Czech Commentary Task
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French–English English–French
Europarl YES NO
CMU-XFR 0.61 0.39

CUED 0.83 0.17
DCU 0.88 0.12

LIMSI 0.89 0.11
LIUM-SYS 0.89 0.11

RBMT3 0.54 0.47
RBMT4 0.62 0.38
RBMT5 0.71 0.29
RBMT6 0.54 0.46

SAAR 0.72 0.28
SAAR-C 0.86 0.14

SYSTRAN 0.81 0.19
UCL 0.73 0.27

UEDIN 0.91 0.09

News YES NO
CMU-XFR 0.55 0.45

CUED 0.74 0.26
CUED-C 0.79 0.21

LIMSI 0.81 0.2
LIUM-SYS 0.79 0.21

LI-SYS-C 0.7 0.30
RBMT3 0.63 0.37
RBMT4 0.64 0.36
RBMT5 0.76 0.24
RBMT6 0.66 0.34

SAAR 0.64 0.36
SAAR-C 0.70 0.3

UEDIN 0.72 0.28

Europarl YES NO
LIMSI 0.75 0.26

LIUM-SYS 0.84 0.16
RBMT3 0.49 0.51
RBMT4 0.50 0.5
RBMT5 0.44 0.56
RBMT6 0.35 0.65

SAAR 0.70 0.3
UCL 0.6 0.40

UEDIN 0.75 0.25

News YES NO
LIMSI 0.73 0.27

LIUM-SYS 0.75 0.25
RBMT3 0.59 0.41
RBMT4 0.59 0.41
RBMT5 0.64 0.36
RBMT6 0.58 0.42

SAAR 0.59 0.41
SAAR-C 0.59 0.41

UEDIN 0.63 0.37
XEROX 0.30 0.7

German–English English–German
Europarl YES NO

CMU-XFER 0.53 0.47
LIMSI 0.80 0.2

LIU 0.83 0.17
RBMT2 0.76 0.24
RBMT3 0.74 0.26
RBMT4 0.67 0.33
RBMT5 0.63 0.37
RBMT6 0.63 0.37

SAAR 0.82 0.18
UCL 0.49 0.51

UEDIN 0.86 0.14

News YES NO
CMU-XFER 0.47 0.53

LIMSI 0.73 0.28
LIU 0.64 0.36

RBMT2 0.72 0.28
RBMT3 0.73 0.27
RBMT4 0.74 0.26
RBMT5 0.59 0.41
RBMT6 0.68 0.32

SAAR 0.67 0.33
SAAR-C 0.72 0.28

UEDIN 0.63 0.37

Europarl YES NO

CMU-GIMPEL 0.82† 0.18
LIMSI 0.79† 0.21

LIU 0.79† 0.21
RBMT2 0.69† 0.31
RBMT3 0.57 0.43
RBMT4 0.67† 0.34
RBMT5 0.45 0.55
RBMT6 0.47 0.53

SAAR 0.77† 0.23
UCL 0.61† 0.39

UEDIN 0.85† 0.15

News YES NO
LIMSI 0.56 0.44

LIU 0.49 0.51
RBMT2 0.69 0.31
RBMT3 0.69 0.31
RBMT4 0.75 0.25
RBMT5 0.55 0.45
RBMT6 0.6 0.40

SAAR 0.54 0.46
UEDIN 0.52 0.48

Spanish–English English–Spanish
Europarl YES NO
CMU-SMT 0.88 0.12

CUED 0.86 0.14
DCU 0.85 0.15

LIMSI 0.90 0.1
RBMT3 0.65 0.35
RBMT4 0.56 0.44
RBMT5 0.59 0.41
RBMT6 0.55 0.45

SAAR 0.87 0.13
UCL 0.73 0.27

UEDIN 0.88 0.12
UPC 0.86 0.14

News YES NO
CMU-SMT 0.64 0.37

CUED 0.64 0.36
CUED-C 0.69 0.31

LIMSI 0.68 0.33
RBMT3 0.61 0.39
RBMT4 0.65 0.35
RBMT5 0.59 0.41
RBMT6 0.64 0.37

SAAR 0.7 0.30
UCB 0.64 0.37

UEDIN 0.62 0.38
UPC 0.71 0.29

Europarl YES NO
CMU-SMT 0.80 0.2

LIMSI 0.87 0.13
RBMT3 0.58 0.42
RBMT4 0.6 0.40
RBMT5 0.64 0.37
RBMT6 0.60 0.40

SAAR 0.81 0.19
UCL 0.71 0.29

UEDIN 0.89 0.11
UPC 0.90 0.1
UW 0.79 0.22

News YES NO
CMU-SMT 0.46 0.54

LIMSI 0.53 0.47
RBMT3 0.64 0.36
RBMT4 0.76 0.24
RBMT5 0.6 0.40
RBMT6 0.62 0.38

SAAR 0.64 0.36
UCB 0.57 0.43

UEDIN 0.49 0.51
UPC 0.37 0.63

English–Czech
Commentary YES NO

CU-BOJAR 0.59 0.41
CU-TECTO 0.43 0.57
PC-TRANS 0.51 0.49

UEDIN 0.41 0.59

News YES NO
CU-BOJAR 0.54 0.46
CU-TECTO 0.42 0.58
PC-TRANS 0.52 0.48

UEDIN 0.44 0.56

Table 52: Yes/No Acceptability of Constituents
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Abstract

This paper describes our statistical machine
translation systems based on the Moses toolkit
for the WMT08 shared task. We address the
Europarl and News conditions for the follow-
ing language pairs: English with French, Ger-
man and Spanish. For Europarl, n-best rescor-
ing is performed using an enhanced n-gram
or a neuronal language model; for the News
condition, language models incorporate extra
training data. We also report unconvincing re-
sults of experiments with factored models.

1 Introduction

This paper describes our statistical machine trans-
lation systems based on the Moses toolkit for the
WMT 08 shared task. We address the Europarl and
News conditions for the following language pairs:
English with French, German and Spanish. For Eu-
roparl, n-best rescoring is performed using an en-
hanced n-gram or a neuronal language model, and
for the News condition, language models are trained
with extra training data. We also report unconvinc-
ing results of experiments with factored models.

2 Base System architecture

LIMSI took part in the evaluations on Europarl data
and on News data, translating French, German and
Spanish from and to English, amounting a total
of twelve evaluation conditions. Figure 1 presents
the generic overall architecture of LIMSI’s transla-
tion systems. They are fairly standard phrase-based

∗Univ. Montréal, felipe@iro.umontreal.ca
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Figure 1: Generic architecture of LIMSI’s SMT systems.
Depending on the condition, the decoder generates ei-
ther the final output or n-best lists. In the latter case,
the rescoring incorporates the same translation features,
except for a better target language model (see text).

translation systems (Och and Ney, 2004; Koehn et
al., 2003) and use Moses (Koehn et al., 2007) to
search for the best target sentence. The search uses
the following models: a phrase table, providing 4
scores and a phrase penalty, a lexicalized reordering
model (7 scores), a language model score and a word
penalty. These fourteen scores are weighted and lin-
early combined (Och and Ney, 2002; Och, 2003);
their respective weights are learned on development
data so as to maximize the BLEU score. In the fol-
lowing, we detail several aspects of our systems.

2.1 Translation models

The translation models deployed in our systems for
the europarl condition were trained on the provided
Europarl parallel data only. For the news condition,
they were trained on the Europarl data merged with
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the news-commentary parallel data, as depicted on
Figure 1. This setup was found to be more favor-
able than training on Europarl data only (for obvious
mismatching domain reasons) and than training on
news-commentary data only, most probably because
of a lack of coverage. Another, alternative way of
benefitting from the coverage of the Europarl corpus
and the relevance of the news-commentary corpus
is to use two phrase-tables in parallel, an interest-
ing feature of Moses. (Koehn and Schroeder, 2007)
found that this was the best way to “adapt” a transla-
tion system to the news-commentary task. These re-
sults are corroborated in (Déchelotte, 2007)1 , which
adapts a “European Parliament” system using a “Eu-
ropean and Spanish Parliaments” development set.
However, we were not able to reproduce those find-
ings for this evaluation. This might be caused by the
increase of the number of feature functions, from 14
to 26, due to the duplication of the phrase table and
the lexicalized reordering model.

2.2 Language Models

2.2.1 Europarl language models
The training of Europarl language models (LMs)

was rather conventional: for all languages used in
our systems, we used a 4-gram LM based on the
entire Europarl vocabulary and trained only on the
available Europarl training data. For French, for
instance, this yielded a model with a 0.2 out-of-
vocabulary (OOV) rate on our LM development set,
and a perplexity of 44.9 on the development data.
For French also, a more accurate n-gram LM was
used to rescore the first pass translation; this larger
model includes both Europarl and giga word corpus
of newswire text, lowering the perplexity to 41.9 on
the development data.

2.2.2 News language models
For this condition, we took advantage of the a

priori information that the test text would be of
newspaper/newswire genre and from the November-
december 2007 period. We consequently built much
larger LMs for translating both to French and to En-
glish, and optimized their combination on appropri-

1(Déchelotte, 2007) further found that giving an increased
weight to the small in-domain data could out-perform the setup
with two phrase-tables in parallel. We haven’t evaluated this
idea for this evaluation.

ate source of data. For French, we interpolated five
different LMs trained on corpus containing respec-
tively newspapers, newswire, news commentary and
Europarl data, and tuned their combination with text
downloaded from the Internet. Our best LM had an
OOV rate of about 2.1% and a perplexity of 111.26
on the testset. English LMs were built in a similar
manner, our largest model combining 4 LMs from
various sources, which, altogether, represent about
850M words. Its perplexity on the 2008 test set was
approximately 160, with an OOV rate of 2.7%.

2.2.3 Neural network language models
Neural-Network (NN) based continuous space

LMs similar to the ones in (Schwenk, 2007) were
also trained on Europarl data. These networks com-
pute the probabilities of all the words in a 8192 word
output vocabulary given a context in a larger, 65000-
word vocabulary. Each word in the context is first
associated with a numerical vector of dimension 500
by the input layer. The activity of the 500 neurons in
the hidden layer is computed as the hyperbolic tan-
gent of the weighted sum of these vectors, projecting
the context into a [−1, 1] hypercube of dimension
500. Final projection on a set of 8192 output neurons
yields the final probabilities through a softmax-ed,
weighted sum of the coordinates in the hypercube.
The final NN-based model is interpolated with the
main LM model in a 0.4-0.6 ratio, and yields a per-
plexity reduction of 9% relative with respect to the
n-gram LM on development data.

2.3 Tuning procedure

We use MERT, distributed with the Moses decoder,
to tune the first pass of the system. The weights
were adjusted to maximize BLEU on the develop-
ment data. For the baseline system, a dozen Moses
runs are necessary for each MERT optimization, and
several optimization runs were started and compared
during the system’s development. Tuning was per-
formed using dev2006 for the Europarl task and on
News commentary dev2007 for the news task.

2.4 Rescoring and post processing

For the Europarl condition, distinct 100 best trans-
lations from Moses were rescored with improved
LMs: when translating to French, we used the
French model described in section 2.2.1; when
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Es-En En-Es Fr-En En-Fr
baseline 32.21 31.62 32.41 29.31
Limsi 32.49 31.23 32.62 30.27

Table 1: Comparison of two tokenization policies
All results on Europarl test2007

CI system CS system
En→Fr 27.23 27.55
Fr→En 30.96 30.98

Table 2: Effect of training on true case texts, for English
to French (case INsensitive BLEU scores, untuned sys-
tems, results on test2006 dataset)

translating to English, we used the neuronal LM de-
scribed in section 2.2.3.

For all the “lowcase” systems (see below), recase-
ing was finally performed using our own recaseing
tool. Case is restored by creating a word graph al-
lowing all possible forms of caseing for each word
and each component of a compound word. This
word graph is then decoded using a cased 4-gram
LM to obtain the most likely form. In a final step,
OOV words (with respect to the source language
word list) are recased to match their original form.

3 Experiments with the base system

3.1 Word tokenization and case

We developed our own tokenizer for English, French
and Spanish, and used the baseline tokenizer for
German. Experiments on the 2007 test dataset for
Europarl task show the impact of the tokenization
on the BLEU scores, with 3-gram LMs. Results are
always improved with our own tokenizer, except for
English to Spanish (Table 1).

Our systems were initially trained on lowercase
texts, similarly to the proposed baseline system.
However, training on true case texts proved bene-
ficial when translating from English to French, even
when scoring in a case insensitive manner. Table 2
shows an approximate gain of 0.3 BLEU for that di-
rection, and no impact on French to English perfor-
mance. Our English-French systems are therefore
case sensitive.

3.2 Language Models
For Europarl, we experimented with LMs of increas-
ing orders: we found that using a 5-gram LM only
yields an insignificant improvement over a 4-gram
LM. As a result, we used 4-gram LMs for all our
first pass decodings. For the second pass, the use
of the Neural Network LMs, if used with an appro-
priate (tuned) weight, yields a small, yet consistent
improvement of BLEU for all pairs.

Performance on the news task are harder to ana-
lyze, due to the lack of development data. Throwing
in large set of in-domain data was obviously helpful,
even though we are currently unable to adequately
measure this effect.

4 Experiments with factored models

Even though these models were not used in our sub-
missions, we feel it useful to comment here our (neg-
ative) experiments with factored models.

4.1 Overview
In this work, factored models (Koehn and Hoang,
2007) are experimented with three factors : the sur-
face form, the lemma and the part of speech (POS).
The translation process is composed of different
mapping steps, which either translate input factors
into output factors, or generate additional output fac-
tors from existing output factors. In this work, four
mapping steps are used with two decoding paths.
The first path corresponds to the standard and di-
rect mapping of surface forms. The second decod-
ing path consists in two translation steps for respec-
tively POS tag and the lemmas, followed by a gener-
ation step which produces the surface form given the
POS-lemma couple. The system also includes three
reordering models.

4.2 Training
Factored models have been built to translate from
English to French for the news task. To estimate the
phrase and generation tables, the training texts are
first processed in order to compute the lemmas and
POS information. The English texts are tagged and
lemmatized using the English version of the Tree-
tagger2. For French, POS-tagging is carried out
with a French version of the Brill’s tagger trained

2http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
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on the MULTITAG corpus (Allauzen and Bonneau-
Maynard, 2008). Lemmatization is performed with
a French version of the Treetagger.

Three phrase tables are estimated with the Moses
utilities, one per factor. For the surface forms, the
parallel corpus is the concatenation of the official
training data for the tasks Europarl and News com-
mentary, whereas only the parallel data of news
commentary are used for lemmas and POS. For the
generation step, the table built on the parallel texts of
news commentary is augmented with a French dic-
tionary of 280 000 forms. The LM is the largest LM
available for French (see section 2.2.2).

4.3 Results and lessons learned

On the news test set of 2008, this system obtains a
BLEU score of 20.2, which is worse than our “stan-
dard” system (20.9). A similar experiment on the
Europarl task proved equally unsuccessful.

Using only models which ignore the surface form
of input words yields a poor system. Therefore, in-
cluding a model based on surface forms, as sug-
gested (Koehn and Hoang, 2007), is also neces-
sary. This indeed improved (+1.6 BLEU for Eu-
roparl) over using one single decoding path, but not
enough to match our baseline system performance.
These results may be explained by the use of auto-
matic tools (POS tagger and lemmatizer) that are not
entirely error free, and also, to a lesser extend, by the
noise in the test data. We also think that more effort
has to be put into the generation step.

Tuning is also a major issue for factored trans-
lation models. Dealing with 38 weights is an op-
timization challenge, which took MERT 129 itera-
tions to converge. The necessary tradeoff between
the huge memory requirements of these techniques
and computation time is also detrimental to their use.

Although quantitative results were unsatisfactory,
it is finally worth mentioning that a manual exami-
nation of the output revealed that the explicit usage
of gender and number in our models (via POS tags)
may actually be helpful when translating to French.

5 Conclusion

In this paper, we presented our statistical MT sys-
tems developed for the WMT 08 shared task. As ex-
pected, regarding the Europarl condition, our BLEU

improvements over the best 2007 results are limited:
paying attention to tokenization and caseing issues
brought us a small pay-off; rescoring with better
language models gave also some reward. The news
condition was new, and more challenging: our satis-
factory results can be attributed to the use of large,
well tuned, language models. In comparison, our ex-
periments with factored models proved disappoint-
ing, for reasons that remain to be clarified. On a
more general note, we feel that the performance of
MT systems for these tasks are somewhat shadowed
by normalization issues (tokenization errors, incon-
sistent use of caseing, typos, etc), making it difficult
to clearly analyze our systems’ performance.
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Abstract 

In this article, we present MetaMorpho, a rule 
based machine translation system that was 
used to create MorphoLogic’s submission to 
the WMT08 shared Hungarian to English 
translation task. The architecture of Meta-
Morpho does not fit easily into traditional 
categories of rule based systems: the building 
blocks of its grammar are pairs of rules that 
describe source and target language structures 
in a parallel fashion and translated structures 
are created while parsing the input.  

1 Introduction 

Three rule-based approaches to MT are tradition-
ally distinguished: direct, interlingua and transfer. 
The direct method uses a primitive one-stage proc-
ess in which words in the source language are re-
placed with words in the target language and then 
some rearrangement is done. The main idea behind 
the interlingua method is that the analysis of any 
source language should result in a language-
independent representation. The target language is 
then generated from that language-neutral repre-
sentation. The transfer method first parses the sen-
tence of the source language. It then applies rules 
that map the lexical and grammatical segments of 
the source sentence to a representation in the target 
language. 
The MetaMorpho machine translation system de-
veloped at MorphoLogic (Prószéky and Tihanyi, 
2002), cannot be directly classified in either of the 
above categories, although it has the most in com-
mon with the transfer type architecture.  

2 Translation via immediate transfer 

In the MetaMorpho system, both productive 
rules of grammar and lexical entries are stored in 
the form of patterns, which are like context-free 
rules enriched with features. Patterns may contain 
more-or-less underspecified slots, ranging from 
general productive rules of grammar through more-
or-less idiomatic phrases to fully lexicalized items. 
The majority of the patterns (a couple of hundreds 
of thousands in the case of our English grammar) 
represent partially lexicalized items. 

The grammar operates with pairs of patterns 
that consist of one source pattern used during bot-
tom-up parsing and one or more target patterns that 
are applied during top-down generation of the 
translation. While traditional transfer and interlin-
gua based systems consist of separate parsing and 
generating rules, in a MetaMorpho grammar, each 
parsing rule has its associated generating counter-
part. The translation of the parsed structures is al-
ready determined during parsing the source 
language input. The actual generation of the target 
language representations does not involve any ad-
ditional transfer operations: target language struc-
tures corresponding to substructures of the source 
language parse tree are combined and the leaves of 
the resulting tree are interpreted by a morphologi-
cal generator. We call this solution “immediate 
transfer” as it uses no separate transfer steps or 
target transformations. 

The idea behind this architecture has much in 
common with the way semantic compositionality 
was formalized by Bach (1976) in the from of his 
rule-to-rule hypothesis, stating that to every rule of 
syntax that combines constituents into a phrase 
pertains a corresponding rule of semantics that 
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combines the meanings of the constituents. In the 
case of phrases with compositional meaning, the 
pair of rules of syntax and semantics are of a gen-
eral nature, while in the case of idioms, the pair of 
rules is specific and arbitrary. The architecture im-
plemented in the MetaMorpho system is based on 
essentially the same idea, except that the represen-
tation built during analysis of the input sentence is 
not expressed in a formal language of some seman-
tic representation but directly in the human target 
language of the translation system. 

3 System architecture  

The analysis of the input is performed in three 
stages. First the text to be translated is segmented 
into sentences, and each sentence is broken up into 
a sequence of tokens. This token sequence is the 
actual input of the parser. Morphosyntactic annota-
tion of the input word forms is performed by a 
morphological analyzer: it assigns morphosyntactic 
attribute vectors to word forms. We use the Humor 
morphological system (Prószéky and Kis, 1999; 
Prószéky and Novák, 2005) that performs an item-
and-arrangement style morphological analysis. 
Morphological synthesis of the target language 
word forms is performed by the same morphologi-
cal engine.  

The system also accepts unknown elements: 
they are treated as strings to be inflected at the tar-
get side. The (potentially ambiguous) output of the 
morphological analyzer is fed into the syntactic 
parser called Moose (Prószéky, Tihanyi and Ugray, 
2004), which analyzes this input sequence using 
the source language patterns and if it is recognized 
as a correct sentence, comes up with one or more 
root symbols on the source side.  

Every terminal and non-terminal symbol in the 
syntactic tree under construction has a set of fea-
tures. The number of features is normally up to a 
few dozen, depending on the category. These fea-
tures can either take their values from a finite set of 
symbolic items (e.g., values of case can be INS, 
ACC, DAT, etc.), or represent a string (e.g., 
lex="approach", the lexical form of a token). 
The formalism does not contain embedded feature 
structures. It is important to note that no structural 
or semantic information is amassed in the features 
of symbols: the interpretation of the input is con-
tained in the syntactic tree itself, and not in the fea-
tures of the node on the topmost level. Features are 

used to express constraints on the applicability of 
patterns and to store morphosyntactic valence and 
lexical information concerning the parsed input. 

More specific patterns (e.g. approach to) can 
override more general ones (e.g. approach), in that 
case subtrees containing symbols that were created 
by the general pattern are deleted. Every symbol 
that is created and is not eliminated by an overrid-
ing pattern is retained even if it does not form part 
of a correct sentence's syntactic tree. Each pattern 
can explicitly override other rules: if the overriding 
rule covers a specific range of the input, it blocks 
the overridden ones over the same range. This 
method can be used to eliminate spurious ambigui-
ties early during analysis. 

When the whole input is processed and no ap-
plicable patterns remain, translation is generated in 
a top-down fashion by combining the target struc-
tures corresponding to the source patterns consti-
tuting the source language parse tree.  

A source language pattern may have more than 
one associated target pattern. The selection of the 
target structure to apply relies on constraints on the 
actual values of features in the source pattern: the 
first target pattern whose conditions are satisfied is 
used for target structure generation. To handle 
complicated word-order changes, the target struc-
ture may need rearrangement of its elements within 
the scope of a single node and its children. There is 
another technique that can be used to handle word 
order differences between the source and the target 
language. A pointer to a subtree can be stored in a 
feature when applying a rule at parse time, and 
because this feature’s value can percolate up the 
parse-tree and down the target tree, just like any 
other feature, a phrase swallowed somewhere in 
the source side can be expanded at a different loca-
tion in the target tree. This technique can be used 
to handle both systematic word order differences 
(such as the different but fixed order of constitu-
ents in possessive constructions: possession of pos-
sessor in English versus possessor possession + 
possessive suffix in Hungarian) and accidental ones 
(such as the fixed order of subject verb and object 
in English, versus the “free” order of these con-
stituents in Hungarian1). 

Unlike in classical transfer-based systems, 
however, these rearrangement operations are al-

                                                           
1 In fact the order is determined by various factors other than 
grammatical function. 
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ready determined during parsing the source lan-
guage input. During generation, the already deter-
mined rearranged structures are simply spelled out. 
The morphosyntactic feature vectors on the termi-
nal level of the generated tree are interpreted by 
the morphological generator that synthesizes the 
corresponding target language word forms.  

The morphological generator is not a simple in-
verse of the corresponding analyzer. It accepts 
many alternative equivalent morphological de-
scriptions of each word form it can generate beside 
the one that the corresponding analyzer outputs.  

4 The rule database 

The rules used by the parser explicitly contain 
all the features of the daughter nodes to check, all 
the features to percolate to the mother node, all the 
features to set in the corresponding target struc-
tures and those to be checked on the source lan-
guage structure to decide on the applicability of a 
target structure. The fact that all this redundant 
information is present in the run-time rule database 
makes the operation of the parser efficient in terms 
of speed. However, it would be very difficult for 
humans to create and maintain the rule database in 
this redundant format.  

There is a high level version of the language: 
although it is not really different in terms of its 
syntax from the low-level one, it does not require 
default values and default correspondences to be 
explicitly listed. The rule database is maintained 
using this high level formalism. There is a rule 
converter for each language pair that extends the 
high-level rules with default information and may 
also create transformed rules (such as the passive 
version of verbal subcategorization frames) creat-
ing the rule database used by the parser.  

Rule conversion is also necessary because in 
order to be able to parse a free word order lan-
guage like Hungarian with a parser that uses con-
text free rules, you need to use run time rules that 
essentially differ in the way they operate from 
what would be suggested by the rules they are de-
rived from in the high level database. In Hungar-
ian, arguments of a predicate may appear in many 
different orders in actual sentences and they also 
freely mix with sentence level adjuncts. This 
means that a verbal argument structure of the high 
level rule database with its normal context free rule 
interpretation would only cover a fraction of its 

real world realizations. Rule conversion effectively 
handles this problem by converting rules describ-
ing lexical items with argument structures ex-
pressed using a context free rule formalism into 
run time rules that do not actually combine con-
stituents, but only check the saturation of valency 
frames. Constituents are combined by other more 
generic rules that take care of saturating the argu-
ment slots. This means that while the high level 
and the run time rules have a similar syntax, the 
semantics of some high level rules may be very 
different from similar rules in the low level rule 
database. 

5 Handling sentences with no full parse 

The system must not break down if the input 
sentence happens not to have a full parse (this in-
evitably happens in the case of real life texts). In 
that case, it reverts to using a heuristic process that 
constructs an output by combining the output of a 
selected set of partial structures covering the whole 
sentence stored during parsing the input. In the 
MetaMorpho terminology, this is called a “mosaic 
translation”. Mosaic translations are usually subop-
timal, because in the absence of a full parse some 
structural information such as agreement is usually 
lost. There is much to improve on the current algo-
rithm used to create mosaic translations: e.g. it 
does not currently utilize a statistical model of the 
target language, which has a negative effect on the 
fluency of the output. Augmenting the system with 
such a component would probably improve its per-
formance considerably. 

6 Motivation for the MetaMorpho archi-
tecture 

An obvious drawback of the architecture de-
scribed above compared to the interlingua and 
transfer based systems is that the grammar compo-
nents of the system cannot be simply reused to 
build translation systems to new target languages 
without a major revision of the grammar. While in 
a classical transfer based system, the source lan-
guage grammar may cover phenomena that the 
transfer component does not cover, in the Meta-
Morpho architecture, this is not possible. In a 
transfer based system, there is a relatively cheaper 
way to handle coverage issues partially by aug-
menting only the source grammar (and postponing 
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creation of the corresponding transfer rules). This 
is not an option in the MetaMorpho architecture. 

The main motivation for this system architec-
ture was that it makes it possible to integrate ma-
chine translation and translation memories in a 
natural way and to make the system easily extensi-
ble by the user. There is a grammar writer’s work-
bench component of MetaMorpho called Rule 
Builder. This makes it possible for users to add 
new, lexical or even syntactic patterns to the 
grammar in a controlled manner without the need 
to recompile the rest, using an SQL database for 
user added entries. The technology used in Rule-
Builder can also be applied to create a special 
combination of the MetaMorpho machine transla-
tion tool and translation memories (Hodász, 
Grőbler and Kis 2004).  

Moreover, existing bilingual lexical databases 
(dictionaries of idioms and collocations) are rela-
tively easy to convert to the high level rule format 
of the system. The bulk of the grammar of the sys-
tem was created based on such resources. Another 
rationale for developing language pair specific 
grammars directly is that this way distinctions in 
the grammar of the source language not relevant 
for the translation to the target language at hand 
need not be addressed.  

7 Performance in the translation task 

During development of the system and its grammar 
components, regression testing has been performed 
using a test set unknown to the developers measur-
ing case insensitive BLEU with three human refer-
ence translations. Our usual test set for the system 
translating from Hungarian to English contains 274 
sentences of newswire text. We had never used 
single reference BLEU before, because, although 
creating multiple translations is expensive, single 
reference BLEU is quite unreliable usually produc-
ing very low scores especially if the target lan-
guage is morphologically rich, like Hungarian. 
The current version of the MetaMorpho system 
translating from Hungarian to English has a BLEU 
score of 22.14 on our usual newswire test set with 
three references. Obtaining a BLEU score of 7.8 on 
the WMT08 shared Hungarian to English transla-
tion task test set was rather surprising, so we 
checked single reference BLEU on our usual test 
set: the scores are 13.02, 14.15 and 16.83 with the 
three reference translations respectively.  

In the end, we decided to submit our results to the 
WMT08 shared translation task in spite of the low 
score. But we think, that these figures cast doubts 
on the quality of the texts and reference transla-
tions in the test set, especially in cases where both 
the English and the Hungarian text were translated 
from a third language, so we think that the scores 
on the WMT08 test set should be evaluated only 
relative to other systems’ performance on the same 
data and the same language pair. 
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Abstract

This paper describes our submissions to the
machine translation evaluation shared task in
ACL WMT-08. Our primary submission is the
Meteor metric tuned for optimizing correla-
tion with human rankings of translation hy-
potheses. We show significant improvement
in correlation as compared to the earlier ver-
sion of metric which was tuned to optimized
correlation with traditional adequacy and flu-
ency judgments. We also describe m-bleu and
m-ter, enhanced versions of two other widely
used metrics bleu and ter respectively, which
extend the exact word matching used in these
metrics with the flexible matching based on
stemming and Wordnet in Meteor .

1 Introduction

Automatic Metrics for MT evaluation have been re-
ceiving significant attention in recent years. Evalu-
ating an MT system using such automatic metrics is
much faster, easier and cheaper compared to human
evaluations, which require trained bilingual evalua-
tors. The most commonly used MT evaluation met-
ric in recent years has been IBM’s Bleu metric (Pa-
pineni et al., 2002). Bleu is fast and easy to run,
and it can be used as a target function in parameter
optimization training procedures that are commonly
used in state-of-the-art statistical MT systems (Och,
2003). Various researchers have noted, however, var-
ious weaknesses in the metric. Most notably, Bleu
does not produce very reliable sentence-level scores.
Meteor , as well as several other proposed metrics
such as GTM (Melamed et al., 2003), TER (Snover
et al., 2006) and CDER (Leusch et al., 2006) aim to
address some of these weaknesses.

Meteor , initially proposed and released in 2004
(Lavie et al., 2004) was explicitly designed to im-
prove correlation with human judgments of MT qual-
ity at the segment level. Previous publications on

Meteor (Lavie et al., 2004; Banerjee and Lavie,
2005; Lavie and Agarwal, 2007) have described the
details underlying the metric and have extensively
compared its performance with Bleu and several
other MT evaluation metrics. In (Lavie and Agar-
wal, 2007), we described the process of tuning free
parameters within the metric to optimize the corre-
lation with human judgments and the extension of
the metric for evaluating translations in languages
other than English.

This paper provides a brief technical description of
Meteor and describes our experiments in re-tuning
the metric for improving correlation with the human
rankings of translation hypotheses corresponding to
a single source sentence. Our experiments show sig-
nificant improvement in correlation as a result of re-
tuning which shows the importance of having a met-
ric tunable to different testing conditions. Also, in
order to establish the usefulness of the flexible match-
ing based on stemming and Wordnet, we extend two
other widely used metrics bleu and ter which use
exact word matching, with the matcher module of
Meteor .

2 The Meteor Metric

Meteor evaluates a translation by computing a
score based on explicit word-to-word matches be-
tween the translation and a given reference trans-
lation. If more than one reference translation is
available, the translation is scored against each refer-
ence independently, and the best scoring pair is used.
Given a pair of strings to be compared, Meteor cre-
ates a word alignment between the two strings. An
alignment is mapping between words, such that ev-
ery word in each string maps to at most one word
in the other string. This alignment is incrementally
produced by a sequence of word-mapping modules.
The “exact” module maps two words if they are ex-
actly the same. The “porter stem” module maps two
words if they are the same after they are stemmed us-
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ing the Porter stemmer. The “WN synonymy” mod-
ule maps two words if they are considered synonyms,
based on the fact that they both belong to the same
“synset” in WordNet.

The word-mapping modules initially identify all
possible word matches between the pair of strings.
We then identify the largest subset of these word
mappings such that the resulting set constitutes an
alignment as defined above. If more than one maxi-
mal cardinality alignment is found, Meteor selects
the alignment for which the word order in the two
strings is most similar (the mapping that has the
least number of “crossing” unigram mappings). The
order in which the modules are run reflects word-
matching preferences. The default ordering is to
first apply the “exact” mapping module, followed by
“porter stemming” and then “WN synonymy”.

Once a final alignment has been produced between
the system translation and the reference translation,
the Meteor score for this pairing is computed as
follows. Based on the number of mapped unigrams
found between the two strings (m), the total num-
ber of unigrams in the translation (t) and the total
number of unigrams in the reference (r), we calcu-
late unigram precision P = m/t and unigram recall
R = m/r. We then compute a parametrized har-
monic mean of P and R (van Rijsbergen, 1979):

Fmean =
P ·R

α · P + (1− α) ·R

Precision, recall and Fmean are based on single-
word matches. To take into account the extent to
which the matched unigrams in the two strings are
in the same word order, Meteor computes a penalty
for a given alignment as follows. First, the sequence
of matched unigrams between the two strings is di-
vided into the fewest possible number of “chunks”
such that the matched unigrams in each chunk are
adjacent (in both strings) and in identical word or-
der. The number of chunks (ch) and the number of
matches (m) is then used to calculate a fragmenta-
tion fraction: frag = ch/m. The penalty is then
computed as:

Pen = γ · fragβ

The value of γ determines the maximum penalty
(0 ≤ γ ≤ 1). The value of β determines the
functional relation between fragmentation and the
penalty. Finally, the Meteor score for the align-
ment between the two strings is calculated as:

score = (1− Pen) · Fmean

The free parameters in the metric, α, β and γ are
tuned to achieve maximum correlation with the hu-
man judgments as described in (Lavie and Agarwal,
2007).

3 Extending Bleu and Ter with
Flexible Matching

Many widely used metrics like Bleu (Papineni et al.,
2002) and Ter (Snover et al., 2006) are based on
measuring string level similarity between the refer-
ence translation and translation hypothesis, just like
Meteor . Most of them, however, depend on find-
ing exact matches between the words in two strings.
Many researchers (Banerjee and Lavie, 2005; Liu and
Gildea, 2006), have observed consistent gains by us-
ing more flexible matching criteria. In the following
experiments, we extend the Bleu and Ter metrics
to use the stemming and Wordnet based word map-
ping modules from Meteor .

Given a translation hypothesis and reference pair,
we first align them using the word mapping modules
from Meteor . We then rewrite the reference trans-
lation by replacing the matched words with the cor-
responding words in the translation hypothesis. We
now compute Bleu and Ter with these new refer-
ences without changing anything inside the metrics.

To get meaningful Bleu scores at segment level,
we compute smoothed Bleu as described in (Lin and
Och, 2004).

4 Re-tuning Meteor for Rankings

(Callison-Burch et al., 2007) reported that the inter-
coder agreement on the task of assigning ranks to
a given set of candidate hypotheses is much better
than the intercoder agreement on the task of assign-
ing a score to a hypothesis in isolation. Based on
that finding, in WMT-08, only ranking judgments
are being collected from the human judges.

The current version of Meteor uses parameters
optimized towards maximizing the Pearson’s corre-
lation with human judgments of adequacy scores. It
is not clear that the same parameters would be op-
timal for correlation with human rankings. So we
would like to re-tune the parameters in the metric
for maximizing the correlation with ranking judg-
ments instead. This requires computing full rankings
according to the metric and the humans and then
computing a suitable correlation measure on those
rankings.

4.1 Computing Full Rankings

Meteor assigns a score between 0 and 1 to every
translation hypothesis. This score can be converted
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Language Judgments
Binary Sentences

English 3978 365
German 2971 334
French 1903 208
Spanish 2588 284

Table 1: Corpus Statistics for Various Languages

to rankings trivially by assuming that a higher score
indicates a better hypothesis.

In development data, human rankings are avail-
able as binary judgments indicating the preferred hy-
pothesis between a given pair. There are also cases
where both the hypotheses in the pair are judged to
be equal. In order to convert these binary judgments
into full rankings, we do the following:

1. Throw out all the equal judgments.

2. Construct a directed graph where nodes corre-
spond to the translation hypotheses and every
binary judgment is represented by a directed
edge between the corresponding nodes.

3. Do a topological sort on the resulting graph and
assign ranks in the sort order. The cycles in the
graph are broken by assigning same rank to all
the nodes in the cycle.

4.2 Measuring Correlation

Following (Ye et al., 2007), we first compute the
Spearman correlation between the human rankings
and Meteor rankings of the translation hypotheses
corresponding to a single source sentence. Let N be
the number of translation hypotheses and D be the
difference in ranks assigned to a hypothesis by two
rankings, then Spearman correlation is given by:

r = 1− 6
∑

D2

N(N2 − 1)

The final score for the metric is the average of the
Spearman correlations for individual sentences.

5 Experiments

5.1 Data

We use the human judgment data from WMT-07
which was released as development data for the eval-
uation shared task. Amount of data available for
various languages is shown in Table 1. Development
data contains the majority judgments (not every hy-
potheses pair was judged by same number of judges)
which means that in the cases where multiple judges
judged the same pair of hypotheses, the judgment
given by majority of the judges was considered.

English German French Spanish
α 0.95 0.9 0.9 0.9
β 0.5 3 0.5 0.5
γ 0.45 0.15 0.55 0.55

Table 2: Optimal Values of Tuned Parameters for Various
Languages

Original Re-tuned
English 0.3813 0.4020
German 0.2166 0.2838
French 0.2992 0.3640
Spanish 0.2021 0.2186

Table 3: Average Spearman Correlation with Human
Rankings for Meteor on Development Data

5.2 Methodology

We do an exhaustive grid search in the feasible ranges
of parameter values, looking for parameters that
maximize the average Spearman correlation over the
training data. To get a fair estimate of performance,
we use 3-fold cross validation on the development
data. Final parameter values are chosen as the best
performing set on the data pooled from all the folds.

5.3 Results

5.3.1 Re-tuning Meteor for Rankings
The re-tuned parameter values are shown in Ta-

ble 2 while the average Spearman correlations for
various languages with original and re-tuned param-
eters are shown in Table 3. We get significant im-
provements for all the languages. Gains are specially
pronounced for German and French.

Interestingly, weight for recall becomes even higher
than earlier parameters where it was already high.
So it seems that ranking judgments are almost en-
tirely driven by the recall in all the languages. Also
the re-tuned parameters for all the languages except
German are quite similar.

5.3.2 m-bleu and m-ter

Table 4 shows the average Spearman correlations
of m-bleu and m-ter with human rankings. For
English, both m-bleu and m-ter show considerable
improvements. For other languages, improvements
in m-ter are smaller but consistent. m-bleu , how-
ever, doesn’t shows any improvements in this case.
A possible reason for this behavior can be the lack of
a “WN synonymy” module for languages other than
English which results in fewer extra matches over the
exact matching baseline. Additionally, French, Ger-
man and Spanish have a richer morphology as com-
pared to English. The morphemes in these languages
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Exact Match Flexible Match
English: Bleu 0.2486 0.2747

Ter 0.1598 0.2033
French: Bleu 0.2906 0.2889

Ter 0.2472 0.2604
German: Bleu 0.1829 0.1806

Ter 0.1509 0.1668
Spanish: Bleu 0.1804 0.1847

Ter 0.1787 0.1839

Table 4: Average Spearman Correlation with Human
Rankings for m-bleu and m-ter

carry much more information and different forms of
the same word may not be as freely replaceable as in
English. A more fine grained strategy for matching
words in these languages remains an area of further
investigation.

6 Conclusions

In this paper, we described the re-tuning of Me-
teor parameters to better correlate with human
rankings of translation hypotheses. Results on the
development data indicate that the re-tuned ver-
sion is significantly better at predicting ranking than
the earlier version. We also presented enhanced
Bleu and Ter that use the flexible word match-
ing module from Meteor and show that this re-
sults in better correlations as compared to the de-
fault exact matching versions. The new version of
Meteor will be soon available on our website at:
http://www.cs.cmu.edu/~alavie/METEOR/ . This
release will also include the flexible word matcher
module which can be used to extend any metric with
the flexible matching.
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Abstract

This paper describes an initial version of a
general purpose French/English statistical ma-
chine translation system. The main features
of this system are the open-source Moses de-
coder, the integration of a bilingual dictionary
and a continuous space target language model.
We analyze the performance of this system on
the test data of the WMT’08 evaluation.

1 Introduction

Statistical machine translation (SMT) is today con-
sidered as a serious alternative to rule-based ma-
chine translation (RBMT). While RBMT systems
rely on rules and linguistic resources built for that
purpose, SMT systems can be developed without
the need of any language knowledge and are only
based on bilingual sentence-aligned and large mono-
lingual data. However, while the monolingual data
is usually available in large amounts, bilingual texts
are a sparse resource for most of the language pairs.
The largest SMT systems are currently build for the
translation of Mandarin and Arabic to English, us-
ing more than 170M words of bitexts that are eas-
ily available from the LDC. Recent human evalua-
tions of these systems seem to indicate that they have
reached a level of performance allowing a human be-
ing to understand the automatic translations and to
answer complicated questions on its content (Jones,
2008).

In a joint project between the University of Le
Mans and the company SYSTRAN, we try to build
similar general purpose SMT systems for Euro-
pean languages. In the final version, these systems

will not only be trained on all available mono- and
bilingual data, but also will include additional re-
sources from SYSTRAN like high quality dictio-
naries, named entity transliteration and rule-based
translation of expressions like numbers and dates.
Our ultimate goal is to combine the power of data-
driven approaches and the concentrated knowledge
present in RBMT resources. In this paper, we de-
scribe an initial version of an French/English sys-
tem and analyze its performance on the test corpora
of the WMT’08 workshop.

2 Architecture of the system

The goal of statistical machine translation (SMT) is
to produce a target sentencee from a source sen-
tencef . It is today common practice to use phrases
as translation units (Koehn et al., 2003; Och and
Ney, 2003) and a log linear framework in order to
introduce several models explaining the translation
process:

e
∗ = arg max p(e|f)

= arg max
e

{exp(
∑

i

λihi(e, f))} (1)

The feature functionshi are the system models and
theλi weights are typically optimized to maximize
a scoring function on a development set (Och and
Ney, 2002). In our system fourteen features func-
tions were used, namely phrase and lexical transla-
tion probabilities in both directions, seven features
for the lexicalized distortion model, a word and a
phrase penalty and a target language model (LM).

The system is based on the Moses SMT toolkit
(Koehn et al., 2007) and constructed as follows.
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First, Giza++ is used to perform word alignments
in both directions. Second, phrases and lexical re-
orderings are extracted using the default settings of
the Moses SMT toolkit. A 4-gram target LM is
then constructed as detailed in section 2.2. The
translation itself is performed in two passes: first,
Moses is run and a 1000-best list is generated
for each sentence. The parameters of Moses are
tuned on devtest2006 for the Europarl task and
nc-devtest2007 for the news task, using the cmert
tool. These 1000-best lists are then rescored with a
continuous space 5-gram LM and the weights of the
feature functions are optimized again using the nu-
merical optimization toolkit Condor (Berghen and
Bersini, 2005). Note that this step operates only
on the 1000-best lists, no re-decoding is performed.
This basic architecture of the system is identical to
the one used in the 2007 WMT evaluation(Schwenk,
2007a).

2.1 Translation model

In the frame work of the 2008 WMT shared
task, two parallel corpora were provided: the Eu-
roparl corpus (about 33M words) and the news-
commentary corpus (about 1.2M words). It is known
that the minutes of the debates of the European
parliament use a particular jargon and these texts
alone do not seem to be the appropriate to build a
French/English SMT system for other texts. The
more general news-commentary corpus is unfortu-
nately rather small in size. Therefore, with the
goal to build a general purpose system, we inves-
tigated whether more bilingual resources are avail-
able. Two corpora were identified: the proceedings
of the Canadian parliament, also known as Hansard
corpus (about 61M words), and data from the United
nations (105M French and 89M English words). In
the current version of our system only the Hansard
bitexts are used.

In addition to these human generated bitexts, we
investigated whether the translations of a high qual-
ity bilingual dictionary could be integrated into a
SMT system. SYSTRAN provided this resource
with more than 200 thousand entries, different forms
of a verb or genres of an noun or adjective being
counted as one entry. It is still an open research
question how to best integrate a bilingual dictionary
into a SMT system. At least two possibilities come

to mind: add the entries directly to the phrase ta-
ble or add the words and their translations to the bi-
texts. With the first solution one can be sure that the
entries are added like there are and that they won’t
suffer any deformation due to imperfect alignment
of multi-word expressions. However, it is not obvi-
ous how to obtain the phrase translation and lexical
probabilities for each new phrase. The second solu-
tion has the potential advantage that the dictionary
words could improve the alignments of these words
when they also appear in the other bitexts. The cal-
culation of the various scores of the phrase table is
simplified too, since we can use the standard phrase
extraction procedure. However, one has to be aware
that all the translations that appear only in the dictio-
nary will be equally likely which certainly does not
correspond to the reality. In future work will try to
improve these estimates using monolingual data.

For now, we used about ten thousand verbs and
hundred thousand nouns from the dictionary. For
each verb, we generated all the conjugations in the
past, present, future and conditional tense; and for
each noun the singular and plural form were gener-
ated. In total this resulted in 512k “new sentences”
in the bitexts.

2.2 Language model

In comparison to bilingual texts which are needed
for the translation model, it is much easier to find
large quantities of monolingual data, in English as
well as in French. In this work, the following re-
sources were used for the language model:

• the monolingual parts of the Europarl, Hansard,
UN and the news commentary corpus,

• the Gigaword corpus in French and English as
provided by LDC (770M and 3261M words re-
spectively),

• about 33M words of newspaper texts crawled
from the WEB (French only)

Separate LMs were build on each data source with
the SRI LM toolkit (Stolcke, 2002) and then linearly
interpolated, optimizing the coefficients with an EM
procedure. Note that we build two sets of LMs: a
first set tuned on devtest2006, and a second one on
nc-devtest2007. The perplexities of these LMs are
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French English
Data Eparl News Eparl News

Back-off 4-gram LM:
Eparl+news 52.6 184.0 42.0 105.8

All 50.0 136.1 39.7 85.4
Continuous space 5-gram LM:

All 42.0 118.9 34.1 75.0

Table 1: Perplexities on devtest2006 (Europarl) and
nc-devtest2007 (news commentary) for various LMs.

given in Table 1. We were not able to obtain signifi-
cantly better results with 5-gram back-off LMs.

It can be clearly seen that the additional LM data,
despite its considerable size, achieves only a small
decrease in perplexity for the Europarl data. This
task is so particular that other out-of-domain data
does not seem to be very useful. The system opti-
mized on the more general news-commentary task,
however, seems to benefit from the additional mono-
lingual resources. Note however, that the test data
newstest2008 is not of the same type and we may
have a mismatch between development and test data.

We also used a so-called continuous space lan-
guage model (CSLM). The basic idea of this ap-
proach is to project the word indices onto a contin-
uous space and to use a probability estimator oper-
ating on this space (Bengio et al., 2003). Since the
resulting probability functions are smooth functions
of the word representation, better generalization to
unknownn-grams can be expected. A neural net-
work can be used to simultaneously learn the pro-
jection of the words onto the continuous space and
to estimate then-gram probabilities. This is still a
n-gram approach, but the LM probabilities are ”in-
terpolated” for any possible context of lengthn-1
instead of backing-off to shorter contexts. This ap-
proach was successfully used in large vocabulary
continuous speech recognition (Schwenk, 2007b)
and in a phrase-based SMT systems (Schwenk et al.,
2006; Déchelotte et al., 2007). Here, it is the first
time trained on large amounts of data, more than 3G
words for the English LM. This approach achieves
an average perplexity reduction of almost 14% rela-
tive (see Table 1).

3 Experimental Evaluation

The shared evaluation task of the third workshop
on statistical machine translation features two dif-
ferent test sets: test2008 and newstest2008. The
first one contains data from the European parlia-
ment of the same type than the provided training and
development data. Therefore good generalization
performance can be expected. The second test set,
however, is news type data from unknown sources.
Scanning some of the sentences after the evaluation
seems to indicate that this data is more general than
the provided news-commentary training and devel-
opment data – it contains for instance financial and
public health news.

Given the particular jargon of the European par-
liament, we decided to build two different systems,
one rather general system tuned in nc-devtest2007
and an Europarl system tuned on devtest2006. Both
systems use the tokenization proposed by the Moses
SMT toolkit and the case was preserved in the trans-
lation and language model. Therefore, in contrast to
the official BLEU scores, we report here case sensi-
tive BLEU scores as calculated by the NIST tool.

3.1 Europarl system

The results of the Europarl system are summarized
in Table 2. The translation model was trained on
the Europarl and the news-commentary data, aug-
mented by parts of the dictionary. The LM was
trained on all the data, but the additional out-of-
domain data has probably little impact given the
small improvements in perplexity (see Table 1).

French/English English/French
Model 2007 2008 2007 2008

baseline 32.64 32.61 31.15 31.80
base+CSLM 32.98 33.08 31.63 32.37

base+dict 32.69 32.75 30.97 31.59
+CSLM 33.11 33.13 31.54 32.34

Table 2: Case sensitive BLEU scores for the Europarl
system (test data)

When translating from French to English the
CSLM achieves a improvement of about 0.4 points
BLEU. Adding the dictionary had no significant im-
pact, probably due to the jargon of the parliament
proceedings. For the opposite translation direction,
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the dictionary even seems to worsen the perfor-
mance. One reason for this observation could be the
fact that the dictionary adds many French transla-
tions for one English word. These translation are
not correctly weighted and we have to rely com-
pletely on the target LM to select the correct one.
This may explain the large improvement achieved
by the CSLM in this case (+0.75 BLEU).

3.2 News system

The results of the more generic news system are
summarized in Table 3. The translation model
was trained on the news-commentary, Europarl and
Hansard bitexts as well as parts of the dictionary.
The LM was again trained on all data.

French/English English/French
Model/bitexts 2007 2008 2007 2008

news 29.31 17.98 28.60 17.51
news+dict 30.09 18.78 28.92 18.01

news+eparl 30.53 20.39 28.55 19.70
+dict 30.94 20.63 28.46 19.96

+Hansard 31.48 21.10 28.97 20.21
+CSLM 31.98 21.02 29.64 20.51

Table 3: Case sensitive BLEU scores of the news system
(nc-test2007 and newstest2008)

First of all, we realize that the BLEU scores on
the out-of-domain generic 2008 news data are much
lower than on the nc-test2007 data. Adding more
than 60M words of the Hansard bitexts gives an im-
provement of the BLEU score of about 0.5 for most
of the test sets and translation directions. The dictio-
nary is very interesting when only a limited amount
of resources is available – a gain of up to 0.8 BLEU
when only the news-commentary bitexts are used –
but still useful when more data is available. As far
as we know, this is the first time that adding a dic-
tionary improved the translation quality of a very
strong baseline. In previous works, results were only
reported in a setting with limited resources (Vogel et
al., 2003; Popović and Ney, 2006). However, we be-
lieve that he integration of the dictionary is not yet
optimal, in particular with respect to the estimation
of the translation probabilities. The only surprising
result is the bad performance of the CSLM on the
newstest2008 data for the translation from French to
English. We are currently investigating this.

This work has been partially funded by the
French Government under the project INSTAR (ANR
JCJC06143038).
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Abstract

This paper present the University of Washing-
ton’s submission to the 2008 ACL SMT shared ma-
chine translation task. Two systems, for English-to-
Spanish and German-to-Spanish translation are de-
scribed. Our main focus was on testing a novel
boosting framework for N-best list reranking and
on handling German morphology in the German-to-
Spanish system. While boosted N-best list reranking
did not yield any improvements for this task, simpli-
fying German morphology as part of the preprocess-
ing step did result in significant gains.

1 Introduction

The University of Washington submitted systems
to two data tracks in the WMT 2008 shared task
competition, English-to-Spanish and German-to-
Spanish. In both cases, we focused on the in-domain
test set only. Our main interest this year was on in-
vestigating an improved weight training scheme for
N-best list reranking that had previously shown im-
provements on a smaller machine translation task.
For German-to-Spanish translation we additionally
investigated simplifications of German morphology,
which is known to be fairly complex due to a large
number of compounds and inflections. In the fol-
lowing sections we first describe the data, baseline
system and postprocessing steps before describing
boosted N-best list reranking and morphology-based
preprocessing for German.

2 Data and Basic Preprocessing

We used the Europarl data as provided (version 3b,
1.25 million sentence pairs) for training the transla-
tion model for use in the shared task. The data was
lowercased and tokenized with the auxiliary scripts
provided, and filtered according to the ratio of the
sentence lengths in order to eliminate mismatched
sentence pairs. This resulted in about 965k paral-
lel sentences for English-Spanish and 950k sentence
pairs for German-Spanish. Additional preprocess-
ing was applied to the German corpus, as described
in Section 5. For language modeling, we addition-
ally used about 82M words of Spanish newswire text
from the Linguistic Data Consortium (LDC), dating
from 1995 to 1998.

3 System Overview

3.1 Translation model

The system developed for this year’s shared task
is a state-of-the-art, two-pass phrase-based statisti-
cal machine translation system based on a log-linear
translation model (Koehn et al, 2003). The trans-
lation models and training method follow the stan-
dard Moses (Koehn et al, 2007) setup distributed as
part of the shared task. We used the training method
suggested in the Moses documentation, with lexical-
ized reordering (themsd-bidirectional-fe
option) enabled. The system was tuned via Mini-
mum Error Rate Training (MERT) on the first 500
sentences of thedevtest2006 dataset.
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3.2 Decoding

Our system used the Moses decoder to generate
2000 output hypotheses per input sentence during
the first translation pass. For the second pass, the
N-best lists were rescored with the additional lan-
guage models described below. We re-optimized the
model combination weights with a parallelized im-
plementation of MERT over 16 model scores on the
test2007 dataset. Two of these model scores for
each hypothesis were from the two language models
used in our second-pass system, and the rest corre-
spond to the 14 Moses model weights (for reorder-
ing, language model, translation model, and word
penalty).

3.3 Language models

We built all of our language models using the
SRILM toolkit (Stolcke, 2002) with modified
Kneser-Ney discounting and interpolating all n-
gram estimates of order> 1. For first-pass de-
coding we used a 4-gram language model trained
on the Spanish side of the Europarl v3b data. The
optimal n-gram order was determined by testing
language models with varying orders (3 to 5) on
devtest2006 ; BLEU scores obtained using the
various language models are shown in Table 1. The
4-gram model performed best.

Table 1: LM ngram size vs. output BLEU on the dev sets.

order devtest2006 test2007

3-gram 30.54 30.69
4-gram 31.03 30.94
5-gram 30.85 30.84

Two additional language models were used for
second pass rescoring. First, we trained a large out-
of-domain language model on Spanish newswire
text obtained from the LDC, dating from 1995 to
1998.

We used a perplexity-filtering method to filter out
the least relevant half of the out-of-domain text, in
order to significantly reduce the training time of
the large language model and accelerate the rescor-
ing process. This was done by computing the per-
plexity of an in-domain language model on each
newswire sentence, and then discarding all sen-

tences with greater than average perplexity. This
reduced the size of the training set from 5.8M sen-
tences and 166M tokens to 2.8M sentences and 82M
tokens. We then further restricted the vocabulary to
the union of the vocabulary lists of the Spanish sides
of the de-es and en-es parallel training corpora. The
remaining text was used to train the language model.

The second language model used for rescoring
was a 5-gram model over part-of-speech (POS) tags.
This model was built using the Spanish side of the
English-Spanish parallel training corpus. The POS
tags were obtained from the corpus using Freeling
v2.0 (Atserias et al, 2006).

We selected the language models for our transla-
tion system were selected based on performance on
the English-to-Spanish task, and reused them for the
German-to-Spanish task.

4 Boosted Reranking

We submitted an alternative system, based on a
different re-ranking method, called BoostedMERT
(Duh and Kirchhoff, 2008), for each task. Boosted-
MERT is a novel boosting algorithm that uses Mini-
mum Error Rate Training (MERT) as a weak learner
to build a re-ranker that is richer than the standard
log-linear models. This is motivated by the obser-
vation that log-linear models, as trained by MERT,
often do not attain the oracle BLEU scores of the N-
best lists in the development set. While this may be
due to a local optimum in MERT, we hypothesize
that log-linear models based on ourK re-ranking
features are also not sufficiently expressive.

BoostedMERT is inspired by the idea of Boosting
(for classification), which has been shown to achieve
low training (and generalization) error due to classi-
fier combination. In BoostedMERT, we maintain a
weight for each N-best list in the development set.
In each iteration, MERT is performed to find the best
ranker on weighted data. Then, the weights are up-
dated based on whether the current ranker achieves
oracle BLEU. For N-best lists that achieve BLEU
scores far lower than the oracle, the weights are in-
creased so that they become the emphasis of next
iteration’s MERT. We currently use the factore−r

to update the N-best list distribution, wherer is the
ratio of the oracle hypothesis’ BLEU to the BLEU
of the selected hypothesis. The final ranker is a
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weighted combination of many such rankers.
More precisely, letwi be the weights trained by

MERT at iterationi. Given anywi, we can gener-
ate a rankingyi over an N-best list whereyi is an
N-dimensional vector of predicted ranks. The final
ranking vector is a weighted sum:y =

∑T
i=1 αiyi,

whereαi are parameters estimated during the boost-
ing process. These parameters are optimized for
maximum BLEU score on the development set. The
only user-specified parameter isT , the number of
boosting iterations. Here, we chooseT by divid-
ing the dev set in half: dev1 and dev2. First, we
train BoostedMERT on dev1 for 50 iterations, then
pick theT with the best BLEU score on dev2. Sec-
ond, we train BoostedMERT on dev2 and choose the
optimalT from dev1. Following the philosophy of
classifier combination, we sum the final rank vectors
y from each of the dev1- and dev2-trained Boosted-
MERT to obtain our final ranking result.

5 German→ Spanish Preprocessing

German is a morphologically complex language,
characterized by a high number of noun compounds
and rich inflectional paradigms. Simplification of
morphology can produce better word alignment, and
thus better phrasal translations, and can also signifi-
cantly reduce the out-of-vocabulary rate. We there-
fore applied two operations: (a) splitting of com-
pound words and (b) stemming.

After basic preprocessing, the German half of the
training corpus was first tagged by the German ver-
sion of TreeTagger (Schmid, 1994), to identify part-
of-speech tags. All nouns were then collected into
a noun list, which was used by a simple compound
splitter, as described in (Yang and Kirchhoff, 2006).
This splitter scans the compound word, hypothesiz-
ing segmentations, and selects the first segmentation
that produces two nouns that occur individually in
the corpus. After splitting the compound nouns in
the filtered corpus, we used the TreeTagger again,
only this time to lemmatize the (filtered) training
corpus.

The stemmed version of the German text was used
to train the translation system’s word alignments
(through the end of step 3 in the Moses training
script). After training the alignments, they were pro-
jected back onto the unstemmed corpus. The parallel

phrases were then extracted using the standard pro-
cedure. Stemming is only used during the training
stage, in order to simplify word alignment. During
the evaluation phase, only the compound-splitter is
applied to the German input.

6 Results

6.1 English→ Spanish

The unofficial results of our 2nd-pass system for the
2008 test set are shown in Table 2, for recased, unto-
kenized output. We note that the basic second-pass
model was better than the first-pass system on the
2008 task, but not on the 2007 task, whereas Boost-
edMERT provided a minor improvement in the 2007
task but not the 2008 task. This is contrary to previ-
ous results in the Arabic-English IWSLT 2007 task,
where boosted MERT gave an appreciable improve-
ment. This result is perhaps due to the difference in
magnitude between the IWSLT and WMT transla-
tion tasks.

Table 2: En→Es system on the test2007 and test2008
sets.

System test2007 test2008

First-Pass 30.95 31.83
Second-Pass 30.94 32.72
BoostedMERT 31.05 32.62

6.2 German→ Spanish

As previously described, we trained two German-
Spanish translation systems: one via the default
method provided in the Moses scripts, and an-
other using word stems to train the word align-
ments and then projecting these alignments onto
the unstemmed corpus and finishing the training
process in the standard manner. Table 3 demon-
strates that the word alignments generated with
word-stems markedly improved first-pass transla-
tion performance on thedev2006 dataset. How-
ever, during the evaluation period, the worse of the
two systems was accidentally used, resulting in a
larger number of out-of-vocabulary words in the
system output and hence a poorer score. Rerun-
ning our German-Spanish translation system cor-
rectly yielded significantly better system results,
also shown in Table 3.

125



Table 3: De→Es first-pass system on the development
and 2008 test set.

System dev2006 test2008

Baseline 23.9 21.2
Stemmed Alignments 26.3 24.4

6.3 Boosted MERT

BoostedMERT is still in an early stage of experi-
mentation, and we were interested to see whether it
improved over traditional MERT in re-ranking. As it
turns out, the BLEU scores on test2008 and test2007
data for the En-Es track are very similar for both re-
rankers. In our post-evaluation analysis, we attempt
to understand the reasons for similar BLEU scores,
since the weightswi for both re-rankers are quali-
tatively different. We found that out of 2000 En-Es
N-best lists, BoostedMERT and MERT differed on
1478 lists in terms of the final hypothesis that was
chosen. However, although the rankers are choosing
different hypotheses, the chosen strings appear very
similar. The PER of BoostedMERT vs. MERT re-
sults is only 0.077, and manual observation indicates
that the differences between the two are often single
phrase differences in a sentence.

We also computed the sentence-level BLEU for
each ranker with respect to the true reference. This
is meant to check whether BoostedMERT improved
over MERT in some sentences but not others: if the
improvements and degradations occur in the same
proportions, a similar corpus-level BLEU may be
observed. However, this is not the case. For a major-
ity of the 2000 sentences, the sentence-level BLEU
for both systems are the same. Only 10% of sen-
tences have absolute BLEU difference greater than
0.1, and the proportion of improvement/degradation
is similar (each 5%). For BLEU differences greater
than 0.2, the percentage drops to 4%.

Thus we conclude that although BoostedMERT
and MERT choose different hypotheses quite of-
ten, the string differences between their hypotheses
are negligible, leading to similar final BLEU scores.
BoostedMERT has found yet another local optimum
during training, but has not improved upon MERT
in this dataset. We hypothesize that dividing up the
original development set into halves may have hurt
BoostedMERT.

7 Conclusion

We have presented the University of Washing-
ton systems for English-to-Spanish and German-to-
Spanish for the 2008 WMT shared translation task.
A novel method for reranking N-best lists based on
boosted MERT training was tested, as was morpho-
logical simplification in the preprocessing compo-
nent for the German-to-Spanish system. Our con-
clusions are that boosted MERT, though successful
on other translation tasks, did not yield any improve-
ment here. Morphological simplification, however,
did result in significant improvements in translation
quality.
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Abstract

This paper reports on the participation of the TALP
Research Center of the UPC (Universitat Politècnica
de Catalunya) to the ACL WMT 2008 evaluation
campaign.

This year’s system is the evolution of the one we em-
ployed for the 2007 campaign. Main updates and
extensions involve linguistically motivated word re-
ordering based on the reordering patterns technique.
In addition, this system introduces a target language
model, based on linguistic classes (Part-of-Speech),
morphology reduction for an inflectional language
(Spanish) and an improved optimization procedure.

Results obtained over the development and test sets
on Spanish to English (and the other way round)
translations for both the traditional Europarl and
a challenging News stories tasks are analyzed and
commented.

1 Introduction

Over the past few years, the Statistical Machine Transla-
tion (SMT) group of the TALP-UPC has been develop-
ing the Ngram-based SMT system (Mariño et al., 2006).
In previous evaluation campaigns the Ngram-based ap-
proach has proved to be comparable with the state-of-
the-art phrase-based systems, as shown in Koehn and
Monz(2006), Callison-Burch et al. (2007).

We present a summary of the TALP-UPC Ngram-
based SMT system used for this shared task. We dis-
cuss the system configuration and novel features, namely
linguistically motivated reordering technique, which is
applied on the decoding step. Additionally, the reorder-
ing procedure is supported by an Ngram language model
(LM) of reordered source Part-of-Speech tags (POS).

In this year’s evaluation we submitted systems for
Spanish-English and English-Spanish language pairs for
the traditional (Europarl) and challenging (News) tasks.

In each case, we used only the supplied data for each lan-
guage pair for models training and optimization.

This paper is organized as follows. Section 2 briefly
outlines the 2008 system, including tuple definition and
extraction, translation model and additional feature mod-
els, decoding tool and optimization procedure. Section 3
describes the word reordering problem and presents the
proposed technique of reordering patterns learning and
application. Later on, Section 4 reports on the experi-
mental setups of the WMT 2008 evaluation campaign. In
Section 5 we sum up the main conclusions from the pa-
per.

2 Ngram-based SMT System

Our translation system implements a log-linear model in
which a foreign language sentencefJ

1
= f1, f2, ..., fJ

is translated into another languageeI
1

= f1, f2, ..., eI by
searching for the translation hypothesisêI

1
maximizing a

log-linear combination of several feature models (Brown
et al., 1990):

êI

1
= argmax

eI

1

{

M
∑

m=1

λmhm(eI

1
, fJ

1
)

}

where the feature functionshm refer to the system models
and the set ofλm refers to the weights corresponding to
these models.

The core part of the system constructed in that way
is a translation model, which is based on bilingualn-
grams. It actually constitutes an Ngram-based LM of
bilingual units (called tuples), which approximates the
joint probability between the languages under consider-
ation. The procedure of tuples extraction from a word-
to-word alignment according to certain constraints is ex-
plained in detail in Mariño et al. (2006).

The Ngram-based approach differs from the phrase-
based SMT mainly by distinct representating of the bilin-
gual units defined by word alignment and using a higher
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order HMM of the translation process. While regular
phrase-based SMT considers context only for phrase re-
ordering but not for translation, the N-gram based ap-
proach conditions translation decisions on previous trans-
lation decisions.

The TALP-UPC 2008 translation system, besides the
bilingual translation model, which consists of a4-gram
LM of tuples with Kneser-Ney discounting (estimated
with SRI Language Modeling Toolkit1), implements a
log-linear combination of five additional feature models:

• atarget language model(a 4-gram model of words,
estimated withKneser-Ney smoothing);

• a POS target language model(a 4-gram model of
tags withGood-Turing discounting (TPOS));

• a word bonus model, which is used to compensate
the system’s preference for short output sentences;

• a source-to-target lexicon modeland atarget-to-
source lexicon model, these models use word-to-
word IBM Model 1 probabilities (Och and Ney,
2004) to estimate the lexical weights for each tuple
in the translation table.

Decisions on the particular LM configuration and
smoothing technique were taken on the minimal-
perplexity and maximal-BLEU bases.

The decoder (called MARIE), an open source tool2,
implementing a beam search strategy with distortion ca-
pabilities was used in the translation system.

Given the development set and references, the log-
linear combination of weights was adjusted using a sim-
plex optimization method (with the optimization criteria
of the highest BLEU score ) and an n-best re-ranking
just as described inhttp://www.statmt.org/jhuws/. This
strategy allows for a faster and more efficient adjustment
of model weights by means of a double-loop optimiza-
tion, which provides significant reduction of the number
of translations that should be carried out.

3 Reordering framework

For a great number of translation tasks a certain reorder-
ing strategy is required. This is especially important
when the translation is performed between pairs of lan-
guages with non-monotonic word order. There are var-
ious types of distortion models, simplifying bilingual
translation. In our system we use an extended monotone
reordering model based on automatically learned reorder-
ing rules. A detailed description can be found in Crego
and Mariño (2006).

1http://www.speech.sri.com/projects/srilm/
2http://gps-tsc.upc.es/veu/soft/soft/marie/

Apart from that, tuples were extracted by an unfold-
ing technique: this means that the tuples are broken into
smaller tuples, and these are sequenced in the order of the
target words.

3.1 Reordering patterns

Word movements are realized according to the reordering
rewrite rules, which have the form of:

t1, ..., tn 7→ i1, ..., in

wheret1, ..., tn is a sequence of POS tags (relating a
sequence of source words), andi1, ..., in indicates which
order of the source words generate monotonically the tar-
get words.

Patterns are extracted in training from the crossed links
found in the word alignment, in other words, found in
translation tuples (as no word within a tuple can be linked
to a word out of it (Crego and Mariño, 2006)).

Having all the instances of rewrite patterns, a score for
each pattern on the basis of relative frequency is calcu-
lated as shown below:

p(t1, ..., tn 7→ i1, ..., in) =
N(t1, ..., tn 7→ i1, ..., in)

NN(t1, ..., tn)

3.2 Search graph extension and source POS model

The monotone search graph is extended with reorderings
following the patterns found in training. Once the search
graph is built, the decoder traverses the graph looking for
the best translation. Hence, the winning hypothesis is
computed using all the available information (the whole
SMT models).

Figure 1: Search graph extension.NC, CC and AQ stand re-
spectively for name, conjunction and adjective.

The procedure identifies first the sequences of words
in the input sentence that match any available pattern.
Then, each of the matchings implies the addition of an arc
into the search graph (encoding the reordering learned in
the pattern). However, this addition of a new arc is not
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Task BL BL+SPOS

Europarl News Europarl News
es2en 32.79 36.09 32.88 36.36
en2es 32.05 33.91 32.10 33.63

Table 1: BLEU comparison demonstrating the impact of the
source-side POS tags model.

performed if a translation unit with the same source-side
words already exists in the training. Figure 1 shows how
two rewrite rules applied over an input sentence extend
the search graph given the reordering patterns that match
the source POS tag sequence.

The reordering strategy is additionally supported by
a 4-gram language model (estimated withGood-Turing
smoothing) of reorderedsource POS tags(SPOS). In
training, POS tags are reordered according with the ex-
tracted reordering patterns and word-to-word links. The
resulting sequence of source POS tags is used to train the
Ngram LM.

Table 1 presents the effect of the source POS LM in-
troduction to the reordering module of the Ngram-based
SMT. As it can be seen, the impactya le h of the source-
side POS LM is minimal, however we decided to consider
the model aiming at improving it in future. The reported
results are related to theEuroparl and News Commen-
tary (News) development sets. BLEU calculation is case
insensitive and insensitive to tokenization.BL (baseline)
refers to the presented Ngram-based system considering
all the features, apart from the target and source POS
models.

4 WMT 2008 Evaluation Framework

4.1 Corpus

An extraction of the official transcriptions of the 3rd re-
lease of the European Parliament Plenary Sessions3 was
provided for the ACL WMT 2008 shared translation task.
About 40 times smaller corpus from news domain (called
News Commentary) was also available. For both tasks,
our training corpus was the catenation of the Europarl and
News Commentary corpora.

TALP UPC participated in the constraint to the
provided training data track for Spanish-English and
English-Spanish translation tasks. We used the same
training material for the traditional and challenging tasks,
while the development sets used to tune the system were
distinct (2000 sentences forEuroparl task and 1057
for News Commentary, one reference translationfor
each of them). A brief training and development corpora
statistics is presented in Table 2.

3http://www.statmt.org/wmt08/shared-task.html

Spanish English

Train
Sentences 1.3 M 1.3 M

Words 38.2 M 35.8 K
Vocabulary 156 K 120 K

Development Europarl
Sentences 2000 2000

Words 61.8 K 58.7 K
Vocabulary 8 K 6.5 K

Development News Commentary
Sentences 1057 1057

Words 29.8 K 25.8 K
Vocabulary 5.4 K 4.9 K

Table 2: Basic statistics of ACL WMT 2008 corpus.

4.2 Processing details

The training data was preprocessed by using provided
tools for tokenizing and filtering.

POS tagging. POS information for the source and the
target languages was considered for both translation tasks
that we have participated. The software tools available
for performing POS-tagging were Freeling (Carreras et
al., 2004) for Spanish and TnT (Brants, 2000) for En-
glish. The number of classes for English is 44, while
Spanish is considered as a more inflectional language,
and the tag set contains 376 different tags.

Word Alignment. The word alignment is automati-
cally computed by using GIZA++4(Och and Ney, 2000)
in both directions, which are symmetrized by using the
union operation. Instead of aligning words themselves,
stems are used for aligning. Afterwards case sensitive
words are recovered.

Spanish Morphology Reduction. We implemented a
morphology reduction of the Spanish language as a pre-
processing step. As a consequence, training data sparse-
ness due to Spanish morphology was reduced improving
the performance of the overall translation system. In par-
ticular, the pronouns attached to the verb were separated
and contractions asdel or al were splitted intode el or
a el. As a post-processing, in the En2Es direction we
used a POS target LM as a feature (instead of the target
language model based on classes) that allowed to recover
the segmentations (de Gispert, 2006).

4.3 Experiments and Results

In contrast to the last year’s system where statistical
classes were used to train the target-side tags LM, this
year we usedlinguistically motivated word classes

4http://code.google.com/p/giza-pp/
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Task BL+SPOS BL+SPOS+TPOS
(UPC 2008)

Europarl News Europarl News
es2en 32.88 36.36 32.89 36.31
en2es 31.52 34.13 30.72 32.72

en2es "clean"5 32.10 33.63 32.09 35.04

Table 3: BLEU scores for Spanish-English and English-Spanish
2008 development corpora (Europarl and News Commentary).

Task UPC 2008
Europarl News

es2en 32.80 19.61
en2es 31.31 19.28

en2es "clean"5 32.34 20.05

Table 4: BLEU scores for official tests 2008.

(POS)which were considered to train the POS target LM
and extract the reordering patterns. Other characteristics
of this year’s system are:

• reordering patterns technique;

• source POS model, supporting word reordering;

• no LM interpolation . For this year’s evaluation, we
trained two separate LMs for each domain-specific
corpus (i.e., Europarl and News Commentary tasks).

It is important to mention that 2008 training material is
identical to the one provided for the 2007 shared transla-
tion task.

Table 3 presents theBLEU score obtained for the 2008
development data sets and shows the impact of the target-
side POS LM introduction, which can be characterized as
highly corpus- and language-dependent feature.BL refers
to the same system configuration as described in subsec-
tion 3.2. The computedBLEU scores are case insensitive,
insensitive to tokenization and use one translation refer-
ence.

After submitting the systems we discovered a bug re-
lated to incorrect implementation of the target LMs of
words and tags for Spanish, it caused serious reduction
of translation quality (1.4 BLEU points for development
set in case of English-to-Spanish Europarl task and 2.3
points in case of the corresponding News Commentary
task). The last raw of table 3 (en2es "clean") repre-
sents the results corresponding to the UPC 2008 post-
evaluation system, while the previous one (en2es) refers
to the "bugged" system submitted to the evaluation.

The experiments presented in Table 4 correspond to the
2008 test evaluation sets.

5Corrected post-evaluation results (see subsection 4.3.)

5 Conclusions

In this paper we introduced the TALP UPC Ngram-based
SMT system participating in the WMT08 evaluation.
Apart from briefly summarizing the decoding and opti-
mization processes, we have presented the feature mod-
els that were taken into account, along with the bilingual
Ngram translation model. A reordering strategy based on
linguistically-motivated reordering patterns to harmonize
the source and target word order has been presented in
the framework of the Ngram-based system.
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Abstract

We describe the Cambridge University En-
gineering Department phrase-based statisti-
cal machine translation system for Spanish-
English and French-English translation in the
ACL 2008 Third Workshop on Statistical Ma-
chine Translation Shared Task. The CUED
system follows a generative model of trans-
lation and is implemented by composition of
component models realised as Weighted Fi-
nite State Transducers, without the use of a
special-purpose decoder. Details of system
tuning for both Europarl and News translation
tasks are provided.

1 Introduction

The Cambridge University Engineering Department
statistical machine translation system follows the
Transducer Translation Model (Kumar and Byrne,
2005; Kumar et al., 2006), a phrase-based generative
model of translation that applies a series of transfor-
mations specified by conditional probability distri-
butions and encoded as Weighted Finite State Trans-
ducers (Mohri et al., 2002).

The main advantages of this approach are its mod-
ularity, which facilitates the development and eval-
uation of each component individually, and its im-
plementation simplicity which allows us to focus on
modeling issues rather than complex decoding and
search algorithms. In addition, no special-purpose
decoder is required since standard WFST operations
can be used to obtain the 1-best translation or a lat-
tice of alternative hypotheses. Finally, the system
architecture readily extends to speech translation, in

which input ASR lattices can be translated in the
same way as for text (Mathias and Byrne, 2006).

This paper reviews the first participation of CUED
in the ACL Workshop on Statistical Machine Trans-
lation in 2008. It is organised as follows. Firstly,
section 2 describes the system architecture and its
main components. Section 3 gives details of the de-
velopment work conducted for this shared task and
results are reported and discussed in section 4. Fi-
nally, in section 5 we summarise our participation in
the task and outline directions for future work.

2 The Transducer Translation Model

Under the Transducer Translation Model, the gen-
eration of a target language sentencetJ1 starts with
the generation of a source language sentencesI

1 by
the source language modelPG(sI

1). Next, the source
language sentence is segmented into phrases accord-
ing to the unweighted uniform phrasal segmenta-
tion modelPW (uK

1 ,K|sI
1). This source phrase se-

quence generates a reordered target language phrase
sequence according to the phrase translation and re-
ordering modelPR(xK

1 |uK
1 ). Next, target language

phrases are inserted into this sequence according to
the insertion modelPΦ(vR

1 |x
K
1 , uK

1 ). Finally, the
sequence of reordered and inserted target language
phrases are transformed to word sequencestJ1 under
the target phrasal segmentation modelPΩ(tJ1 |v

R
1 ).

These component distributions together form a joint
distribution over the source and target language sen-
tences and their possible intermediate phrase se-
quences asP (tJ

1
, vR

1
, xK

1
, uK

1
, sI

1
).

In translation under the generative model, we start
with the target sentencetJ1 in the foreign language131



and search for the best source sentenceŝI
1. Encod-

ing each distribution as a WFST leads to a model of
translation as the series of compositions

L = G ◦ W ◦R ◦ Φ ◦Ω ◦ T (1)

in which T is an acceptor for the target language
sentence andL is the word lattice of translations ob-
tained during decoding. The most likely translation
ŝI
1 is the path inL with least cost.

2.1 TTM Reordering Model

The TTM reordering model associates a jump se-
quence with each phrase pair. For the experi-
ments described in this paper, the jump sequence
is restricted such that only adjacent phrases can be
swapped; this is the MJ1 reordering model of (Ku-
mar and Byrne, 2005). Although the reordering
probability for each pair of phrases could be esti-
mated from word-aligned parallel data, we here as-
sume a uniform reordering probabilityp tuned as de-
scribed in section 3.1. Figure 1 shows how the MJ1
reordering model for a pair of phrasesx1 andx2 is
implemented as a WFST.

0 1

x : x

x2 : x1

x1 : x2

p / b=+1

1 / b=−1

1−p / b=0

Figure 1:The uniform MJ1 reordering transducer.

3 System Development

CUED participated in two of the WMT shared task
tracks: French→English and Spanish→English. For
both tracks, primary and contrast systems were sub-
mitted. The primary submission was restricted
to only the parallel and language model data dis-
tributed for the shared task. The contrast submission
incorporates large additional quantities of English
monolingual training text for building the second-
pass language model described in section 3.2.

Table 1 summarises the parallel training data, in-
cluding the total number of sentences, total num-
ber of words, and lower-cased vocabulary size. The

Spanish and French parallel texts each contain ap-
proximately 5% News Commentary data; the rest
is Europarl data. Various single-reference develop-
ment and test sets were provided for each of the
tracks. However, the 2008 evaluation included a new
News task, for which no corresponding development
set was available.

sentences words vocab

FR 39.9M 124k
EN

1.33M
36.4M 106k

ES 38.2M 140k
EN

1.30M
35.7M 106k

Table 1:Parallel corpora statistics.

All of the training and system tuning was per-
formed using lower-cased data. Word alignments
were generated using GIZA++ (Och and Ney, 2003)
over a stemmed version of the parallel text. Stems
for each language were obtained using the Snowball
stemmer1. After unioning the Viterbi alignments,
the stems were replaced with their original words,
and phrase-pairs of up to five foreign words in length
were extracted in the usual fashion (Koehn et al.,
2003).

3.1 System Tuning

Minimum error training (Och, 2003) under
BLEU (Papineni et al., 2001) was used to optimise
the feature weights of the decoder with respect
to the dev2006 development set. The following
features are optimized:

• Language model scale factor

• Word and phrase insertion penalties

• Reordering scale factor

• Insertion scale factor

• Translation model scale factor:u-to-v

• Translation model scale factor:v-to-u

• Three phrase pair count features

The phrase-pair count features track whether each
phrase-pair occurred once, twice, or more than twice

1Available at http://snowball.tartarus.org132



in the parallel text (Bender et al., 2007). All de-
coding and minimum error training operations are
performed with WFSTs and implemented using the
OpenFST libraries (Allauzen et al., 2007).

3.2 English Language Models

Separate language models are used when translating
the Europarl and News sets. The models are esti-
mated using SRILM (Stolcke, 2002) and converted
to WFSTs for use in TTM translation. We use the of-
fline approximation in which failure transitions are
replaced with epsilons (Allauzen et al., 2003).

The Europarl language model is a Kneser-
Ney (Kneser and Ney, 1995) smoothed default-
cutoff 5-gram back-off language model estimated
over the concatenation of the Europarl and News
language model training data. The News language
model is created by optimising the interpolation
weights of two component models with respect to
the News Commentary development sets since we
believe these more closely match thenewstest2008
domain. The optimised interpolation weights were
0.44 for the Europarl corpus and0.56 for the much
smaller News Commentary corpus. For our contrast
submission, we rescore the first-pass translation lat-
tices with a large zero-cutoff stupid-backoff (Brants
et al., 2007) language model estimated over approx-
imately five billion words of newswire text.

4 Results and Discussion

Table 2 reports lower-cased BLEU scores for the
French→English and Spanish→English Europarl
and News translation tasks. The NIST scores are
also provided in parentheses. The row labelled
“TTM+MET” shows results obtained after TTM
translation and minimum error training, i.e. our pri-
mary submission constrained to use only the data
distributed for the task. The row labelled “+5gram”
shows translation results obtained after rescoring
with the large zero-cutoff 5-gram language model
described in section 3.2. Since this includes addi-
tional language model data, it represents the CUED
contrast submission.

Translation quality for the ES→EN task is
slightly higher than that of FR→EN. For Europarl
translation, most of the additional English language
model training data incorporated into the 5-gram

rescoring step is out-of-domain and so does not sub-
stantially improve the scores. Rescoring yields an
average gain of just+0.5 BLEU points.

Translation quality is significantly lower in both
language pairs for the newnews2008 set. Two fac-
tors may account for this. The first is the change
in domain and the fact that no training or devel-
opment set was available for the News translation
task. Secondly, the use of a much freer translation
in the single News reference, which makes it dif-
ficult to obtain a good BLEU score. However, the
second-pass 5-gram language model rescoring gains
are larger than those observed in the Europarl sets,
with approximately +1.7 BLEU points for each lan-
guage pair. The additional in-domain newswire data
clearly helps to improve translation quality.

Finally, we use a simple 3-gram casing model
trained on the true-case workshop distributed
language model data, and apply the SRILM
disambig tool to restore true-case for our final
submissions. With respect to the lower-cased scores,
true-casing drops around 1.0 BLEU in the Europarl
task, and around 1.7 BLEU in the News Commen-
tary and News tasks.

5 Summary

We have reviewed the Cambridge University Engi-
neering Department first participation in the work-
shop on machine translation using a phrase-based
SMT system implemented with a simple WFST ar-
chitecture. Results are largely competitive with the
state-of-the-art in this task.

Future work will examine whether further im-
provements can be obtained by incorporating addi-
tional features into MET, such as the word-to-word
Model 1 scores or phrasal segmentation models. The
MJ1 reordering model could also be extended to al-
low for longer-span phrase movement. Minimum
Bayes Risk decoding, which has been applied suc-
cessfully in other tasks, could also be included.

The difference in the gains from 5-gram lattice
rescoring suggests that, particularly for Europarl
translation, it is important to ensure the language
model data is in-domain. Some form of count mix-
ing or alternative language model adaptation tech-
niques may prove useful for unconstrained Europarl
translation.133



Task dev2006 devtest2006 test2007 test2008 newstest2008

FR→EN TTM+MET 31.92 (7.650) 32.51 (7.719) 32.94 (7.805) 32.83 (7.799) 19.58 (6.108)
+5gram 32.51 (7.744) 32.96 (7.797) 33.33 (7.880) 33.03 (7.856) 21.22 (6.311)

ES→EN TTM+MET 33.11 (7.799) 32.25 (7.649) 32.90 (7.766) 33.11 (7.859) 20.99 (6.308)
+5gram 33.30 (7.835) 32.96 (7.740) 33.55 (7.857) 33.47 (7.893) 22.83 (6.513)

Table 2:Translation results for the Europarl and News tasks for various dev sets and the 2008 test sets.
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Abstract

We describe the LIU systems for German-
English and English-German translation sub-
mitted to the Shared Task of the Third Work-
shop of Statistical Machine Translation. The
main features of the systems, as compared
with the baseline, is the use of morphologi-
cal pre- and post-processing, and a sequence
model for German using morphologically rich
parts-of-speech. It is shown that these addi-
tions lead to improved translations.

1 Introduction

Research in statistical machine translation (SMT)
increasingly makes use of linguistic analysis in order
to improve performance. By including abstract cat-
egories, such as lemmas and parts-of-speech (POS),
in the models, it is argued that systems can become
better at handling sentences for which training data
at the word level is sparse. Such categories can be
integrated in the statistical framework using factored
models (Koehn et al., 2007). Furthermore, by pars-
ing input sentences and restructuring based on the
result to narrow the structural difference between
source and target language, the current phrase-based
models can be used more effectively (Collins et al.,
2005).

German differs structurally from English in sev-
eral respects (see e.g. Collins et al., 2005). In this
work we wanted to look at one particular aspect
of restructuring, namely splitting of German com-
pounds, and evaluate its effect in both translation di-
rections, thus extending the initial experiments re-
ported in Holmqvist et al. (2007). In addition, since

German is much richer in morphology than English,
we wanted to test the effects of using a sequence
model for German based on morphologically sub-
categorized parts-of-speech. All systems have been
specified as extensions of the Moses system pro-
vided for the Shared Task.

2 Part-of-speech and Morphology

For both English and German we used the part-of-
speech tagger TreeTagger (Schmid, 1994) to obtain
POS-tags.

The German POS-tags from TreeTagger were re-
fined by adding morphological information from
a commercial dependency parser, including case,
number, gender, definiteness, and person for nouns,
pronouns, verbs, adjectives and determiners in the
cases where both tools agreed on the POS-tag. If
they did not agree, the POS-tag from TreeTagger
was chosen. This tag set seemed more suitable for
SMT, with tags for proper names and foreign words
which the commercial parser does not have.

3 Compound Analysis

Compounding is common in many languages, in-
cluding German. Since compounding is highly pro-
ductive it increases vocabulary size and leads to
sparse data problems.

Compounds in German are formed by joining
words, and in addition filler letters can be inserted
or letters can be removed from the end of all but the
last word of the compound (Langer, 1998). We have
chosen to allow simple additions of letter(s) (-s, -n,
-en, -nen, -es, -er, -ien) and simple truncations (-e,
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-en, -n). Example of compounds with additions and
truncations can be seen in (1).

(1) a. Staatsfeind (Staat + Feind)
public enemy

b. Kirchhof (Kirche + Hof)
graveyard

3.1 Splitting compounds

Noun and adjective compounds are split by a mod-
ified version of the corpus-based method presented
by Koehn and Knight (2003). First the German lan-
guage model data is POS-tagged and used to calcu-
late frequencies of all nouns, verbs, adjectives, ad-
verbs and the negative particle. Then, for each noun
and adjective all splits into these known words from
the corpus, allowing filler additions and truncations,
are considered, choosing the splitting option with
the highest arithmetic mean1 of the frequencies of
its parts.

A length limit of each part was set to 4 charac-
ters. For adjectives we restrict the number of parts
to maximum two, since they do not tend to have
multiple parts as often as nouns. In addition we
added a stop list with 14 parts, often mistagged, that
gave rise to wrong adjective splits, such asarische
(’Aryan’) in konsularische(’consular’).

As Koehn and Knight (2003) points out, parts of
compounds do not always have the same meaning
as when they stand alone, e.g.Grundrechte(’basic
rights’), where the first part,Grund, usually trans-
lates asfoundation, which is wrong in this com-
pound. To overcome this we marked all compound
parts but the last, with the symbol ’#’. Thus they are
handled as separate words. Parts of split words also
receive a special POS-tag, based on the POS of the
last word of the compound, and the last part receives
the same POS as the full word.

We also split words containing hyphens based on
the same algorithm. Their parts receive a different
POS-tag, and the hyphens are left at the end of all
but the last part.

1We choose the arithmetic mean over the geometric mean
used by Koehn and Knight (2003) in order to increase the num-
ber of splits.

3.2 Merging compounds

For translation into German, the translation output
contains split compounds, which need to be merged.
An algorithm for merging has been proposed by
Popović et al. (2006) using lists of compounds and
their parts. This method cannot merge unseen com-
pounds, however, so instead we base merging on
POS. If a word has a compound-POS, and the fol-
lowing word has a matching POS, they are merged.
If the next POS does not match, a hyphen is added
to the word, allowing for coordinated compounds as
in (2).

(2) Wasser- und Bodenqualität
water and soil quality

4 System Descriptions

The main difference of our system in relation to the
baseline system of the Shared Task2 is the pre- and
post-processing described above, the use of a POS
factor, and an additional sequence model on POS.
We also modified the tuning to include compound
merging, and used a smaller corpus, 600 sentences
picked evenly from the dev2006 corpus, for tuning.
We use the Moses decoder (Koehn et al., 2007) and
SRILM language models (Stolcke, 2002).

4.1 German ⇒ English

We used POS as an output factor, as can be seen in
Figure 1. Using additional factors only on the tar-
get side means that only the training data need to be
POS-tagged, not the tuning data or translation input.
However, POS-tagging is still performed for Ger-
man as input to the pre-processing step. As Figure 1
shows we have two sequence models. A 5-gram lan-
guage model based on surface form using Kneser-
Ney smoothing and in addition a 7-gram sequence
model based on POS using Witten-Bell3 smoothing.

The training corpus was filtered to sentences with
2–40 words, resulting in a total of 1054688 sen-
tences. Training was done purely on Europarl data,
but results were submitted both on Europarl and

2http://www.statmt.org/wmt08/baseline.
html

3Kneser-Ney smoothing can not be used for the POS se-
quence model, since there were counts-of-counts of zero. How-
ever, Witten-Bell smoothing gives good results when the vocab-
ulary is small.
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Figure 1: Architecture of the factored system

News data. The news data were submitted to see
how well a pure out-of-domain system could per-
form.

In the pre-processing step compounds were split.
This was done for training, tuning and translation.
In addition German contracted prepositions and de-
terminers, such aszumfrom zu dem(’to the’), when
identified as such by the tagger, were split.

4.2 English ⇒ German

All features of the German to English system were
used, and in addition more fine-grained German
POS-tags that were sub-categorized for morpholog-
ical features. This was done for training, tuning
and sequence models. At translation time no pre-
processing was needed for the English input, but a
post-processing step for the German output is re-
quired, including the merging of compounds and
contracted prepositions and determiners. The latter
was done in connection with uppercasing, by train-
ing an instance of Moses on a lower cased corpus
with split contractions and an upper-cased corpus
with untouched contractions. The tuning step was
modified so that merging of compounds were done
as part of the tuning.

4.3 Baseline

For comparison, we constructed a baseline accord-
ing to the shared-task description, but with smaller
tuning corpus, and the same sentence filtering for the
translation model as in the submitted system, using
only sentences of length 2-40.

In addition we constructed a factored baseline
system, with POS as an output factor and a se-
quence model for POS. Here we only used the orig-
inal POS-tags from TreeTagger, no additional mor-
phology was added for German.

De-En En-De

Baseline 26.95 20.16
Factored baseline 27.43 20.27
Submitted system 27.63 20.46

Table 1: Bleu scores for Europarl (test2007)

De-En En-De

Baseline 19.54 14.31
Factored baseline 20.16 14.37
Submitted system 20.61 14.77

Table 2: Bleu scores for News Commentary (nc-test2007)

5 Results

Case-sensitive Bleu scores4 (Papineni et al., 2002)
for the Europarl devtest set (test2007) are shown in
table 1. We can see that the submitted system per-
forms best, and that the factored baseline is better
than the pure baseline, especially for translation into
English.

Bleu scores for News Commentary5 (nc-test2007)
are shown in Table 2. Here we can also see that the
submitted system is the best. As expected, Bleu is
much lower on out-of-domain news text than on the
Europarl development test set.

5.1 Compounds

The quality of compound translations were analysed
manually. The first 100 compounds that could be
found by the splitting algorithm were extracted from
the Europarl reference text, test2007, together with
their English translations6.

System translations were compared to the an-
notated compounds and classified into seven cate-
gories: correct, alternative good translation, correct
but different form, part of the compound translated,
no direct equivalent, wrong and untranslated. Out
of these the first three categories can be considered
good translations.

We performed the error analysis for the submitted
and the baseline system. The result can be seen in

4The %Bleu notation is used in this report
5No development test set for News test were provided, so we

present result for the News commentary, which can be expected
to give similar results.

6The English translations need not be compounds. Com-
pounds without a clear English translation were skipped.
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De⇒ En En⇒ De
Subm Base Subm Base

Correct 50 46 40 39
Alternative 36 26 32 29
Form 5 7 6 8
Part 2 5 10 15
No equivalent 6 2 8 5
Wrong 1 7 1 1
Untranslated – 7 3 3

Table 3: Results of the error analysis of compound trans-
lations

Table 3. For translation into English the submitted
system handles compound translations considerably
better than the baseline with 91% good translations
compared to 79%. In the submitted system all com-
pounds have a translation, compared to the baseline
system which has 7% of the compounds untrans-
lated. In the other translation direction the difference
is smaller, the biggest difference is that the submit-
ted system has fewer cases of partial translation.

5.2 Agreement in German NPs

To study the effects of using fine-grained POS-tags
in the German sequence model, a similar close study
of German NPs was performed. 100 English NPs
having at least two dependents of the head noun
were selected from a randomly chosen subsection
of the development test set. Their translations in
the baseline and submitted system were then identi-
fied. Translations that were not NPs were discarded.
In about two thirds (62 out of 99) of the cases, the
translations were identical. For the remainder, 12
translations were of equal quality, the submitted sys-
tem had a better translation in 17 cases (46%), and a
worse one in 8 cases (22%). In the majority of cases
where the baseline was better, this was due to word
selection, not agreement.

6 Conclusions

Adding morphological processing improved trans-
lation results in both directions for both text types.
Splitting compounds gave a bigger effect for trans-
lation from German. Marking of compound parts
worked well, with no untranslated parts left in the
sample used for evaluation. The mini-evaluation
of German NPs in English-German translation in-

dicates that the morphologically rich POS-based se-
quence model for German also had a positive effect.
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Abstract

The Edinburgh submissions to the shared task
of the Third Workshop on Statistical Machine
Translation (WMT-2008) incorporate recent
advances to the open source Moses system.
We made a special effort on the German–
English and English–German language pairs,
leading to substantial improvements.

1 Introduction

Edinburgh University participated in the shared task
of the Third Workshop on Statistical Machine Trans-
lation (WMT-2008), which is partly funded by the
EUROMATRIX project, which also funds our work.
In this project, we set out to build machine trans-
lation systems for all language pairs of official EU
languages. Hence, we also participated in the shared
task in all language pairs.

For all language pairs, we used the Moses decoder
(Koehn et al., 2007), which follows the phrase-based
statistical machine translation approach (Koehn
et al., 2003), with default settings as a starting
point. We recently added minimum Bayes risk de-
coding and reordering constraints to the decoder. We
achieved consistent increase in BLEU scores with
these improvements, showing gains of up to 0.9%
BLEU on the 2008 news test set.

Most of our efforts were focused on the language
pairs German–English and English–German. For
both language pairs, we explored language-specific
and more general improvements, resulting in gains
of up to 1.5% BLEU for German–English and 1.4%
BLEU for English–German.

2 Recent Improvements

Over the last months, we added minimum Bayes risk
decoding and additional reordering constraints to the

Moses decoder. The WMT-2008 shared task offered
the opportunity to assess these components over a
large range of language pairs and tasks.

For all our experiments, we trained solely on the
Europarl corpus, which allowed us to treat the 2007
news commentary test set (nc-test2007) as a stand-
in for the 2008 news test set (news-2008), for which
we have no in-domain training data. This may have
resulted in lower performance due to less (and very
relevant) training data, but it also allowed us to opti-
mize for a true out-of-domain test set.

The baseline training uses Moses default param-
eters. We use a maximum sentence length of 80, a
phrase translation table with the five traditional fea-
tures, lexicalized reordering, and lowercase training
and test data. All reported BLEU scores are not case-
sensitive, computed using the NIST tool.

2.1 Minimum Bayes Risk Decoding

Minimum Bayes risk decoding was proposed by Ku-
mar and Byrne (2004). Instead of selecting the trans-
lation with the highest probability, minimum Bayes
risk decoding selects the translation that is most sim-
ilar to the highest scoring translations. Intuitively,
this avoid the selection of an outlier as the best trans-
lation, since the decision rule prefers translations
that are similar to other high-scoring translations.

Minimum Bayes risk decoding is defined as:

eMBR = argmaxe

∑
e′

L(e, e′) p(e′|f)

As similarity function L, we use sentence-level
BLEU with add-one smoothing. As highest scoring
translations, we consider the top 100 distinct trans-
lations, for which we convert the translation scores
into a probability distribution p (with a scaling fac-
tor of 1). We tried other n-best list sizes and scaling
factors, with very similar outcomes.
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Language Pair Baseline MBR MP MBR+MP
Spanish–German news 11.7 11.8 (+0.1) 11.9 (+0.2) 12.0 (+0.3)
Spanish–German ep 20.7 21.0 (+0.3) 20.8 (+0.1) 21.0 (+0.3)
German–Spanish news 16.2 16.3 (+0.1) 16.4 (+0.2) 16.6 (+0.4)
German–Spanish ep 28.5 28.6 (+0.1) 28.5 (±0.0) 28.6 (+0.1)
Spanish–English news 19.8 20.2 (+0.4) 20.2 (+0.4) 20.3 (+0.5)
Spanish–English ep 33.6 33.7 (+0.1) 33.6 (±0.0) 33.7 (+0.1)
English–Spanish news 20.1 20.5 (+0.4) 20.5 (+0.4) 20.7 (+0.6)
English–Spanish ep 33.1 33.1 (±0.0) 33.0 (–0.1) 33.1 (±0.0)
French–English news 18.5 19.1 (+0.6) 19.1 (+0.6) 19.2 (+0.7)
French–English ep 33.5 33.5 (±0.0) 33.4 (–0.1) 33.5 (±0.0)
English–French news 17.8 18.0 (+0.2) 18.2 (+0.4) 18.3 (+0.5)
English–French ep 31.1 31.1 (±0.0) 31.1 (±0.0) 31.1 (±0.0)
Czech–English news 14.2 14.4 (+0.2) 14.3 (+0.1) 14.5 (+0.3)
Czech–English nc 22.8 23.0 (+0.2) 22.9 (+0.2) 23.0 (+0.2)
English–Czech news 9.6 9.6 (±0.0) 9.7 (+0.1) 9.6 (±0.0)
English–Czech nc 12.9 13.0 (+0.1) 12.9 (±0.0) 13.0 (+0.1)
Hungarian–English news 7.9 8.3 (+0.4) 8.5 (+0.6) 8.8 (+0.9)
English–Hungarian news 6.1 6.3 (+0.2) 6.4 (+0.3) 6.5 (+0.4)
average news - +0.26 +0.33 +0.46
average ep - +0.08 –0.02 +0.08

Table 1: Improvements in BLEU on the test sets test2008 (ep), newstest2008 (news) and nc-test2008 (nc) for minimum
Bayes risk decoding (MBR) and the monotone-at-punctuation reordering (MP) constraint.

2.2 Monotone at Punctuation

The reordering models in phrase-based translation
systems are known to be weak, since they essentially
relies on the interplay of language model, a general
preference for monotone translation, and (in the case
of lexicalized reordering) a local model based on a
window of neighboring phrase translations. Allow-
ing any kind of reordering typically reduces transla-
tion performance, so reordering is limited to a win-
dow of (in our case) six words.

One noticeable weakness is that the current model
frequently reorders words beyond clause bound-
aries, which is almost never well-motivated, and
leads to confusing translations. Since clause bound-
aries are often indicated by punctuation such as
comma, colon, or semicolon, it is straight-forward
to introduce a reordering constraint that addresses
this problem.

Our implementation of a monotone-at-punc-
tuation reordering constraint (Tillmann and Ney,
2003) requires that all input words before clause-
separating punctuation have be translated, before
words afterwards are covered. Note that this con-

straint does not limit in any way phrase translations
that span punctuation.

2.3 Results
Table 1 summarizes the impact of minimum
Bayes risk decoding (MBR) and the monotone-
at-punctuation reordering constraint (MP). Scores
show higher gains for out-of-domain news test sets
(+0.46) than for in-domain Europarl sets (+0.08).

3 German–English

Translating between German and English is surpris-
ingly difficult, given that the languages are closely
related. The main sources for this difficulty is the
different syntactic structure at the clause level and
the rich German morphology, including the merging
of noun compounds.

In prior work, we addressed reordering with a
pre-order model that transforms German for train-
ing and testing according to a set of hand-crafted
rules (Collins et al., 2005). Employing this method
to our baseline system leads to an improvement of
+0.8 BLEU on the nc-test2007 set and +0.5 BLEU on
the test2007 set.
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German–English nc-test2007 test2007
baseline 20.3 27.6
tokenize hyphens 20.1 (–0.2) 27.6 (±0.0)
tok. hyph. + truecase 20.7 (+0.4) 27.8 (+0.2)
Table 2: Impact of truecasing on case-sensitive BLEU

In a more integrated approach, factored transla-
tion models (Koehn and Hoang, 2007) allow us to
consider grammatical coherence in form of part-
of-speech language models. When translating into
output words, we also generate a part-of-speech tag
along with each output word. Since there are only 46
POS tags in English, we are able to train high-order
n-gram models of these sequences. In our experi-
ments, we used a 7-gram model, yielding improve-
ments of +0.2/–0.1. We obtained the POS tags using
Brill’s tagger (Brill, 1995).

Next, we considered the problem of unknown in-
put words, which is partly due to hyphenated words,
noun compounds, and morphological variants. Us-
ing the baseline model, 907 words (1.78%) in nc-
test2007 and 262 (0.47%) in test2007 are unknown.
First we separate our hyphens by tokenizing words
such as high-risk into high @-@ risk. This reduces
the number of unknown words to 791/224. Unfor-
tunately, it hurts us in terms of BLEU (–0.1/–0.1).
Second, we split compounds using the frequency-
based method (Koehn and Knight, 2003), reducing
the number of unknown words to than half, 424/94,
improving BLEU on nc-test2007 (+0.5/–0.2).

A final modification to the data preparation is
truecasing. Traditionally, we lowercase all training
and test data, but especially in German, case marks
important distinctions. German nouns are capital-
ized, and keeping case allows us to make the dis-
tinction between, say, the noun Wissen (knowledge)
and the verb wissen (to know). By truecasing, we
only change the case of the first word of a sentence
to its most common form. This method still needs
some refinements, such as the handling of headlines
or all-caps text, but it did improve performance over
the hyphen-tokenized baseline (+0.3/+0.2) and the
original baseline (+0.2/+0.1).

Note that truecasing simplifies the recasing prob-
lem, so a better way to gauge its effect is to look
at the case-sensitive BLEU score. Here the dif-
ference are slightly larger over both the hyphen-
tokenized baseline (+0.6/+0.2) and the original base-

German–English nc-test2007 test2007
baseline 21.3 28.4
pos lm 21.5 (+0.2) 28.3 (–0.1)
reorder 22.1 (+0.8) 28.9 (+0.5)
tokenize hyphens 21.2 (–0.1) 28.3 (–0.1)
tok. hyph. + split 21.8 (+0.5) 28.2 (–0.2)
tok. hyph. + truecase 21.5 (+0.2) 28.5 (+0.1)
mp 21.6 (+0.3) 28.2 (–0.2)
mbr 21.4 (+0.1) 28.3 (–0.1)
big beam 21.3 (±0.0) 28.3 (–0.1)

Table 3: Impact of individual modifications for German–
English, measured in BLEU on the development sets

German–English nc-test2007 test2007
baseline 21.3 28.4
+ reorder 22.1 (+0.8) 28.9 (+0.5)
+ tokenize hyphens 22.1 (+0.8) 28.9 (+0.5)
+ truecase 22.7 (+1.3) 28.9 (+0.5)
+ split 23.0 (+1.7) 29.1 (+0.7)
+ mbr 23.1 (+1.8) 29.3 (+0.9)
+ mp 23.3 (+2.0) 29.2 (+0.8)

Table 4: Impact of combined modifications for German–
English, measured in BLEU on the development sets

line (+0.4/+0.2). See the Table 2 for details.
As for the other language pairs, using the

monotone-at-punctuation reordering constraint
(+0.3/–0.2) and minimum Bayes risk decoding
(+0.1/–0.1) mostly helps. We also tried bigger
beam sizes (stack size 1000, phrase table limit 50),
but without gains in BLEU (±0.0/–0.1).

Table 3 summarizes the contributions of the indi-
vidual modifications we described above. For our fi-
nal system, we added the improvements one by one
(see Table 4), except for the bigger beam size and
the POS language model. This led to an overall in-
crease of +2.0/+0.8 over the baseline. Due to a bug
in splitting, the system we submitted to the shared
task had a score of only +1.5/+0.6 over the baseline.

4 English–German

For English–German, we applied many of the same
methods as for the inverse language pair. Tok-
enizing out hyphens has questionable impact (–
0.1/+0.1), while truecasing shows minor gains
(±0.0/+0.1), slightly higher for case-sensitive scor-
ing (+0.2/+0.3). We have not yet developed a
method that is the analog of the compound splitting
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English–German nc-test2007 test-2007
baseline 14.6 21.0
tokenize hyphens 14.5 (–0.1) 21.1 (+0.1)
tok. hyph. + truecase 14.6 (±0.0) 21.1 (+0.1)
morph lm 15.7 (+1.1) 21.2 (+0.2)
mbr 14.9 (+0.3) 21.0 (±0.0)
mp 14.8 (+0.2) 20.9 (–0.1)
big beam 14.7 (+0.1) 21.0 (±0.0)

Table 5: Impact of individual modifications for English–
German, measured in BLEU on the development sets

method — compound merging. We consider this an
interesting challenge for future work.

While the rich German morphology on the source
side mostly poses sparse data problems, on the tar-
get side it creates the problem of which morpholog-
ical variant to choose. The right selection hinges
on grammatical agreement within noun phrases, the
role that each noun phrase plays in the clause, and
the grammatical nature of the subject of a verb. We
use LoPar (Schmidt and Schulte im Walde, 2000),
which gives us morphological features such as
case, gender, count, although in limited form, it of-
ten opts for more general categories such as not gen-
itive. We include these features in a sequence model,
as we used a sequence model over part-of-speech
tags previously. The gains of this method are espe-
cially strong for the out-of-domain set (+1.1/+0.2).

Minimum Bayes risk decoding (+0.3/±0.0),
the monotone-at-punctuation reordering constraint
(+0.2/–0.1), and bigger beam sizes (+0.1/±0.0)
have similar impact as for the other language pairs.
See Table 5 for a summary of all modifications. By
combining everything except for the bigger beam
size, we obtain overall gains of +1.4/+0.4 over the
baseline. For details, refer to Table 6.

5 Conclusions

We built Moses systems trained on either only Eu-
roparl data or, for Czech and Hungarian, the avail-
able training data. We showed gains with minimum
Bayes risk decoding and a reordering constraint in-
volving punctuation. For German↔English, we em-
ployed further language-specific improvements.

Acknowledgements: This work was supported in part
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Commission (6th Framework Programme).

English–German nc-test2007 test2007
baseline 14.6 21.0
+ tokenize hyphens 14.5 (–0.1) 21.1 (+0.1)
+ truecase 14.6 (±0.0) 21.1 (+0.1)
+ morph lm 15.4 (+0.8) 21.3 (+0.3)
+ mbr 15.7 (+1.1) 21.4 (+0.4)
+ mp 16.0 (+1.4) 21.4 (+0.4)

Table 6: Impact of combined modifications for English–
German, measured in BLEU on the development sets
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Abstract

This paper describes our two contributions to
WMT08 shared task: factored phrase-based
model using Moses and a probabilistic tree-
transfer model at a deep syntactic layer.

1 Introduction

Czech is a Slavic language with very rich morphol-
ogy and relatively free word order. The Czech
morphological system (Hajič, 2004) defines 4,000
tags in theory and 2,000 were actually seen in a
big tagged corpus while the English Penn Treebank
tagset contains just about 50 tags. In our parallel
corpus (see below), the English vocabulary size is
148k distinct word forms but more than twice as big
in Czech, 343k distinct word forms.

When translating to Czech from an analytic lan-
guage such as English, target word forms have to
be chosen correctly to produce a grammatical sen-
tence and preserve the expressed relations between
elements in the sentence, e.g. verbs and their modi-
fiers.

This year, we have taken two radically different
approaches to English-to-Czech MT. Section 2 de-
scribes our setup of the phrase-based system Moses
(Koehn et al., 2007) and Section 3 focuses on a sys-
tem with probabilistic tree transfer employed at a
deep syntactic layer and the new challenges this ap-
proach brings.

∗The work on this project was supported by the grants FP6-
IST-5-034291-STP (EuroMatrix), MSM0021620838, MŠMT
ČR LC536, and GA405/06/0589.

2 Factored Phrase-Based MT to Czech

Bojar (2007) describes various experiments with
factored translation to Czech aimed at improving
target-side morphology. We use essentially the same
setup with some cleanup and significantly larger
target-side training data:

Parallel data from CzEng 0.7 (Bojar et al., 2008),
with original sentence-level alignment and tokeniza-
tion. The parallel corpus was taken as a monolithic
text source disregarding differences between CzEng
data sources. We use only 1-1 aligned sentences.

Word alignment using GIZA++ toolkit (Och and
Ney, 2000), the default configuration as available in
training scripts for Moses. We based the word align-
ment on Czech and English lemmas (base forms
of words) as provided by the combination of tag-
gers and lemmatizers by Hajič (2004) for Czech and
Brants (2000) followed by Minnen et al. (2001) for
English. We symmetrized the two GIZA++ runs us-
ing grow-diag-final heuristic.

Truecasing. We attempted to preserve meaning-
bearing case distinctions. The Czech lemmatizer
produces case-sensitive lemmas and thus makes it
easy to cast the capitalization of the lemma back on
the word form.1 For English we approximate the
same effect by a two-step procedure.2

1We change the capitalization of the form to match the
lemma in cases where the lemma is lowercase, capitalized (uc-
first) or all-caps. For mixed-case lemmas, we keep the form
intact.

2We first collect a lexicon of the most typical “shapes” for
each word form (ignoring title-like sentences with most words
capitalized and the first word in a sentence). Capitalized and
all-caps words in title-like sentences are then changed to their
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Decoding steps.We use a simple two-step sce-
nario similar to class-based models (Brown and oth-
ers, 1992): (1) the source English word forms are
translated to Czech word forms and (2) full Czech
morphological tags are generated from the Czech
forms.

Language models.We use the following 6 inde-
pendently weighted language models for the target
(Czech) side:

• 3-grams of word forms based on all CzEng 0.7
data, 15M tokens,

• 3-grams of word forms in Project Syndicate
section of CzEng (in-domain for WMT07 and
WMT08 NC-test set), 1.8M tokens,

• 4-grams of word forms based on Czech Na-
tional Corpus (Kocek et al., 2000), version
SYN2006, 365M tokens,

• three models of 7-grams of morphological tags
from the same sources.

Lexicalized reordering using the mono-
tone/swap/discontinuous bidirectional model based
on both source and target word forms.

MERT. We use the minimum-error rate training
procedure by Och (2003) as implemented in the
Moses toolkit to set the weights of the various trans-
lation and language models, optimizing for BLEU.

Final detokenization is a simple rule-based pro-
cedure based on Czech typographical conventions.
Finally, we capitalize the beginnings of sentences.

See BLEU scores in Table 2 below.

3 MT with a Deep Syntactic Transfer

3.1 Theoretical Background

Czech has a well-established theory of linguistic
analysis called Functional Generative Description
(Sgall et al., 1986) supported by a big treebanking
enterprise (Hajič and others, 2006) and on-going
adaptations for other languages including English
(Cinková and others, 2004). There are two layers

typical shape. In other sentences we change the case only if a
typically lowercase word is capitalized (e.g. at the beginning
of the sentence) or if a typically capitalized word is all-caps.
Unknown words in title-like sentences are lowercased and left
intact in other sentences.

Pred

Sb uvedla , že Pred

=
VP

NP said VP

Figure 1: Sample treelet pair, a-layer.

of syntactic analysis, both formally captured as la-
belled ordered dependency trees: theANALYTICAL

(a-, surface syntax) representation bears a 1-1 corre-
spondence between tokens in the sentence and nodes
in the tree; theTECTOGRAMMATICAL (t-, deep syn-
tax) representation contains nodes only for autose-
mantic words and adds nodes for elements not ex-
pressed on the surface but required by the grammar
(e.g. dropped pronouns).

We use the following tools to automatically anno-
tate plaintext up to the t-layer: (1) TextSeg (Češka,
2006) for tokenization, (2) tagging and lemmatiza-
tion see above, (3) parsing to a-layer: Collins (1996)
followed by head-selection rules for English, Mc-
Donald and others (2005) for Czech, (4) parsing to t-
layer: Žabokrtský (2008) for English, Klimeš (2006)
for Czech.

3.2 Probabilistic Tree Transfer

The transfer step is based on Synchronous Tree Sub-
stitution Grammars (STSG), see Bojar andČmejrek
(2007) for a detailed explanation. The essence is a
log-linear model to search for the most likely syn-
chronous derivation̂δ of the sourceT1 and targetT2

dependency trees:

δ̂ = argmax
δ s.t. source isT1

exp
(

M
∑

m=1

λmhm(δ)
)

(1)

The key feature functionhm in STSG represents
the probability of attaching pairs of dependency
treeletsti

1:2
such as in Figure 1 into aligned pairs of

frontiers ( ) in another treelet pairtj
1:2

given fron-
tier state labels (e.g.Pred-VP in Figure 1):

hSTSG(δ) = log

k
∏

i=0

p(ti1:2 | frontier states) (2)

Other features include e.g. number of internal
nodes (drawn as in Figure 1) produced, number
of treelets produced, and more importantly the tra-
ditionaln-gram language model if the target (a-)tree
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is linearized right away or a binode model promot-
ing likely combinations of the governorg(e) and the
child c(e) of an edgee ∈ T2:

hbinode(δ) = log
∏

e∈T2

p(c(e) | g(e)) (3)

The probabilistic dictionary of aligned treelet
pairs is extracted from node-aligned (GIZA++ on
linearized trees) parallel automatic treebank as in
Moses’ training: all treelet pairs compatible with the
node alignment.

3.2.1 Factored Treelet Translation

Labels of nodes at the t-layer are not atomic but
consist of more than 20 attributes representing var-
ious linguistic features.3 We can consider the at-
tributes as individual factors (Koehn and Hoang,
2007). This allows us to condition the translation
choice on a subset of source factors only. In order to
generate a value for each target-side factor, we use
a sequence of mapping steps similar to Koehn and
Hoang (2007). For technical reasons, our current
implementation allows to generate factored target-
side only when translating a single node to a single
node, i.e. preserving the tree structure.

In our experiments we used 8 source (English) t-
node attributes and 14 target (Czech) attributes.

3.3 Recent Experimental Results

Table 1 shows BLEU scores for various configura-
tions of our decoder. The abbreviations indicate be-
tween which layers the tree transfer was employed
(e.g. “eact” means English a-layer to Czech t-layer).
The “p” layer is an approximation of phrase-based
MT: the surface “syntactic” analysis is just a left-to-
right linear tree.4 For setups ending in t-layer, we
use a deterministic generation the of Czech sentence
by Ptáček anďZabokrtský (2006).

For WMT08 shared task, Table 2, we used a vari-
ant of the “etct factored” setup with the annotation
pipeline as incorporated in TectoMT (Žabokrtský,
2008) environment and using TectoMT internal

3Treated as atomic, t-node labels have higher entropy
(11.54) than lowercase plaintext (10.74). The t-layer by itself
does not bring any reduction in vocabulary. The idea is that the
attributes should be more or less independent and should map
easier across languages.

4Unlike Moses, “epcp” does not permit phrase reordering.

Tree-based Transfer LM Type BLEU
epcp n-gram 10.9±0.6
eaca n-gram 8.8±0.6
epcp none 8.7±0.6
eaca none 6.6±0.5
etca n-gram 6.3±0.6
etct factored, preserving structure binode 5.6±0.5
etct factored, preserving structure none 5.3±0.5
eact, target side atomic binode 3.0±0.3
etct, atomic, all attributes binode 2.6±0.3
etct, atomic, all attributes none 1.6±0.3
etct, atomic, just t-lemmas none 0.7±0.2
Phrase-based (Moses) as reported by Bojar (2007)
Vanilla n-gram 12.9±0.6
Factored to improve target morphologyn-gram 14.2±0.7

Table 1: English-to-Czech BLEU scores for syntax-based
MT on WMT07 DevTest.

WMT07 WMT08
DevTest NC Test News Test

Moses 14.9±0.9 16.4±0.6 12.3±0.6
Moses, CzEng data only 13.9±0.9 15.2±0.6 10.0±0.5
etct, TectoMT annotation 4.7±0.5 4.9±0.3 3.3±0.3

Table 2: WMT08 shared task BLEU scores.

rules for t-layer parsing and generation instead of
Klimeš (2006) and (Ptáček anďZabokrtský, 2006).

3.3.1 Discussion

Our syntax-based approach does not reach scores
of phrase-based MT due to the following reasons:

Cumulation of errors at every step of analysis.
Data lossdue to incompatible parses and node

alignment. Unlike e.g. Quirk et al. (2005) or Huang
et al. (2006) who parse only one side and project the
structure, we parse both languages independently.
Natural divergence and random errors in either of
the parses and/or the alignment prevent us from ex-
tracting many treelet pairs.

Combinatorial explosion in target node at-
tributes. Currently, treelet options are fully built in
advance. Uncertainty in the many t-node attributes
leads to too many insignificant variations while e.g.
different lexical choices are pushed off the stack.
While vital for final sentence generation (see Ta-
ble 1), fine-grained t-node attributes should be pro-
duced only once all key structural, lexical and form
decisions have been made. The same sort of explo-
sion makes complicated factored setups not yet fea-
sible in Moses, either.
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Lack of n-gram LM in the (deterministic) gen-
eration procedures from a t-tree. While we support
final LM-based rescoring, there is too little variance
in n-best lists due to the explosion mentioned above.

Too many model parametersgiven our stack
limit. We use identical MERT implementation to
optimizeλms but in the large space of hypotheses,
MERT does not converge.

3.3.2 Related Research

Our approach should not be confused with the
TectoMT submission by ZdeněǩZabokrtský with a
deterministic transfer: heuristics fully exploiting the
similarity of English and Czech t-layers.

Ding and Palmer (2005) improve over word-based
MT baseline with a formalism very similar to STSG.
Though not explicitly stated, they seem not to en-
code frontiers in the treelets and allow for adjunction
(adding siblings), like Quirk et al. (2005), which sig-
nificantly reduces data sparseness.

Riezler and III (2006) report an improvement in
MT grammaticality on a very restricted test set:
short sentences parsable by an LFG grammar with-
out back-off rules.

4 Conclusion

We have presented our best-performing factored
phrase-based English-to-Czech translation and a
highly experimental complex system with tree-
based transfer at a deep syntactic layer. We have
discussed some of the reasons why the phrase-based
MT currently performs much better.
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Ondřej Bojar and MartiňCmejrek. 2007. Mathematical
Model of Tree Transformations. Project EuroMatrix -
Deliverable 3.2,́UFAL, Charles University, Prague.
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Abstract

We describe the experiments of the UC Berke-
ley team on improving English-Spanish ma-
chine translation of news text, as part of the
WMT’08 Shared Translation Task. We ex-
periment with domain adaptation, combin-
ing a small in-domain news bi-text and a
large out-of-domain one from the Europarl
corpus, building two separate phrase transla-
tion models and two separate language mod-
els. We further add a third phrase transla-
tion model trained on a version of the news
bi-text augmented with monolingual sentence-
level syntactic paraphrases on the source-
language side, and we combine all models in
a log-linear model using minimum error rate
training. Finally, we experiment with differ-
ent tokenization and recasing rules, achieving
35.09% Bleu score on the WMT’07 news test
data when translating from English to Span-
ish, which is a sizable improvement over the
highest Bleu score achieved on that dataset
at WMT’07: 33.10% (in fact, by our sys-
tem). On the WMT’08 English to Spanish
news translation, we achieve 21.92%, which
makes our team the second best on Bleu score.

1 Introduction

Modern Statistical Machine Translation (SMT) sys-
tems are trained on sentence-aligned bilingual cor-
pora, typically from a single domain. When tested
on text from that same domain, they demonstrate

∗After January 2008 at the Linguistic Modeling Depart-
ment, Institute for Parallel Processing, Bulgarian Academy of
Sciences, nakov@lml.bas.bg

state-of-the art performance, but on out-of-domain
test data the results can get significantly worse. For
example, on the WMT’06 Shared Translation Task,
the scores for French to English translation dropped
from about 30 to about 20 Bleu points for nearly all
systems when tested on News Commentary rather
than Europarl text, which was used on training
(Koehn and Monz, 2006).

Therefore, in 2007 the Shared Task organizers
provided 1M words of bilingual News Commentary
training data in addition to the 30M Europarl data,
thus inviting interest in domain adaptation experi-
ments. Given the success of the idea, the same task
was offered this year with slightly larger training bi-
texts: 1.3M and 32M words, respectively.

2 System Parameters

The team of the University of California at Berkeley
(ucb) participated in the WMT’08 Shared Transla-
tion Task with two systems, English→Spanish and
Spanish→English, applied to translating News Com-
mentary text, for which a very limited amount of
training data was provided. We experimented with
domain adaptation, combining the provided small
in-domain bi-text and the large out-of-domain one
from the Europarl corpus, building two phrase trans-
lation models and two language models. We further
added a third phrase translation model trained on a
version of the news bi-text augmented with mono-
lingual sentence-level syntactic paraphrases on the
source-language side, and we combined all models
in one big log-linear model using minimum error
rate training. We also experimented with different
tokenization and recasing ideas.

147



2.1 Sentence-Level Syntactic Paraphrases

The idea of using paraphrases is motivated by the
observation that, in many cases, the testing text
contains pieces that are equivalent, but syntacti-
cally different from the phrases learned on train-
ing, which might result in missing the opportu-
nity for a high-quality translation. For example, an
English→Spanish SMT system could have an entry
in its phrase table for inequality of income, but not
for income inequality. Note that the latter phrase
is hard to translate into Spanish where noun com-
pounds are rare: the correct translation in this case
requires a suitable Spanish preposition and a re-
ordering, which are hard for the system to realize
and do properly. We address this problem by gen-
erating nearly-equivalent syntactic paraphrases of
the source-side training sentences, targeted at noun
compounds. We then pair each paraphrased sen-
tence with the foreign translation associated with the
original sentence in the training data. The resulting
augmented bi-text is used to train an SMT system,
which learns many useful new phrases. The idea
was introduced in (Nakov and Hearst, 2007), and is
described in more detail in (Nakov, 2007).

Unfortunately, using multiple paraphrased ver-
sions of the same sentence changes the word fre-
quencies in the training bi-text, thus causing worse
maximum likelihood estimates, which results in bad
system performance. However, real improvements
can still be achieved by merging the phrase tables of
the two systems, giving priority to the original.

2.2 Domain Adaptation

In our previous findings (Nakov and Hearst, 2007),
we found that using in-domain and out-of-domain
language models is the best way to perform do-
main adaptation. Following (Koehn and Schroeder,
2007), we further used two phrase tables.

2.3 Improving the Recaser

One problem we noticed with the default recasing
is that unknown words are left in lowercase. How-
ever, many unknown words are in fact named en-
tities (persons, organization, or locations), which
should be spelled capitalized. Therefore, we pre-
pared a new recasing script, which makes sure that
all unknown words keep their original case.

2.4 Changing Tokenization/Detokenization

We found the default tokenizer problematic: it
keeps complex adjectives as one word, e.g., well-
rehearsed, self-assured, Arab-Israeli. While lin-
guistically correct, this is problematic for machine
translation due to data sparsity. For example, the
SMT system might know how to translate into Span-
ish both well and rehearsed, but not well-rehearsed,
and thus at translation time it would be forced to
handle it as an unknown word. A similar problem
is related to double dashes ‘--’, as illustrated by the
following training sentence: “So the question now
is what can China do to freeze--and, if possible, to
reverse--North Korea’s nuclear program.”

Therefore, we changed the tokenizer, so that it
puts a space around ‘-’ and ‘--’. We also changed the
detokenizer accordingly, adding some rules for fix-
ing erroneous output, e.g., making sure that in Span-
ish text ¿ and ?, ¡ and ! match. We also added some
rules for numbers, e.g., the English 1,185.32 should
be spelled as 1.185,32 in Spanish.

3 The UCB System

As Table 1 shows, we performed many experiments
varying different parameters of the system. Due to
space limitations, here we will only describe our best
system, news10≺euro10≺par10.

To build the system, we trained three separate
phrase-based SMT systems (max phrase lengths 10):
on the original News Commentary corpus (news),
on the paraphrased version of News Commentary
(par), and on the Europarl dataset (euro). As a re-
sult, we obtained three phrase tables, Tnews, Tpar,
and Teuro, and three lexicalized reordering models,
Rnews, Rpar, and Reuro, which we had to merge.

First, we kept all phrase pairs from Tnews. Then
we added those phrase pairs from Teuro which were
not present in Tnews. Finally, we added to them
those from Tpar which were not in Tnews nor in
Teuro. For each phrase pair added, we retained its as-
sociated features: forward phrase translation proba-
bility, reverse phrase translation probability, forward
lexical translation probability, reverse lexical trans-
lation probability, and phrase penalty. We further
added three new features – Pnews, Peuro, and Ppar –
each of them was 1 if the phrase pair came from that
system, and 0.5 otherwise.
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BLEU Toke- News Comm. Europarl Tuning
Model DR IR nizer slen plen LM slen plen LM #iter score

1 2 3 4 5 6 7 8 9 10 11 12
I. Original Tokenizer
news7 (baseline) 32.04 32.30 def. 40 7 3 – – – 8 33.51
news7 31.98 32.21 def. 100 7 3 – – – 19 33.95
news10 32.43 32.67 def. 100 10 3 – – – 13 34.50
II. New Tokenizer
- II.1. Europarl only
euro7 29.92 30.19 new – – – 40 7 5 10 33.02
euro10 30.14 30.36 new – – – 40 10 5 10 32.86
- II.2. News Commentary only
par10 31.17 31.44 new 100 10 3 – – – 8 33.91
news10 32.27 32.53 new 100 10 3 – – – 12 34.49
news10≺par10 32.09 32.34 new 100 10 3 – – – 24 34.63
- II.3. News Commentary + Europarl
-- II.3.1. using Europarl LM
par10 32.88 33.16 new 100 10 3 – – 5 11 35.54
news10 33.99 34.26 new 100 10 3 – – 5 8 36.16
news10≺par10 34.42 34.71 new 100 10 3 – – 5 17 36.41
-- II.3.2. using Europarl LM & Phrase Table (max phrase length 7)
?news10+euro7+par10 32.75 32.96 new 100 10 3 40 7 5 27 35.28
?news10+euro7 34.06 34.32 new 100 10 3 40 7 5 28 36.82
news10≺euro7 34.05 34.31 new 100 10 3 40 7 5 9 36.71
news10≺par10≺euro7 34.25 34.52 new 100 10 3 40 7 5 14 36.88
news10≺euro7≺par10 34.69 34.97 new 100 10 3 40 7 5 10 37.01
-- II.3.3. using Europarl LM & Phrase Table (max phrase length 10)
?news10+euro10+par10 32.74 33.02 new 100 10 3 40 10 5 36 35.60
news10≺euro10≺par10 34.85 35.09 new 100 10 3 40 10 5 12 37.13

Table 1: English→Spanish translation experiments with the WMT’07 data: training on News Commentary and
Europarl, and evaluating on News Commentary. Column 1 provides a brief description of the model used. Here
we use euro, news and par to refer to using phrase tables extracted from the Europarl, the News Commentary, or the
Paraphrased News Commentary training bi-text; the index indicates the maximum phrase length allowed. The≺ oper-
ation means the phrase tables are merged, giving priority to the left one and using additional features indicating where
each phrase pair came from, while the + operation indicates the phrase tables are used together without priorities. The
models using the + operation are marked with a ? as a reminder that the involved phrase tables are used together, as
opposed to being priority-merged. Note also that the models from II.3.1. only use the Spanish part of the Europarl
training data to build an out-of-domain language model; this is not indicated in column 1, but can be seen in column
10. Columns 2 and 3 show the testing Bleu score after applying the Default Recaser (DR) and the Improved Recaser
(IR), respectively. Column 4 shows whether the default or the new tokenizer was used. Columns 5, 6 and 7 contain the
parameters of the News Commentary training data: maximum length of the training sentences used (slen), maximum
length of the extracted phrases (plen), and order of the language model (LM), respectively. Columns 8, 9 and 10 con-
tain the same parameters for the Europarl training data. Column 11 shows the number of iterations the MERT tuning
took, and column 12 gives the corresponding tuning Bleu score achieved. Finally, for the WMT’08 competition, we
used the system marked in bold.
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We further merged Rnews, Reuro, and Rpar in
a similar manner: we first kept all phrases from
Rnews, then we added those from Reuro which were
not present in Rnews, and finally those from Rpar

which were not in Rnews nor in Reuro.
We used two language models with Kneser-Ney

smoothing: a 3-gram model trained on News Com-
mentary, and a 5-gram model trained on Europarl.

We then trained a log-linear model using the fol-
lowing feature functions: language model proba-
bilities, word penalty, distortion cost, and the pa-
rameters from the phrase table. We set the feature
weights by optimizing the Bleu score directly using
minimum error rate training (Och, 2003) on the de-
velopment set. We used these weights in a beam
search decoder to produce translations for the test
sentences, which we compared to the WMT’07 gold
standard using Bleu (Papineni et al., 2002).

4 Results and Discussion

Table 1 shows the evaluation results using the
WMT’07 News Commentary test data. Our best
English→Spanish system news10≺euro10≺par10
(see the table caption for explanation of the nota-
tion), which is also our submission, achieved 35.09
Bleu score with the improved recaser; with the de-
fault recaser, the score drops to 34.85.

Due to space limitations, our Spanish→English
results are not in Table 1. This time, we did not use
paraphrases, and our best system news10≺euro10

achieved 35.78 and 35.17 Bleu score with the im-
proved and the default recaser, respectively.

As the table shows, using the improved recaser
yields consistent improvements by about 0.3 Bleu
points. Using an out-of-domain language model
adds about 2 additional Bleu points, e.g., news10

improves from 32.53 to 34.26, and news10≺par10
improves from 32.34 to 34.71. The impact of
also adding an out-of-domain phrase table is tiny:
news10≺euro7 improves on news10 by 0.05 only.
Adding paraphrases however can yield an absolute
improvement of about 0.6, e.g., 34.31 vs. 34.97
for news10≺euro7 and news10≺euro7≺par10. Inter-
estingly, using an out-of-domain phrase table has a
bigger impact when paraphrases are used, e.g., for
news10≺par10 and news10≺euro7≺par10 we have
34.71 and 34.97, respectively. Finally, we were sur-

prised to find out that using the new tokenizer does
not help: for news10 the default tokenizer yields
32.67, while the new one only achieves 32.53. This
is surprising for us, since the new tokenizer used to
help consistent on the WMT’06 data.

5 Conclusions and Future Work

We described the UCB system for the WMT’08
Shared Translation Task. By combining in-domain
and out-of-domain data, and by using sentence-
level syntactic paraphrases and a better recaser, we
achieved an improvement of almost 2 Bleu points1

over the best result on the WMT’07 test data2,
and the second best Bleu score for this year’s
English→Spanish translation of news text.

In future work, we plan a deeper analysis of the
obtained results. First, we would like to experiment
with new ways to combine data from different do-
mains. We also plan to further improve the recaser,
and to investigate why the new tokenizer did not help
for the WMT’07 data.
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Abstract
This paper describes the statistical machine trans-
lation systems submitted to the ACL-WMT 2008
shared translation task. Systems were submitted for
two translation directions: English→Spanish and
Spanish→English. Using sentence pair confidence
scores estimated with source and target language
models, improvements are observed on the News-
Commentary test sets. Genre-dependent sentence
pair confidence score and integration of sentence
pair confidence score into phrase table are also in-
vestigated.

1 Introduction
Word alignment models are a crucial component in sta-
tistical machine translation systems. When estimating
the parameters of the word alignment models, the sen-
tence pair probability is an important factor in the objec-
tive function and is approximated by the empirical prob-
ability. The empirical probability for each sentence pair
is estimated by maximum likelihood estimation over the
training data (Brown et al., 1993). Due to the limitation of
training data, most sentence pairs occur only once, which
makes the empirical probability almost uniform. This is
a rather weak approximation of the true distribution.

In this paper, we investigate the methods of weighting
sentence pairs using language models, and extended the
general weighting method to genre-dependent weight. A
method of integrating the weight directly into the phrase
table is also explored.

2 The Baseline Phrase-Based MT System
The ACL-WMT08 organizers provided Europarl and
News-Commentary parallel corpora for English↔ Span-
ish. Detailed corpus statistics is given in Table 1. Follow-
ing the guidelines of the workshop we built baseline sys-
tems, using the lower-cased Europarl parallel corpus (re-
stricting sentence length to 40 words), GIZA++ (Och and

Ney, 2003), Moses (Koehn et al., 2007), and the SRI LM
toolkit (Stolcke, 2002) to build 5-gram LMs. Since no
News development sets were available we chose News-
Commentary sets as replacements. We used test-2006
(E06) and nc-devtest2007 (NCd) as development sets for
Europarl and News-Commentary; test-2007 (E07) and
nc-test2007 (NCt) as held-out evaluation sets.

English Spanish
Europarl (E)

sentence pairs 1,258,778
unique sent. pairs 1,235,134
avg. sentence length 27.9 29.0
# words 35.14 M 36.54 M
vocabulary 108.7 K 164.8 K

News-Commentary (NC)
sentence pairs 64,308
unique sent. pairs 64,205
avg. sentence length 24.0 27.4
# words 1.54 M 1.76 M
vocabulary 44.2 K 56.9 K

Table 1: Statistics of English↔Spanish Europarl and News-
Commentary corpora

To improve the baseline performance we trained sys-
tems on all true-cased training data with sentence length
up to 100. We used two language models, a 5-gram LM
build from the Europarl corpus and a 3-gram LM build
from the News-Commentary data. Instead of interpolat-
ing the two language models, we explicitly used them in
the decoder and optimized their weights via minimum-
error-rate (MER) training (Och, 2003). To shorten the
training time, a multi-threaded GIZA++ version was used
to utilize multi-processor servers (Gao and Vogel, 2008).
Other parameters were the same as the baseline sys-
tem. Table 2 shows results in lowercase BLEU (Pap-
ineni et al., 2002) for both the baseline (B) and the im-
proved baseline systems (B5) on development and held-
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out evaluation sets. We observed significant gains for the
News-Commentary test sets. Our improved baseline sys-
tems obtained a comparable performance with the best
English↔Spanish systems in 2007 (Callison-Burch et al.,
2007).

Pairs Europarl NC
E06 E07 NCd NCt

En→Es B 33.00 32.21 31.84 30.56
B5 33.33 32.25 35.10 34.08

Es→En B 33.08 33.23 31.18 31.34
B5 33.26 33.23 36.06 35.56

Table 2: NIST-BLEU scores of baseline and improved baseline
systems experiments on English↔Spanish

3 Weighting Sentence Pairs
3.1 Problem Definition
The quality of word alignment is crucial for the perfor-
mance of the machine translation system.

In the well-known so-called IBM word alignment
models (Brown et al., 1993), re-estimating the model pa-
rameters depends on the empirical probability P̂ (ek, fk)
for each sentence pair (ek, fk). During the EM train-
ing, all counts of events, e.g. word pair counts, distortion
model counts, etc., are weighted by P̂ (ek, fk). For ex-
ample, in IBM Model 1 the lexicon probability of source
word f given target word e is calculated as (Och and Ney,
2003):

p(f |e) =

∑
k

c(f |e; ek, fk)∑
k,f

c(f |e; ek, fk)
(1)

c(f |e; ek, fk) =
∑

ek,fk

P̂ (ek, fk)
∑

a

P (a|ek, fk) · (2)

∑
j

δ(f , fk
j )δ(e, ek

aj
)

Therefore, the distribution of P̂ (ek, fk) will affect the
alignment results. In Eqn. 2, P̂ (ek, fk) determines
how much the alignments of sentence pair (ek, fk) con-
tribute to the model parameters. It will be helpful if
the P̂ (ek, fk) can approximate the true distribution of
P (ek, fk).

Consider that we are drawing sentence pairs from a
given data source, and each unique sentence pair (ek, fk)
has a probability P (ek, fk) to be observed. If the training
corpora size is infinite, the normalized frequency of each
unique sentence pair will converge to P (ek, fk). In that
case, equally assigning a number to each occurrence of
(ek, fk) and normalizing it will be valid. However, the
assumption is invalid if the data source is finite. As we
can observe in the training corpora, most sentences occur
only one time, and thus P̂ (ek, fk) will be uniform.

To get a more informative P̂ (ek, fk), we explored
methods of weighting sentence pairs. We investigated
three sets of features: sentence pair confidence (sc),
genre-dependent sentence pair confidence (gdsc) and
phrase alignment confidence (pc) scores. These features
were calculated over an entire training corpus and could
be easily integrated into the phrase-based machine trans-
lation system.

3.2 Sentence Pair Confidence
We can hardly compute the joint probability of P (ek, fk)
without knowing the conditional probability P (ek|fk)
which is estimated during the alignment process. There-
fore, to estimate P (ek, fk) before alignment, we make an
assumption that P̂ (ek, fk) = P (ek)P (fk), which means
the two sides of sentence pair are independent of each
other. P (ek) and P (fk) can be obtained by using lan-
guage models. P (ek) or P (fk), however, can be small
when the sentence is long. Consequently, long sentence
pairs will be assigned low scores and have negligible ef-
fect on the training process. Given limited training data,
ignoring these long sentences may hurt the alignment re-
sult. To compensate this, we normalize the probability by
the sentence length. We propose the following method
to weighting sentence pairs in the corpora. We trained
language models for source and target language, and the
average log likelihood (AVG-LL) of each sentence pair
was calculated by applying the corresponding language
model. For each sentence pair (ek, fk), the AVG-LL
L(ek, fk) is

L(ek) = 1
|ek|

∑
ek

i
∈ek log P (ek

i |h)

L(fk) = 1
|fk|

∑
fk

j
∈fk log P (fk

j |h)

L(ek, fk) = [L(ek) + L(fk)]/2

(3)

where P (ek
i |h) and P (fk

j |h) are ngram probabilities.
The sentence pair confidence score is then given by:

sc(ek, fk) = exp(L(ek, fk)). (4)

3.3 Genre-Dependent Sentence Pair Confidence
Genre adaptation is one of the major challenges in statis-
tical machine translation since translation models suffer
from data sparseness (Koehn and Schroeder, 2007). To
overcome these problems previous works have focused
on explicitly modeling topics and on using multiple lan-
guage and translation models. Using a mixture of topic-
dependent Viterbi alignments was proposed in (Civera
and Juan, 2007). Language and translation model adap-
tation to Europarl and News-Commentary have been ex-
plored in (Paulik et al., 2007).

Given the sentence pair weighting method, it is pos-
sible to adopt genre-specific language models into the
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weighting process. The genre-dependent sentence pair
confidence gdsc simulates weighting the training sen-
tences again from different data sources, thus, given
genre g, it can be formulated as:

gdsc(ek, fk) = sc(ek, fk|g) (5)

where P (ek
i |h) and P (fk

j |h) are estimated by genre-
specific language models.

The score generally represents the likelihood of the
sentence pair to be in a specific genre. Thus, if both sides
of the sentence pair show a high probability according
to the genre-specific language models, alignments in the
pair should be more possible to occur in that particular
domain, and put more weight may contribute to a better
alignment for that genre.

3.4 Phrase Alignment Confidence
So far the confidence scores are used only in the train-
ing of the word alignment models. Tracking from which
sentence pairs each phrase pair was extracted, we can use
the sentence level confidence scores to assign confidence
scores to the phrase pairs. Let S(ẽ, f̃) denote the set of
sentences pairs from which the phrase pair (ẽ, f̃) was ex-
tracted. We calculate then a phrase alignment confidence
score pc as:

pc(ẽ, f̃) = exp

∑
(ek,fk)∈S(ẽ,f̃) log sc(ek, fk)

|S(ẽ, f̃)| (6)

This score is used as an additional feature of the phrase
pair. The feature weight is estimated in MER training.

4 Experimental Results
The first step in validating the proposed approach was
to check if the different language models do assign dif-
ferent weights to the sentence pairs in the training cor-
pora. Using the different language models NC (News-
Commentary), EP (Europarl), NC+EP (both NC and EP)
the genre-specific sentence pair confidence scores were
calculated. Figure 1 shows the distributions of the dif-
ferences in these scores across the two corpora. As ex-
pected, the language model build from the NC corpus as-
signs - on average - higher weights to sentence pairs in the
NC corpus and lower weights to sentence pairs in the EP
corpus (Figure 1a). The opposite is true for the EP LM.
When comparing the scores calculated from the NC LM
and the combined NC+EP LM we still see a clear sep-
aration (Figure 1b). No marked difference can be seen
between using the EP LM and the NC+EP LM (Figure
1c), which again is expected, as the NC corpus is very
small compared to the EP corpus.

The next step was to retrain the word alignment mod-
els using sentences weights according to the various con-
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Figure 1: Histogram of weight differences genre specific con-
fidence scores on NC and EP training corpora

fidence scores. Table 3 shows training and test set per-
plexities for IBM model 4 for both training directions.
Not only do we see a drop in training set perplexities,
but also in test set perplexities. Using the genre specific
confidence scores leads to lower perplexities on the cor-
responding test set, which means that using the proposed
method does lead to small, but consistent adjustments in
the alignment models.

Uniform NC+EP NC EP

train En→Es 46.76 42.36 42.97 44.47
Es→En 70.18 62.81 62.95 65.86

test

NC(En→Es) 53.04 53.44 51.09 55.94
EP(En→Es) 91.13 90.89 91.84 90.77
NC(Es→En) 81.39 81.28 78.23 80.33
EP(Es→En) 126.56 125.96 123.23 122.11

Table 3: IBM model 4 training and test set perplexities using
genre specific sentence pair confidence scores.

In the final step the specific alignment models were
used to generate various phrase tables, which were then
used in translation experiments. Results are shown in Ta-
ble 4. We report lower-cased Bleu scores. We used nc-
dev2007 (NCt1) as an additional held-out evaluation set.
Bold cells indicate highest scores.

As we can see from the results, improvements are ob-
tained by using sentence pair confidence scores. Us-
ing confidence scores calculated from the EP LM gave
overall the best performance. While we observe only a
small improvement on Europarl sets, improvements on
News-Commentary sets are more pronounced, especially
on held-out evaluation sets NCt and NCt1. The exper-
iments do not give evidence that genre-dependent con-
fidence can improve over using the general confidence
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Test Set
E06 E07 NCd NCt NCt1

Es→En
B5 33.26 33.23 36.06 35.56 35.64
NC+EP 33.23 32.29 36.12 35.47 35.97
NC 33.43 33.39 36.14 35.27 35.68
EP 33.36 33.39 36.16 35.63 36.17

En→Es
B5 33.33 32.25 35.10 34.08 34.43
NC+EP 33.23 32.29 35.12 34.56 34.89
NC 33.30 32.27 34.91 34.07 34.29
EP 33.08 32.29 35.05 34.52 35.03

Table 4: Translation results (NIST-BLEU) using gdsc with dif-
ferent genre-specific language models for Es↔En systems

score. As the News-Commentary language model was
trained on a very small amount of data further work is
required to study this in more detail.

Test Set
E06 E07 NCd NCt NCt1

Es→En
B5 33.26 33.23 36.06 35.56 35.64
NC+EP+pc 33.54 33.39 36.07 35.38 35.85
NC+pc 33.17 33.31 35.96 35.74 36.04
EP+pc 33.44 32.87 36.22 35.63 36.09

En→Es
B5 33.33 32.25 35.10 34.08 34.43
NC+EP+pc 33.28 32.45 34.82 33.68 33.86
NC+pc 33.13 32.47 34.01 34.34 34.98
EP+pc 32.97 32.20 34.26 33.99 34.34

Table 5: Translation results (NIST-BLEU) using pc with differ-
ent genre-specific language models for Es↔En systems

Table 5 shows experiments results in NIST-BLEU us-
ing pc score as an additional feature on phrase tables
in Es↔En systems. We observed that across develop-
ment and held-out sets the gains from pc are inconsistent,
therefore our submissions are selected from the B5+EP
system.

5 Conclusion

In the ACL-WMT 2008, our major innovations are meth-
ods to estimate sentence pair confidence via language
models. We proposed to use source and target language
models to weight the sentence pairs. We developed sen-
tence pair confidence (sc), genre-dependent sentence pair
confidence (gdsc) and phrase alignment confidence (pc)
scores. Our experimental results shown that we had a bet-
ter word alignment and translation performance by using
gdsc. We did not observe consistent improvements by
using phrase pair confidence scores in our systems.

Acknowledgments
This work is in part supported by the US DARPA under the
GALE program. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of DARPA.

References
Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra,

and Robert L. Mercer. 1993. The mathematics of statisti-
cal machine translation: Parameter estimation. In Computa-
tional Linguistics, volume 19(2), pages 263–331.

Chris Callison-Burch, Cameron Fordyce, Philipp Koehn,
Christof Monz, and Josh Schroeder. 2007. (Meta-) evalua-
tion of machine translation. In Proc. of the ACL 2007 Second
Workshop on Statistical Machine Translation, Prague, Czech
Republic.

Jorge Civera and Alfons Juan. 2007. Domain adaptation in sta-
tistical translation with mixture modelling. In Proc. of the
ACL 2007 Second Workshop on Statistical Machine Transla-
tion, Prague, Czech Republic.

Qin Gao and Stephan Vogel. 2008. Parallel implementations
of word alignment tool. In Proc. of the ACL 2008 Soft-
ware Engineering, Testing, and Quality Assurance Work-
shop, Columbus, Ohio, USA.

Philipp Koehn and Josh Schroeder. 2007. Experiments in do-
main adaptation for statistical machine translation. In Proc.
of the ACL 2007 Second Workshop on Statistical Machine
Translation, Prague, Czech Republic.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-
Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan,
Wade Shen, Christine Moran, Richard Zens, Chris Dyer, On-
drej Bojar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine transla-
tion. In Proc. of the 45th Annual Meeting of the Association
for Computational Linguistics, demo sessions, pages 177–
180, Prague, Czech Republic, June.

Franz J. Och and Hermann Ney. 2003. A systematic compar-
ison of various statistical alignment models. In Computa-
tional Linguistics, volume 1:29, pages 19–51.

Franz Josef Och. 2003. Minimum error rate training in statis-
tical machine translation. In Erhard Hinrichs and Dan Roth,
editors, Proceedings of the 41st Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of ma-
chine translation. In Proc. of the 40th Annual Conf. of the
Association for Computational Linguistics (ACL 02), pages
311–318, Philadelphia, PA, July.

Matthias Paulik, Kay Rottmann, Jan Niehues, Silja Hildebrand,
and Stephan Vogel. 2007. The ISL phrase-based mt system
for the 2007 ACL workshop on statistical machine transla-
tion. In In Proc. of the ACL 2007 Second Workshop on Sta-
tistical Machine Translation, Prague, Czech Republic.

Andreas Stolcke. 2002. SRILM – An extensible language mod-
eling toolkit. In Proc. Intl. Conf. on Spoken Language Pro-
cessing, volume 2, pages 901–904, Denver.

154



Proceedings of the Third Workshop on Statistical Machine Translation, pages 155–158,
Columbus, June 2008. c©2008 Association for Computational Linguistics

Kernel Regression Framework for Machine Translation: UCL System
Description for WMT 2008 Shared Translation Task

Zhuoran Wang
University College London
Dept. of Computer Science

Gower Street, London, WC1E 6BT
United Kingdom

z.wang@cs.ucl.ac.uk

John Shawe-Taylor
University College London
Dept. of Computer Science

Gower Street, London, WC1E 6BT
United Kingdom

jst@cs.ucl.ac.uk

Abstract

The novel kernel regression model for SMT
only demonstrated encouraging results on
small-scale toy data sets in previous works due
to the complexities of kernel methods. It is
the first time results based on the real-world
data from the shared translation task will be
reported at ACL 2008 Workshop on Statisti-
cal Machine Translation. This paper presents
the key modules of our system, including the
kernel ridge regression model, retrieval-based
sparse approximation, the decoding algorithm,
as well as language modeling issues under this
framework.

1 Introduction

This paper follows the work in (Wang et al., 2007;
Wang and Shawe-Taylor, 2008) which applied the
kernel regression method with high-dimensional
outputs proposed originally in (Cortes et al., 2005)
to statistical machine translation (SMT) tasks. In our
approach, the machine translation problem is viewed
as a string-to-string mapping, where both the source
and the target strings are embedded into their re-
spective kernel induced feature spaces. Then ker-
nel ridge regression is employed to learn the map-
ping from the input feature space to the output one.
As a kernel method, this model offers the potential
advantages of capturing very high-dimensional cor-
respondences among the features of the source and
target languages as well as easy integration of ad-
ditional linguistic knowledge via selecting particu-
lar kernels. However, unlike the sequence labeling
tasks such as optical character recognition in (Cortes

et al., 2005), the complexity of the SMT problem it-
self together with the computational complexities of
kernel methods significantly complicate the imple-
mentation of the regression technique in this field.

Our system is actually designed as a hybrid of
the classic phrase-based SMT model (Koehn et al.,
2003) and the kernel regression model as follows:
First, for each source sentence a small relevant set of
sentence pairs are retrieved from the large-scale par-
allel corpus. Then, the regression model is trained
on this small relevant set only as a sparse approx-
imation of the regression hyperplane trained on the
entire training set, as proposed in (Wang and Shawe-
Taylor, 2008). Finally, a beam search algorithm is
utilized to decode the target sentence from the very
noisy output feature vector we predicted, with the
support of a pre-trained phrase table to generate pos-
sible hypotheses (candidate translations). In addi-
tion, a language model trained on a monolingual cor-
pus can be integrated either directly into the regres-
sion model or during the decoding procedure as an
extra scoring function.

Before describing each key component of our sys-
tem in detail, we give a block diagram overview in
Figure 1.

2 Problem Formulation

Concretely, the machine translation problem in our
method is formulated as follows. If we define a fea-
ture spaceHx of our source languageX , and define
the mappingΦ : X → Hx, then a sentencex ∈ X
can be expressed by its feature vectorΦ(x) ∈ Hx.
The definition of the feature spaceHy of our target
languageY can be made in a similar way, with cor-
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Figure 1: System overview. The processes in gray blocks
are pre-performed for the whole system, while the white
blocks are online processes for each input sentence. The
two dash-line arrows represent two possible ways of lan-
guage model integration in our system described in Sec-
tion 6.

responding mappingΨ : Y → Hy. Now in the ma-
chine translation task, we are trying to seek a matrix
represented linear operatorW, such that:

Ψ(y) = WΦ(x) (1)

to predict the translationy for an arbitrary source
sentencex.

3 Kernel Ridge Regression

Based on a set of training samples, i.e. bilingual
sentence pairsS = {(xi,yi) : xi ∈ X ,yi ∈ Y, i =
1, . . . , m.}, we use ridge regression to learn theW

in Equation (1), as:

min ‖WMΦ −MΨ‖
2
F + ν‖W‖2

F (2)

where MΦ = [Φ(x1), ...,Φ(xm)], MΨ =
[Ψ(y1), ...,Ψ(ym)], ‖ · ‖F denotes the Frobenius
norm that is a matrix norm defined as the square root
of the sum of the absolute squares of the elements in
that matrix, andν is a regularization coefficient.

Differentiating the expression and setting it to
zero gives the explicit solution of the ridge regres-
sion problem:

W = MΨ(KΦ + νI)−1M⊤
Φ (3)

where I is the identity matrix, andKΦ =
M⊤

ΦMΦ = (κΦ(xi,xj)1≤i,j≤m). Note here, we use
the kernel function:

κΦ(xi,xj) = 〈Φ(xi), Φ(xj)〉 = Φ(xi)
⊤Φ(xj) (4)

to denote the inner product between two feature vec-
tors. If the feature spaces are properly defined, the
‘kernel trick’ will allow us to avoid dealing with
the very high-dimensional feature vectors explicitly
(Shawe-Taylor and Cristianini, 2004).

Inserting Equation (3) into Equation (1), we ob-
tain our prediction as:

Ψ(y) = MΨ(KΦ + νI)−1kΦ(x) (5)

wherekΦ(x) = (κΦ(x,xi)1≤i≤m) is anm× 1 col-
umn matrix. Note here, we will use the exact matrix
inversion instead of iterative approximations.

3.1 N -gram String Kernel

In the practical learning and prediction processes,
only the inner products of feature vectors are re-
quired, which can be computed with the kernel func-
tion implicitly without evaluating the explicit coor-
dinates of points in the feature spaces. Here, we de-
fine our features of a sentence as its wordn-gram
counts, so that a blendedn-gram string kernel can
be used. That is, if we denote byxi:j a substring
of sentencex starting with theith word and ending
with the jth, then for two sentencesx and z, the
blendedn-gram string kernel is computed as:

κ(x, z) =
n∑

p=1

|x|−p+1∑

i=1

|z|−p+1∑

j=1

[[xi:i+p−1 = zj:j+p−1]]

(6)
Here, | · | denotes the length of the sentence, and
[[·]] is the indicator function for the predicate. In our
system, the blended tri-gram kernel is used, which
means we count then-grams of length up to 3.

4 Retrieval-based Sparse Approximation

For SMT, we are not able to use the entire training
set that contains millions of sentences to train our
regression model. Fortunately, it is not necessary ei-
ther. Wang and Shawe-Taylor (2008) suggested that
a small set of sentences whose source is relevant to
the input can be retrieved, and the regression model
can be trained on this small-scale relevant set only.
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Src n’ y a-t-il pas ici deux poids , deux mesures
Rlv pourquoiy a-t-il deux poids , deux mesures

pourquoideux poids et deux mesures
peut-̂etre n’ y a-t-il pas d’ épid́emie non
plus
pourquoin’ y a-t-il pas urgence
cette directive doit exister d’ici deux mois

Table 1: A sample input (Src) and some of the retrieved
relevant examples (Rlv).

In our system, we take each sentence as a docu-
ment and use thetf-idf metric that is frequently used
in information retrieval tasks to retrieve the relevant
set. Preliminary experiments show that the size of
the relevant set should be properly controlled, as if
many sentences that are not very close to the source
text are involved, they will correspond to adding
noise. Hence, we use a threshold of thetf-idf score
to filter the relevant set. On average, around 1500
sentence pairs are extracted for each source sen-
tence. Table 1 shows a sample input and some of
its top relevant sentences retrieved.

5 Decoding

After the regression, we have a prediction of the
target feature vector as in Equation (1). To ob-
tain the target sentence, a decoding algorithm is still
required to solve the pre-image problem. This is
achieved in our system by seeking the sentenceŷ

whose feature vector has the minimum Euclidean
distance to the prediction, as:

ŷ = arg min
y∈Y(x)

‖WΦ(x)−Ψ(y)‖ (7)

whereY(x) ⊂ Y denotes a finite set covering all
potential translations for the given source sentence
x. To obtain a smaller search space and more re-
liable translations,Y(x) is generated with the sup-
port of a phrase table extracted from the whole train-
ing set. Then a modified beam search algorithm
is employed, in which we restricted the distortion
of the phrases by only allowing adjacent phrases to
exchange their positions, and rank the search states
in the beams according to Equation (7) but applied
directly to the partial translations and their corre-
sponding source parts. A more detailed explanation
of the decoding algorithm can be found in (Wang

et al., 2007). In addition, Wang and Shawe-Taylor
(2008) further showed that the search error rate of
this algorithm is acceptable.

6 Language Model Integration

In previous works (Wang et al., 2007; Wang and
Shawe-Taylor, 2008), there was no language model
utilized in the regression framework for SMT, as
similar function can be achieved by the correspon-
dences among then-gram features. It was demon-
strated to work well on small-scale toy data, how-
ever, real-world data are much more sparse and
noisy, where a language model will help signifi-
cantly.

There are two ways to integrate a language model
in our framework. First, the most straightforward so-
lution is to add a weight to adjust the strength of the
regression based translation scores and the language
model score during the decoding procedure. Alter-
natively, as language model isn-gram-based which
matches the definition of our feature space, we can
add a langauge model loss to the objective function
of our regression model as follows. We define our
language score for a target sentencey as:

LM(y) = V⊤Ψ(y) (8)

whereV is a vector whose componentsVy′′y′y will
typically be log-probabilitieslog P (y|y′′y′), andy,
y′ and y′′ are arbitrary words. Note here, in or-
der to match our blended tri-gram induced feature
space, we can makeV of the same dimension as
Ψ(y), while zero the components corresponding to
uni-grams and bi-grams. Then the regression prob-
lem can be defined as:

min ‖WMΦ−MΨ‖
2
F +ν1‖W‖2

F −ν2V
⊤WMΦ1

(9)
whereν2 is a coefficient balancing between the pre-
diction being close to the target feature vector and
being a fluent target sentence, and1 denotes a vec-
tor with components 1. By differentiating the ex-
pression with respect toW and setting the result to
zero, we can obtain the explicit solution as:

W = (MΨ + ν2V1⊤)(KΦ + ν1I)
−1M⊤

Φ (10)

7 Experimental Results

Preliminary experiments are carried out on the
French-English portion of the Europarl corpus. We
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System BLEU (%) NIST METEOR (%) TER (%) WER (%) PER (%)
Kernel Regression 26.59 7.00 52.63 55.98 60.52 43.20

Moses 31.15 7.48 56.80 55.14 59.85 42.79

Table 3: Evaluations based on different metrics with comparison to Moses.

train our regression model on the training set, and
test the effects of different language models on the
development set (test2007). The results evaluated
by BLEU score (Papineni et al., 2002) is shown in
Table 2.

It can be found that integrating the language
model into the regression framework works slightly
better than just using it as an additional score com-
ponent during decoding. But language models of
higher-order than then-gram kernel cannot be for-
mulated to the regression problem, which would be
a drawback of our system. Furthermore, the BLEU
score performance suggests that our model is not
very powerful, but some interesting hints can be
found in Table 3 when we compare our method with
a 5-gram language model to a state-of-the-art system
Moses (Koehn and Hoang, 2007) based on various
evaluation metrics, including BLEU score, NIST
score (Doddington, 2002), METEOR (Banerjee and
Lavie, 2005), TER (Snover et al., 2006), WER and
PER. It is shown that our system’s TER, WER and
PER scores are very close to Moses, though the
gaps in BLEU, NIST and METEOR are significant,
which suggests that we would be able to produce ac-
curate translations but might not be good at making
fluent sentences.

8 Conclusion

This work is a novel attempt to apply the advanced
kernel method to SMT tasks. The contribution at this
stage is still preliminary. When applied to real-world
data, this approach is not as powerful as the state-of-
the-art phrase-based log-linear model. However, in-
teresting prospects can be expected from the shared
translation task.
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no-LM LM1
3gram LM2

3gram LM1
5gram

BLEU 23.27 25.19 25.66 26.59

Table 2: BLEU score performance of different language
models. LM1 denotes adding the language model dur-
ing decoding process, while LM2 represents integrating
the language model into the regression framework as de-
scribed in Problem (9).
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Abstract

Our participation in the shared translation task
at WMT-08 focusses on news translation from
English to French. Our main goal is to con-
trast a baseline version of the phrase-based
MATRAX system, with a version that incor-
porates syntactic “coupling” features in order
to discriminate translations produced by the
baseline system. We report results comparing
different feature combinations.

1 Introduction

Our goal is to try to improve the fluency and ad-
equacy of a baseline phrase-based SMT system by
using a variety of “syntactic coupling features”, ex-
tracted from parses for the source and target strings.
These features are used for reranking the n-best can-
didates of the baseline system.

The phrase-based SMT system MATRAX, devel-
oped at XRCE, is used as the baseline in the experi-
ments. MATRAX is based on a fairly standard log-
linear model, but one original aspect of the system
is the use of non-contiguous bi-phrases such asne
... plus/ not ... anymore, where words in the source
and target phrases may be separated by gaps, to be
filled at translation time by lexical material provided
by some other such pairs (Simard et al., 2005).

For parsing, we use theXerox Incremental Parser
XIP (Aı̈t-Mokhtar et al., 2002), which is a robust
dependency parser developed at the Xerox Research
Centre Europe. XIP is fast (around 2000 words per
second for English) and is well adapted to a situ-
ation, like the one we have here, were we need to

parse on the order of a few hundred target candi-
dates on the fly. Also of interest to us is the fact that
XIP produces labelled dependencies, a feature that
we use in some of our experiments.

1.1 Decoding and Training

We resort to a standard reranking approach in which
we produce an n-best list of MATRAX candidate
translations (with n = 100 in our experiments), and
then rerank this list with a linear combination of our
parse-dependent features. In order to train the fea-
ture weights, we use an averaged structured percep-
tron approach (Roark et al., 2004), where we try to
learn weights such that the first candidate to emerge
is equal to the “oracle” candidate, that is, the candi-
date that is closest to the reference in terms of NIST
score.

1.2 Coupling Features

Our general approach to computing coupling fea-
tures between the dependency structure of the source
and that of a candidate translation produced by MA-
TRAX is the following: we start by aligning the
words between the source and the candidate trans-
lation, we parse both sides, and we count (possi-
bly according to a weighting scheme) the number of
configurations (“rectangles”) that are of the follow-
ing type:((s1, s12, s2), (t1, t12, t2)), wheres12 is an
edge betweens1 ands2, t12 is an edge betweent1
andt2, s1 is aligned witht1 ands2 is aligned with
t2. We implemented several variants of this basic
scheme.

We start by describing different “generic” cou-
pling functions derived from the basic scheme, as-
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suming that word alignments have been already de-
termined, then we describe the option of taking into
account specific dependency labels when counting
rectangles, and finally we describe two options for
computing the word alignments.

1.2.1 Generic features

The first measure of coupling is based on sim-
ple, non-weighted, word alignments. Here we sim-
ply consider that a word of the source and a word
of the target are aligned or not aligned, without any
intermediary degree, and consider that a rectangle
exists on the quadruple of wordss1, s2, t1, t2 iff si

is aligned toti, s1 and s2 have a dependency link
between them (in whatever direction) and similarly
for t1 and t2. The first feature that we introduce,
Coupling-Count, is simply the count of all such rect-
angles between the source and the target.

We note that the value of this feature tends to be
correlated with the size of the source and target de-
pendency trees. We therefore introduce some nor-
malized variants of the feature:

• Coupling-Recall. We compute the number of
source edges for which there exists a projec-
tion in the target. More formally, the number of
edges between two wordss1, s2 such that there
exist two wordst1, t2 with si aligned toti and
such thatt1, t2 have an edge between them. We
then divide this number by the total number of
edges in the source.

• Coupling-Precision. We do the same thing this
time starting from the target.

• Coupling-F-measure. This is defined as the
harmonic mean of the two previous features.

1.2.2 Label-specific features

The features previously defined do not take into
account the labels associated with edges in the de-
pendency trees. However, while rectangles of the
form ((s1, subj, s2), (t1, subj, t2)) may be rather sys-
tematic between such languages as English and
French, other rectangles may be much less so, due
on the one hand to actual linguistic divergences be-
tween the two languages, but also, as importantly
in practice, to different representational conventions

used by different grammar developers for the two
languages.1

In order to control this problem, we introduce a
collection ofLabel-Specific-Couplingfeatures, each
for a specific pair of source label and target label.
The values of a label-specific feature are the num-
ber of occurrences for this specific label pair. We
use only label pairs that have been observed to be
aligned in the training corpus (that is, that partici-
pate in observed rectangles). In one version of that
approach, we use all such pairs found in the corpus,
in another version only the pairs above a certain fre-
quency threshold in the corpus.

1.2.3 Alignment

In order to compute the features described above,
a prerequisite is to be able to determine a word align-
ment between the source and a candidate translation.
Our first approach is to use GIZA++ (correspond-
ing roughly to IBM Model 4) to create these align-
ments, by producing for a given source and a given
candidate translation n-best alignment lists in both
directions and applying standard techniques of sym-
metrization to produce a bidirectional alignment.

Another way to find word alignments is to use the
information provided by the baseline system. Since
MATRAX is a phrase-based system, it has access to
the bi-phrases (aligned by definition) that are used in
order to generate a candidate translation. However
note that when we use a bi-phrase based alignment,
there will be differences from the word alignment
that we discussed before, and we need to adapt our
coupling functions.

1.2.4 Related approaches

There is a growing body of work on the use of
syntax for improving the quality of SMT systems.
Our approach is closest to the line taken in (Och
et al., 2003), where syntactic features are also used
for discriminating between candidates produced by
a phrase-based system, but here we introduce and
compare results for a wider variety of coupling fea-
tures, taking into account different combinations in-
volving normalization of the counts, symmetrized
features between the source and target, labelled de-

1Although the XIP formalism is shared between grammar
developers of French and English, the grammars do sometimes
follow different conventions.
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pendencies, and also consider several ways for com-
puting the word alignment on the basis of which
edge couplings are determined.

2 Experiments

2.1 Description

Our participation concerns the English to French
News translation task. To train our baseline system
we used the News Commentary corpus, namely the
training (∼ 1M words) and development (1057 sen-
tences) sets proposed for the shared translation task.
The same development set was used for the MERT
training procedure of the baseline system, as well
as for learning the parameters of the reranking pro-
cedure. Note that the test data on which we report
our experimental results here is the one proposed as
development test set for the News translation task
(1064 sentences, nc-devtest2007).

Using MATRAX as the baseline system we gen-
erate 100-best lists of candidate translations for all
source sentences of the test set, we rerank these can-
didates using our features, and we output the top
candidate. We present our results in Table 1, distin-
guished according to the actual combination of fea-
tures used in each experiment.

• The Baselineentry in the table corresponds to
MATRAX results on the test set, without the
use of any of the coupling features.

• We distinguish two sub-tables, according to
whether Giza-based alignments or phrase-
based alignments were used.

• The Generickeyword corresponds to the cou-
pling features introduced in section 1.2.1, based
on rectangle counts, independent of the labels
of the edges.

• The Matrax keyword corresponds to using
MATRAX “internal” features as reranking fea-
tures, along with the coupling features. These
MATRAX features are pretty standard phrase-
based features, apart from some features deal-
ing explicitly with gapped phrases, and are de-
scribed in detail in (Simard et al., 2005).

• TheLabelsandFrequent Labelskeywords cor-
responds to using label-specific features. In

the first case (Labels) we extracted all of the
aligned label pairs (label pair associated with
a coupling rectangle) found in a training set,
while in the second case (Frequent Labels), we
only kept the most frequently observed among
these label pairs.

• When several keywords appear on a line, we
used the union of the corresponding features,
and in the last line of the table, we show a
combination involving at the same time some
features computed on the basis of Giza-based
alignments and of phrase-based alignments.

• Along with the NIST and BLEU scores of each
combination, we also conducted an informal
manual assessment of the quality of the re-
sults relative to the MATRAX baseline. We
took a random sample of 100 source sentences
from the test set and for each sentence, assessed
whether the first candidate produced by rerank-
ing was better, worse, or indistinguishable in
terms of quality relative to the baseline trans-
lation. We report the number of improvements
(+) and deteriorations (-) among these 100 sam-
ples as well as their difference.2

3 Discussion

While the overall results in terms of Bleu and Nist
do not show major improvements relative to the
baseline, there are several interesting observations
to make. First of all, if we focus on feature com-
binations in which MATRAX features are included
(shown in italics in the table), we see that there is a
general tendency for the results, both in terms of au-
tomatic and human evaluations, to be better than for
the same combination without the MATRAX fea-
tures; the explanation seems to be that if we do
not use the MATRAX features during reranking, but
consider the 100 candidates in the n-best list to be
equally valuable from the viewpoint of MATRAX
features, we lose essential information that cannot

2All the results reported here correspond to our own evalu-
ations, prior to the WMT evaluations. Given time constraints,
we focussed more on contrasting the baseline with the baseline
+ coupling features, than in tuning the baseline itself for the
task at hand. After the submission deadline, we were able to
improve the baseline for this task.
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NIST BLEU - + Diff

Baseline 6.4093 0.2034 0 0 0

Giza-based alignments
Generic 6.3383 0.2043 15 17 2
Generic, Matrax 6.3782 0.2083 4 18 14
Labels 6.3483 0.1963 12 18 6
Labels, Generic 6.3514 0.2010 3 18 15
Labels, Generic, Matrax 6.4016 0.2075 3 20 17
Frequent Labels 6.3815 0.2054 7 11 4
Frequent Labels, Generic 6.3826 0.2044 6 18 12
Frequent Labels, Generic, Matrax 6.4177 0.2100 2 16 14

Phrase-based alignments
Generic 6.2869 0.1964 12 14 2
Generic, Matrax 6.3972 0.2031 4 11 7
Labels 6.3677 0.1995 16 15 -1
Labels, Generic 6.3567 0.1977 8 15 7
Labels, Generic, Matrax 6.4269 0.2049 4 17 13
Frequent Labels 6.3701 0.1998 3 15 12
Frequent Labels, Generic 6.3846 0.2013 7 16 9
Frequent Labels, Generic, Matrax 6.4160 0.2049 4 16 12

Giza Generic, Phrase Generic, Giza Labels, Matrax6.4351 0.2060 7 22 15

Table 1: Reranking results.

be recovered simply by appeal to the syntactic cou-
pling features.

If we now concentrate on the lines which do in-
clude MATRAX features and compare their results
with the baseline, we see a trend for these results to
be better than the baseline, both in terms of auto-
matic measures as (more strongly) in terms of hu-
man evaluation. Taken individually, perhaps the im-
provements are not very clear, butcollectively, a
trend does seem to appear in favor of syntactic cou-
pling features generally, although we have not con-
ducted formal statistical tests to validate this impres-
sion. A more detailed comparison between individ-
ual lines, inside the class of combinations that in-
clude MATRAX features, appears however difficult
to make on the basis of the reported experiments.
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Abstract

We apply the Stat-XFER statistical transfer
machine translation framework to the task of
translating from French and German into En-
glish. We introduce statistical methods within
our framework that allow for the principled
extraction of syntax-based transfer rules from
parallel corpora given word alignments and
constituency parses. Performance is evaluated
on test sets from the 2007 WMT shared task.

1 Introduction

The Carnegie Mellon University statistical trans-
fer (Stat-XFER) framework is a general search-
based and syntax-driven framework for develop-
ing MT systems under a variety of data condi-
tions (Lavie, 2008). At its core is a transfer en-
gine using two language-pair-dependent resources:
a grammar of weighted synchronous context-free
rules (possibly augmented with unification-style fea-
ture constraints), and a probabilistic bilingual lexi-
con of syntax-based word- and phrase-level transla-
tions. The Stat-XFER framework has been used to
develop research MT systems for a number of lan-
guage pairs, including Chinese–English, Hebrew–
English, Urdu–English, and Hindi–English.

In this paper, we describe our use of the frame-
work to create new French–English and German–
English MT systems for the 2008 Workshop on Sta-
tistical Machine Translation shared translation task.
We first describe the acquisition and processing of
resources for each language pair and the roles of
those resources within the Stat-XFER system (Sec-
tion 2); we then report results on common test sets

(Section 3) and share some early analysis and future
directions (Section 4).

2 System Description

Building a new machine translation system under
the Stat-XFER framework involves constructing a
bilingual translation lexicon and a transfer gram-
mar. Over the past six months, we have developed
new methods for extracting syntax-based translation
lexicons and transfer rules fully automatically from
parsed and word-aligned parallel corpora. These
new methods are described in detail by Lavie et
al. (2008). Below, we detail the statistical meth-
ods by which these resources were extracted for our
French–English and German–English systems.

2.1 Lexicon

The bilingual lexicon is automatically extracted
from automatically parsed and word-aligned paral-
lel corpora. To obtain high-quality statistical word
alignments, we run GIZA++ (Och and Ney, 2003)
in both the source-to-target and target-to-source di-
rections, then combine the resulting alignments with
the Sym2 symmetric alignment heuristic of Ortiz-
Martı́nez et al. (2005)1. From this data, we extract a
lexicon of both word-to-word and syntactic phrase-
to-phrase translation equivalents.

The word-level correspondences are extracted di-
rectly from the word alignments: parts of speech for
these lexical entries are obtained from the preter-

1We use Sym2 over more well-known heuristics such as
“grow-diag-final” because Sym2 has been shown to give the
best results for the node-alignment subtask that is part of our
processing chain.
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ws cs wt ct r

paru V appeared V 0.2054
paru V seemed V 0.1429
paru V found V 0.0893
paru V published V 0.0804
paru V felt V 0.0714
...

...
...

paru V already ADV 0.0089
paru V appear V 0.0089
paru V authoritative ADJ 0.0089

Table 1: Part of the lexical entry distribution for the
French (source) wordparu.

minal nodes of parse trees of the source and target
sentences. If parsers are unavailable for either lan-
guage, we have also experimented with determin-
ing parts of speech with independent taggers such
as TreeTagger (Schmid, 1995). Alternatively, parts
of speech may be projected through the word align-
ments from one language to the other if the infor-
mation is available on at least one side. Syntactic
phrase-level correspondences are extracted from the
parallel data by applying the PFA node alignment
algorithm described by Lavie et al. (2008). The
yields of the aligned parse tree nodes are extracted
as constituent-level translation equivalents.

Each entry in the lexicon is assigned a rule score,
r, based on its source-side part of speechcs, source-
side textws, target-side part of speechct, and target-
side textwt. The score is a maximum-likelihood es-
timate of the distribution of target-language transla-
tion and source- and target-language parts of speech,
given the source word or phrase.

r = p(wt, ct, cs |ws) (1)

≈
#(wt, ct, ws, cs)

#(ws) + 1
(2)

We employ add-one smoothing in the denominator
of Equation 2 to counteract overestimation in the
case that#(ws) is small. Rule scores provide a way
to promote the more likely translation alternatives
while still retaining a high degree of diversity in the
lexicon. Table 1 shows part of the lexical distribu-
tion for the French (source) wordparu.

The result of the statistical word alignment pro-
cess and lexical extraction is a bilingual lexicon con-

taining 1,064,755 entries for French–English and
1,111,510 entries for German–English. Sample lex-
ical entries are shown in Figure 1.

2.2 Grammar

Transfer grammars for our earlier statistical transfer
systems were manually created by in-house experts
of the languages involved and were therefore small.
The Stat-XFER framework has since been extended
with procedures for automatic grammar acquisition
from a parallel corpus, given constituency parses for
source or target data or both. Our French and Ger-
man systems used the context-free grammar rule ex-
traction process described by Lavie et al. (2008).
For French, we used 300,000 parallel sentences from
the Europarl training data parsed on the English side
with the Stanford parser (Klein and Manning, 2003)
and on the French side with the Xerox XIP parser
(Aı̈t-Mokhtar et al., 2001). For German, we used
300,000 Europarl sentence pairs parsed with the En-
glish and German versions of the Stanford parser2.

The set of rules extracted from the parsed corpora
was filtered down after scoring to improve system
performance and run time. The final French rule set
was comprised of the 1500 most frequently occur-
ring rules. For German, rules that occurred less than
twice were filtered out, leaving a total of 16,469. In
each system, rule scores were again calculated by
Equation 2, withws and wt representing the full
right-hand sides of the source and target grammar
rules.

A secondary version of our French system used a
word-level lexicon extracted from the intersection,
rather than the symmetricization, of the GIZA++
alignments in each direction; we hypothesize that
this tends to improve precision at the expense of re-
call. The word-level lexicon was supplemented with
syntax-based phrase-level entries obtained from the
PFA node alignment algorithm. The grammar
contained the 700 highest-frequency and the 500
highest-scoring rules extracted from the parallel
parsed corpus. This version had a total lexicon size
of 2,023,531 entries and a total grammar of 1034
rules after duplicates were removed. Figure 2 shows

2Due to a combination of time constraints and paucity of
computational resources, only a portion of the Europarl parallel
corpus was utilized, and none of the supplementary news com-
mentary training data was integrated.
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)

(

{VS,248840}
V::V |: ["paru"] −> ["appeared"]

  (*score* 0.205357142857143)
)
  (*score* 0.763636363636364)

{NP,2000012}
NP::NP |: ["ein" "Beispiel"] −> ["an" "example"]
(

Figure 1: Sample lexical entries for French and German.

sample grammar rules automatically learned by the
process described above.

2.3 Transfer Engine

The Stat-XFER transfer engine runs in a two-stage
process, first applying the grammar and lexicon
to an input sentence, then running a decoder over
the resulting lattice of scored translation pieces.
Scores for each translation piece are based on a
log-linear combination of several features: language
model probability, rule scores, source-given-target
and target-given-source lexical probabilities, parse
fragmentation, and length. For more details, see
Lavie (2008). The use of a German transfer gram-
mar an order of magnitude larger than the corre-
sponding French grammar was made possible due to
a recent optimization made in the engine. When en-
abled, it constrains the search of translation hypothe-
ses to the space of hypotheses whose structure satis-
fies the consituent structure of a source-side parse.

3 Evaluation

We trained our model parameters on a subset of
the provided “dev2006” development set, optimiz-
ing for case-insensitive IBM-style BLEU (Papineni
et al., 2002) with several iterations of minimum error
rate training onn-best lists. In each iteration’s list,
we also included the lists from previous iterations in
order to maintain a diversity of hypothesis types and
scores. The provided “test2007” and “nc-test2007”
data sets, identical with the test data from the 2007
Workshop on Statistical Machine Translation shared
task, were used as internal development tests.

Tables 2, 3, and 4 report scores on these data sets
for our primary French, secondary French, and Ger-
man systems. We report case-insensitive scores for
version 0.6 of METEOR (Lavie and Agarwal, 2007)
with all modules enabled, version 1.04 of IBM-style
BLEU (Papineni et al., 2002), and version 5 of TER
(Snover et al., 2006).

Data Set METEOR BLEU TER

dev2006 0.5332 0.2063 64.81
test2007 0.5358 0.2078 64.75
nc-test2007 0.5369 0.1719 69.83

Table 2: Results for the primary French–English system
on provided development and development test sets.

Data Set METEOR BLEU TER

dev2006 0.5330 0.2086 65.02
test2007 0.5386 0.2129 64.29
nc-test2007 0.5311 0.1680 70.90

Table 3: Results for the secondary French–English sys-
tem on provided development and development test sets.

4 Analysis and Conclusions

From the development test results in Section 3, we
note that the Stat-XFER systems’ performance cur-
rently lags behind the state-of-the-art scores on the
2007 test data3. This may be in part due to the low
volume of training data used for rule learning. A key
research question in our approach is how to distin-
guish low-frequency correct and useful transfer rules
from “noisy” rules that are due to parser errors and
incorrect word alignments. We believe that learning
rules from more data will help alleviate this prob-
lem by proportionally increasing the counts of good
rules compared to incorrect ones. We also plan to
study methods for more effective rule set pruning,
regardless of the volume of training data used.

The difference in metric scores between in-
domain and out-of-domain data is partly due to ef-
fects of reference length on the metrics used. De-
tailed output from METEOR and BLEU shows that
the reference translations for the test2007 set are
about 94% as long as the primary French–English

3Top scores on the 2007 test data are approximately 0.60
METEOR, 0.33 BLEU, and 57.6 TER. See Callison-Burch et
al. (2007) for full results.
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(
  (*score* 0.866050808314088
)

{PP,1627955}
PP:PP [PRE "d’" "autres" N] −> [PRE "other" N]

  (X1::Y1)
  (X4::Y3)
)

(

{PP,3000085}
PP:ADVP ["vor" CARD "Monaten"] −> [NUM "months" "ago"]

  (*score* 0.9375)
  (X2::Y1)
)

Figure 2: Sample grammar rules for French and German.

Data Set METEOR BLEU TER

dev2006 0.4967 0.1794 68.68
test2007 0.5052 0.1878 67.94
nc-test2007 0.4939 0.1347 74.38

Table 4: Results for the German–English system on pro-
vided development and development test sets.

system’s translations. On this set, our system has
approximately balanced precision (0.62) and recall
(0.66). However, the nc-test2007 references are only
84% as long as our output, a situation that hurts our
system’s precision (0.57) but boosts its recall (0.68).
METEOR, as a metric that favors recall, shows a
negligible increase in score between these two test
sets, while BLEU and TER report significant relative
drops of 17.3% and 7.8%. This behavior appears to
be consistent on the test2007 and nc-test2007 data
sets across systems (Callison-Burch et al., 2007).
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Abstract

We present a new English→Czech machine
translation system combining linguistically
motivated layers of language description (as
defined in the Prague Dependency Treebank
annotation scenario) with statistical NLP ap-
proaches.

1 Introduction

We describe a new MT system (called Tec-
toMT) based on the conventional analysis-transfer-
synthesis architecture. We use the layers of language
description defined in the Prague Dependency Tree-
bank 2.0 (PDT for short, (Hajič and others, 2006)),
namely (1) word layer – raw text, no linguistic
annotation, (2) morphological layer – sequence of
tagged and lemmatized tokens, (3) analytical layer
– each sentence represented as a surface-syntactic
dependency tree, and (4) tectogrammatical layer –
each sentence represented as a deep-syntactic de-
pendency tree in which only autosemantic words do
have nodes of their own; prefixes w-, m-, a-, or t-
will be used for denoting these layers.1

We use ‘Praguian’ tectogrammatics (introduced
in (Sgall, 1967)) as the transfer layer because
we believe that, first, it largely abstracts from
language-specific (inflection, agglutination, func-
tional words. . . ) means of expressing non-lexical

∗The research reported in this paper is financially supported
by grants GAAV ČR 1ET101120503 and MSM0021620838.

1In addition, we use also p-layer (phrase structures) as an
a-layer alternative, the only reason for which is that we do not
have a working a-layer parser for English at this moment.

meanings, second, it allows for a natural transfer
factorization, and third, local tree contexts in t-trees
carry more information (esp. for lexical choice) than
local linear contexts in the original sentences.

In order to facilitate separating the transfer of lex-
icalization from the transfer of syntactization, we in-
troduce the concept of formeme. Each t-node’s has
a formeme attribute capturing which morphosyntac-
tic form has been (in the case of analysis) or will
be (synthesis) used for the t-node in the surface sen-
tence shape. Here are some examples of formemes
we use for English: n:subj (semantic noun (sn) in
subject position), n:for+X (sn with preposition for),
n:X+ago (sn with postposition ago), n:poss (posses-
sive form of sn), v:because+fin (semantic verb (sv)
as a subordinating finite clause introduced by be-
cause), v:without+ger (sv as a gerund after without),
adj:attr (semantic adjective (sa) in attributive posi-
tion), adj:compl (sa in complement position).

The presented system intensively uses the PDT
technology (data formats, software tools). Special
attention is paid to modularity: the translation is im-
plemented (in Perl) as a long sequence of processing
modules (called blocks) with relatively tiny, well-
defined tasks, so that each module is independently
testable, improvable, or substitutable. TectoMT al-
lows to easily combine blocks based on different
approaches, from blocks using complex probabilis-
tic solutions (e.g., B2, B6, B35, see the next section),
through blocks applying simpler Machine Learning
techniques (e.g., B69) or empirically based heuris-
tics (e.g., B7, B25, B36, B71), to blocks implementing
‘crisp’ linguistic rules (e.g., B48-B51, B59). There are
also blocks for trivial technical tasks (e.g., B33, B72).
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English m-layer
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Figure 1: MT ‘pyramid’ as implemented in TectoMT. All the representations are rooted with artificial nodes, serving
only as labels. Virtually, the pyramid is bottomed with the input sentence on the source side (She has never laughed in
her new boss’s office.) and its automatic translation on the target side (Nikdy se nesmála v úřadu svého nového šéfa.).

2 Translation Procedure

The structure of this section directly renders the se-
quence of blocks currently used for English-Czech
translation in TectoMT. The intermediate stages of
the translation process are illustrated in Figure 1;
identifiers of the blocks affecting on the translation
of the sample sentence are typeset in bold.

2.1 From English w-layer to English m-layer

B1: Segment the source English text into sentences.
B2: Split the sentences into sequences of tokens,
roughly according to Penn Treebank (PTB for short;
(Marcus et al., 1994)) conventions. B3: Tag the
tokens with PTB-style POS tags using a tagger
(Brants, 2000). B4: Fix some tagging errors sys-
tematically made by the tagger using a rule-based
corrector. B5: Lemmatize the tokens using morpha,
(Minnen et al., 2000).

2.2 From English m-layer to English p-layer

B6: Build PTB-style phrase-structure tree for each
sentence using a parser (Collins, 1999).

2.3 From English p-layer to English a-layer

B7: In each phrase, mark the head node (using a set
of heuristic rules). B8: Convert phrase-structure trees
to a-trees. B9: Apply some heuristic rules to fix ap-
position constructions. B10: Apply another heuris-
tic rules for reattaching incorrectly positioned nodes.
B11: Unify the way in which multiword prepositions
(such as because of ) and subordinating conjunctions

(such as provided that) are treated. B12: Assign an-
alytical functions (only if necessary for a correct
treatment of coordination/apposition constructions).

2.4 From English a-layer to English t-layer

B13: Mark a-nodes which are auxiliary (such as
prepositions, subordinating conjunctions, auxiliary
verbs, selected types of particles, etc.) B14: Mark not
as an auxiliary node too (but only if it is connected to
a verb form). B15: Build t-trees. Each a-node cluster
formed by an autosemantic node and possibly sev-
eral associated auxiliary nodes is ‘collapsed’ into a
single t-node. T-tree dependency edges are derived
from a-tree edges connecting the a-node clusters.
B16: Explicitely distinguish t-nodes that are mem-
bers of coordination (conjuncts) from shared modi-
fiers. It is necessary as they all are attached below
the coordination conjunction t-node. B17: Modify
t-lemmas in specific cases. E.g., all kinds of per-
sonal pronouns are represented by the ‘artificial’ t-
lemma #PersPron. B18: Assign functors that are nec-
essary for proper treatment of coordination and ap-
position constructions. B19: Distribute shared auxil-
iary words in coordination constructions. B20: Mark
t-nodes that are roots of t-subtrees corresponding to
finite verb clauses. B21: Mark passive verb forms.
B22: Assign (a subset of) functors. B23: Mark t-nodes
corresponding to infinitive verbs. B24: Mark t-nodes
which are roots of t-subtrees corresponding to rel-
ative clauses. B25: Identify coreference links be-
tween relative pronouns (or other relative pronom-
inal word) and their nominal antecedents. B26: Mark
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t-nodes that are the roots of t-subtrees correspond-
ing to direct speeches. B27: Mark t-nodes that are
the roots of t-subtrees corresponding to parenthe-
sized expressions. B28: Fill the nodetype attribute
(rough classification of t-nodes). B29: Fill the sem-
pos attribute (fine-grained classification of t-nodes).
B30: Fill the grammateme attributes (semantically in-
dispensable morphological categories, such as num-
ber for nouns, tense for verbs). B31: Determine the
formeme of each t-node. B32: Mark personal names,
distinguish male and female first names if possible.

2.5 From English t-layer to Czech t-layer

B33: Initiate the target-side t-trees, simply by cloning
the source-side t-trees. B34: In each t-node, trans-
late its formeme.2 B35: Translate t-lemma in each
t-node as its most probable target-language counter-
part (which is compliant with the previously chosen
formeme), according to a probabilistic dictionary.3

B36: Apply manual rules for fixing the formeme and
lexeme choices, which are otherwise systematically
wrong and are reasonably frequent. B37: Fill the gen-
der grammateme in t-nodes corresponding to deno-
tative nouns (it follows from the chosen t-lemma).4

B38: Fill the aspect grammateme in t-nodes corre-
sponding to verbs. Information about aspect (perfec-
tive/imperfective) is necessary for making decisions
about forming complex future tense in Czech. B39:

Apply rule-based correction of translated date/time
expressions (several templates such as 1970’s, July
1, etc.). B40: Fix grammateme values in places where
the English-Czech grammateme correspondence is
not trivial (e.g., if an English gerund expression
is translated using Czech subordinating clause, the

2The translation mapping from English formemes to Czech
formemes was obtained as follows: we analyzed 10,000 sen-
tence pairs from the WMT’08 training data up to the t-layer
(using a tagger shipped with the PDT and parser (McDonald et
al., 2005) for Czech), added formemes to t-trees on both sides,
aligned the t-trees (using a set of weighted heuristic rules, simi-
larly to (Menezes and Richardson, 2001)), and from the aligned
t-node pairs extracted for each English formeme its most fre-
quent Czech counterpart.

3The dictionary was created by merging the translation dic-
tionary from PCEDT ((Cuřı́n and others, 2004)) and a trans-
lation dictionary extracted from a part of the parallel corpus
Czeng ((Bojar and Žabokrtský, 2006)) aligned at word-level by
Giza++ ((Och and Ney, 2003)).

4Czech nouns have grammatical gender which is (among
others) important for resolving grammatical agreement.

tense grammateme has to be filled). B41: Negate
verb forms where some arguments of the verbs bear
negative meaning (double negation in Czech). B42:

Verb t-nodes in active voice that have transitive t-
lemma and no accusative object, are turned to re-
flexives. B43: The t-nodes with genitive formeme
or prepositional-group formeme, whose counterpart
English t-nodes are located in pre-modification po-
sition, are moved to post-modification position. B44:

Reverse the dependency orientation between nu-
meric expressions and counted nouns, if the value
of the numeric expression is greater than four and
the noun without the numeral would be expressed in
nominative or accusative case. B45: Find coreference
links from personal pronouns to their antecedents,
if the latter are in subject position (needed later for
reflexivization).

2.6 From Czech t-layer to Czech a-layer

B46: Create initial a-trees by cloning t-trees. B47:

Fill the surface morphological categories (gender,
number, case, negation, etc.) with values derived
from values of grammatemes, formeme, seman-
tic part of speech etc. B48: Propagate the values
of gender and number of relative pronouns from
their antecedents (along the coreference links). B49:

Propagate the values of gender, number and person
according to the subject-predicate agreement (i.e.,
from subjects to the finite verbs). B50: Resolve agree-
ment of adjectivals in attributive positions (copying
gender/number/case from their governing nouns).
B51: Resolve complement agreement (copying gen-
der/number from subject to adjectival complement).
B52: Apply pro-drop – deletion of personal pronouns
in subject positions. B53: Add preposition a-nodes
(if implied by the t-node’s formeme). B54: Add a-
nodes for subordinating conjunction (if implied by
the t-node’s formeme). B55: Add a-nodes corre-
sponding to reflexive particles for reflexiva tantum
verbs. B56: Add an a-node representing the auxiliary
verb být (to be) in the case of compound passive
verb forms. B57: Add a-nodes representing modal
verbs, accordingly to the deontic modality gram-
mateme. B58: Add the auxiliary verb být in imperfec-
tive future-tense complex verb forms. B59: Add verb
forms such as by/bys/bychom expressing conditional
verb modality. B60: Add auxiliary verb forms such
as jsem/jste in past-tense complex verb forms. B61:
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Partition a-trees into finite clauses (a-nodes belong-
ing to the same clause are coindexed). B62: In each
clause, a-nodes which represent clitics are moved to
the so called second position in the clause (accord-
ing to Wackernagel’s law). B63: Add a-nodes cor-
responding to sentence-final punctuation mark. B64:

Add a-nodes corresponding to commas on bound-
aries between governing and subordinated clauses.
B65: Add a-nodes corresponding to commas in front
of conjunction ale and also commas in multiple co-
ordinations. B66: Add pairs of parenthesis a-nodes.
B67: Choose morphological lemmas in a-nodes cor-
responding to personal pronouns. B68: Generate
the resulting word forms (derived from lemmas and
tags) using Czech word form generator described in
(Hajič, 2004). B69: Vocalize prepositions k, s, v, and
z (accordingly to the prefix of the following word).
B70: Capitalize the first word in each sentence as well
as in each direct speech.

2.7 From Czech a-layer to Czech w-layer

B71: Create the resulting sentences by flattening the
a-trees. Heuristic rules for proper spacing around
punctuation marks are used. B72: Create the resulting
text by concatenating the resulting sentences.

3 Final remarks

We believe that the potential contribution of tec-
togrammatical layer of language representation for
MT is the following: it abstracts from many
language-specific phenomena (which could reduce
the notorious data-sparsity problem) and offers a
natural factorization of the translation task (which
could be useful for formulating independence as-
sumptions when building probabilistic models). Of
course, the question naturally arises whether these
properties can ever outbalance the disadvantages, es-
pecially cumulation and interference of errors made
on different layers, considerable technical complex-
ity, and the need for detailed linguistic insight. In
our opinion, this question still remains open. On
one hand, the translation quality offered now by Tec-
toMT is below the state-of-the-art system according
to the preliminary evaluation of the WMT08 Shared
Task. But on the other hand, the potential of tec-
togrammatics has not been used fully, and more-
over there are still many components with only pilot

heuristic implementation which increase the number
of translation errors and which can be relatively eas-
ily substituted by corpus-based solutions. In the near
future, we plan to focus especially on the transfer
blocks, which are currently based on the naive as-
sumption of isomorphism of the source and target
t-trees and which do not make use of the target lan-
guage model, so far.
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Jan Hajič et al. 2006. Prague Dependency Treebank 2.0.
CD-ROM, Linguistic Data Consortium, LDC Catalog
No.: LDC2006T01, Philadelphia.
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Abstract

In this paper, we give a description of the ma-
chine translation system developed at DCU
that was used for our participation in the eval-
uation campaign of the Third Workshop on
Statistical Machine Translation at ACL 2008.

We describe the modular design of our data-
driven MT system with particular focus on
the components used in this participation. We
also describe some of the significant modules
which were unused in this task.

We participated in theEuroParl task for the
following translation directions: Spanish–
English and French–English, in which we em-
ployed our hybrid EBMT-SMT architecture to
translate. We also participated in the Czech–
English News and News Commentarytasks
which represented a previously untested lan-
guage pair for our system. We report results
on the provided development and test sets.

1 Introduction

In this paper, we present the Data-Driven MT sys-
tems developed at DCU, MATREX (Machine Trans-
lation using Examples). This system is a hybrid sys-
tem which exploits EBMT and SMT techniques to
build a combined translation model.

We participated in both the French–English and
Spanish–English EuroParl tasks. In these two tasks,
we monolingually chunk both source and target
sides of the dataset using a marker-based chunker
(Gough and Way, 2004). We then align these chunks
using a dynamic programming, edit-distance-style
algorithm and combine them with phrase-based
SMT-style chunks into a single translation model.

We also participated in the Czech–English News
Commentary and News tasks. This language pair

represents a new challenge for our system and pro-
vides a good test of its flexibility.

The remainder of this paper is organised as fol-
lows: Section 2 details the various components of
our system, in particular the chunking and chunk
alignment strategies used for the shared task. In Sec-
tion 3, we outline the complete system setup for the
shared task, and in Section 4 we give some results
and discussion thereof.

2 The MATREX System

The MATREX system is a modular hybrid data-
driven MT system, built following established De-
sign Patterns, which exploits aspects of both the
EBMT and SMT paradigms. It consists of a num-
ber of extendible and re-implementable modules, the
most significant of which are:

• Word Alignment Module: outputs a set of word
alignments given a parallel corpus,

• Chunking Module: outputs a set of chunks
given an input corpus,

• Chunk Alignment Module: outputs aligned
chunk pairs given source and target chunks ex-
tracted from comparable corpora,

• Decoder: returns optimal translation given a
set of aligned sentence, chunk/phrase and word
pairs.

In some cases, these modules may comprise
wrappers around pre-existing software. For exam-
ple, our system configuration for the shared task
incorporates a wrapper around GIZA ++ (Och and
Ney, 2003) for word alignment and a wrapper
around Moses (Koehn et al., 2007) for decoding. It
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should be noted, however, that the complete system
is not limited to using only these specific module
choices. The following subsections describe those
modules unique to our system.

2.1 Marker-Based Chunking

The chunking module used for the shared task is
based on the Marker Hypothesis, a psycholinguistic
constraint which posits that all languages are marked
for surface syntax by a specific closed set of lex-
emes or morphemes which signify context. Using a
set of closed-class (or “marker”) words for a particu-
lar language, such as determiners, prepositions, con-
junctions and pronouns, sentences are segmented
into chunks. A chunk is created at each new occur-
rence of a marker word with the restriction that each
chunk must contain at least one content (or non-
marker) word. An example of this chunking strategy
for English and Spanish is given in Figure 1.

2.2 Chunk Alignment

In order to align the chunks obtained by the chunk-
ing procedures described in Section 2.1, we make
use of an “edit-distance-style” dynamic program-
ming alignment algorithm.

In the following,a denotes an alignment between
a target sequencee consisting ofI chunks and a
source sequencef consisting ofJ chunks. Given
these sequences of chunks, we are looking for the
most likely alignment̂a:

â = argmax
a

P(a|e, f) = argmax
a

P(a, e|f).

We first consider alignments such as those ob-
tained by an edit-distance algorithm, i.e.

a = (t1, s1)(t2, s2) . . . (tn, sn),

with ∀k ∈ J1, nK, tk ∈ J0, IK andsk ∈ J0, JK, and
∀k < k′:

tk ≤ tk′ or tk′ = 0,

sk ≤ sk′ or sk′ = 0,

wheretk = 0 (resp.sk = 0) denotes a non-aligned
target (resp. source) chunk.

We then assume the following model:

P(a, e|f) = ΠkP(tk, sk, e|f) = ΠkP(etk |fsk
),

whereP(e0|fj) (resp.P(ei|f0)) denotes an “inser-
tion” (resp. “deletion”) probability.

Assuming that the parametersP(etk |fsk
) are

known, the most likely alignment is computed by
a simple dynamic-programming algorithm.1

Instead of using an Expectation-Maximization al-
gorithm to estimate these parameters, as commonly
done when performing word alignment (Brown
et al., 1993; Och and Ney, 2003), we directly com-
pute these parameters by relying on the information
contained within the chunks. The conditional prob-
ability P(etk |fsk

) can be computed in several ways.
In our experiments, we have considered three main
sources of knowledge: (i) word-to-word translation
probabilities, (ii) word-to-word cognates, and (iii)
chunk labels. These sources of knowledge are com-
bined in a log-linear framework. The weights of
the log-linear model are not optimised; we experi-
mented with different sets of parameters and did not
find any significant difference as long as the weights
stay in the interval[0.5 − 1.5]. Outside this inter-
val, the quality of the model decreases. More details
about the combination of knowledge sources can be
found in (Stroppa and Way, 2006).

2.3 Unused Modules

There are numerous other features available in our
system which, due to time constraints, were not ex-
ploited for the purposes of the shared task. They
include:

• Word packing(Ma et al., 2007): a bilingually
motivated packing of words that changes the
basic unit of the alignment process in order to
simplify word alignment.

• Supertagging(Hassan et al., 2007b): incorpo-
rating lexical syntactic descriptions, in the form
of supertags, to the language model and target
side of the translation model in order to better
inform decoding.

• Source-context features(Stroppa et al., 2007):
use memory-based classification to incorporate
context-informed features on the source side of
the translation model.

• Treebank-based phrase extraction(Tinsley
et al., 2007): extract word and phrase align-
ments based on linguistically informed sub-
sentential alignment of the parallel data.

1This algorithm is actually a classical edit-distance al-
gorithm in which distances are replaced by opposite-log-
conditional probabilities.
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English: [I voted] [in favour] [of the strategy presented] [bythe council] [concerningrelations] [with
Mediterranean countries]
Spanish: [He votado] [a favor] [de la estrategia presentada] [porel consejo] [relativalas relaciones]
[con los páıses mediterrańeos]

Figure 1: English and Spanish Marker-Based chunking

Filter criteria es–en fr–en cz–en
Initial Total 1258778 1288074 1096941
Blank Lines 5632 4200 2
Length 6794 8361 2922
Fertility 120 82 1672
Final Total 1246234 1275432 1092345

Table 1: Summary of pre-processing on training data.

3 Shared Task Setup

The following section describes the system setup
using the Spanish–English and French–EnglishEu-
roParl, and Czech–EnglishCzEngtraining data.

3.1 Pre-processing

For all tasks we initially tokenised the data (Czech
data was already tokenised) and removed blank
lines. We then filtered out sentence pairs based on
length (>100 words) and fertility (9:1 word ratio).
Finally we lowercased the data. Details of this pre-
processing are given in Table 1.

3.2 System Configuration

As mentioned in Section 2, our word alignment
module employs a wrapper around GIZA ++.

We built a 5-gram language model based the tar-
get side of the training data. This was done using
the SRI Language Modelling toolkit (Stolcke, 2002)
employing linear interpolation and modified Kneser-
Ney discounting (Chen and Goodman, 1996).

Our phrase-table comprised a combination of
marker-based chunk pairs2, extracted as described
in Sections 2.1 and 2.2, and word-alignment-based
phrase pairs extracted using the “grow-diag-final”
method of Koehn et al. (2003), with a maximum
phrase length of 7 words. Phrase translation proba-
bilities were estimated by relative frequency over all
phrase pairs and were combined with other features,

2This module was omitted from the Czech–English system
as we have yet to verify whether marker-based chunking is ap-
propriate for Czech.

System BLEU (-EBMT) BLEU (+EBMT)
es–en 0.3283 0.3287
fr–en 0.2768 0.2770
cz–en 0.2235 -

Table 2: Summary of results on developments setsde-
vtest2006for EuroParl tasks andnc-test2007for cz–en
tasks.

System BLEU (-EBMT) BLEU (+EBMT)
es–en 0.3274 0.3285
fr–en 0.3163 0.3174
cz–en (news) 0.1458 -
cz–en (nc) 0.2217 -

Table 3: Summary of results on 2008 test data.

such as a reordering model, in a log-linear combina-
tion of functions.

We tuned our system on the development setde-
vtest2006for the EuroParl tasks and onnc-test2007
for Czech–English, using minimum error-rate train-
ing (Och, 2003) to optimise BLEU score.

Finally, we carried out decoding using a wrapper
around the Moses decoder.

3.3 Post-processing

Case restoration was carried out by training the sys-
tem outlined above - without the EBMT chunk ex-
traction - to translate from the lowercased version
of the applicable target language training data to the
truecased version. We have previously shown this
approach to be very effective for both case and punc-
tuation restoration (Hassan et al., 2007a). The trans-
lations were then detokenised.

4 Results

The system output is evaluated with respect to
BLEU score. Results on the development sets and
test sets for each task are given in Tables 2 and 3
respectively, where “-EBMT” indicates that EBMT
chunk modules were not used, and “+EBMT” indi-
cates that they were used.
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4.1 Discussion

Those configurations which incorporated the EBMT
chunks improved slightly over those which did not.
Groves (2007) has shown previously that combin-
ing EBMT and SMT translation models can lead to
considerable improvement over the baseline systems
from which they are derived. The results achieved
here lead us to believe that on such a large scale
there may be a more effective way to incorporate the
EBMT chunks.

Previous work has shown the EBMT chunks to
have higher precision than their SMT counterparts,
but they lack sufficient recall when used in isola-
tion (Groves, 2007). We believe that increasing their
influence in the translation model may lead to im-
proved translation accuracy. One experiment to this
effect would be to add the EBMT chunks as a sep-
arate phrase table in the log-linear model and allow
the decoder to chose when to use them.

Finally, we intend to exploit the unused modules
of the system in future experiments to investigate
their effects on the tasks presented here.

Acknowledgments

This work is supported by Science Foundation Ireland
(grant nos. 05/RF/CMS064 and OS/IN/1732). Thanks
also to the reviewers for their insightful comments and
suggestions.

References

Brown, P. F., Pietra, S. A. D., Pietra, V. J. D., and Mercer,
R. L. (1993). The mathematics of statistical machine
translation: Parameter estimation.Computational Lin-
guistics, 19(2):263–311.

Chen, S. F. and Goodman, J. (1996). An Empirical Study
of Smoothing Techniques for Language Modeling. In
Proceedings of the Thirty-Fourth Annual Meeting of
the Association for Computational Linguistics, pages
310–318, San Francisco, CA.

Gough, N. and Way, A. (2004). Robust Large-Scale
EBMT with Marker-Based Segmentation. InProceed-
ings of the 10th International Conference on Theoreti-
cal and Methodological Issues in Machine Translation
(TMI-04), pages 95–104, Baltimore, MD.

Groves, D. (2007).Hybrid Data-Driven Models of Ma-
chine Translation. PhD thesis, Dublin City University,
Dublin, Ireland.

Hassan, H., Ma, Y., and Way, A. (2007a). MATREX: the
DCU Machine Translation System for IWSLT 2007. In
Proceedings of the International Workshop on Spoken
Language Translation, pages 69–75, Trento, Italy.

Hassan, H., Sima’an, K., and Way, A. (2007b). Su-
pertagged Phrase-based Statistical Machine Transla-
tion. InProceedings of the 45th Annual Meeting of the
Association for Computational Linguistics (ACL’07),
pages 288–295, Prague, Czech Republic.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
erico, M., Bertoldi, N., Cowan, B., Shen, W., Moran,
C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and
Herbst, E. (2007). Moses: Open Source Toolkit for
Statistical Machine Translation. InAnnual Meeting of
the Association for Computational Linguistics (ACL),
demonstration session, pages 177–180, Prague, Czech
Republic.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statisti-
cal Phrase-Based Translation. InProceedings of the
2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology (NAACL ’03), pages 48–54, Ed-
monton, Canada.

Ma, Y., Stroppa, N., and Way, A. (2007). Boostrap-
ping Word Alignment via Word Packing. InProceed-
ings of the 45th Annual Meeting of the Association for
Computational Linguistics (ACL’07), pages 304–311,
Prague, Czech Republic.

Och, F. (2003). Minimum error rate training in statistical
machine translation. InProceedings of the 41st Annual
Meeting of the Association for Computational Linguis-
tics (ACL), pages 160–167, Sapporo, Japan., Sapporo,
Japan.

Och, F. J. and Ney, H. (2003). A Systematic Comparison
of Various Statistical Alignment Models.Computa-
tional Linguistics, 29(1):19–51.

Stolcke, A. (2002). SRILM - An Extensible Language
Modeling Toolkit. In Proceedings of the Interna-
tional Conference Spoken Language Processing, Den-
ver, CO.

Stroppa, N., van den Bosch, A., and Way, A. (2007).
Exploiting Source Similarity for SMT using Context-
Informed Features. InProceedings of the 11th Interna-
tional Conference on Theoretical and Methodological
Issues in Machine Translation (TMI-07), pages 231–
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Abstract 

This paper describes SYSTRAN submissions 
for the shared task of the third Workshop on 
Statistical Machine Translation at ACL. Our 
main contribution consists in a French-English 
statistical model trained without the use of any 
human-translated parallel corpus. In substitu-
tion, we translated a monolingual corpus with 
SYSTRAN rule-based translation engine to 
produce the parallel corpus. The results are 
provided herein, along with a measure of error 
analysis. 

1 Introduction 

Current machine translation systems follow two 
different lines of research: (1) manually written 
rules associated with bilingual dictionaries (rule-
based systems), (2) a statistical framework (statis-
tical machine translation) based on large amount of 
monolingual and parallel corpora. The first line 
uses linguistically generalized information based 
on what humans understand from what happens in 
a given language (source and target) and what hap-
pens in the translation process. The translation 
process is building a translation from a given 
source sentence based on this knowledge. The sec-
ond line exploits implicit information present in 
already translated corpora and more generally any 
text production in the target language to automati-
cally find the most likely translation for a given 
source sentence. This approach has proven to be 
competitive with the rule-based approach when 
provided with enough resources on a specific do-
main. Though based on fundamentally different 

paradigms and exploiting different types of infor-
mation, these two research lines are not in opposi-
tion and may be combined to produce improved 
results. For instance, serial combination of the two 
approaches has produced very good results in 
WMT07 (Simard, 2007), (Dugast, 2007) and 
NIST07 (Ueffing, 2008). (Schwenk et al., 2008) 
also combines both approaches and resources to 
build a better system.  
The SYSTRAN’s R&D team actually works to 
merge these two approaches, drawing benefit from 
their respective strengths. Initially, the SYSTRAN 
system was a pure rule-based system that in recent 
years began integrating statistical features and cor-
pus-based model (Senellart, 2006). It must be 
noted that, for sake of simplification of the ex-
periment and its interpretation, the base system 
mentioned in this paper is a purely rule-based ver-
sion. In the framework of this research effort, vari-
ous exploratory experiments are being run which 
aim both at finding efficient combination setups 
and at discriminating strengths and weaknesses of 
rule-based and statistical systems. 
We had performed a first analysis on a statistical 
post-editing system (Dugast, 2007). The system 
submitted for Czech-English follows this setup. 
We present also here an original French-English 
statistical model which doesn’t make use of the 
target side of the parallel data to train its phrase-
table, but rather uses the rule-based translation of 
the source side. We call this system “SYSTRAN 
Relearnt” because, as far as the translation model 
is concerned, this system is a statistical model of 
the rule-based engine. In addition to the submitted 
system which only makes use of the Europarl 
monolingual data, we present additional results 
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using unrelated monolingual data in the news do-
main. Though human evaluation of these systems 
will provide additional insight, we try here to start 
analyzing the specificities of those systems. 

2 Training without any human reference 
translation 

If the need in terms of monolingual corpus to 
build language models can most of the time be ful-
filled without much problem, the reliance of statis-
tical models on parallel corpora is much more 
problematic. Work on domain adaptation for statis-
tical machine translation (Koehn and Schroeder, 
2007) tries to bring solutions to this issue. Statisti-
cal Post-Editing may well be another way to per-
form efficient domain-adaptation, but still requires 
parallel corpora. We try here to open a new path. 
Our submitted system for French-English on the 
Europarl task is a phrase based system, whose 
phrase table was trained on the rule based transla-
tion of the French Europarl corpus. The French 
side of the Europarl parallel corpus was translated 
with the baseline rule-based translation engine to 
produce the target side of the training data. How-
ever, the language model was trained on the real 
English Europarl data provided for the shared task. 
Training was otherwise performed according to 
baseline recommendations. 

 
Corpus Size  

(sentences) 
Size 
(words) 

Parallel FR-EN 0.94 M 21 M 
Monolingual EN (LM)  1.4 M 38 M 

Table 1: Corpus sizes for the submitted Eu-
roparl-domain translation 

 
An additional (non-submitted) system was 

trained using two monolingual news corpora of 
approximately a million sentences. The French 
corpus was built from a leading French newspaper, 
the English from a leading American newspaper, 
both of the same year (1995). In the previous 
model, the English corpus used to train the lan-
guage model actually contained the reference 
translations of the source corpus. This is not the 
case here. As for the previous model, the French 
corpus was translated by the rule-based system to 
produce the parallel training data, while the Eng-
lish corpus was used to train a language model,. 

This same language model is used in both statisti-
cal models: a relearnt system and a baseline 
phrase-based model whose phrase table was learnt 
from the Europarl parallel data. Both trainings fol-
lowed the baseline recommendations of the shared 
task. 

 
Corpus Size  

(sen-
tences) 

Size 
(words) 

Parallel FR-EN (Europarl 
v3) 

0.94M 21M 

Monolingual FR (Le 
Monde 1995) 

0.96M 18M 

Monolingual EN (NYT 
1995) 

3.8M 19M 

Table 2: Corpus sizes for the additional model, 
trained on news domain  

3 Results for the SYSTRAN-relearnt sys-
tems 

We provide here results on evaluation metrics, 
an initial error analysis and results on the addi-
tional relearnt model.  
Table 3 provides metrics results for four different 
systems : purely rule based, purely statistical, and 
the relearnt systems: Relearnt-0 is a plain statisti-
cal model of systran, while Relearnt uses a real 
English language model and is tuned on real Eng-
lish. 
 
Model BLEU(tun-

ing, 
dev2006) 

BLEU 
(test, dev-
test2006) 

Baseline 
SYSTRAN 

n.a. 21.27 

Relearnt-0, with 
SYSTRAN English 
LM, tuned on 
SYSTRAN English 

20.54 20.92 

Relearnt 26.74 26.57 
Baseline Moses  29.98 29.86 

Table 3: Results of systems on Europarl task, 
trained (when relevant) on Europarl-only data 

 
The score of the Relearnt-0 model is slightly 

lower than the rule-based original (absence of mor-
phological analysis and some non-local rules 
which failed to be modelled may explain this). The 
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use of a real English language model and tuning 
set gives a more than 5 BLEU points improvement, 
which is only 3 BLEU points below the Moses 
baseline, which uses the Europarl phrase table.   

Comparing these three systems may help 
us discriminate between the statistical nature of a 
translation system and the fact it was trained on the 
relevant domain. For this purpose, we defined 11 
error types and counted occurrences for 100 ran-
dom-picked sentences of the devtest2006 test cor-
pus for the three following systems : a baseline 
phrase-based system, a SYSTRAN relearnt phrase-
based system and the baseline SYSTRAN rule-
based system. Results are displayed in tables 5.a 
and 5.b. 
 
MC Missing Content 
MO Missing Other 
TCL Translation Choice (content, lemma) 
TCI Translation Choice (content, inflection) 
TCO Translation Choice (other) 
EWC Extra Word Content 
EWO Extra Word Other 
UW Unknown word 
WOS Word Order, short 
WOL Word Order, long (distance>=3 words) 
PNC Punctuation 

Table 4 : Short definition of error types  
 

SSSSystemystemystemystem    MCMCMCMC    MOMOMOMO    TCLTCLTCLTCL    TCITCITCITCI    TCOTCOTCOTCO    

SYSTRANSYSTRANSYSTRANSYSTRAN    0.020.020.020.02    0.20.20.20.2    1.11 0.140.140.140.14    0.48 

RelearntRelearntRelearntRelearnt    0.22 0.39 0.77 0.22 0.38 

MMMMosesosesosesoses    0.35 0.46 0.630.630.630.63    0.27 0.250.250.250.25    
Table 5.a : Average number of errors/sentence  
 

SSSSystemystemystemystem    EWCEWCEWCEWC    EW0EW0EW0EW0    UWUWUWUW    WOSWOSWOSWOS    WOLWOLWOLWOL    PPPPNNNNCCCC    

SYSTRANSYSTRANSYSTRANSYSTRAN    0000    0.72 0.060.060.060.06    0.41 0.020.020.020.02    0000    

RelearntRelearntRelearntRelearnt    0.05 0.350.350.350.35    0.09 0.41 0.05 0000    

MMMMosesosesosesoses    0.17 0.4 0.12 0.0.0.0.3333    0.08 0.02 
Table 5.b : Average number of errors/sentence  

 
Such results lead us to make the following com-
ments, regarding the various error types: 

• Missing words 
This type of error seems to be specific to statis-
tical systems (counts are close between re-

learnt and baseline Moses) . Although we do 
not have evidence for that, we guess that it is 
especially impairing adequacy when content 
words are concerned. 
• Extra words 
Obviously, the rule-based output produces 
many useless functional words (determiners, 
prepositions…) while statistical systems do not 
have this problem that much. However, they 
may also produce extra content words.. 
• Unknown words 
Few words are out of the rule-based dictionar-
ies’ vocabulary. Morphological analysis may 
explain at least part of this. 
• Translation choice 
Translation choice is the major strength of the 
statistical model. Note that the relearnt system  
gains a great deal of the difference between 
Systran and Moses in this category. We would 
expect the remaining difference to require 
more translation choices (which may be learnt 
from a parallel corpus). Inflection errors re-
main low for the rule-based system only, 
thanks to its morphological module. 
• Word Order 
The language model couldn’t lower the num-
ber of short-distance word-order errors (no dif-
ference between SYSTRAN and SYSTRAN 
relearnt). Long-distance word order is, as ex-
pected, better for the rule-based output, though 
French-English is not known to be especially 
sensitive to this issue. 

 
Additionally, table 6 shows the results of the re-
learnt system we trained using only monolingual 
corpus. It performed better than both the europarl-
trained phrase-based model and the baseline rule-
based engine. Table 7 shows the three different 
translations of a same example French sentence. 
 
Model BLEU (tuning, 

nc-dev2007) 
BLEU (test, 
nctest2007) 

SYSTRAN n.a. 21.32 
Relearnt  22.8 23.15 
Baseline 
Moses 

22.7 22.19 

Table 6 : Results of systems on News task 
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SOURCE 

Ces politiques sont considérées comme 
un moyen d'offrir des réparations pour les 
injustices du passé et, plus important, de 
créer des modèles de rôle et de surmon-
ter la discrimination restante et peut-être 
involontaire. 

SYSTRAN 

These policies are regarded as a means 
of offering repairs for the injustices of the 
past and, more important, of creating 
models of role and of overcoming re-
maining and perhaps involuntary dis-
crimination. 

Moses 

these policies are regarded as a way to 
offer of repairs for past injustices and , 
more important , to create a role models 
and remaining discrimination and per-
haps involuntary . 

Relearnt 

these policies are regarded as a means 
to offer repairs for the past injustices and 
, more important , creating role models 
and overcome remaining discrimination 
and perhaps involuntary . 

REF  

These policies are seen as a way of of-
fering reparation for past injustices and, 
more importantly, for creating role mod-
els and for overcoming residual and per-
haps involuntary discrimination. 

Table 7 : Example outputs for the news domain 
models (example taken from the nc-test2007 cor-
pus) 

4 Conclusion 

The relearnt experiment primary goal was to 
set-up a comparison between three different sys-
tems, with equivalent resources. This experiment 
showed that a statistical translation system may be 
granted a high BLEU score, even if its translation 
model was not extracted from corpus.  It remains 
to be seen how this correlates with human judg-
ment (Callison-Burch, 2006), but the detailed error 
analysis we performed already shows improve-
ments for important categories of errors. 

This experiment provided us with some new in-
sight on the strengths and weaknesses of rule-
based and phrase-based systems. As an intermedi-
ate between a purely corpus-based statistical sys-
tem and a rule-based system, this setup could 
benefit from some of the strengths of a phrase-
based statistical system, though at the expense of 
its known drawbacks.  

As future work, we may pursue in this direction 
by exploring the effect of the size of the monolin-

gual corpus used for training the translation model. 
We may also refine the model by using the target 
side of the parallel training data when building the 
language model corpus (to avoid a mismatch of 
vocabularies) and also combine such a model with 
the translation model(s) trained on whatever paral-
lel data is available. This would then be interesting 
to compare this strategy with the corpus-based-
only strategies that make use of smaller in-domain 
parallel corpora. 
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Abstract

Based on an architecture that allows to com-
bine statistical machine translation (SMT)
with rule-based machine translation (RBMT)
in a multi-engine setup, we present new results
that show that this type of system combination
can actually increase the lexical coverage of
the resulting hybrid system, at least as far as
this can be measured via BLEU score.

1 Introduction

(Chen et al., 2007) describes an architecture that
allows to combine statistical machine translation
(SMT) with one or multiple rule-based machine
translation (RBMT) systems in a multi-engine setup.
It uses a variant of standard SMT technology to align
translations from one or more RBMT systems with
the source text and incorporated phrases extracted
from these alignments into the phrase table of the
SMT system. Using this approach it is possible to
employ a vanilla installation of the open-source de-
coder Moses1 (Koehn et al., 2007) to find good com-
binations of phrases from SMT training data with
the phrases derived from RBMT. A similar method
was presented in (Rosti et al., 2007).

This setup provides an elegant solution to the
fairly complex task of integrating multiple MT re-
sults that may differ in word order using only stan-
dard software modules, in particular GIZA++ (Och
and Ney, 2003) for the identification of building
blocks and Moses for the recombination, but the
authors were not able to observe improvements in

1see http://www.statmt.org/moses/

terms of BLEU score. A closer investigation re-
vealed that the experiments had suffered from a cou-
ple of technical difficulties, such as mismatches in
character encodings generated by different MT en-
gines and similar problems. This motivated us to
re-do these experiments in a somewhat more sys-
tematic way for this year’s shared translation task,
paying the required attention to all the technical de-
tails and also to try it out on more language pairs.

2 System Architecture

For conducting the translations, we use a multi-
engine MT approach based on a ”vanilla” Moses
SMT system with a modified phrase table as a cen-
tral element. This modification is performed by aug-
menting the standard phrase table with entries ob-
tained from translating the data with several rule-
based MT systems. The resulting phrase table thus
combines statistically gathered phrase pairs with
phrase pairs generated by linguistic rules.

Basing its decision about the final translation on
the obtained ”combined” phrase table, the SMT de-
coder searches for the best translation by recombin-
ing the building blocks that have been contributed by
the different RBMT systems and the original SMT
system trained on Europarl data.

A sketch of the overall architecture is given in
Fig. 1, where the lighter parts represent the mod-
ules and data sets used in purely statistical MT,
and the darker parts are the additional modules and
data sets derived from the rule-based engines. The
last word in the proposed setup is thus given to the
SMT decoder, which can recombine (and potentially
also tear apart) linguistically well-formed constructs
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Figure 1: Hybrid architecture of the system

from the rule-based engines’ output.

2.1 The Combined Phrase Table

The combined phrase table is built from the orig-
inal Moses phrase table and separate phrase tables
for each of the RBMT systems that are used in our
setup. Since the original phrase table is created
during the training process of the Moses decoder
with the Europarl bilingual corpus as training ma-
terial, it comprises general knowledge about typical
constructions and vocabulary from the Europarl do-
main. Therefore, a standard Moses SMT system is,
in principle, well adapted for input from this do-
main. However, it will have problems in dealing
with vocabulary and structures that did not occur in
the training data. The additional phrase tables are
generated separately for each RBMT system from
the source text and its translation by the respective
system. By using a combined phrase table that in-
cludes the original Moses phrase table as well as the
phrase tables from the RBMT systems, the hybrid
system can both handle a wider range of syntactic
constructions and exploit knowledge that the RBMT
systems possess about the particular vocabulary of
the source text.

3 Implementation

3.1 MT Systems and Knowledge Sources

Apart from the Moses SMT system, we used a
set of six rule-based MT engines that are partly
available via web interfaces and partly installed lo-
cally. The web interfaces are provided by Al-

tavista Babelfish (based on Systran), SDL, ProMT
and Lucy (a recent offspring of METAL). All of
them deliver significantly different output trans-
lations. Locally installed systems are OpenLo-
gos (for German↔English, English→Spanish and
English→French) and translatePro by lingenio (for
German↔English). The language model for our pri-
mary setup is based on the Europarl corpus whereas
the English Gigaword corpus served as training data
for a contrastive setup that was created for the trans-
lation direction German→English only.

3.2 Alignment of RBMT output

As already mentioned above, the construction of the
RBMT system specific phrase tables is a major part
of the overall system architecture. Such an RBMT
phrase table is generated from a bilingual corpus
consisting of the input text and its translation by
the respective RBMT system. Because this corpus
has the mere size of the text to be translated, it usu-
ally is not big enough to ensure the statistical meth-
ods for phrase table building of the Moses system to
work. Therefore, we create the alignments between
the RBMT input and output with help of another tool
(Theison, 2007) that is based on knowledge learned
in a previously conducted training phase with an ap-
propriately bigger corpus. On the basis of the align-
ments created in this manner, the Moses training
script provides a phrase table that consists of the
source text vocabulary. These steps are carried out
for each one of the six RBMT systems leading to
six source text specific phrase tables which are then
combined with the original Moses phrase table.

3.3 Combination of Phrase Tables

The combination process basically consists of the
concatenation of the Moses phrase table and the pre-
viously created RBMT phrase tables with one mi-
nor adjustment: The phrase table resulting from this
combination now also features additional columns
indicating which system each phrase table entry
originated from. For each new source text, the
RBMT phrase tables have to be created from scratch
and incorporated into a new combined phrase table.

3.4 Tuning

The typical process for creating an SMT system with
the Moses toolkit includes a tuning step in which
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Europarl NewsCommentary
de-en en-de fr-en en-fr es-en en-es de-en en-de fr-en en-fr es-en en-es

SMT 22.81 19.78 24.18 21.62 31.68 24.46 14.24 9.75 11.60 12.24 17.27 14.48
Hybrid 27.85 20.75 28.12 28.82 33.15 32.31 17.36 13.57 17.66 20.71 22.16 22.55
RBMT1∗ 13.34 11.09 —— 17.19 —— 18.63 14.90 12.34 —— 15.11 —— 17.13
RBMT2 16.19 12.06 —— —— —— —— 16.66 13.64 —— —— —— ——
RBMT3 16.32 10.88 18.18 20.38 19.32 20.89 16.88 12.53 17.20 18.82 19.00 19.98
RBMT4 15.58 12.09 19.00 22.20 18.99 21.69 17.41 13.93 17.73 20.85 19.14 21.70
RBMT5 15.58 9.54 21.36 12.98 18.47 20.59 15.99 11.05 18.65 19.49 20.50 20.02
RBMT6 13.96 9.44 17.16 18.91 18.01 19.18 15.08 10.41 16.86 17.82 18.70 19.97

Table 1: Performance of baseline SMT system, our system and RBMT systems (BLEU scores)

the system searches for the best weight configura-
tion for the columns in the phrase table while given
a development set to be translated, and correspond-
ing reference translations. In our hybrid setup, it is
equally essential to conduct tuning since the com-
bined phrase table we use contains 7 more columns
than the original Moses phrase table. All these
columns are given the same default weight initially
and thus still need be to be tuned to more meaning-
ful values. From this year’s Europarl development
data the first 200 sentences of each of the data sets
dev2006, test2006, test2007 and devtest2006 were
concatenated to build our development set. This set
of 800 sentences was used for Minimum Error Rate
Training (Och, 2003) to tune the weights of our sys-
tem with respect to BLEU score.

4 Results

In order to be able to evaluate our hybrid approaches
in contrast to stand-alone rule-based approaches, we
also calculated BLEU scores for the translations
conducted by the RBMT systems used in the hy-
brid setup. Our hybrid system is compared to a SMT
baseline and all the 6 RBMT systems that we used.
Table 1 shows the evaluation of all the systems in
terms of BLEU score (Papineni et al., 2002) with the
best score highlighted. The empty cells in the table
indicate the language pairs which are not available
in the corresponding systems2. The SMT system is
the one upon which we build the hybrid system. Ac-
cording to the scores, the hybrid system produces
better results than the baseline SMT system in all

2The identities of respective RBMT systems are not revealed
in this paper. RBMT1 is evaluated on the partial results pro-
duced due to some technical problems.

cases. The difference between our system and the
baseline is more significant for out-of-domain tests,
where gaps in the lexicon tend to be more severe.

Figure 2 illustrates an example of how the hy-
brid system differs from the baseline SMT system
and how it benefits from the RBMT systems. The
example lists the English translations of the same
German sentence (from News Commentary test set)
from different systems involved in our experiment.
Neither the word “Pentecost” nor its German trans-
lation “Pfingsten” has appeared in the training cor-
pus. Therefore, the SMT baseline system cannot
translate the word and chooses to leave the word
as it is whereas all the RBMT systems translate the
word correctly. The hybrid system appears to have
the corresponding lexicon gap covered by the ex-
tra entries produced by the RBMT systems. On the
other side, these additional entries may not always
be helpful. The errors in RBMT outputs can be sig-
nificant noise that destroys the correct information
in the SMT system. In the example translation pro-
duced by the hybrid system, there is a comma miss-
ing after “in addition”, which appears to be frequent
in the RBMT outputs.

5 Outlook

The results reported in this paper are still somewhat
preliminary in the sense that many possible (includ-
ing some desirable) variants of the setup could not
be tried out due to lack of time. In particular, we
think that the full power of our approach on out-
of-domain test data can only be exploited with the
help of large language models trained on out-of-
domain text, but could not yet try this systematically.
Furthermore, the presence of multiple instances of
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Source Darüber hinaus gibt es je zwei Feiertage zu Ostern, Pfingsten, und Weihnachten.
Reference In addition, Easter, Pentecost, and Christmas are each two-day holidays.
Moses In addition, there are two holidays, pfingsten to Easter, and Christmas.
Hybrid In addition there are the two holidays to Easter, Pentecost and Christmas.
RBMT1 Furthermore there are two holidays to Easter, Pentecost and Christmas .
RBMT2 Furthermore there are two holidays each at Easter, Pentecost and Christmas.
RBMT3 In addition there are each two holidays to Easters, Whitsun, and Christmas.
RBMT4 In addition, there is two holidays to Easter, Pentecost, and Christmas.
RBMT5 Beyond that there are ever two holidays to Easter, Whitsuntide, and Christmas.
RBMT6 In addition it gives two holidays apiece to easter, Pentecost, and Christmas.

Figure 2: German-English translation examples

the same phrase pair (with different weight) in the
combined phrase table causes the decoder to gen-
erate many instances of identical results in differ-
ent ways, which increases computational effort and
significantly decreases the number of distinct cases
that are considered during MERT. We suspect that a
modification of our scheme that avoids this problem
will be able to achieve better results, but experiments
in this direction are still ongoing.

The approach presented here combines the
strengths of multiple systems and is different from
recent work on post-correction of RBMT output as
presented in (Simard et al., 2007; Dugast et al.,
2007), which focuses on the improvement of a sin-
gle RBMT system by correcting typical errors via
SMT techniques. These ideas are independent and a
suitable combination of them could give rise to even
better results.
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Abstract

Confusion network decoding has been the
most successful approach in combining out-
puts from multiple machine translation (MT)
systems in the recent DARPA GALE and
NIST Open MT evaluations. Due to the vary-
ing word order between outputs from differ-
ent MT systems, the hypothesis alignment
presents the biggest challenge in confusion
network decoding. This paper describes an
incremental alignment method to build confu-
sion networks based on the translation edit rate
(TER) algorithm. This new algorithm yields
significant BLEU score improvements over
other recent alignment methods on the GALE
test sets and was used in BBN’s submission to
the WMT08 shared translation task.

1 Introduction

Confusion network decoding has been applied in
combining outputs from multiple machine transla-
tion systems. The earliest approach in (Bangalore
et al., 2001) used edit distance based multiple string
alignment (MSA) (Durbin et al., 1988) to build the
confusion networks. The recent approaches used
pair-wise alignment algorithms based on symmetric
alignments from a HMM alignment model (Matusov
et al., 2006) or edit distance alignments allowing
shifts (Rosti et al., 2007). The alignment method
described in this paper extends the latter by incre-
mentally aligning the hypotheses as in MSA but also
allowing shifts as in the TER alignment.

The confusion networks are built around a “skele-
ton” hypothesis. The skeleton hypothesis defines

the word order of the decoding output. Usually, the
1-best hypotheses from each system are considered
as possible skeletons. Using the pair-wise hypoth-
esis alignment, the confusion networks are built in
two steps. First, all hypotheses are aligned against
the skeleton independently. Second, the confusion
networks are created from the union of these align-
ments. The incremental hypothesis alignment algo-
rithm combines these two steps. All words from the
previously aligned hypotheses are available, even if
not present in the skeleton hypothesis, when align-
ing the following hypotheses. As in (Rosti et al.,
2007), confusion networks built around all skeletons
are joined into a lattice which is expanded and re-
scored with language models. System weights and
language model weights are tuned to optimize the
quality of the decoding output on a development set.

This paper is organized as follows. The incre-
mental TER alignment algorithm is described in
Section 2. Experimental evaluation comparing the
incremental and pair-wise alignment methods are
presented in Section 3 along with results on the
WMT08 Europarl test sets. Conclusions and future
work are presented in Section 4.

2 Incremental TER Alignment

The incremental hypothesis alignment is based on
an extension of the TER algorithm (Snover et al.,
2006). The extension allows using a confusion net-
work as the reference. First, the algorithm finds the
minimum edit distance between the hypothesis and
the reference network by considering all word arcs
between two consecutive nodes in the reference net-
work as possible matches for a hypothesis word at
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blue (1) kites (1)

Figure 1: Network after pair-wise TER alignment.

that position. Second, shifts of blocks of words that
have an exact match somewhere else in the network
are tried in order to find a new hypothesis word or-
der with a lower TER. Each shifted block is con-
sidered a single edit. These two steps are executed
iteratively as a greedy search. The final alignment
between the re-ordered hypothesis and the reference
network may include matches, substitutions, dele-
tions, and insertions.

The confusion networks are built by creating a
simple confusion network from the skeleton hypoth-
esis. If the skeleton hypothesis has � words, the
initial network has � arcs and ����� nodes. Each
arc has a set of system specific confidence scores.
The score for the skeleton system is set to ����� and
the confidences for other systems are set to zeros.
For each non-skeleton hypothesis, a TER alignment
against the current network is executed as described
above. Each match found will increase the system
specific word arc confidence by ���
	�����
�� where 

is the rank of the hypothesis in that system’s � -best
list. Each substitution will generate a new word arc
at the corresponding position in the network. The
word arc confidence for the system is set to ���
	�����
��
and the confidences for other systems are set to ze-
ros. Each deletion will generate a new NULL word
arc unless one exists at the corresponding position
in the network. The NULL word arc confidences are
adjusted as in the case of a match or a substitution
depending on whether the NULL word arc exists or
not. Finally, each insertion will generate a new node
and two word arcs at the corresponding position in
the network. The first word arc will have the in-
serted word with the confidence set as in the case
of a substitution and the second word arc will have
a NULL word with confidences set by assuming all
previously aligned hypotheses and the skeleton gen-
erated the NULL word arc.

After all hypotheses have been added into the con-
fusion network, the system specific word arc confi-
dences are scaled to sum to one over all arcs between

1 2 3 4 5 6
I (3) like (3)

kites (1)

NULL (2) NULL (1)

big (1) blue (2)

balloons (2)

Figure 2: Network after incremental TER alignment.

each set of two consecutive nodes. Other scores for
the word arc are set as in (Rosti et al., 2007).

2.1 Benefits over Pair-Wise TER Alignment

The incremental hypothesis alignment guarantees
that insertions between a hypothesis and the cur-
rent confusion network are always considered when
aligning the following hypotheses. This is not the
case in any pair-wise hypothesis alignment algo-
rithm. During the pair-wise hypothesis alignment,
an identical word in two hypotheses may be aligned
as an insertion or a substitution in a different posi-
tion with respect to the skeleton. This will result in
undesirable repetition and lower confidence for that
word in the final confusion network. Also, multiple
insertions are not handled implicitly.

For example, three hypotheses “I like balloons”,
“I like big blue balloons”, and “I like blue kites”
might be aligned by the pair-wise alignment, assum-
ing the first as the skeleton, as follows:

I like NULL balloons NULL
I like big blue balloons NULL

I like NULL balloons NULL
I like NULL blue kites

which results in the confusion network shown in
Figure 1. The number of hypotheses proposing each
word is shown in parentheses. The alignment be-
tween the skeleton and the second hypothesis has
two consecutive insertions “big blue” which are not
available for matching when the third hypothesis is
aligned against the skeleton. Therefore, the word
“blue” appears twice in the confusion network. If
many hypotheses have multiple insertions at the
same location with respect to the skeleton, they have
to be treated as phrases or a secondary alignment
process has to be applied.

Assuming the same hypotheses as above, the in-
cremental hypothesis alignment may yield the fol-
lowing alignment:
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System TER BLEU MTR

worst 53.26 33.00 63.15
best 42.30 48.52 67.71
syscomb pw 39.85 52.00 68.73
syscomb giza 40.01 52.24 68.68
syscomb inc 39.25 52.73 68.97
oracle 21.68 64.14 78.18

Table 1: Results on the Arabic GALE Phase 2 system
combination tuning set with four reference translations.

I like NULL NULL balloons
I like big blue balloons
I like NULL blue kites

which results in the confusion network shown in
Figure 2. In this case the word “blue” is available
for matching when the third hypothesis is aligned.
It should be noted that the final confusion network
depends on the order in which the hypotheses are
added. The experiments so far have indicated that
different alignment order does not have a significant
influence on the final combination results as mea-
sured by the automatic evaluation metrics. Usually,
aligning the system outputs in the decreasing order
of their TER scores on the development set yields
the best scores.

2.2 Confusion Network Oracle

The extended TER algorithm can also be used to
estimate an oracle TER in a confusion network by
aligning the reference translations against the con-
fusion network. The oracle hypotheses can be ex-
tracted by finding a path with the maximum number
of matches. These hypotheses give a lower bound
on the TER score for the hypotheses which can be
generated from the confusion networks.

3 Experimental Evaluation

The quality of the final combination output depends
on many factors. Combining very similar outputs
does not yield as good gains as combining out-
puts from diverse systems. It is also important that
the development set used to tune the combination
weights is as similar to the evaluation set as possi-
ble. This development set should be different from
the one used to tune the individual systems to avoid
bias toward any system that may be over-tuned. Due

System TER BLEU MTR

worst 59.09 20.74 57.24
best 48.18 31.46 62.61
syscomb pw 46.31 33.02 63.18
syscomb giza 46.03 33.39 63.21
syscomb inc 45.45 33.90 63.45
oracle 27.53 49.10 71.81

Table 2: Results on the Arabic GALE Phase 2 evaluation
set with one reference translation.

to the tight schedule for the WMT08, there was no
time to experiment with many configurations. As
more extensive experiments have been conducted in
the context of the DARPA GALE program, results
on the Arabic GALE Phase 2 evaluation setup are
first presented. The translation quality is measured
by three MT evaluation metrics: TER (Snover et al.,
2006), BLEU (Papineni et al., 2002), and METEOR
(Lavie and Agarwal, 2007).

3.1 Results on Arabic GALE Outputs

For the Arabic GALE Phase 2 evaluation, nine sys-
tems were combined. Five systems were phrase-
based, two hierarchical, one syntax-based, and one
rule-based. All statistical systems were trained on
common parallel data, tuned on a common genre
specific development set, and a common English to-
kenization was used. The English bi-gram and 5-
gram language models used in the system combina-
tion were trained on about 7 billion words of English
text. Three iterations of bi-gram decoding weight
tuning were performed followed by one iteration of
5-gram re-scoring weight tuning. All weights were
tuned to minimize the sum of TER and 1-BLEU.
The final 1-best outputs were true-cased and deto-
kenized before scoring.

The results on the newswire system combination
development set and the GALE Phase 2 evaluation
set are shown in Tables 1 and 2. The first two
rows show the worst and best scores from the in-
dividual systems. The scores may be from different
systems as the best performing system in terms of
TER was not necessarily the best performing system
in terms of the other metrics. The following three
rows show the scores of three combination outputs
where the only difference was the hypothesis align-
ment method. The first, syscomb pw, corresponds
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BLEU
System de-en fr-en

worst 11.84 16.31
best 28.30 33.13
syscomb 29.05 33.63

Table 3: NIST BLEU scores on the German-English (de-
en) and French-English (fr-en) Europarl test2008 set.

to the pair-wise TER alignment described in (Rosti
et al., 2007). The second, syscomb giza, cor-
responds to the pair-wise symmetric HMM align-
ments from GIZA++ described in (Matusov et al.,
2006). The third, syscomb inc, corresponds to
the incremental TER alignment presented in this pa-
per. Finally, oracle corresponds to an estimate of
the lower bound on the translation quality obtained
by extracting the TER oracle output from the con-
fusion networks generated by the incremental TER
alignment. It is unlikely that there exists a set of
weights that would yield the oracle output after de-
coding, though. The incremental TER alignment
yields significant improvements over all individual
systems and the combination outputs using the pair-
wise alignment methods.

3.2 Results on WMT08 Europarl Outputs

On the WMT08 shared translation task, transla-
tions for two language pairs and two tasks were
provided for the system combination experiments.
Twelve systems participated in the German-English
and fourteen in the French-English translation tasks.
The translations of the Europarl test (test2008) were
provided as the development set outputs and the
translations of the News test (newstest2008) were
provided as the evaluation set outputs. An English
bi-gram, 4-gram, and true-caser language models
were trained by using all English text available for
the WMT08 shared task, including Europarl mono-
lingual and news commentary parallel training sets.
The outputs were tokenized and lower-cased before
combination, and the final combination output was
true-cased and detokenized.

The results on the Europarl test set for both lan-
guage pairs are shown in table 3. The first two rows
have the NIST BLEU scores of the worst and the
best individual systems. The last row, syscomb,
corresponds to the system combination using the in-

cremental TER alignment. The improvements in the
NIST BLEU scores are fairly modest which is prob-
ably due to low diversity of the system outputs. It is
also unlikely that these weights are optimal for the
out-of-domain News test set outputs.

4 Conclusions

This paper describes a novel hypothesis alignment
algorithm for building confusion networks from
multiple machine translation system outputs. The al-
gorithm yields significant improvements on the Ara-
bic GALE evaluation set outputs and was used in
BBN’s submission to the WMT08 shared translation
task. The hypothesis alignment may benefit from
using stemming and synonymy in matching words.
Also, special handling of punctuation may improve
the alignment further. The future work will inves-
tigate the influence of better alignment to the final
combination outputs.
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Abstract

Previous studies have shown automatic evalu-
ation metrics to be more reliable when com-
pared against many human translations. How-
ever, multiple human references may not al-
ways be available. It is more common to have
only a single human reference (extracted from
parallel texts) or no reference at all. Our ear-
lier work suggested that one way to address
this problem is to train a metric to evaluate a
sentence by comparing it againstpseudo refer-
ences, or imperfect “references” produced by
off-the-shelf MT systems. In this paper, we
further examine the approach both in terms of
the training methodology and in terms of the
role of the human and pseudo references. Our
expanded experiments show that the approach
generalizes well across multiple years and dif-
ferent source languages.

1 Introduction

Standard automatic metrics arereference-based;
that is, they compare system-produced translations
against human-translated references produced for
the same source. Since there is usually no single
best way to translate a sentence, each MT output
should be compared against many references. On
the other hand, creating multiple human references
is itself a costly process. For many naturally occur-
ring datasets (e.g., parallel corpora) only a single ref-
erence is readily available.

The focus of this work is on developing auto-
matic metrics for sentence-level evaluation withat
most one human reference. One way to supple-
ment the single human reference is to usepseudo

references, or sentences produced by off-the-shelf
MT systems, as stand-ins for human references.
However, since pseudo references may be imperfect
translations themselves, the comparisons cannot be
fully trusted. Previously, we have taken a learning-
based approach to develop a composite metric that
combines measurements taken from multiple pseudo
references (Albrecht and Hwa, 2007). Experimental
results suggested the approach to be promising; but
those studies did not consider how well the metric
might generalize across multiple years and different
languages. In this paper, we investigate the appli-
cability of the pseudo-reference metrics under these
more general conditions.

Using the WMT06 Workshop shared-task re-
sults (Koehn and Monz, 2006) as training exam-
ples, we train a metric that evaluates new sentences
by comparing them against pseudo references pro-
duced by three off-the-shelf MT systems. We ap-
ply the learned metric to sentences from the WMT07
shared-task (Callison-Burch et al., 2007b) and com-
pare the metric’s predictions against human judg-
ments. We find that additional pseudo references
improve correlations for automatic metrics.

2 Background

The ideal evaluation metric reports an accurate dis-
tance between an input instance and its gold stan-
dard, but even when comparing against imperfect
standards, the measured distances may still convey
some useful information – they may help to trian-
gulate the input’s position relative to the true gold
standard.

In the context of sentence-level MT evaluations,
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the challenges are two-fold. First, the ideal quantita-
tive distance function between a translation hypoth-
esis and the proper translations is not known; cur-
rent automatic evaluation metrics produce approxi-
mations to the true translational distance. Second,
although we may know the qualitative goodness of
the MT systems that generate the pseudo references,
we do not know how imperfect the pseudo refer-
ences are. These uncertainties make it harder to es-
tablish the true distance between the input hypoth-
esis and the (unobserved) acceptable gold standard
translations.

In order to combine evidence from these uncertain
observations, we take a learning-based approach.
Each hypothesis sentence is compared with multi-
ple pseudo references using multiple metrics. Rep-
resenting the measurements as a set of input features
and using human-assessed MT sentences as training
examples, we train a function that is optimized to
correlate the features with the human assessments in
the training examples. Specifically, for each input
sentence, we compute a set of 18 kinds of reference-
based measurements for each pseudo reference as
well as 26 monolingual fluency measurements. The
full set of measurements then serves as the input fea-
ture vector into the function, which is trained via
support vector regression. The learned function can
then be used as an evaluation metric itself: it takes
the measurements of a new sentence as input and re-
turns a composite score for that sentence.

The approach is considered successful if the met-
ric’s predictions on new test sentences correlate well
with quantitative human assessments. Like other
learned models, the metric is expected to perform
better on data that are more similar to the training
instances. Therefore, a natural question that arises
with a metric developed in this manner is: how well
does it generalize?

3 Research Questions

To better understand the capability of metrics that
compare against pseudo-references, we consider the
following aspects:

The role of learning Standard reference-based
metrics can also use pseudo references; however,
they would treat the imperfect references as gold
standard. In contrast, the learning process aims

to determine how much each comparison with a
pseudo reference might be trusted. To observe the
role of learning, we compare trained metrics against
standard reference-based metrics, all using pseudo
references.

The amount vs. types of training data The suc-
cess of any learned model depends on its training ex-
periences. We study the trade-off between the size
of the training set and the specificity of the train-
ing data. We perform experiments comparing a met-
ric trained from a large pool of heterogeneous train-
ing examples that include translated sentences from
multiple languages and individual metrics trained
from particular source languages.

The role of a single human reference Previous
studies have shown the importance of comparing
against multiple references. The approach in this
paper attempts to approximate multiple human ref-
erences with machine-produced sentences. Is a sin-
gle trust-worthy translation more useful than multi-
ple imperfect translations? To answer this question,
we compare three different reference settings: using
just a single human reference, using just the three
pseudo references, and using all four references.

4 Experimental Setup

For the experiments reported in this paper, we used
human-evaluated MT sentences from past shared-
tasks of the WMT 2006 and WMT 2007. The data
consists of outputs from German-English, Spanish-
English, and French-English MT systems. The out-
puts are translations from two corpora:Europarland
news commentary. System outputs have been evalu-
ated by human judges on a 5-point scale (Callison-
Burch et al., 2007a). We have normalized scores
to reduce biases from different judges (Blatz et al.,
2003).

We experimented with using four different sub-
sets of the WMT2006 data as training examples:
only German-English, only Spanish-English, only
French-English, all 06 data. The metrics are trained
using support vector regression with a Gaussian
kernel as implemented in the SVM-Light package
(Joachims, 1999). The SVM parameters are tuned
via grid-search on development data, 20% of the full
training set that has been reserved for this purpose.
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We used three MT systems to generate pseudo ref-
erences: Systran1, GoogleMT2, and Moses (Koehn
et al., 2007). We chose these three systems because
they are widely accessible and because they take
relatively different approaches. Moreover, although
they have not all been human-evaluated in the past
WMT shared tasks, they are well-known for produc-
ing good translations.

A metric is evaluated based on its Spearman rank
correlation coefficient between the scores it gave to
the evaluative dataset and human assessments for
the same data. The correlation coefficient is a real
number between -1, indicating perfect negative cor-
relations, and +1, indicating perfect positive correla-
tions.

Two standard reference-based metrics, BLEU
(Papineni et al., 2002) and METEOR (Banerjee and
Lavie, 2005), are used for comparisons. BLEU is
smoothed (Lin and Och, 2004), and it considers only
matching up to bigrams because this has higher cor-
relations with human judgments than when higher-
orderedn-grams are included.

5 Results

The full experimental comparisons are summarized
in Table 1. Each cell shows the correlation coef-
ficient between the human judgments and a metric
(column) that uses a particular kind of references
(row) for some evaluation data set (block row).

The role of learning With the exception of the
German-English data, the learned metrics had higher
correlations with human judges than the baselines,
which used standard metrics with a single human
reference. On the other hand, results suggest that
pseudo references often also improve correlations
for standard metrics. This may seem counter-
intuitive because we can easily think of cases in
which pseudo references hurt standard metrics (e.g.,
use poor outputs as pseudo references). We hypoth-

1Available from http://www.systransoft.com/ .
We note that Systran is also a participating system under eval-
uation. Although Sys-Test will be deemed to be identical to
Sys-Ref, it will not automatically receive a high score because
the measurement is weighted by whether Sys-Ref was reliable
during training. Furthermore, measurements between Sys-Test
and other pseudo-references will provide alternative evidences
for the metric to consider.

2http://www.google.com/language tools/

esize that because the pseudo references came from
high-quality MT systems and because standard met-
rics are based on simple word matches, the chances
for bad judgments (input words matched against
pseudo reference, but both are wrong) are relatively
small compared to chances for good judgments. We
further hypothesize that the learned metrics would
be robust against the qualities of the pseudo refer-
ence MT systems.

The amount vs. types of training data Com-
paring the three metrics trained from single lan-
guage datasets against the metric trained from all
of WMT06 dataset, we see that the learning process
benefitted from the larger quantity of training exam-
ples. It may be the case that the MT systems for the
three language pairs are at a similar stage of maturity
such that the training instances are mutually helpful.

The role of a single human reference Our results
reinforce previous findings that metrics are more re-
liable when they have access to more than a sin-
gle human reference. Our experimental data sug-
gests that a single human reference often may not be
as reliable as using three pseudo references alone.
Finally, the best correlations are achieved by using
both human and pseudo references.

6 Conclusion

We have presented an empirical study on automatic
metrics for sentence-level MT evaluation with at
most one human reference. We show that pseudo
references from off-the-shelf MT systems can be
used to augment the single human reference. Be-
cause they are imperfect, it is important to weigh the
trustworthiness of these references through a train-
ing phase. The metric seems robust even when the
applied to sentences from different systems of a later
year. These results suggest that multiple imperfect
translations make informative comparison points in
supplement to human references.
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Eval. Data Ref Type METEOR BLEU SVM(de06) SVM(es06) SVM(fr06) SVM(wmt06)
de 1HR 0.458 0.471

europarl 3PR 0.521* 0.527* 0.422 0.403 0.480* 0.467
07 1HR+3PR 0.535* 0.547* 0.471 0.480* 0.477* 0.523*
de 1HR 0.290 0.333

news 3PR 0.400* 0.400* 0.262 0.279 0.261 0.261
07 1HR+3PR 0.432* 0.417* 0.298 0.321 0.269 0.330
es 1HR 0.377 0.412

europarl 3PR 0.453* 0.483* 0.336 0.453* 0.432* 0.456*
07 1HR+3PR 0.491* 0.503* 0.405 0.513* 0.483* 0.510*
es 1HR 0.317 0.332

news 3PR 0.320 0.317 0.393* 0.381* 0.426* 0.426*
07 1HR+3PR 0.353* 0.325 0.429* 0.427* 0.380* 0.486*
fr 1HR 0.265 0.246

europarl 3PR 0.196 0.285* 0.270* 0.284* 0.355* 0.366*
07 1HR+3PR 0.221 0.290* 0.277* 0.324* 0.304* 0.381*
fr 1HR 0.226 0.280

news 3PR 0.356* 0.383* 0.237 0.252 0.355* 0.373*
07 1HR+3PR 0.374* 0.394* 0.272 0.339* 0.319* 0.388*

Table 1: Correlation comparisons of metrics (columns) using different references (row): a single human reference
(1HR), 3 pseudo references (3PR), or all (1HR+3PR). The type of training used for the regression-trained metrics
are specified in parentheses. For each evaluated corpus, correlations higher thanstandard metric using one human
referenceare marked by an asterisk(*).
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Abstract

Automatic evaluation of machine translation
(MT) systems is an important research topic
for the advancement of MT technology. Most
automatic evaluation methods proposed to
date are score-based: they compute scores that
represent translation quality, and MT systems
are compared on the basis of these scores.

We advocate an alternative perspective of au-
tomatic MT evaluation based on ranking. In-
stead of producing scores, we directly produce
a ranking over the set of MT systems to be
compared. This perspective is often simpler
when the evaluation goal is system compari-
son. We argue that it is easier to elicit human
judgments of ranking and develop a machine
learning approach to train on rank data. We
compare this ranking method to a score-based
regression method on WMT07 data. Results
indicate that ranking achieves higher correla-
tion to human judgments, especially in cases
where ranking-specific features are used.

1 Motivation

Automatic evaluation of machine translation (MT)
systems is an important research topic for the ad-
vancement of MT technology, since automatic eval-
uation methods can be used to quickly determine the
(approximate) quality of MT system outputs. This is
useful for tuning system parameters and for compar-
ing different techniques in cases when human judg-
ments for each MT output are expensivie to obtain.

Many automatic evaluation methods have been
proposed to date. Successful methods such as BLEU

∗Work supported by an NSF Graduate Research Fellowship.

(Papineni et al., 2002) work by comparing MT out-
put with one or more human reference translations
and generating a similarity score. Methods differ by
the definition of similarity. For instance, BLEU and
ROUGE (Lin and Och, 2004) are based on n-gram
precisions, METEOR (Banerjee and Lavie, 2005)
and STM (Liu and Gildea, 2005) use word-class
or structural information, Kauchak (2006) leverages
on paraphrases, and TER (Snover et al., 2006) uses
edit-distances. Currently, BLEU is the most popu-
lar metric; it has been shown that it correlates well
with human judgments on the corpus level. How-
ever, finding a metric that correlates well with hu-
man judgments on the sentence-level is still an open
challenge (Blatz and others, 2003).

Machine learning approaches have been proposed
to address the problem of sentence-level evalua-
tion. (Corston-Oliver et al., 2001) and (Kulesza
and Shieber, 2004) train classifiers to discrim-
inate between human-like translations and auto-
matic translations, using features from the afore-
mentioned metrics (e.g. n-gram precisions). In con-
trast, (Albrecht and Hwa, 2007) argues for a re-
gression approach that directly predicts human ad-
equecy/fluency scores.

All the above methods are score-based in the
sense that they generate a score for each MT system
output. When the evaluation goal is to compare mul-
tiple MT systems, scores are first generated inde-
pendently for each system, then systems are ranked
by their respective scores. We think that this two-
step process may be unnecessarily complex. Why
solve a more difficult problem of predicting the qual-
ity of MT system outputs, when the goal is simply
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to compare systems? In this regard, we propose a
ranking-based approach that directly ranks a set of
MT systems without going through the intermediary
of system-specific scores. Our approach requires (a)
training data in terms of human ranking judgments
of MT outputs, and (b) a machine learning algorithm
for learning and predicting rankings.1

The advantages of a ranking approach are:

• It is often easier for human judges to rank MT
outputs by preference than to assign absolute
scores (Vilar et al., 2007). This is because it is
difficult to quantify the quality of a translation
accurately, but relative easy to tell which one
of several translations is better. Thus human-
annotated data based on ranking may be less
costly to acquire.

• The inter- and intra-annotator agreement for
ranking is much more reasonable than that of
scoring. For instance, Callison-Burch (2007)
found the inter-annotator agreement (Kappa)
for scoring fluency/adequency to be around
.22-.25, whereas the Kappa for ranking is
around .37-.56. Thus human-annotated data
based on ranking may be more reliable to use.

• As mentioned earlier, when the final goal of
the evaluation is comparing systems, ranking
more directly solves the problem. A scoring
approach essentially addresses a more difficult
problem of estimating MT output quality.

Nevertheless, we note that score-based ap-
proaches remain important in cases when the ab-
solute difference between MT quality is desired.
For instance, one might wonderby how muchdoes
the top-ranked MT system outperform the second-
ranked system, in which case a ranking-based ap-
proach provide no guidance.

In the following, Section 2 formulates the
sentence-level MT evaluation problem as a ranking
problem; Section 3 explains a machine learning ap-
proach for training and predicting rankings; this is
our submission to the WMT2008 Shared Evaluation

1Our ranking approach is similar to Ye et. al. (2007), who
was the first to advocate MT evaluation as a ranking problem.
Here we focus on comparing ranking vs. scoring approaches,
which was not done in previous work.

task. Ranking vs. scoring approaches are compared
in Section 4.

2 Formulation of the Ranking Problem

We formulate the sentence-level MT evaluation
problem as follows: Suppose there areT source sen-
tences to be translated. Letrt, t = 1..T be the set of
references2. Corresponding to each source sentence,
there areN MT system outputso(n)

t , n = 1..N and
Mt (Mt ≤ N ) human evaluations. The evaluations
are represented asMt-dimensional label vectorsyt.
In a scoring approach, the elements ofyt may cor-
respond to, e.g. a fluency score on a scale of 1 to 5.
In a ranking approach, they may correspond to rel-
ative scores that are used to represent ordering (e.g.
yt = [6; 1; 3] means that there are three outputs, and
the first is ranked best, followed by third, then sec-
ond.)

In order to do machine learning, we extract fea-
ture vectorsx(n)

t from each pair ofrt and o
(n)
t .3

The set{(x(n)
t , yt)}t=1..T forms the training set.

In a scoring approach, we train a functionf with
f(x

(n)
t ) ≈ y(n). In a ranking approach, we train

f such that higher-ranked outputs have higher func-
tion values. In the example above, we would want:
f(x

(n=1)
t ) > f(x

(n=3)
t ) > f(x

(n=2)
t ). Oncef is

trained, it can be applied to rank any new data: this is
done by extracting features from references/outputs
and sorting by function values.

3 Implementation

3.1 Sentence-level scoring and ranking

We now describe the particular scoring and rank-
ing implementations we examined and submitted to
the WMT2008 Shared Evaluation task. In the scor-
ing approach,f is trained using RegressionSVM
(Drucker and others, 1996); in the ranking ap-
proach, we examined RankSVM (Joachims, 2002)
and RankBoost (Freund et al., 2003). We used only
linear kernels for RegressionSVM and RankSVM,
while allowed RankBoost to produce non-linearf

based on a feature thresholds.

2Here we assume single reference for ease of notation; this
can be easily extended for multiple reference

3Only Mt (notN ) features vectors are extracted in practice.
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ID Description
1-4 log of ngram precision, n=1..4
5 ratio of hypothesis and reference length
6-9 ngram precision, n=1..4
10-11 hypothesis and reference length
12 BLEU
13 Smooth BLEU
14-20 Intra-set features for ID 5-9, 12,13

Table 1: Feature set: Features 1-5 can be combined (with
uniform weights) to form the log(BLEU) score. Features
6-11 are redundant statistics, but scaled differently. Fea-
ture 12 is sentence-level BLEU; Feature 13 is a modified
version with add-1 count to each ngram precision (this
avoids prevalent zeros). Features 14-20 are only available
in the ranking approach; they are derived by comparing
different outputs within the same set to be ranked.

The complete feature set is shown in Table 1. We
restricted our feature set to traditional BLEU statis-
tics since our experimental goal is to directly com-
pare regression, ranking, and BLEU. Features 14-
20 are the only novel features proposed here. We
wanted to examine features that are enabled by a
ranking approach, but not possible for a scoring
approach. We thus introduce “intra-set features”,
which are statistics computed by observing the en-
tire set of existing features{x(n)

t }n=1..Mt
.

For instance: We define Feature 14 by looking at
the relative 1-gram precision (Feature 1) in the set of
Mt outputs. Feature 14 is set to value 1 for the out-
put which has the best 1-gram precision, and value 0
otherwise. Similarly, Feature 15 is a binary variable
that is 1 for the output with the best 2-gram preci-
sion, and 0 for all others. The advantage of intra-set
features is calibration. e.g. If the outputs forrt=1

all have relatively high BLEU compared to those
of rt=2, the basic BLEU features will vary widely
across the two sets, making it more difficult to fit a
ranking function. On the other hand, intra-set fea-
tures are of the same scale ([0, 1] in this case) across
the two sets and therefore induce better margins.

While we have only explored one particular in-
stantiation of intra-set features, many other defini-
tions are imaginable. Novel intra-set features is a
promising research direction; experiments indicate
that they are most important in helping ranking out-
perform regression.

3.2 Corpus-level ranking

Sentence-level evaluation generates a ranking for
each source sentence. How does one produce
an overall corpus-level ranking based on a set of
sentence-level rankings? This is known as the
“consensus ranking” or “rank aggregation” prob-
lem, which can be NP-hard under certain formula-
tions (Meilă et al., 2007). We use the FV heuristic
(Fligner and Verducci, 1988), which estimates the
empirical probabilityPij that systemi ranks above
systemj from sentence-level rankings (i.e.Pij =
number of sentences wherei ranks better thanj, di-
vided by total number of sentences). The corpus-
level ranking of systemi is then defined as

∑
j′ Pij′ .

4 Experiments

For experiments, we split the provided development
data into train, dev, and test sets (see Table 2). The
data split is randomized at the level of different eval-
uation tracks (e.g. en-es.test, de-en.test are differ-
ent tracks) in order to ensure that dev/test are suffi-
ciently novel with respect to the training data. This
is important since machine learning approaches have
the risk of overfitting and spreading data from the
same track to both train and test could lead to over-
optimistic results.

Train Dev Test
# tracks 8 3 3
# sets 1504 (63%) 514 (21%) 390 (16%)
# sent 6528 (58%) 2636 (23%) 2079 (19%)

Table 2: Data characteristics: the training data contains
8 tracks, which contained 6528 sentence evaluations or
1504 sets of human rankings (T = 1504).

In the first experiment, we compared Regression
SVM and Rank SVM (both used Features 1-12) by
training on varying amounts of training data. The
sentence-level rankings produced by each are com-
pared to human judgments using the Spearman rank
correlation coefficient (see Figure 1).

In the second experiment, we compared all rank-
ing and scoring methods discussed thus far. The full
training set is used; the dev set is used to tune the
cost parameter for the SVMs and number of itera-
tions for RankBoost, which is then applied without
modification to the test set. Table 3 shows the aver-
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Figure 1: Ranking slightly outperforms Regression for
various amounts of training data. Regression results ap-
pear to be less stable, with a rise/fall in average Spear-
man coefficent around 20%, possibly because linear re-
gression functions become harder to fit with more data.

age Spearman coefficient for different methods and
different feature sets. There are several interesting
observations:

1. BLEU performs poorly, but SmoothedBLEU is
almost as good as the machine learning meth-
ods that use same set of basic BLEU features.

2. Rank SVM slightly outperforms RankBoost.
3. Regression SVM and Rank SVM gave simi-

lar results under the same feature set. How-
ever, Rank SVM gave significant improve-
ments when intra-set features are incorporated.

The last observation is particularly important: it
shows that the training criteria differences between
the ranking and regression is actually not critical.
Ranking can outperform regression, but only when
ranking-specific features are considered. Without
intra-set features, ranking methods may be suffering
the same calibration problems as regression.
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Abstract

This document describes the approach by the
NLP Group at the Technical University of Cat-
alonia (UPC-LSI), for the shared task on Au-
tomatic Evaluation of Machine Translation at
the ACL 2008 Third SMT Workshop.

1 Introduction

Our proposal is based on a rich set of individual
metrics operating at different linguistic levels: lex-
ical (i.e., on word forms), shallow-syntactic (e.g., on
word lemmas, part-of-speech tags, and base phrase
chunks), syntactic (e.g., on dependency and con-
stituency trees), shallow-semantic (e.g., on named
entities and semantic roles), and semantic (e.g., on
discourse representations). Although from differ-
ent viewpoints, and based on different similarity as-
sumptions, in all cases, translation quality is mea-
sured by comparing automatic translations against
human references. Extensive details on the met-
ric set may be found in the IQMT technical manual
(Giménez, 2007).

Apart from individual metrics, we have also
applied a simple integration scheme based on
uniformly-averaged linear metric combinations
(Giménez and Màrquez, 2008a).

2 What is new?

The main novelty, with respect to the set of metrics
presented last year (Giménez and Màrquez, 2007),
is the incorporation of a novel family of metrics
at the properly semantic level.DR metrics ana-
lyze similarities between automatic and reference

translations by comparing their respective discourse
representation structures (DRS), as provided by the
the C&C Tools (Clark and Curran, 2004). DRS are
essentially a variation of first-order predicate calcu-
lus which can be seen as semantic trees. We use
three different kinds of metrics:

DR-STM Semantic Tree Matching, a la Liu and
Gildea (2005), but over DRS instead of over
constituency trees.

DR-Or-⋆ Lexical overlapping over DRS.

DR-Orp-⋆ Morphosyntactic overlapping on DRS.

Further details on DR metrics can be found in
(Giménez and Màrquez, 2008b).

2.1 Improved Sentence Level Behavior

Metrics based on deep linguistic analysis rely on
automatic processors trained on out-domain data,
which may be, thus, prone to error. Indeed, we found
out that in many cases, metrics are unable to pro-
duce a result due to the lack of linguistic analysis.
For instance, in our experiments, for SR metrics, we
found that the semantic role labeler was unable to
parse 14% of the sentences. In order to improve the
recall of these metrics, we have designed two simple
variants. Given a linguistic metricx, we define:

• xb → by backing off to lexical overlapping,
Ol, only when the linguistic processor is not
able to produce a linguistic analysis. Other-
wise, x score is returned. Lexical scores are
conveniently scaled so that they are in a similar
range to scores ofx. Specifically, we multiply
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them by the averagex score attained over all
other test cases for which the parser succeeded.

• xi → by linearly interpolatingx andOl scores
for all test cases, via the arithmetic mean.

In both cases, system scores are calculated by av-
eraging over all sentence scores. Currently, these
variants are applied only to SR and DR metrics.

2.2 Uniform Linear Metric Combinations

We have simulated a non-parametric combination
scheme based on human acceptability by working
on uniformly averaged linear combinations (ULC)
of metrics (Giménez and Màrquez, 2008a). Our ap-
proach is similar to that of Liu and Gildea (2007)
except that in our case the contribution of each met-
ric to the overall score is not adjusted.

Optimal metric sets are determined by maximiz-
ing the correlation with human assessments, either
at the document or sentence level. However, because
exploring all possible combinations was not viable,
we have used a simple algorithm which performs an
approximate search. First, metrics are ranked ac-
cording to their individual quality. Then, following
that order, metrics are added to the optimal set only
if in doing so the global quality increases.

3 Experimental Work

We use all into-English test beds from the 2006
and 2007 editions of the SMT workshop (Koehn
and Monz, 2006; Callison-Burch et al., 2007).
These include the translation of three differ-
ent language-pairs: German-to-English (de-en),
Spanish-to-English (es-en), and French-to-English
(fr-en), over two different scenarios: in-domain (Eu-
ropean Parliament Proceedings) and out-of-domain
(News Commentary Corpus)1. In all cases, a single
reference translation is available. In addition, hu-
man assessments on adequacy and fluency are avail-
able for a subset of systems and sentences. Each
sentence has been evaluated at least by two different
judges. A brief numerical description of these test
beds is available in Table 1.

1We have not used the out-of-domain Czech-to-English test
bed from the 2007 shared task because it includes only 4 sys-
tems, and only 3 of them count on human assessments.

WMT 2006
in-domain out-of-domain
2,000 cases 1,064 cases
#snt #sys #snt #sys

de-en 2,281 10/12 1,444 10/12
es-en 1,852 11/15 1,008 11/15
fr-en 2,268 11/14 1,281 11/14

WMT 2007
in-domain out-of-domain
2,000 cases 2,007 cases
#snt #sys #snt #sys

de-en 956 7/8 947 5/6
es-en 812 8/10 675 7/9
fr-en 624 7/8 741 7/7

Table 1: Test bed description. ‘#snt’ columns show the
number of sentences assessed (considering all systems).
‘#sys’ columns shows the number of systems counting
on human assessments with respect to the total number
of systems which participated in each task.

Metrics are evaluated in terms of human accept-
ability, i.e., according to their ability to capture
the degree of acceptability to humans of automatic
translations. We measure human acceptability by
computing Pearson correlation coefficients between
automatic metric scores and human assessments of
translation quality both at document and sentence
level. We use the sum of adequacy and fluency to
simulate a global assessment of quality. Assess-
ments from different judges over the same test case
are averaged into a single score.

3.1 Individual Performance

In first place, we study the behavior of individual
metrics. Table 2 shows meta-evaluation results, over
into-English WMT 2007 test beds, in-domain and
out-of-domain, both at the system and sentence lev-
els, for a set of selected representatives from several
linguistic levels.

At the system level (columns 1-6), corroborating
previous findings by Giménez and Màrquez (2007),
highest levels of correlation are attained by met-
rics based on deep linguistic analysis (either syn-
tactic or semantic). In particular, two kinds of met-
rics, respectively based on head-word chain match-
ing over grammatical categories and relations (‘DP-
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System Level Sentence Level
de-en es-en fr-en de-en es-en fr-en

Level Metric in out in out in out in out in out in out
1-TER 0.64 0.41 0.83 0.58 0.72 0.47 0.43 0.29 0.23 0.23 0.29 0.20
BLEU 0.87 0.76 0.88 0.70 0.74 0.54 0.46 0.27 0.33 0.20 0.20 0.12

Lexical GTM (e = 2) 0.82 0.69 0.93 0.71 0.76 0.60 0.56 0.36 0.43 0.33 0.27 0.18
ROUGEW 0.87 0.91 0.96 0.78 0.85 0.83 0.58 0.40 0.43 0.35 0.30 0.31
METEORwn 0.83 0.92 0.96 0.74 0.91 0.86 0.53 0.41 0.35 0.28 0.33 0.32
Ol 0.79 0.75 0.91 0.55 0.81 0.66 0.48 0.33 0.35 0.30 0.30 0.21
CP-Oc-⋆ 0.84 0.88 0.95 0.62 0.84 0.76 0.49 0.37 0.38 0.33 0.32 0.25
DP-HWCw-4 0.85 0.93 0.96 0.68 0.84 0.80 0.31 0.26 0.33 0.07 0.10 0.14

Syntactic DP-HWCc-4 0.91 0.98 0.96 0.90 0.98 0.95 0.30 0.25 0.23 0.06 0.13 0.12
DP-HWCr-4 0.89 0.97 0.97 0.92 0.97 0.95 0.33 0.28 0.29 0.08 0.16 0.16
DP-Or-⋆ 0.88 0.96 0.97 0.84 0.89 0.89 0.57 0.41 0.44 0.36 0.33 0.30
CP-STM-4 0.88 0.97 0.97 0.79 0.89 0.89 0.49 0.39 0.40 0.37 0.32 0.26
NE-Me-⋆ -0.13 0.79 0.95 0.68 0.87 0.92 -0.03 0.07 0.07 -0.05 0.05 0.06
NE-Oe-⋆⋆ -0.18 0.78 0.95 0.58 0.81 0.71 0.32 0.26 0.37 0.26 0.31 0.20
SR-Or-⋆ 0.55 0.96 0.94 0.69 0.89 0.85 0.26 0.14 0.30 0.11 0.08 0.19
SR-Or-⋆b 0.24 0.98 0.94 0.68 0.92 0.87 0.33 0.21 0.35 0.15 0.18 0.24

Shallow SR-Or-⋆i 0.51 0.95 0.93 0.67 0.88 0.83 0.37 0.26 0.38 0.19 0.24 0.27
Semantic SR-Mr-⋆ 0.38 0.95 0.96 0.83 0.79 0.75 0.32 0.18 0.28 0.18 0.08 0.14

SR-Mr-⋆b 0.14 0.98 0.97 0.82 0.84 0.79 0.37 0.23 0.32 0.21 0.15 0.17
SR-Mr-⋆i 0.38 0.94 0.96 0.80 0.79 0.74 0.40 0.27 0.36 0.24 0.20 0.20
SR-Or 0.73 0.99 0.94 0.66 0.97 0.93 0.12 0.09 0.16 0.07 -0.04 0.17
SR-Ori 0.66 0.99 0.94 0.64 0.95 0.89 0.29 0.25 0.29 0.19 0.15 0.28
DR-Or-⋆ 0.87 0.89 0.96 0.71 0.78 0.75 0.50 0.40 0.37 0.35 0.27 0.28
DR-Or-⋆b 0.91 0.93 0.97 0.72 0.83 0.80 0.52 0.41 0.38 0.34 0.28 0.27
DR-Or-⋆i 0.87 0.87 0.96 0.68 0.79 0.74 0.53 0.42 0.39 0.35 0.30 0.28
DR-Orp-⋆ 0.92 0.98 0.99 0.81 0.91 0.89 0.42 0.32 0.29 0.25 0.21 0.30

Semantic DR-Orp-⋆b 0.93 0.98 0.99 0.81 0.94 0.91 0.45 0.34 0.32 0.22 0.22 0.30
DR-Orp-⋆i 0.91 0.95 0.98 0.75 0.89 0.85 0.50 0.38 0.36 0.28 0.27 0.33
DR-STM-4 0.89 0.95 0.98 0.79 0.85 0.87 0.28 0.29 0.25 0.21 0.15 0.22
DR-STM-4b 0.92 0.97 0.98 0.80 0.90 0.91 0.36 0.31 0.29 0.21 0.19 0.23
DR-STM-4i 0.91 0.94 0.97 0.74 0.87 0.86 0.43 0.35 0.34 0.26 0.24 0.27

Optimal07 0.93 1.00 0.99 0.92 0.98 0.95 0.60 0.46 0.47 0.42 0.36 0.39
Optimal06 0.01 0.95 0.96 0.75 0.97 0.87 0.50 0.41 0.40 0.20 0.27 0.30

ULC Optimal⋆07 0.93 0.98 0.99 0.81 0.94 0.91 0.58 0.45 0.46 0.39 0.35 0.34
Optimal⋆06 0.34 0.96 0.98 0.82 0.92 0.93 0.54 0.41 0.42 0.32 0.32 0.34
Optimalh 0.87 0.98 0.97 0.79 0.91 0.89 0.56 0.44 0.43 0.32 0.31 0.35

Table 2: Meta-evaluation results based on human acceptability for the WMT 2007 into-English translation tasks

HWCc-4’, ‘DP-HWCr-4’), and morphosyntactic over-
lapping over discourse representations (‘DR-Orp-⋆’ ),
are consistently among the top-scoring in all test
beds. At the lexical level, variants ofROUGE and
METEORattain the best results, close to the perfor-
mance of syntactic and semantic features. It can also
be observed that metrics based on semantic roles
and named entities have serious troubles with the
German-to-English in-domain test bed (column 1).

At the sentence level, the highest levels of corre-
lation are attained by metrics based on lexical simi-
larity alone, only rivaled by lexical overlapping over
dependency relations (‘DP-Or-⋆’ ) and discourse rep-

resentations (‘DR-Or-⋆’ ). We speculate the underly-
ing cause might be on the side of parsing errors. In
that respect, lexical back-off strategies report in all
cases a significant improvement.

It can also be observed that, over these test beds,
metrics based on named entities are completely use-
less at the sentence level, at least in isolation. The
reason is that they capture a very partial aspect of
quality which may be not relevant in many cases.
This has been verified by computing the‘NE-Oe-
⋆⋆’ variant which considers also lexical overlapping
over regular items. Observe how this metric attains
a much higher correlation with human assessments.
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3.2 Metric Combinations

We also study the behavior of metric combinations
under theULC scheme. Last 5 rows in Table 2
shows meta-evaluation results following 3 different
optimization strategies:

Optimal: the metric set is optimized for each test
bed (language-pair and domain) individually.

Optimal⋆: the metric set is optimized over the
union of all test beds.

Optimalh: the metric set is heuristically defined
so as to include several of the top-scoring
representatives from each level: Optimalh =
{ ROUGEW , METEORwnsyn, DP-HWCc-4, DP-
HWCr-4, DP-Or-⋆, CP-STM-4, SR-Mr-⋆i, SR-
Or-⋆i, SR-Ori, DR-Or-⋆i, DR-Orp-⋆b }.

We present results optimizing over the 2006 and
2007 data sets. Let us provide, as an illustration,
Optimal⋆07 sets. For instance, at the system level,
no combination improved the isolated global perfor-
mance of the‘DR-Orp-⋆b’ metric (R=0.94). In con-
trast, at the sentence level, the optimal metric set
contains several metrics from each linguistic level:
Optimal⋆07 = { ROUGEW , DP-Or-⋆, CP-STM-4, SR-
Or-⋆i, SR-Mr-⋆i, DR-Or-⋆i }. A similar pattern is
observed for all test beds, both at the system and
sentence levels, although with different metrics.

The behavior of optimal metric sets is in general
quite stable, except for the German-to-English in-
domain test bed which presents an anomalous be-
havior when meta-evaluating WMT 2006 optimal
metric sets at the system level. The reason for this
anomaly is in the‘NE-Me-⋆’ metric, which is in-
cluded in the 2006 optimal set:{ ‘NE-Me-⋆’, ‘SR-
Ori’ }. ‘NE-Me-⋆’ is based on lexical matching over
named entities, and attains in the 2006 German-to-
English in-domain test bed a very high correlation
of 0.95 with human assessments. This partial aspect
of quality seems to be of marginal importance in the
2007 test bed. We have verified this hypothesis by
computing optimal metrics sets without considering
NE variants. Correlation increases to more reason-
able values (e.g., from 0.01 to 0.66 and from 0.34
to 0.91. This result suggests that more robust metric
combination schemes should be pursued.

For future work, we plan to apply parametric
combination schemes based on human likeness clas-
sifiers, as suggested by Kulesza and Shieber (2004).
We must also further investigate the impact of pars-
ing errors on the performance of linguistic metrics.
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geneous Automatic MT Evaluation Through Non-
Parametric Metric Combinations. InProceedings of
IJCNLP, pages 319–326.
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Abstract

In recent years, the quantity of parallel train-
ing data available for statistical machine trans-
lation has increased far more rapidly than
the performance of individual computers, re-
sulting in a potentially serious impediment
to progress. Parallelization of the model-
building algorithms that process this data on
computer clusters is fraught with challenges
such as synchronization, data exchange, and
fault tolerance. However, the MapReduce
programming paradigm has recently emerged
as one solution to these issues: a powerful
functional abstraction hides system-level de-
tails from the researcher, allowing programs to
be transparently distributed across potentially
very large clusters of commodity hardware.
We describe MapReduce implementations of
two algorithms used to estimate the parame-
ters for two word alignment models and one
phrase-based translation model, all of which
rely on maximum likelihood probability esti-
mates. On a 20-machine cluster, experimental
results show that our solutions exhibit good
scaling characteristics compared to a hypo-
thetical, optimally-parallelized version of cur-
rent state-of-the-art single-core tools.

1 Introduction

Like many other NLP problems, output quality of
statistical machine translation (SMT) systems in-
creases with the amount of training data. Brants et
al. (2007) demonstrated that increasing the quantity
of training data used for language modeling signifi-
cantly improves the translation quality of an Arabic-
English MT system, even with far less sophisticated

backoff models. However, the steadily increas-
ing quantities of training data do not come with-
out cost. Figure 1 shows the relationship between
the amount of parallel Arabic-English training data
used and both the translation quality of a state-of-
the-art phrase-based SMT system and the time re-
quired to perform the training with the widely-used
Moses toolkit on a commodity server.1 Building
a model using 5M sentence pairs (the amount of
Arabic-English parallel text publicly available from
the LDC) takes just over two days.2 This represents
an unfortunate state of affairs for the research com-
munity: excessively long turnaround on experiments
is an impediment to research progress.

It is clear that the needs of machine translation re-
searchers have outgrown the capabilities of individ-
ual computers. The only practical recourse is to dis-
tribute the computation across multiple cores, pro-
cessors, or machines. The development of parallel
algorithms involves a number of tradeoffs. First is
that of cost: a decision must be made between “ex-
otic” hardware (e.g., large shared memory machines,
InfiniBand interconnect) and commodity hardware.
There is significant evidence (Barroso et al., 2003)
that solutions based on the latter are more cost ef-
fective (and for resource-constrained academic in-
stitutions, often the only option).

Given appropriate hardware, MT researchers
must still contend with the challenge of developing
software. Quite simply, parallel programming is dif-
ficult. Due to communication and synchronization

1http://www.statmt.org/moses/
2All single-core timings reported in this paper were per-

formed on a 3GHz 64-bit Intel Xeon server with 8GB memory.
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Figure 1: Translation quality and training time as a func-
tion of corpus size.

issues, concurrent operations are notoriously chal-
lenging to reason about. In addition, fault tolerance
and scalability are serious concerns on commodity
hardware prone to failure. With traditional paral-
lel programming models (e.g., MPI), the developer
shoulders the burden of handling these issues. As a
result, just as much (if not more) effort is devoted to
system issues as to solving the actual problem.

Recently, Google’s MapReduce framework (Dean
and Ghemawat, 2004) has emerged as an attractive
alternative to existing parallel programming models.
The MapReduce abstraction shields the programmer
from having to explicitly worry about system-level
issues such as synchronization, data exchange, and
fault tolerance (see Section 2 for details). The run-
time is able to transparently distribute computations
across large clusters of commodity hardware with
good scaling characteristics. This frees the program-
mer to focus on actual MT issues.

In this paper we present MapReduce implementa-
tions of training algorithms for two kinds of models
commonly used in statistical MT today: a phrase-
based translation model (Koehn et al., 2003) and
word alignment models based on pairwise lexi-
cal translation trained using expectation maximiza-
tion (Dempster et al., 1977). Currently, such models
take days to construct using standard tools with pub-
licly available training corpora; our MapReduce im-
plementation cuts this time to hours. As an benefit
to the community, it is our intention to release this
code under an open source license.

It is worthwhile to emphasize that we present

these results as a “sweet spot” in the complex design
space of engineering decisions. In light of possible
tradeoffs, we argue that our solution can be consid-
ered fast (in terms of running time), easy (in terms
of implementation), and cheap (in terms of hard-
ware costs). Faster running times could be achieved
with more expensive hardware. Similarly, a custom
implementation (e.g., in MPI) could extract finer-
grained parallelism and also yield faster running
times. In our opinion, these are not worthwhile
tradeoffs. In the first case, financial constraints
are obvious. In the second case, the programmer
must explicitly manage all the complexities that
come with distributed processing (see above). In
contrast, our algorithms were developed within a
matter of weeks, as part of a “cloud computing”
course project (Lin, 2008). Experimental results
demonstrate that MapReduce provides nearly opti-
mal scaling characteristics, while retaining a high-
level problem-focused abstraction.

The remainder of the paper is structured as fol-
lows. In the next section we provide an overview of
MapReduce. In Section 3 we describe several gen-
eral solutions to computing maximum likelihood es-
timates for finite, discrete probability distributions.
Sections 4 and 5 apply these techniques to estimate
phrase translation models and perform EM for two
word alignment models. Section 6 reviews relevant
prior work, and Section 7 concludes.

2 MapReduce

MapReduce builds on the observation that many
tasks have the same basic structure: a computation is
applied over a large number of records (e.g., parallel
sentences) to generate partial results, which are then
aggregated in some fashion. The per-record compu-
tation and aggregation function are specified by the
programmer and vary according to task, but the ba-
sic structure remains fixed. Taking inspiration from
higher-order functions in functional programming,
MapReduce provides an abstraction at the point of
these two operations. Specifically, the programmer
defines a “mapper” and a “reducer” with the follow-
ing signatures (square brackets indicate a list of ele-
ments):

map: 〈k1, v1〉 → [〈k2, v2〉]
reduce: 〈k2, [v2]〉 → [〈k3, v3〉]
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Figure 2: Illustration of the MapReduce framework: the
“mapper” is applied to all input records, which generates
results that are aggregated by the “reducer”.

Key/value pairs form the basic data structure in
MapReduce. The “mapper” is applied to every input
key/value pair to generate an arbitrary number of in-
termediate key/value pairs. The “reducer” is applied
to all values associated with the same intermediate
key to generate output key/value pairs. This two-
stage processing structure is illustrated in Figure 2.

Under this framework, a programmer need only
provide implementations of map and reduce. On top
of a distributed file system (Ghemawat et al., 2003),
the runtime transparently handles all other aspects
of execution, on clusters ranging from a few to a few
thousand workers on commodity hardware assumed
to be unreliable, and thus is tolerant to various faults
through a number of error recovery mechanisms.
The runtime also manages data exchange, includ-
ing splitting the input across multiple map workers
and the potentially very large sorting problem be-
tween the map and reduce phases whereby interme-
diate key/value pairs must be grouped by key.

For the MapReduce experiments reported in this
paper, we used Hadoop version 0.16.0,3 which is
an open-source Java implementation of MapRe-
duce, running on a 20-machine cluster (1 master,
19 slaves). Each machine has two processors (run-
ning at either 2.4GHz or 2.8GHz), 4GB memory
(map and reduce tasks were limited to 768MB), and
100GB disk. All software was implemented in Java.

3http://hadoop.apache.org/

Method 1
Map1 〈A, B〉 → 〈〈A, B〉, 1〉
Reduce1 〈〈A, B〉, c(A, B)〉
Map2 〈〈A, B〉, c(A, B)〉 → 〈〈A,∗ 〉, c(A, B)〉
Reduce2 〈〈A,∗ 〉, c(A)〉
Map3 〈〈A, B〉, c(A, B)〉 → 〈A, 〈B, c(A, B)〉〉
Reduce3 〈A, 〈B, c(A,B)

c(A) 〉〉

Method 2
Map1 〈A, B〉 → 〈〈A, B〉, 1〉; 〈〈A,∗ 〉, 1〉
Reduce1 〈〈A, B〉, c(A,B)

c(A) 〉

Method 3
Map1 〈A, Bi〉 → 〈A, 〈Bi : 1〉〉
Reduce1 〈A, 〈B1 : c(A,B1)

c(A) 〉, 〈B2 : c(A,B2)
c(A) 〉 · · · 〉

Table 1: Three methods for computing PMLE(B|A).
The first element in each tuple is a key and the second
element is the associated value produced by the mappers
and reducers.

3 Maximum Likelihood Estimates

The two classes of models under consideration are
parameterized with conditional probability distribu-
tions over discrete events, generally estimated ac-
cording to the maximum likelihood criterion:

PMLE(B|A) =
c(A, B)
c(A)

=
c(A, B)∑
B′ c(A, B′)

(1)

Since this calculation is fundamental to both ap-
proaches (they distinguish themselves only by where
the counts of the joint events come from—in the case
of the phrase model, they are observed directly, and
in the case of the word-alignment models they are
the number of expected events in a partially hidden
process given an existing model of that process), we
begin with an overview of how to compute condi-
tional probabilities in MapReduce.

We consider three possible solutions to this prob-
lem, shown in Table 1. Method 1 computes the count
for each pair 〈A, B〉, computes the marginal c(A),
and then groups all the values for a given A together,
such that the marginal is guaranteed to be first and
then the pair counts follow. This enables Reducer3
to only hold the marginal value in memory as it pro-
cesses the remaining values. Method 2 works simi-
larly, except that the original mapper emits two val-
ues for each pair 〈A, B〉 that is encountered: one that
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will be the marginal and one that contributes to the
pair count. The reducer groups all pairs together by
the A value, processes the marginal first, and, like
Method 1, must only keep this value in memory as
it processes the remaining pair counts. Method 2 re-
quires more data to be processed by the MapReduce
framework, but only requires a single sort operation
(i.e., fewer MapReduce iterations).

Method 3 works slightly differently: rather than
computing the pair counts independently of each
other, the counts of all the B events jointly occurring
with a particular A = a event are stored in an asso-
ciative data structure in memory in the reducer. The
marginal c(A) can be computed by summing over
all the values in the associative data structure and
then a second pass normalizes. This requires that
the conditional distribution P (B|A = a) not have
so many parameters that it cannot be represented
in memory. A potential advantage of this approach
is that the MapReduce framework can use a “com-
biner” to group many 〈A, B〉 pairs into a single value
before the key/value pair leaves for the reducer.4 If
the underlying distribution from which pairs 〈A, B〉
has certain characteristics, this can result in a signifi-
cant reduction in the number of keys that the mapper
emits (although the number of statistics will be iden-
tical). And since all keys must be sorted prior to the
reducer step beginning, reducing the number of keys
can have significant performance impact.

The graph in Figure 3 shows the performance
of the three problem decompositions on two model
types we are estimating, conditional phrase trans-
lation probabilities (1.5M sentences, max phrase
length=7), and conditional lexical translation prob-
abilities as found in a word alignment model (500k
sentences). In both cases, Method 3, which makes
use of more memory to store counts of all B events
associated with event A = a, completes at least 50%
more quickly. This efficiency is due to the Zipfian
distribution of both phrases and lexical items in our
corpora: a few frequent items account for a large
portion of the corpus. The memory requirements
were also observed to be quite reasonable for the

4Combiners operate like reducers, except they run directly
on the output of a mapper before the results leave memory.
They can be used when the reduction operation is associative
and commutative. For more information refer to Dean and Ghe-
mawat (2004).
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Figure 3: PMLE computation strategies.

Figure 4: A word-aligned sentence. Examples
of consistent phrase pairs include 〈vi, i saw〉,
〈la mesa pequeña, the small table〉, and
〈mesa pequeña, small table〉; but, note that, for
example, it is not possible to extract a consistent phrase
corresponding to the foreign string la mesa or the English
string the small.

models in question: representing P (B|A = a) in the
phrase model required at most 90k parameters, and
in the lexical model, 128k parameters (i.e., the size
of the vocabulary for language B). For the remainder
of the experiments reported, we confine ourselves to
the use of Method 3.

4 Phrase-Based Translation

In phrase-based translation, the translation process
is modeled by splitting the source sentence into
phrases (a contiguous string of words) and translat-
ing the phrases as a unit (Och et al., 1999; Koehn
et al., 2003). Phrases are extracted from a word-
aligned parallel sentence according to the strategy
proposed by Och et al. (1999), where every word in
a phrase is aligned only to other words in the phrase,
and not to any words outside the phrase bounds. Fig-
ure 4 shows an example aligned sentence and some
of the consistent subphrases that may be extracted.
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Figure 5: Phrase model extraction and scoring times at
various corpus sizes.

Constructing a model involves extracting all the
phrase pairs 〈e, f〉 and computing the conditional
phrase translation probabilities in both directions.5

With a minor adjustment to the techniques intro-
duced in Section 3, it is possible to estimate P (B|A)
and P (A|B) concurrently.

Figure 5 shows the time it takes to construct
a phrase-based translation model using the Moses
tool, running on a single core, as well as the time
it takes to build the same model using our MapRe-
duce implementation. For reference, on the same
graph we plot a hypothetical, optimally-parallelized
version of Moses, which would run in 1

38 of the time
required for the single-core version on our cluster.6

Although these represent completely different im-
plementations, this comparison offers a sense of
MapReduce’s benefits. The framework provides a
conceptually simple solution to the problem, while
providing an implementation that is both scalable
and fault tolerant—in fact, transparently so since
the runtime hides all these complexities from the re-
searcher. From the graph it is clear that the overhead
associated with the framework itself is quite low, es-
pecially for large quantities of data. We concede that
it may be possible for a custom solution (e.g., with
MPI) to achieve even faster running times, but we
argue that devoting resources to developing such a
solution would not be cost-effective.

Next, we explore a class of models where the stan-
5Following Och and Ney (2002), it is customary to combine

both these probabilities as feature values in a log-linear model.
6In our cluster, only 19 machines actually compute, and each

has two single-core processors.

dard tools work primarily in memory, but where the
computational complexity of the models is greater.

5 Word Alignment

Although word-based translation models have been
largely supplanted by models that make use of larger
translation units, the task of generating a word align-
ment, the mapping between the words in the source
and target sentences that are translationally equiva-
lent, remains crucial to nearly all approaches to sta-
tistical machine translation.

The IBM models, together with a Hidden Markov
Model (HMM), form a class of generative mod-
els that are based on a lexical translation model
P (fj |ei) where each word fj in the foreign sentence
fm
1 is generated by precisely one word ei in the sen-

tence el
1, independently of the other translation de-

cisions (Brown et al., 1993; Vogel et al., 1996; Och
and Ney, 2000). Given these assumptions, we let
the sentence translation probability be mediated by
a latent alignment variable (am

1 in the equations be-
low) that specifies the pairwise mapping between
words in the source and target languages. Assum-
ing a given sentence length m for fm

1 , the translation
probability is defined as follows:

P (fm
1 |el

1) =
∑
am
1

P (fm
1 , am

1 |el
1)

=
∑
am
1

P (am
1 |el

1, f
m
1 )

m∏
j=1

P (fj |eaj )

Once the model parameters have been estimated, the
single-best word alignment is computed according
to the following decision rule:

âm
1 = arg max

am
1

P (am
1 |el

1, f
m
1 )

m∏
j=1

P (fj |eaj )

In this section, we consider the MapReduce imple-
mentation of two specific alignment models:

1. IBM Model 1, where P (am
1 |el

1, f
m
1 ) is uniform

over all possible alignments.

2. The HMM alignment model where
P (am

1 |el
1, f

m
1 ) =

∏m
j=1 P (aj |aj−1).
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Estimating the parameters for these models is more
difficult (and more computationally expensive) than
with the models considered in the previous section:
rather than simply being able to count the word pairs
and alignment relationships and estimate the mod-
els directly, we must use an existing model to com-
pute the expected counts for all possible alignments,
and then use these counts to update the new model.7

This training strategy is referred to as expectation-
maximization (EM) and is guaranteed to always im-
prove the quality of the prior model at each iteration
(Brown et al., 1993; Dempster et al., 1977).

Although it is necessary to compute a sum over all
possible alignments, the independence assumptions
made in these models allow the total probability of
generating a particular observation to be efficiently
computed using dynamic programming.8 The HMM
alignment model uses the forward-backward algo-
rithm (Baum et al., 1970), which is also an in-
stance of EM. Even with dynamic programming,
this requires O(Slm) operations for Model 1, and
O(Slm2) for the HMM model, where m and l are
the average lengths of the foreign and English sen-
tences in the training corpus, and S is the number of
sentences. Figure 6 shows measurements of the av-
erage iteration run-time for Model 1 and the HMM
alignment model as implemented in Giza++ (Och
and Ney, 2003), a state-of-the-art C++ implemen-
tation of the IBM and HMM alignment models that
is widely used. Five iterations are generally neces-
sary to train the models, so the time to carry out full
training of the models is approximately five times the
per-iteration run-time.

5.1 EM with MapReduce

Expectation-maximization algorithms can be ex-
pressed quite naturally in the MapReduce frame-
work (Chu et al., 2006). In general, for discrete gen-
erative models, mappers iterate over the training in-
stances and compute the partial expected counts for
all the unobservable events in the model that should

7For the first iteration, when there is no prior model, a
heuristic, random, or uniform distribution may be chosen.

8For IBM Models 3-5, which are not our primary focus, dy-
namic programming is not possible, but the general strategy for
computing expected counts from a previous model and updat-
ing remains identical and therefore the techniques we suggest
in this section are applicable to those models as well.
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Figure 6: Per-iteration average run-times for Giza++ im-
plementations of Model 1 and HMM training on corpora
of various sizes.

be associated with the given training instance. Re-
ducers aggregate these partial counts to compute
the total expected joint counts. The updated model
is estimated using the maximum likelihood crite-
rion, which just involves computing the appropri-
ate marginal and dividing (as with the phrase-based
models), and the same techniques suggested in Sec-
tion 3 can be used with no modification for this
purpose. For word alignment models, Method 3
is possible since word pairs distribute according to
Zipf’s law (meaning there is ample opportunity for
the combiners to combine records), and the number
of parameters for P (e|fj = f) is at most the num-
ber of items in the vocabulary of E, which tends to
be on the order of hundreds of thousands of words,
even for large corpora.

Since the alignment models we are considering
are fundamentally based on a lexical translation
probability model, i.e., the conditional probability
distribution P (e|f), we describe in some detail how
EM updates the parameters for this model.9 Using
the model parameters from the previous iteration (or
starting from an arbitrary or heuristic set of param-
eters during the first iteration), an expected count is
computed for every l ×m pair 〈ei, fj〉 for each par-
allel sentence in the training corpus. Figure 7 illus-

9Although computation of expected count for a word pair
in a given training instance obviously depends on which model
is being used, the set of word pairs for which partial counts are
produced for each training instance, as well as the process of ag-
gregating the partial counts and updating the model parameters,
is identical across this entire class of models.
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the
blue
house

maison la bleue fleur

flower

la maison
the house

la maison bleue la fleur
the blue house the flower

(a)

(b)

Figure 7: Each cell in (a) contains the expected counts for
the word pair 〈ei, fj〉. In (b) the example training data is
marked to show which training instances contribute par-
tial counts for the pair 〈house, maison〉.
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Figure 8: Average per-iteration latency to train HMM
and Model 1 using the MapReduce EM trainer, compared
to an optimal parallelization of Giza++ across the same
number of processors.

trates the relationship between the individual train-
ing instances and the global expected counts for a
particular word pair. After collecting counts, the
conditional probability P (f |e) is computed by sum-
ming over all columns for each f and dividing. Note
that under this training regime, a non-zero probabil-
ity P (fj |ei) will be possible only if ei and fj co-
occur in at least one training instance.

5.2 Experimental Results

Figure 8 shows the timing results of the MapReduce
implementation of Model 1 and the HMM alignment
model. Similar to the phrase extraction experiments,
we show as reference the running time of a hy-
pothetical, optimally-parallelized version of Giza++
on our cluster (i.e., values in Figure 6 divided by
38). Whereas in the single-core implementation the

added complexity of the HMM model has a signif-
icant impact on the per-iteration running time, the
data exchange overhead dominates in the perfor-
mance of both models in a MapReduce environment,
making running time virtually indistinguishable. For
these experiments, after each EM iteration, the up-
dated model parameters (which are computed in a
distributed fashion) are compiled into a compressed
representation which is then distributed to all the
processors in the cluster at the beginning of the next
iteration. The time taken for this process is included
in the iteration latencies shown in the graph. In fu-
ture work, we plan to use a distributed model repre-
sentation to improve speed and scalability.

6 Related work

Expectation-maximization algorithms have been
previously deployed in the MapReduce framework
in the context of several different applications (Chu
et al., 2006; Das et al., 2007; Wolfe et al., 2007).
Wolfe et al. (2007) specifically looked at the perfor-
mance of Model 1 on MapReduce and discuss how
several different strategies can minimize the amount
of communication required but they ultimately ad-
vocate abandoning the MapReduce model. While
their techniques do lead to modest performance im-
provements, we question the cost-effectiveness of
the approach in general, since it sacrifices many of
the advantages provided by the MapReduce envi-
ronment. In our future work, we instead intend to
make use of an approach suggested by Das et al.
(2007), who show that a distributed database run-
ning in tandem with MapReduce can be used to
provide the parameters for very large mixture mod-
els efficiently. Moreover, since the database is dis-
tributed across the same nodes as the MapReduce
jobs, many of the same data locality benefits that
Wolfe et al. (2007) sought to capitalize on will be
available without abandoning the guarantees of the
MapReduce paradigm.

Although it does not use MapReduce, the MTTK
tool suite implements distributed Model 1, 2 and
HMM training using a “home-grown” paralleliza-
tion scheme (Deng and Byrne, 2006). However, the
tool relies on a cluster where all nodes have access to
the same shared networked file storage, a restriction
that MapReduce does not impose.
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There has been a fair amount of work inspired by
the problems of long latencies and excessive space
requirements in the construction of phrase-based
and hierarchical phrase-based translation models.
Several authors have advocated indexing the train-
ing data with a suffix array and computing the nec-
essary statistics during or immediately prior to de-
coding (Callison-Burch et al., 2005; Lopez, 2007).
Although this technique works quite well, the stan-
dard channel probability P (f |e) cannot be com-
puted, which is not a limitation of MapReduce.10

7 Conclusions

We have shown that an important class of model-
building algorithms in statistical machine transla-
tion can be straightforwardly recast into the MapRe-
duce framework, yielding a distributed solution
that is cost-effective, scalable, robust, and exact
(i.e., doesn’t resort to approximations). Alterna-
tive strategies for parallelizing these algorithms ei-
ther impose significant demands on the developer,
the hardware infrastructure, or both; or, they re-
quire making unwarranted independence assump-
tions, such as dividing the training data into chunks
and building separate models. We have further
shown that on a 20-machine cluster of commodity
hardware, the MapReduce implementations have ex-
cellent performance and scaling characteristics.

Why does this matter? Given the difficulty of im-
plementing model training algorithms (phrase-based
model estimation is difficult because of the size of
data involved, and word-based alignment models are
a challenge because of the computational complex-
ity associated with computing expected counts), a
handful of single-core tools have come to be widely
used. Unfortunately, they have failed to scale with
the amount of training data available. The long la-
tencies associated with these tools on large datasets
imply that any kind of experimentation that relies on
making changes to variables upstream of the word
alignment process (such as, for example, altering the
training data f → f ′, building a new model P (f ′|e),
and reevaluating) is severely limited by this state of
affairs. It is our hope that by reducing the cost of this

10It is an open question whether the channel probability
and inverse channel probabilities are both necessary. Lopez
(2008) presents results suggesting that P (f |e) is not necessary,
whereas Subotin (2008) finds the opposite.

these pieces of the translation pipeline, we will see a
greater diversity of experimental manipulations. To-
wards that end, we intend to release this code under
an open source license.

For our part, we plan to continue pushing the lim-
its of current word alignment models by moving to-
wards a distributed representation of the model pa-
rameters used in the expectation step of EM and
abandoning the compiled model representation. Fur-
thermore, initial experiments indicate that reorder-
ing the training data can lead to better data local-
ity which can further improve performance. This
will enable us to scale to larger corpora as well as
to explore different uses of translation models, such
as techniques for processing comparable corpora,
where a strict sentence alignment is not possible un-
der the limitations of current tools.

Finally, we note that the algorithms and tech-
niques we have described here can be readily ex-
tended to problems in other areas of NLP and be-
yond. HMMs, for example, are widely used in
ASR, named entity detection, and biological se-
quence analysis. In these areas, model estimation
can be a costly process, and therefore we believe
this work will be of interest for these applications
as well. It is our expectation that MapReduce will
also provide solutions that are fast, easy, and cheap.
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Abstract

This paper presents a technique for class-
dependent decoding for statistical machine 
translation (SMT). The approach differs from 
previous methods of class-dependent transla-
tion in that the class-dependent forms of all 
models are integrated directly into the decod-
ing process. We employ probabilistic mixture 
weights between models that can change dy-
namically on a segment-by-segment basis 
depending on the characteristics of the source 
segment. The effectiveness of this approach is 
demonstrated by evaluating its performance 
on travel conversation data. We used the ap-
proach to tackle the translation of questions 
and declarative sentences using class-
dependent models.  To achieve this, our system 
integrated two sets of models specifically built 
to deal with sentences that fall into one of two 
classes of dialog sentence: questions and dec-
larations, with a third set of models built to 
handle the general class. The technique was 
thoroughly evaluated on data from 17 lan-
guage pairs using 6 machine translation 
evaluation metrics. We found the results were 
corpus-dependent, but in most cases our sys-
tem was able to improve translation perform-
ance, and for some languages the improve-
ments were substantial.

1 Introduction

Topic-dependent  modeling has proven to be an 
effective way to improve quality the quality of 
models in speech recognition (Iyer and Osendorf, 
1994; Carter, 1994). Recently, experiments in the 
field of machine translation (Hasan and Ney, 2005; 
Yamamoto and Sumita, 2007; Finch et al. 2007, 
Foster and Kuhn, 2007) have shown that class-
specific models are also useful for translation.

In the method proposed by Yamamoto and Su-
mita (2007), topic dependency was implemented 
by partitioning the data into sets before the decod-
ing process commenced, and subsequently decod-
ing these sets independently using different models 
that were specific to the class predicted for the 
source sentence by a classifier that  was run over 
the source sentences in a pre-processing pass. Our 
approach is in many ways a generalization of this 
work. Our technique allows the use of multiple-
model sets within the decoding process itself. The 
contributions of each model set  can be controlled 
dynamically during the decoding through a set of 
interpolation weights. These weights can be 
changed on a sentence-by-sentence basis. The pre-
vious approach is, in essence, the case where the 
interpolation weights are either 1 (indicating that 
the source sentence is the same topic as the model) 
or 0 (the source sentence is a different  topic). One 
advantage of our proposed technique is that it is a 
soft approach. That is, the source sentence can be-
long to multiple classes to varying degrees. In this 
respect our approach is similar to that  of Foster and 
Kuhn (2007), however we used a probabilistic 
classifier to determine a vector of probabilities rep-
resenting class-membership, rather than distance-
based weights. These probabilities were used di-
rectly as the mixture weights for the respective 
models in an interpolated model-set. A second dif-
ference between our approach and that of Foster 
and Kuhn, is that  we include a general model built 
from all of the data along with the set  of class-
specific models.

Our approach differs from all previous ap-
proaches in the models that are class-dependent. 
Hasan and Ney (2005) used only a class-dependent 
language model. Both Yamamoto and Sumita 
(2007) and Foster and Kuhn (2007), extended this 
to include the translation model. In our approach 
we combine all of the models, including the distor-
tion and target length models, in the SMT system 
within  a single framework.

The contribution of this paper is two-fold. The 
first  is the proposal of a technique for combining 
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multiple SMT systems in a weighted manner to 
allow probabilistic soft  weighting between topic-
dependent models for all models in the system. 
The second is the application of this technique to 
improve the quality of dialog systems by building 
and combing class-based models for interrogative 
and declarative sentences.

For the purposes of this paper, we wish to make 
the distinction between interrogative sentences and 
those which are not. For the sake of simplicity of 
expression we will call those sentences which are 
interrogative, questions and those which are not, 
declarations for the remainder of this article. 

The techniques proposed here were evaluated on 
a variety of different languages. We enumerate 
them below as a key: Arabic (ar), Danish (da), 
German (de), English (en), Spanish (es), French 
(fr), Indonesian (Malay) (id), Italian (it), Japanese 
(ja), Korean (ko), Malaysian (Malay) (ms), Dutch 
(nl), Portugese (pt), Russian (ru), Thai (th), Viet-
namese (vi) and Chinese (zh).

2 System Overview

2.1 Experimental Data

To evaluate the proposed technique, we conducted 
experiments on a travel conversation corpus. The 
experimental corpus was the travel arrangement 

task of the BTEC corpus (Kikui et al., 2003) and 
used English as the target  and each of the other 
languages as source languages. The training, de-
velopment, and evaluation corpus statistics are 
shown in Table 1. The evaluation corpus had six-
teen reference translations per sentence. This train-
ing corpus was also used in the IWSLT06 Evalua-
tion Campaign on Spoken Language Translation 
(Paul 2006) J-E open track, and the evaluation cor-
pus was used as the IWSLT05 evaluation set. 

2.2 System Architecture

Figure 1 shows the overall structure of our system. 
We used punctuation (a sentence-final ‘?’ charac-
ter) on the target-side as the ground truth as to the 
class of the target sentence. Neither punctuation 
nor case information was used for any other pur-
pose in the experiments.  The data were partitioned 
into classes, and further sub-divided into training 
and development sets for each class. 1000 sen-
tences were set  aside as development data, and the 
remainder was used for training. Three complete 
SMT  systems were built: one for each class, and 
one on the data from both classes. A probabilistic 
classifier (described in the next section) was also 
trained from the full set of training data. 

The machine translation decoder used is able to 
linearly interpolate all of the models models from 

Figure 1. The architecture of the class-based SMT system used in our experiments
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all of the sub-systems according to a vector of in-
terpolation weights supplied for each source word 
sequence to be decoded. To do this, prior to the 
search, the decoder must  first merge the phrase-
tables from each sub-system. Every phrase from all 
of the phrase-tables is used during the decoding. 
Phrases that  occur in one sub-system’s table, but 
do not  occur in another sub-system’s table will be 
used, but will receive no support  (zero probability) 
from those sub-systems that did not acquire this 
phrase during training. The search process pro-
ceeds as in a typical multi-stack phrase-based de-
coder. The weight for the general model was set  by 
tuning the parameter on the general development 
set in order to maximize performance in terms of 
BLEU score. This weight determines the amount 
of probability mass to be assigned to the general 
model, and it  remains fixed during the decoding of 
all sentences. The remainder of the probability 
mass is divided among the class-specific models 
dynamically sentence-by-sentence at  run-time. The 
proportion that  is assigned to each class is simply 
the class membership probability of the source se-
quence assigned by the classifier.

3 Question Prediction 

3.1 Outline of the Problem

Given a source sentence of a particular class (inter-
rogative or declarative in our case), we wish to 
ensure that  the target  sentence generated is of an 
appropriate class. Note that this does not necessar-
ily mean that given a question in the source, a 
question should be generated in the target. How-
ever, it seems reasonable to assume that, intuitively 
at  least, one should be able to generate a target 
question from a source question, and a target decla-
ration from a source declaration.  This is reason-
able because the role of a machine translation en-

gine is not  to be able to generate every possible 
translation from the source, but to be able to gener-
ate one acceptable translation. This assumption 
leads us to two plausible ways to proceed.

1. To predict the class of the source sentence, and 
use this to constrain the decoding process used 
to generate the target

2. To predict the class of the target  

In our experiments, we chose the second 
method, as it  seemed the most correct, but  feel 
there is some merit in both strategies.

3.2 The Maximum Entropy Classifier

We used a Maximum Entropy (ME) classifier to 
determine which class to which the input source 
sentence belongs using a set  of lexical features. 
That is, we use the classifier to set  the mixture 
weights of the class-specific models. In recent 
years such classifiers have produced powerful 
models utilizing large numbers of lexical features 
in a variety of natural language processing tasks, 
for example Rosenfeld (1996).  An ME model is an 
exponential model with the following form:

where: 
t is the class being predicted; 
c is the context of t; 
γ is a normalization coefficient; 
K is the number of features in the model; 
αk is the weight of feature fk; 
fk are binary feature functions;

    p0 is the default model

p(t, c) = γ

K∏

k=0

α
fk(c,t)
k p0

Questions + Decls. Questions Declarations Test

Train Dev Train Dev Train Dev

Sentences 161317 1000 69684 1000 90633 1000 510

Words 1001671 6112 445676 6547 549375 6185 3169

Table 1. The corpus statistics of the target language corpus (en). The number of sentences is the same as 
these values for all source languaes. The number of words in the source language differs, and depends 
on the segmentation granularity.
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We used the set of all n-grams (n≤3) occurring 
in the source sentences as features to predict  the 
sentence’s class. Additionally we introduced be-
ginning of sentence tokens (<s>) and end of sen-
tence tokens into the word sequence to distinguish 
n-grams occurring at the start and end of sentences 
from those occurring within the sentence. This was 
based on the observation that “question words” or 
words that indicate that the sentence is a question 
will frequently be found either at  the start of the 
sentence (as in the wh- <what, where, when> 
words in English or the -kah words in Malay <a-
pakah, dimanakah, kapankah>), or at the end of the 
sentence (for example the Japanese “ka” or the 
Chinese “ma”). In fact, in earlier models we used 
features consisting of n-grams occurring only at 
the start  and end of the source sentence. These 
classifiers performed quite well (approximately 4% 
lower than the classifiers that used features from 
all of the n-grams in the source), but  an error 
analysis showed that  n-grams from the interior of 
the sentence were necessary to handle sentences 
such as “excuse me please where is ...”. A simple 
example sentence and the set of features generated 
from the sentence is shown in Figure 2.

We used the ME modeling toolkit of (Zhang, 
2004) to implement our ME models. The models 
were trained by using L-BFGS parameter estima-
tion, and a Gaussian prior was used for smoothing 
during training.

3.3 Forcing the target to conform

Before adopting the mixture-based approach set 
out in this paper, we first pursued an obvious and  
intuitively appealing way of using this classifier. 
We applied it as a filter to the output of the de-
coder, to force source sentences that the classifier 
predicts should generate questions in the target to 
actually generate questions in the target. This ap-
proach was unsuccessful due to a number of issues. 

We took the n-best  output  from the decoder and 
selected the highest translation hypothesis on the 
list that  had agreement  on class according to source 
and target  classifiers. The issues we encountered 
included, too much similarity in the n-best hy-
potheses, errors of the MT system were correlated 
with errors of the classifier, and the number of 
cases that were corrected by the system was small 
<2%. As a consequence, the method proposed in 
this paper was preferred.

4 Experiments

4.1 Experimental Conditions

Decoder
The decoder used to in the experiments, CleopA-
TRa is an in-house phrase-based statistical decoder 
that can operate on the same principles as the 
PHARAOH (Koehn, 2004) and MOSES (Koehn et 

Source
Language

English 
Punctuation

Own 
Punctuation

ar 98.0 N/A

da 97.3 98.0

de 98.1 98.6

en 98.9 98.9

es 96.3 96.7

fr 97.7 98.7

id 97.9 98.5

it 94.9 95.4

ja 94.1 N/A

ko 94.2 99.4

ms 98.1 99.0

nl 98.1 99.0

pt 96.2 96.0

ru 95.9 96.6

th 98.2 N/A

vi 97.7 98.0

zh 93.2 98.8

Table 2. The classifcation accuracy (%) of the 
classifier used to predict whether or not an input 
sentence either is or should give rise to a question in 
the target.

<s> where is the
<s> where is
<s> where is the is the station </s>

is the station </s>
the station </s>

Figure 2. The set of n-gram (n≤3) features extracted 
from the sentence <s> where is the station </s> for 
use as predicates in the ME model to predict target 
sentence class.
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al, 2007) decoders. The decoder was configured to 
produce near-identical output to MOSES for these 
experiments. The decoder was modified in order to 
handle multiple-sets of models, accept  weighted 
input, and to incorporate the dynamic interpolation 
process during the decoding. 

Practical Issues
Perhaps the largest concerns about the proposed 
approach come from the heavy resource require-
ments that could potentially occur when dealing 
with large numbers of models. However, one im-
portant characteristic of the decoder used in our 
experiments is its ability to leave its models on 
disk, loading only the parts of the models neces-

Source BLEU NIST WER PER GTM METEOR

ar 0.4457 
(0.00)

8.9386 
(0.00)

0.4458 
(0.00)

0.3742 
(0.00)

0.7469 
(0.00)

0.6766 
(0.00)

da 0.6640 
(0.64)

11.4500 
(1.64)

0.2560 
(0.08)

0.2174 
(2.42)

0.8338 
(0.68)

0.8154 
(1.23)

de
0.6642 
(0.79)

11.4107 
(0.44)

0.2606 
(2.18)

0.2105 
(0.14)

0.8348 
(-0.13)

0.8132 
(-0.07)

es 0.7345 
(0.00)

12.1384 
(0.00)

0.2117 
(0.00)

0.1668 
(0.00)

0.8519 
(0.00)

0.8541 
(0.00)

fr 0.6666 
(0.95)

11.7443 
(0.63)

0.2548 
(4.82)

0.2172 
(6.50)

0.8408 
(0.48)

0.8293 
(1.29)

id 0.5295 
(9.56)

10.3459 
(4.11)

0.3899 
(21.17)

0.3239 
(4.65)

0.7960 
(1.35)

0.7521 
(2.35)

it 0.6702 
(1.01)

11.5604 
(0.41)

0.2590 
(3.25)

0.2090 
(0.62)

0.8351 
(0.36)

0.8171 
(0.05)

ja 0.5971 
(3.47)

10.6346 
(2.56)

0.3779 
(5.53)

0.2842 
(2.80)

0.8125 
(0.74)

0.7669 
(0.67)

ko
0.5898 
(1.78)

10.2151 
(1.31)

0.3891 
(0.74)

0.3138 
(-0.10)

0.7880 
(0.36)

0.7397 
(0.35)

ms 0.5102 
(10.19)

9.9775 
(2.75)

0.4058 
(18.53)

0.3355 
(3.59)

0.7815 
(0.18)

0.7247 
(2.49)

nl 0.6906 
(2.55)

11.9092 
(1.47)

0.2415 
(3.21)

0.1872 
(1.73)

0.8548 
(0.39)

0.8399 
(0.36)

pt
0.6623 
(0.35)

11.6913 
(0.26)

0.2549 
(2.52)

0.2110 
(2.68)

0.8396 
(0.02)

0.8265 
(-0.07)

ru
0.5877 
(0.34)

10.1233 
(-1.10)

0.3447 
(1.99)

0.2928 
(1.71)

0.7900 
(0.15)

0.7537 
(-0.40)

th 0.4857 
(1.50)

9.5901 
(1.17)

0.4883 
(-0.23)

0.3579 
(2.03)

0.7608 
(0.45)

0.7104 
(1.23)

vi 0.5118 
(0.67)

9.8588 
(1.85)

0.4274 
(-0.05)

0.3301 
(0.12)

0.7806 
(1.05)

0.7254 
(0.43)

zh 0.5742 
(0.00)

10.1263 
(0.00)

0.3937 
(0.00)

0.3172 
(0.00)

0.7936 
(0.00)

0.7343 
(0.00)

Table 3. Performance results translating from a number of source languages into English. Figures in parentheses are 
the percentage improvement in the score relative to the original score. Bold-bordered cells indicate those conditions 
where performance degraded. White cells indicate the proposed system’s performance is significanly different from 
the baseline (using 2000-sample bootstrap resampling with a 95% confidence level). TER scores were not tested for 
significance due to technical difficulties. ar, es and zh were also omitted since the systems were identical.
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sary to decode the sentence in hand. This reduced 
the memory overhead considerably when loading 
multiple models, without noticeably affecting de-
coding time. Moreover, it is also possible to pre-
compute the interpolated probabilities for most of 
the models for each sentence before the search 
commences, reducing both search memory and 
processing time. 

Decoding Conditions
For tuning of the decoder's parameters, minimum 
error training (Och 2003) with respect  to the BLEU 
score using was conducted using the respective 
development  corpus. A 5-gram language model, 
built using the SRI language modeling toolkit 
(Stolcke, 1999) with Witten-Bell smoothing was 
used. The model included a length model, and also 
the simple distance-based distortion model used by 
the PHARAOH decoder (Koehn, 2004).

Source Baseline No Classifier Hard Proposed

ar 0.4457 (0.00) 0.4457 (0.00) 0.4457 (0.00) 0.4457

da 0.6598 (0.64) 0.6647 (-0.11) 0.6591 (0.74) 0.664

de 0.6590 (0.79) 0.6651 (-0.14) 0.6634 (0.12) 0.6642

es 0.7345 (0.00) 0.7345 (0.00) 0.7345 (0.00) 0.7345

fr 0.6603 (0.95) 0.6594 (1.09) 0.6605 (0.92) 0.6666

id 0.4833 (9.56) 0.5029 (5.29) 0.5276 (0.36) 0.5295

it 0.6635 (1.01) 0.6660 (0.63) 0.6644 (0.87) 0.6702

ja 0.5771 (3.47) 0.5796 (3.02) 0.5667 (5.36) 0.5971

ko 0.5795 (1.78) 0.5837 (1.05) 0.5922 (-0.41) 0.5898

ms 0.4630 (10.19) 0.5015 (1.73) 0.5057 (0.89) 0.5102

nl 0.6734 (2.55) 0.6902 (0.06) 0.6879 (0.39) 0.6906

pt 0.6600 (0.35) 0.6643 (-0.30) 0.6598 (0.38) 0.6623

ru 0.5857 (0.34) 0.5885 (-0.14) 0.5844 (0.56) 0.5877

th 0.4785 (1.50) 0.4815 (0.87) 0.4831 (0.54) 0.4857

vi 0.5084 (0.67) 0.5095 (0.45) 0.5041 (1.53) 0.5118

zh 0.5742 (0.00) 0.5742 (0.00) 0.5742 (0.00) 0.5742

Table 4. Performance results comaparing our proposes method with other techniques. The column labeled ‘Baseline’ 
is the same as in Table 3, for reference. The column lableled ‘No Classifier’, is the same system as our proposed 
method, except that the classifier was replaced with a default model that assigned a class membership probability of 
0.5 in every case. The column labeled ‘Hard’ corresponds to a system that used hard weights (either 1 or 0) for the 
class-dependent models. The column labeled ‘Proposed’ are the results from our proposed method. Figures in 
parentheses represent the percentage improvement of the proposed method’s score relative to the alternative method. 
Cells with bold borders indicate those conditions where performance was degraded.
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Tuning the interpolation weights
The interpolation weights were tuned by maximiz-
ing the BLEU score on the development set  over a 
set of weights ranging from 0 to 1 in increments of 
0.1. Figure 1 shows the behavior of two of our 
models with respect to their weight parameter. 

Evaluation schemes
To obtain a balanced view of the merits of our pro-
posed approach, in our experiments we used 6 
evaluation techniques to evaluate our systems. 
These were: BLEU (Papineni, 2001), NIST (Dod-
dington, 2002), WER (Word Error Rate), PER 
(Position-independent WER), GTM (General Text 
Matcher), and METEOR (Banerjee and Lavie, 
2005).

4.2 Classification Accuracy

The performance of the classifier (from 10-fold 
cross-validation on the training set) is shown in 
Table 2. We give classification accuracy figures for 
predicting both source (same language) and target 
(English) punctuation. Unsurprisingly, all systems 
were better at  predicting their own punctuation. 
The poorer scores in the table might reflect linguis-
tic characteristics (perhaps questions in the source 
language are often expressed as statements in the 
target), or characteristics of the corpus itself. For 
all languages the accuracy of the classifier seemed 
satisfactory, especially considering the possibility 
of inconsistencies in the corpus itself (and there-
fore our test data for this experiment).

4.3 Translation Quality

The performance of the SMT systems are shown in 
Table 3. It  is clear from the table that  for most  of 
the experimental conditions evaluated the system 
outperformed a baseline system that consisted of 
an SMT system trained on all of the data. For those 
metrics in which performance degraded, in all-but-
one the results were statistically insignificant, and 
in all cases most  of the other MT evaluation met-
rics showed an improvement. Some of the lan-
guage pairs showed striking improvements, in par-
ticular both of the Malay languages id and ms im-
proved by over 3.5 BLEU points each using our 
technique. Interestingly Dutch, a relative of Malay, 
also improved substantially. This evidence points 
to a linguistic explanation for the gains. Malay has 
very simple and regular question structure, the 
question words appear at the front of question sen-
tences (in the same way as the target  language) and 
do not take any other function in the language (un-
like the English “do” for example). Perhaps this 
simplicity of expression allowed our class-specific 
models to model the data well in spite of the re-
duced data caused by dividing the data. Another 
factor might be the performance of the classifier 
which was high for all these languages (around 
98%). Unfortunately, it is hard to know the reasons 
behind the variety of scores in the table. One large 
factor is likely to be differences in corpus quality, 
and also the relationship between the source and 
target  corpus. Some corpora are direct translations 
of each other, whereas others are translated 
through another language. Chinese was one such 
language, and this may explain why we were un-
able to improve on the baseline for this language 
even though we were very successful for both 
Japanese and Thai, which are relatives of Chinese.

4.4  Comparison to Previous Methods

We ran an experiment to compare our proposed 
method to an instance of our system that  used hard 
weights. The aim was to come as close as possible 
within our framework to the system proposed by 
Yamamoto and Sumita (2007). We used weights of 
1 and 0, instead of the classification probabilities 
to weight the class-specific models. To achieve 
this, we thresholded the probabilities from the clas-
sifier such that probabilities >0.5 gave a weight of 
1, otherwise a weight  of 0 was used. The perform-
ance of this system is shown in Table 4 under the 
column heading ‘Hard’. In all-but-one of the con-

Figure 3. Graph showing the BLEU score on the 
developmment set plotted against the general 
model’s interpolation weight (a weight of 0 
meaning no contribution from the general model) 
for two systems in our experiments.
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ditions this system was outperformed by or equal 
to the proposed approach. 

The column labeled “No Classifier” in Table 4 
illustrates the effectiveness of the classifier in our 
system. These results show the effect of using 
equal weights (0.5) to interpolate between the 
Question and Declaration models. This system, 
although not  as effective as the system with the 
classifier, gave a respectable performance.

5 Conclusion

In this paper we have presented a technique for 
combining all models from multiple SMT  engines 
into a single decoding process. This technique al-
lows for topic-dependent decoding with probabilis-
tic soft weighting between the component  models. 
We demonstrated the effectiveness of our approach 
on conversational data by building class-specific 
models for interrogative and declarative sentence 
classes. We carried out an extensive evaluation of 
the technique using a large number of language 
pairs and MT evaluation metrics. In most cases we 
were able to show significant improvements over a 
system without model interpolation, and for some 
language pairs the approach excelled. The best im-
provement of all the language pairs was for Malay-
sian (Malay)-English which outperformed the 
baseline system by 4.7 BLEU points (from 0.463 
to 0.510). In future research we would like to try 
the approach with larger sets of models, and also 
(possibly overlapping) subsets of the data produced 
using automatic clustering methods. 
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Abstract

Chinese word segmentation (CWS) is a
necessary step in Chinese-English statisti-
cal machine translation (SMT) and its per-
formance has an impact on the results of
SMT. However, there are many settings in-
volved in creating a CWS system such as
various specifications and CWS methods.
This paper investigates the effect of these
settings to SMT. We tested dictionary-
based and CRF-based approaches and
found there was no significant difference
between the two in the qualty of the result-
ing translations. We also found the corre-
lation between the CWS F-score and SMT
BLEU score was very weak. This paper
also proposes two methods of combining
advantages of different specifications: a
simple concatenation of training data and
a feature interpolation approach in which
the same types of features of translation
models from various CWS schemes are
linearly interpolated. We found these ap-
proaches were very effective in improving
quality of translations.

1 Introduction

Chinese word segmentation (CWS) is a necessary
step in Chinese-English statistical machine transla-
tion (SMT). The research on CWS independently
from SMT has been conducted for decades. As an
evidence, the CWS evaluation campaign, the Sighan

Bakeoff (Emerson, 2005),1, has been held four times
since 2004. However, works on relations between
CWS and SMT are scarce.

Generally, two factors need to be considered in
constructing a CWS system. The first one is the
specifications for CWS, i.e., the rules or guidelines
for word segmentation, and the second one is the
CWS methods. There are many CWS specifications
used by different organizations. Unfortunately, these
organizations do not seem to have any intention of
reaching a unified specification. More than five or
six specifications have been used in the four Sighan
Bakeoffs. There is also significant disagreement on
the specifications, although much of their contents is
the same. One of the aims of this work was therefore
to establish whether inconsistencies in specifications
significantly affect the quality of SMT.

The second factor is CWS methods. We grouped
all of the CWS methods into two classes: the class
without out-of-vocabulary (OOV) recognition and
the class with OOV recognition, represented by the
dictionary-based CWS and the CRF-based CWS, re-
spectively. Out-of-vocabulary recognition may have
two-sided effects on SMT performance. The CRF-
based CWS that supports OOV recognition produces
word segmentations with a higher F-score, but a
huge number of new words recognized correctly and
incorrectly that can incur data sparseness in training
the SMT models. On the other hand, the dictionary-
based approach that does not support OOV recogni-
tion produced a lower F-score, but with a relatively
weak data spareness problem. Which approach pro-

1A CWS competition organized by the ACL special interest
group on Chinese.
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Table 1: Examples of disagreement in segmentation guidelines

ChineseName EnglishName Time
AS DENGXIAOPING GEORGE BUSH 1997YEAR 7MONTH 1DAY

CITYU DENGXIAOPING GEORGEBUSH 1997 YEAR 7 MONTH 1 DAY
MSR DENGXIAOPING GEORGEBUSH 1997YEAR7MONTH1DAY
PKU DENG XIAOPING GEORGEBUSH 1997YEAR 7MONTH 1DAY

Table 2: A second example of disagreement in segmentation guidelines

Composite words Composite words
AS FUJITSUCOMPANY EUROZONE

CITYU FUJITSU COMPANY EUROZONE
MSR FUJITSUCOMPANY EURO ZONE
PKU FUJITSU COMPANY EUROZONE

duces a better SMT result is our research interest in
this work.

The performance of CWS is usually measured by
the F-score, while that of SMT is measured using
the BLEU score. Does a CWS with a higher F-
score produce a better translation? In this paper
we answer this question by comparing F-scores with
BLEU scores.

In this work, we also propose approaches to make
use of all the Sighan training data regardless of the
specifications. Two methods are proposed: (1) a
simple combination of all the training data, and (2)
implementing linear interpolation of multiple trans-
lation models. Linear interpolation is widely used in
language modeling for speech recognition. We in-
terpolated multiple translation models generated by
the CWS schemes and found our approaches were
very effective in improving the translations.

2 CWS specifications and corpora from
the second Sighan Bakeoff

A Chinese word is composed of one or more char-
acters. There are no spaces between the words.
Automatic word segmentation is required for ma-
chine translation. Usually a specification is needed
to carry out word segmentation. Unfortunately, there
are many different versions of specifications. Differ-
ent tasks give rise to different requirements and the
CWS specifications must be adjusted accordingly.
For example, shorter segmentation has been shown

to be better for speech recognition. A composite
word (numbers, dates, times, etc.) is split into char-
acters even if it is one word defined by linguists. In
contrast, longer segmentation is preferred for named
entity recognition consisting of longer character se-
quences, such as the name of people, places, and or-
ganizations.

This work investigated four well-known spec-
ifications created by four different organizations:
Academia Sinica (AS), City University of Hong
Kong (CITYU), Microsoft Research (Beijing)
(MSR), and Beijing University (PKU). These specs
were used in the second Sighan Bakeoff (Emerson,
2005). When we compared the four specifications
and the manual segmentations in the Sighan Bakeoff
training data, we found there were many inconsis-
tencies among the four specifications. Some exam-
ples are shown in Table 1 and 2. For instance, the
AS and PKU specifications are distinct in splitting
both Chinese and English names. We also found the
MSR specification generated more composite words
and grouped longer character sequences into a word.
Using this specification could generate tens of thou-
sands of new words, which can cause data sparse-
ness for SMT.

In addition to using the four specifications, we
also downloaded the training and test corpora of the
second Sighan Bakeoff. We used each of the train-
ing corpora provided to create a CWS scheme and
evaluated the performance of the schemes on our test
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data. This enabled us to examine the effect of CWS
specifications on SMT.

We used a Chinese word segmentation tool,
Achilles, to implement word segmentation. Part of
the work using this tool was described by (Zhang
et al., 2006). The approach was reported to achieve
the highest word segmentation accuracy using the
data from the second Sighan Bakeoff. Moreover,
this tool meets our need to test the effect of the two
kinds of CWS approaches for SMT. We can easily
train a dictionary-based and a CRF-based CWS by
using this tool. By turning the program’s option for
the CRF model on and off, we can use the Achilles
as a dictionary-based approach and as a CRF-based
CWS. In fact, the dictionary-based approach is the
default approach for Achilles.

3 Experiments

3.1 SMT resources
We followed the instructions for the 2005 NIST MT
evaluation campaign. Training the translation mod-
els for our SMT system used the available LDC par-
allel data except the UN corpus. To train the lan-
guage models for English, we used all the avail-
able English parallel data plus Xinhua News of the
LDC Gigaword English corpus, LDC2005T12. In
summary, we used 2.4 million parallel sentences for
training the translation model. We used the test data
defined in the NIST MT05 evaluation which is de-
fined in the LDC corpus as LDC2006E38. We used
the corpus, LDC2006E43, as the development data
for loglinear model optimization.

We used a phrase-based SMT system that is based
on a log-linear model incorporating multiple fea-
tures. The training and decoding system of our SMT
used the publicly available Pharaoh (Koehn et al.,
2003)2. GIZA++ was used for word alignment.

The Pharaoh decoder was used exclusively in
all the experiments. No additional features but
the defaults defined by Pharaoh were used. The
feature weights were optimized against the BLEU
scores (Och, 2003).

We chose automatic metrics to evaluate CWS and
SMT. We used the F-score for CWS and BLEU for
SMT. The BLEU is BLEU4, computed using the
NIST-provided “mt-eval” script.

2http://www.iccs.informatics.ed.ac.uk/˜pkoehn

3.2 Implementation of CWS schemes

To determine the effect of CWS on SMT, we cre-
ated 14 CWS schemes which are shown in Ta-
ble 3. Schemes 1 to 12 were implemented using
the in-house tool, Achilles, and schemes 13 and 14
using off-the-shelf tools. The CWS schemes are
named according to the specifications (AS, CITYU,
MSR, PKU), implementing methods (CRF-based or
dictionary-based), and lexicon sources (Sighan or
LDC corpus). The table also shows the results of
segmentation on the SMT training and test data, i.e.,
number of total tokens, unique words, and OOV
words.

We divided the schemes into two groups for sim-
plicity. The first group includes schemes 1 to 12,
which were trained using a specific Sighan corpus.
For example, schemes 1 to 3 were trained using the
AS corpus, schemes 4 to 6 using the CITYU cor-
pus, and so on. The meaning of the name of the
CWS scheme can be derived from the table – the
name is defined by specifications, methods and lexi-
con sources. For example, the CRF-AS scheme per-
forms CRF-based segmentation; and its lexicon is
from the AS corpus provided by the Sighan. The
CRF-AS segmenter can be easily trained, as de-
scribed by Achilles.

The second group contains two schemes 13 and
14. The ICTCLAS is a HHMM-based hierarchical
HMM segmenter (Zhang et al., 2003) that uses the
specifications of PKU. This segmenter incorporates
parts-of-speech information in the probability mod-
els and generates multiple HMM models for solving
segmentation ambiguities. The MSRSEG was de-
veloped by Gao et al. (Gao et al., 2004). This seg-
menter is based on the MSR specifications. It uses a
log-linear model that integrates multiple features.

The segmenters of the first group, dict-AS
and dict-LDC-AS, are two dictionary-based CWS
schemes. They differ in lexicon size and lexicon
extracting source. The former used a lexicon ex-
tracted directly from the Sighan AS training data
while the latter used a lexicon from LDC parallel
corpora. It took some efforts to get the lexicon. First,
we used the CRF-AS to segment the LDC corpora.
We extracted a unique word list from the segmented
data and sorted it in decreasing order according to
word frequency. Because OOV was recognized by
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Table 3: Analysis of results of segmentation on LDC training and test data for all CWS schemes

No. CWS schemes Specifications Methods Lexicon Tokens Unique words OOVs
1 CRF-AS AS CRF Sighan 47,934,088 413,588 1,193
2 dict-AS AS Dict Sighan 51,664,675 89,346 237
3 dict-LDC-AS AS Dict LDC 48,665,364 102,919 273
4 CRF-CITYU CITYU CRF Sighan 47,963,541 426,273 1,155
5 dict-CITYU CITYU Dict Sighan 51,251,729 56,996 362
6 dict-LDC-CITYU CITYU Dict LDC 48,787,154 102,754 217
7 CRF-MSR MSR CRF Sighan 46,483,923 523,788 1,297
8 dict-MSR MSR Dict Sighan 51,302,509 60,247 248
9 dict-LDC-MSR MSR Dict LDC 47,469,271 102,390 217
10 CRF-PKU PKU CRF Sighan 48,022,697 440,114 1,136
11 dict-PKU PKU Dict Sighan 52,721,809 47,176 211
12 dict-LDC-PKU PKU Dict LDC 48,721,795 102,213 256
13 ICTCLAS PKU HHMM - 50,751,402 162,222 835
14 MSRSEG MSR - - 　48,734,113 274,411 1,443

the CRF-AS, a huge word list was generated(see Ta-
ble 3). We chose the most frequent 100,000 words
as the dictionary for the dict-LDC-AS 3. The LM for
the dict-AS was trained using the AS corpus while
the LM for the dict-LDC-AS was trained using the
segmented SMT training corpus.

Therefore, the dict-LDC-AS used a larger lexicon
than the dict-AS. This lexicon contained the most
frequent OOV words recognized by the CRF-AS.
Our aim was to investigate whether the dict-LDC-
AS, whose lexicon consisted of the lexicon of dict-
AS and new words recognized by CRF-AS, could
improve SMT.

As shown in Table 3, using CRF-AS generated a
huge number of unique words for the training data
and OOV words for the test data. We found that
the CRF-AS generated three times more OOVs for
the test data than the dictionary-based CWS,dict-AS
(see OOVs in Table 3).

Other schemes in the first group were imple-
mented similarly to the “AS”.

Table 3 lists the segmentation statistics for the
training and test data of all the tested CWS schemes,
where “Tokens” indicates the total number of words
in the training data. “Unique words” and “OOVs”

3Only those words that appeared at least five times in the
lexicon were considered.

Table 4: BLEU scores for CWS schemes

CWS AS CITYU MSR PKU
CRF 23.70 23.55 22.50 23.61
dict 23.46 23.72 23.33 23.61
dict-LDC 23.52 23.36 23.16 23.74
ICTCLAS - - - 24.12
MSRSEG - - 19.72 -
BEST 23.70 23.72 23.33 23.74 (24.12)

mean the lexicon size of the segmented training data
and the unknown words in the test data, respectively.

3.3 Effect of CWS specifications on SMT

Our first concern was the effect of CWS specifica-
tions on SMT. The results in Table 4 show the rela-
tionships that were found. The last row gives the
best BLEU scores obtained for each of the CWS
specifications. The scores for AS, CITYU, MSR and
PKU were 23.70 (CRF-AS), 23.72 (dict-CITYU),
23.33 (dict-MSR) and 23.74 (dict-PKU-LDC), re-
spectively. We found there were no observable dif-
ferences between AS, CITYU, and PKU. However,
the specification that produced the worst transla-
tions was the MSR. The MSR specification appears
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to have been designed for recognizing named enti-
ties (NE) (See the examples of segmentation in Ta-
ble 1). Many NEs are regarded as words by MSR,
while they are more appropriately split into sepa-
rate words by other specifications. For example, the
long word, “1997YEAR7MONTH1DAY” (“July 1,
1997”). As a result, the CRF-MSR generated 20%
more words in the vocabulary than the other CWS
schemes in segmenting the SMT training data. The
larger vocabulary can trigger data sparseness prob-
lems and result in SMT degradation. The segmenter,
MSRSEG, produced an even lower BLEU score
(19.72) than the Achilles.

The results were verified by significance
test (Zhang et al., 2004). We found the systems
with the BLEU scores higher than 23.70 were
significantly better than those lower than 23.70.

3.4 Correlation between BLEU score and
F-score

The values of the F-scores and BLEU scores are
listed in parallel in Table 5. We tied the F-scores
and specifications together because comparing the
value of the F-score across specs is meaningless. We
separated the F-score and BLEU score for different
corpus. The F-score was calculated using the Sighan
test data. The CRF-based approach usually gives a
higher F-score, but its corresponding BLEU scores
were not always higher. The F-score and BLEU
score correlated well for ICTCLAS and CRF-AS
but less well for CRF-CITYU, CRF-PKU and CRF-
MSR. Obviously, there is no strong correlation be-
tween the F-score and BLEU score.

4 Effect of combining multiple CWS
schemes

We used the Sighan Bakeoff corpora of different
CWS specifications separately in the previous ex-
periments. Here, we propose two approaches to us-
ing all the resources combined. The first approach
is to concatenate all the training data of the Sighan
Bakeoff, regardless of the specifications and train-
ing a new CWS for segmenting SMT training data.
The second approach involves linear integration of
translation models. We found that both approaches
produced an improvement in translation quality.

4.1 Effect of combining training data from
multiple CWS specifications

The CWS specifications are very different and the
corresponding Sighan training data are segmented
in different ways. We used these data separately
in the previous work as if they were incompatible.
However, creating data manually is laborious and
costly. It would therefore be a significant advan-
tage if all the data could be used, regardless of the
different specifications. We therefore created a new
CWS scheme, called “dict-hybrid”. This CWS was
trained by concatenating all the Sighan Bakeoff cor-
pora regardless of the different specifications. The
“dict-hybrid” was trained using Achilles. It uses a
dictionary-based approach, and its lexicon and lan-
guage model were obtained as follows.

First, we created a hybrid corpus by combining
all the Sighan training corpora: AS, CITYU, MSR,
PKU. The hybrid corpus was used to train a CRF-
based CWS. This CWS was then used to segment
the SMT training corpus and then we extracted a
lexicon of 100,000 from the top frequent words of
the segmented SMT corpus. This lexicon was used
as the lexicon of the “dict-hybrid.” The LM of “dict-
hybrid” was also trained on the segmented corpus.
Note a lexicon and a LM are the only needed re-
sources for building a dictionary-based CWS, like
the “dict-hybrid.” (Zhang et al., 2006)

We used the “dict-hybrid” to segment the SMT
training corpus and test data. This segmentation
generated 49,546,231 tokens, 112,072 unique words
for the training data and 693 OOVs for the test data.

The segmentation data were used for training a
new SMT model. We tested the model using the
same approach and found the BLEU score obtained
by this CWS scheme was 23.91. This score was
better than those in Table 4 obtained by any of the
Achilles CWS schemes except ICTCLAS. There-
fore, the CWS scheme “dict-hybrid” produced better
translations than other schemes implemented using
Achilles, indicating that using multiple CWS cor-
pora can improve SMT even if their specifications
are different.

Significance testing also showed that the results
for ICTCLAS and “dict-hybrid” were not signifi-
cantly different. The results of “dict-hybrid” are sig-
nificantly better than those in the Table 4 which have
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Table 5: Correlation between F-score and BLEU

PKU MSR
F-score BLEU F-score BLEU

CRF 0.939 23.61 CRF 0.954 22.50
dict 0.930 23.61 dict 0.947 23.22

dict-LDC 0.931 23.74 dict-LDC 0.928 23.16
ICTCLAS 0.948 24.12 MSRSEG 0.969 19.72

CITYU AS
F-score BLEU F-score BLEU

CRF 0.920 23.55 CRF 0.922 23.70
dict 0.873 23.72 dict 0.896 23.46

dict-LDC 0.886 23.36 dict-LDC 0.878 23.52

a BLEU score lower than 23.70.

4.2 Effect of feature interpolation of
translation models

We investigated the effect of linearly integrating
multiple features of the same type. We generated
multiple translation models by using different word
segmenters. Each translation model corresponded to
a word segmenter. The same type of features as in
the log-linear model were added linearly. For exam-
ple, the phrase translation model p(e| f ) can be lin-
early interpolated as, p(e| f ) =

∑S
i=1 αi pi(e| f ) where

pi(e| f ) is the phrase translation model correspond-
ing to the i-th CWSs. αi is the weight, and S is the
total number of models.

∑S
i=1 αi = 1.

αs can be obtained by maximizing the likelihood
or BLEU scores of the development data. Optimiz-
ing the α has been described elsewhere (Foster and
Kuhn, 2007). p(e| f ) is the phrase translation model
generated.

In addition to the phrase translation model, we
used the same approach to integrate three other
features: phrase inverse probability p( f |e), lexical
probability lex(e| f , a), and lexical inverse probabil-
ity lex( f |e, a).

We integrated the CWS schemes ranked in the
top five in Table 4: ICTCLAS, dict-hybrid, dict-
LDC-PKU, dict-CITYU, and CRF-AS. We labeled
the five schemes A, B, C, D, and E, respectively,
as shown in Table 6. The first line of Table 6 rep-
resents the test data segmented by the five CWS
schemes. “tst-A” means the test data was segmented

by ICTCLAS. “tst-B” means the test data segmented
by “dict-hybrid”, and so on. The second line gives
baseline results showing the original results with-
out the use of feature integration. For different test
data, the baseline is different. The baseline of ICT-
CLAS was tested on “tst-A” only. The baseline of
“dict-hybrid” was tested on “tst-B” only. From the
third line we gradually added a translation model
to the models used in the baseline. For example,
“A+B” integrates models made using ICTCLAS and
“dict-hybrid.” Each integration models were tested
only on the test data participated in the integration.
Hence, some slots in Table 6 are blank.

We did not carry out parameter optimization with
regards to the αs. Instead, we used equal αs for all
the features. For example, all αs equal 0.5 for A+B,
and 0.25 for A+B+C+D. Each cell in Table 6 indi-
cates the BLEU score of the integration in relation
to the test data. We found our approach improved
the baseline results significantly. The more models
integrated, the better the results. The improvement
was positive for all of the test data. With regards to
the integration, if a phrase pair exists in one model
only, we suppose the values of probabilities are zero
in other models.

To better understand the effects of feature inter-
polation, we blended the features of the translation
models, as shown in Table 7, by simply combining
the phrase pairs without probability interpolation.
When we merged two models, we defined one model
as the master model and the other as the supple-
mentary model. Only phrase pairs that were in the
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supplementary models but not in the master model
were appended to the master model. Their feature
probabilities were not changed. Hence, the com-
bined model was a blend of phrase pairs from the
master model and supplementary model. There was
no probability integration, that was significantly dif-
ferent from the feature interpolation approach. For
each set of test data in Table 7, the master model
was the model using the same CWS as the test data.
While there was one row for each type of combina-
tion, the cells in the row contained different models.
For example, “A+B” for test data “A” uses “A” as the
master model and “B” as the supplementary model,
while the opposite holds for test data “B”.

Comparing Table 6 and 7 showed that feature
interpolation outperformed feature blending. Fea-
ture interpolation yielded surprisingly good results.
The performance consistently improved when more
models were integrated, but this was not the case
for feature blending. This shows that probability
integration is very effective. Increasing the size of
phrase pairs, as feature blending does, is not as ef-
fective.

We used equal values for the αs. Optimal values
may be obtained using the optimization approach
of maximizing BLEU or the likelihood of develop-
ment data as has been reported previously (Foster
and Kuhn, 2007). However, optimization is compu-
tationally expensive and the effect was not satisfac-
tory. Therefore, we decided not optimizing the αs in
this work.

5 Related work and Discussions

CWS has been the subject of intensive research
in recent years, as is evident from the last
four international evaluations, the Sighan Bake-
offs, and many approaches have been proposed
over the past decade. Segmentation performance
has been improved significantly, from the earli-
est maximal match (dictionary-based) approaches to
CRF (Peng and McCallum, 2004) approach. We
used dictionary-based and CRF-based CWS ap-
proaches to demonstrate the effect of CWS on SMT,
both without and with OOV recognition.

SMT is a very complicated system to study. Its
response to CWS schemes is intractable and it is
very hard to use one or two measures to describe

the relationship between CWS and SMT, in a similar
way to describing the relationship between the align-
ment error rate (AER) and SMT (Fraser and Marcu,
2007). The CWS and SMT are related by a series of
factors such as the specifications, OOVs, lexicons,
and F-scores. None of these factors can be directly
related to the SMT. While we have completed many
experiments, based on changing the CWS specifica-
tions and methods used, to determine the relation-
ship between CWS and SMT, we have not estab-
lished any overwhelming rules. However, we be-
lieve the following guidelines are appropriate in con-
sidering a CWS system for SMT. Firstly, the F-score
is not a reliable guide to SMT quality. A very high
F-score may produce the lowest quality translations,
as was found for the MSRSEG. Secondly, it is better
to design a specification with smaller word units to
reduce data sparseness. Specifications like those for
MSR will produce an inferior translation. Thirdly,
do not use a huge lexicon for word segmentation.
A huge lexicon will result in data sparseness and
segmentation complexity. And lastly, using multi-
ple word segmentation results and approaches does
work. We used two approaches that combined mul-
tiple word segmentation - dict-hybrid and feature in-
tegration - and both improved the translations signif-
icantly.

The BLEU scores in our experiments were rela-
tively low in comparison with current state-of-the art
results. However, our system was very similar to the
system (Koehn et al., 2005) that gave a BLEU score
of 24.3, comparable to ours. The BLEU score can
be raised if we do post-editing, use more data for
language modeling and other methods.

6 Conclusions

We investigated the effect of CWS on SMT from
two points of view. Firstly, we analyzed multiple
CWS specifications and built a CWS for each one to
examine how they affected translations. Secondly,
we investigated the advantages and disadvantages of
various CWS approaches, both dictionary-based and
CRF-based, and built CWSs using these approaches
to examine their effect on translations.

We proposed a new approach to linear interpo-
lation of translation features. This approach pro-
duced a significant improvement in translation and
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Table 6: Feature interpolation of translation models: A=ICTCLAS, B=dict-hybrid, C=dict-PKU-LDC, D=dict-CITYU, E=CRF-AS
Model tst-A tst-B tst-C tst-D tst-E

Baseline 24.12 23.91 23.74 23.72 23.70
A+B 24.25 24.20

A+B+C 24.49 24.31 23.84
A+B+C+D 24.60 24.43 24.05 24.27

A+B+C+D+E 24.61 24.55 24.16 24.39 24.17

Table 7: Feature blending of translation models

Model tst-A tst-B tst-C tst-D tst-E
Baseline 24.12 23.91 23.74 23.72 23.70

A+B 24.20 24.24
A+B+C 24.27 24.14 23.69

A+B+C+D 23.92 24.29 23.61 24.00
A+B+C+D+E 23.86 24.31 23.69 24.05 23.76

achieved the best BLEU score of all the CWS
schemes.

We have published a much more detailed pa-
per (Zhang et al., 2008) to describe the relations be-
tween CWS and SMT.
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Abstract

Previous work has shown that Chinese word seg-
mentation is useful for machine translation to En-
glish, yet the way different segmentation strategies
affect MT is still poorly understood. In this pa-
per, we demonstrate that optimizing segmentation
for an existing segmentation standard does not al-
ways yield better MT performance. We find that
other factors such as segmentation consistency and
granularity of Chinese “words” can be more impor-
tant for machine translation. Based on these find-
ings, we implement methods inside a conditional
random field segmenter that directly optimize seg-
mentation granularity with respect to the MT task,
providing an improvement of 0.73 BLEU. We also
show that improving segmentation consistency us-
ing external lexicon and proper noun features yields
a 0.32 BLEU increase.

1 Introduction

Word segmentation is considered an important first
step for Chinese natural language processing tasks,
because Chinese words can be composed of multi-
ple characters but with no space appearing between
words. Almost all tasks could be expected to ben-
efit by treating the character sequence “Us” to-
gether, with the meaning smallpox, rather than deal-
ing with the individual characters “U” (sky) and
“s” (flower). Without a standardized notion of a
word, traditionally, the task of Chinese word seg-
mentation starts from designing a segmentation stan-
dard based on linguistic and task intuitions, and then
aiming to building segmenters that output words that
conform to the standard. One widely used standard
is the Penn Chinese Treebank (CTB) Segmentation
Standard (Xue et al., 2005).

It has been recognized that different NLP ap-
plications have different needs for segmentation.

Chinese information retrieval (IR) systems benefit
from a segmentation that breaks compound words
into shorter “words” (Peng et al., 2002), parallel-
ing the IR gains from compound splitting in lan-
guages like German (Hollink et al., 2004), whereas
automatic speech recognition (ASR) systems prefer
having longer words in the speech lexicon (Gao et
al., 2005). However, despite a decade of very in-
tense work on Chinese to English machine transla-
tion (MT), the way in which Chinese word segmen-
tation affects MT performance is very poorly under-
stood. With current statistical phrase-based MT sys-
tems, one might hypothesize that segmenting into
small chunks, including perhaps even working with
individual characters would be optimal. This is be-
cause the role of a phrase table is to build domain
and application appropriate larger chunks that are
semantically coherent in the translation process. For
example, even if the word for smallpox is treated as
two one-character words, they can still appear in a
phrase like “U s→smallpox”, so that smallpox
will still be a candidate translation when the system
translates “U” “s”. Nevertheless, Xu et al. (2004)
show that an MT system with a word segmenter out-
performs a system working with individual charac-
ters in an alignment template approach. On differ-
ent language pairs, (Koehn and Knight, 2003) and
(Habash and Sadat, 2006) showed that data-driven
methods for splitting and preprocessing can improve
Arabic-English and German-English MT.

Beyond this, there has been no finer-grained anal-
ysis of what style and size of word segmentation is
optimal for MT. Moreover, most discussion of seg-
mentation for other tasks relates to the size units to
identify in the segmentation standard: whether to
join or split noun compounds, for instance. People
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generally assume that improvements in a system’s
word segmentation accuracy will be monotonically
reflected in overall system performance. This is the
assumption that justifies the concerted recent work
on the independent task of Chinese word segmenta-
tion evaluation at SIGHAN and other venues. How-
ever, we show that this assumption is false: aspects
of segmenters other than error rate are more criti-
cal to their performance when embedded in an MT
system. Unless these issues are attended to, sim-
ple baseline segmenters can be more effective inside
an MT system than more complex machine learning
based models, with much lower word segmentation
error rate.

In this paper, we show that even having a ba-
sic word segmenter helps MT performance, and we
analyze why building an MT system over individ-
ual characters doesn’t function as well. Based on
an analysis of baseline MT results, we pin down
four issues of word segmentation that can be im-
proved to get better MT performance. (i) While a
feature-based segmenter, like a support vector ma-
chine or conditional random field (CRF) model, may
have very good aggregate performance, inconsistent
context-specific segmentation decisions can be quite
harmful to MT system performance. (ii) A perceived
strength of feature-based systems is that they can
generate out-of-vocabulary (OOV) words, but these
can hurt MT performance, when they could have
been split into subparts from which the meaning of
the whole can be roughly compositionally derived.
(iii) Conversely, splitting OOV words into non-
compositional subparts can be very harmful to an
MT system: it is better to produce such OOV items
than to split them into unrelated character sequences
that are known to the system. One big source of such
OOV words is named entities. (iv) Since the opti-
mal granularity of words for phrase-based MT is un-
known, we can benefit from a model which provides
a knob for adjusting average word size.

We build several different models to address these
issues and to improve segmentation for the benefit of
MT. First, we emphasize lexicon-based features in
a feature-based sequence classifier to deal with seg-
mentation inconsistency and over-generating OOV
words. Having lexicon-based features reduced the
MT training lexicon by 29.5%, reduced the MT test
data OOV rate by 34.1%, and led to a 0.38 BLEU

point gain on the test data (MT05). Second, we ex-
tend the CRF label set of our CRF segmenter to iden-
tify proper nouns. This gives 3.3% relative improve-
ment on the OOV recall rate, and a 0.32 improve-
ment in BLEU. Finally, we tune the CRF model to
generate shorter or longer words to directly optimize
the performance of MT. For MT, we found that it
is preferred to have words slightly shorter than the
CTB standard.

The paper is organized as follows: we describe
the experimental settings for the segmentation task
and the task in Section 2. In Section 3.1 we demon-
strate that it is helpful to have word segmenters for
MT, but that segmentation performance does not di-
rectly correlate with MT performance. We analyze
what characteristics of word segmenters most affect
MT performance in Section 3.2. In Section 4 and
5 we describe how we tune a CRF model to fit the
“word” granularity and also how we incorporate ex-
ternal lexicon and information about named entities
for better MT performance.

2 Experimental Setting

2.1 Chinese Word Segmentation

For directly evaluating segmentation performance,
we train each segmenter with the SIGHAN Bake-
off 2006 training data (the UPUC data set) and then
evaluate on the test data. The training data contains
509K words, and the test data has 155K words. The
percentage of words in the test data that are unseen
in the training data is 8.8%. Detail of the Bakeoff
data sets is in (Levow, 2006). To understand how
each segmenter learns about OOV words, we will
report the F measure, the in-vocabulary (IV) recall
rate as well as OOV recall rate of each segmenter.

2.2 Phrase-based Chinese-to-English MT

The MT system used in this paper is Moses, a state-
of-the-art phrase-based system (Koehn et al., 2003).
We build phrase translations by first acquiring bidi-
rectional GIZA++ (Och and Ney, 2003) alignments,
and using Moses’ grow-diag alignment symmetriza-
tion heuristic.1 We set the maximum phrase length
to a large value (10), because some segmenters
described later in this paper will result in shorter

1In our experiments, this heuristic consistently performed
better than the default, grow-diag-final.
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words, therefore it is more comparable if we in-
crease the maximum phrase length. During decod-
ing, we incorporate the standard eight feature func-
tions of Moses as well as the lexicalized reordering
model. We tuned the parameters of these features
with Minimum Error Rate Training (MERT) (Och,
2003) on the NIST MT03 Evaluation data set (919
sentences), and then test the MT performance on
NIST MT03 and MT05 Evaluation data (878 and
1082 sentences, respectively). We report the MT
performance using the original BLEU metric (Pap-
ineni et al., 2001). All BLEU scores in this paper are
uncased.

The MT training data was subsampled from
GALE Year 2 training data using a collection
of character 5-grams and smaller n-grams drawn
from all segmentations of the test data. Since
the MT training data is subsampled with charac-
ter n-grams, it is not biased towards any particular
word segmentation. The MT training data contains
1,140,693 sentence pairs; on the Chinese side there
are 60,573,223 non-whitespace characters, and the
English sentences have 40,629,997 words.

Our main source for training our five-gram lan-
guage model was the English Gigaword corpus, and
we also included close to one million English sen-
tences taken from LDC parallel texts: GALE Year 1
training data (excluding FOUO data), Sinorama,
AsiaNet, and Hong Kong news. We restricted the
Gigaword corpus to a subsample of 25 million sen-
tences, because of memory constraints.

3 Understanding Chinese Word
Segmentation for Phrase-based MT

In this section, we experiment with three types
of segmenters – character-based, lexicon-based and
feature-based – to explore what kind of characteris-
tics are useful for segmentation for MT.

3.1 Character-based, Lexicon-based and
Feature-based Segmenters

The training data for the segmenter is two orders of
magnitude smaller than for the MT system, it is not
terribly well matched to it in terms of genre and
variety, and the information an MT system learns
about alignment of Chinese to English might be the
basis for a task appropriate segmentation style for
Chinese-English MT. A phrase-based MT system

Segmentation Performance
Segmenter F measure OOV Recall IV Recall
CharBased 0.334 0.012 0.485
MaxMatch 0.828 0.012 0.951

MT Performance
Segmenter MT03 (dev) MT05 (test)
CharBased 30.81 29.36
MaxMatch 31.95 30.73

Table 1: CharBased vs. MaxMatch

like Moses can extract “phrases” (sequences of to-
kens) from a word alignment and the system can
construct the words that are useful. These observa-
tions suggest the first hypothesis.

Hypothesis 1. A phrase table should capture word
segmentation. Character-based segmentation for
MT should not underperform a lexicon-based seg-
mentation, and might outperform it.

Observation In the experiments we conducted,
we found that the phrase table cannot capture every-
thing a Chinese word segmenter can do, and there-
fore having word segmentation helps phrase-based
MT systems. 2

To show that having word segmentation helps
MT, we compare a lexicon-based maximum-
matching segmenter with character-based segmen-
tation (treating each Chinese character as a word).
The lexicon-based segmenter finds words by greed-
ily matching the longest words in the lexicon in a
left-to-right fashion. We will later refer to this seg-
menter as MaxMatch. The MaxMatch segmenter is a
simple and common baseline for the Chinese word
segmentation task.

The segmentation performance of MaxMatch is
not very satisfying because it cannot generalize to
capture words it has never seen before. How-
ever, having a basic segmenter like MaxMatch still
gives the phrase-based MT system a win over the
character-based segmentation (treating each Chinese
character as a word). We will refer to the character-
based segmentation as CharBased.

In Table 1, we can see that on the Chinese word
segmentation task, having MaxMatch is obviously
better than not trying to identify Chinese words at
all (CharBased). As for MT performance, in Ta-
ble 1 we see that having a segmenter, even as sim-

2Different phrase extraction heuristics might affect the re-
sults. In our experiments, grow-diag outperforms both one-to-
many and many-to-one for both MaxMatch and CharBased. We
report the results only on grow-diag.
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ple as MaxMatch, can help phrase-based MT system
by about 1.37 BLEU points on all 1082 sentences
of the test data (MT05). Also, we tested the per-
formance on 828 sentences of MT05 where all el-
ements are in vocabulary3 for both MaxMatch and
CharBased. MaxMatch achieved 32.09 BLEU and
CharBased achieved 30.28 BLEU, which shows that
on the sentences where all elements are in vocabu-
lary, there MaxMatch is still significantly better than
CharBased. Therefore, Hypothesis 1 is refuted.
Analysis We hypothesized in Hypothesis 1 that
the phrase table in a phrase-based MT system should
be able to capture the meaning by building “phrases”
on top of character sequences. Based on the experi-
mental result in Table 1, we see that using character-
based segmentation (CharBased) actually performs
reasonably well, which indicates that the phrase ta-
ble does capture the meaning of character sequences
to a certain extent. However, the results also show
that there is still some benefit in having word seg-
mentation for MT. We analyzed the decoded out-
put of both systems (CharBased and MaxMatch) on
the development set (MT03). We found that the ad-
vantage of MaxMatch over CharBased is two-fold,
(i) lexical: it enhances the ability to disambiguate
the case when a character has very different meaning
in different contexts, and (ii) reordering: it is easier
to move one unit around than having to move two
consecutive units at the same time. Having words as
the basic units helps the reordering model.

For the first advantage, one example is the char-
acter “�”, which can both mean “intelligence”, or
an abbreviation for Chile (�|). The comparison
between CharBased and MaxMatch is listed in Ta-
ble 2. The word��w (dementia) is unknown for
both segmenters. However, MaxMatch gave a better
translation of the character�. The issue here is not
that the “�”→“intelligence” entry never appears in
the phrase table of CharBased. The real issue is,
when � means Chile, it is usually followed by the
character |. So by grouping them together, Max-
Match avoided falsely increasing the probability of
translating the stand-alone � into Chile. Based on
our analysis, this ambiguity occurs the most when
the character-based system is dealing with a rare or
unseen character sequence in the training data, and
also occurs more often when dealing with translit-

3Except for dates and numbers.

Reference translation:
scientists complete sequencing of the chromosome linked to
early dementia
CharBased segmented input:
� Æ [ � M ' Ð Ï � � w � / Ú N � ¤ ½ S

MaxMatch segmented input:
�Æ[ � M' ÐÏ � � w � /Ú N �¤ ½ S

Translation with CharBased segmentation:
scientists at the beginning of the stake of chile lost the genome
sequence completed
Translation with MaxMatch segmentation:
scientists at stake for the early loss of intellectual syndrome
chromosome completed sequencing

Table 2: An example showing that character-based segmenta-
tion provides weaker ability to distinguish character with mul-
tiple unrelated meanings.

erations. The reason is that characters composing
a transliterated foreign named entity usually doesn’t
preserve their meanings; they are just used to com-
pose a Chinese word that sounds similar to the orig-
inal word – much more like using a character seg-
mentation of English words. Another example of
this kind is “C�_°%¼w” (Alzheimer’s dis-
ease). The MT system using CharBased segmenta-
tion tends to translate some characters individually
and drop others; while the system using MaxMatch
segmentation is more likely to translate it right.

The second advantage of having a segmenter like
the lexicon-based MaxMatch is that it helps the re-
ordering model. Results in Table 1 are with the
linear distortion limit defaulted to 6. Since words
in CharBased are inherently shorter than MaxMatch,
having the same distortion limit means CharBased
is limited to a smaller context than MaxMatch. To
make a fairer comparison, we set the linear distor-
tion limit in Moses to unlimited, removed the lexi-
calized reordering model, and retested both systems.
With this setting, MaxMatch is 0.46 BLEU point bet-
ter than CharBased (29.62 to 29.16) on MT03. This
result suggests that having word segmentation does
affect how the reordering model works in a phrase-
based system.

Hypothesis 2. Better Segmentation Performance
Should Lead to Better MT Performance

Observation We have shown in Hypothesis 1 that
it is helpful to segment Chinese texts into words
first. In order to decide a segmenter to use, the
most intuitive thing to do is to find one that gives
higher F measure on segmentation. Our experiments
show that higher F measure does not necessarily
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lead to higher BLEU score. In order to contrast
with the simple maximum matching lexicon-based
model (MaxMatch), we built another segmenter with
a CRF model. CRF is a statistical sequence model-
ing framework introduced by Lafferty et al. (2001),
and was first used for the Chinese word segmenta-
tion task by Peng et al. (2004), who treated word
segmentation as a binary decision task. We opti-
mized the parameters with a quasi-Newton method,
and used Gaussian priors to prevent overfitting.

The probability assigned to a label sequence for a
particular sequence of characters by a CRF is given
by the equation:

pλ (y|x) =
1

Z(x)
exp

T

∑
t=1

K

∑
k=1

λk fk(x,yt−1,yt , t) (1)

x is a sequence of T unsegmented characters, Z(x) is
the partition function that ensures that Equation 1 is
a probability distribution, { fk}K

k=1 is a set of feature
functions, and y is the sequence of binary predic-
tions for the sentence, where the prediction yt = +1
indicates the t-th character of the sequence is pre-
ceded by a space, and where yt =−1 indicates there
is none. We trained a CRF model with a set of ba-
sic features: character identity features of the current
character, previous character and next character, and
the conjunction of previous and current characters in
the zero-order templates. We will refer to this seg-
menter as CRF-basic.

Table 3 shows that the feature-based segmenter
CRF-basic outperforms the lexicon-based MaxMatch
by 5.9% relative F measure. Comparing the OOV re-
call rate and the IV recall rate, the reason is that CRF-
basic wins a lot on the OOV recall rate. We see that
a feature-based segmenter like CRF-basic clearly has
stronger ability to recognize unseen words. On
MT performance, however, CRF-basic is 0.38 BLEU
points worse than MaxMatch on the test set. In Sec-
tion 3.2, we will look at how the MT training and test
data are segmented by each segmenter, and provide
statistics and analysis for why certain segmenters are
better than others.

3.2 Consistency Analysis of Different
Segmenters

In Section 3.1 we have refuted two hypotheses. Now
we know that: (i) phrase table construction does not
fully capture what a word segmenter can do. Thus it

Segmentation Performance
Segmenter F measure OOV Recall IV Recall
CRF-basic 0.877 0.502 0.926
MaxMatch 0.828 0.012 0.951
CRF-Lex 0.940 0.729 0.970

MT Performance
Segmenter MT03 (dev) MT05 (test)
CRF-basic 33.01 30.35
MaxMatch 31.95 30.73
CRF-Lex 32.70 30.95

Table 3: CRF-basic vs MaxMatch

Segmenter #MT Training Lexicon Size #MT Test Lexicon Size
CRF-basic 583147 5443
MaxMatch 39040 5083
CRF-Lex 411406 5164

MT Test Lexicon OOV rate Conditional Entropy
CRF-basic 7.40% 0.2306
MaxMatch 0.49% 0.1788
CRF-Lex 4.88% 0.1010

Table 4: MT Lexicon Statistics and Conditional Entropy of Seg-
mentation Variations of three segmetners

is useful to have word segmentation for MT. (ii) a
higher F measure segmenter does not necessarily
outperforms on the MT task.

To understand what factors other than segmen-
tation F measure can affect MT performance, we
introduce another CRF segmenter CRF-Lex that in-
cludes lexicon-based features by using external lex-
icons. More details of CRF-Lex will be described
in Section 5.1. From Table 3, we see that the seg-
mentation F measure is that CRF-Lex > CRF-basic >
MaxMatch. And now we know that the better seg-
mentation F measure does not always lead to better
MT BLEU score, because of in terms of MT perfor-
mance, CRF-Lex > MaxMatch > CRF-basic.

In Table 4, we list some statistics of each seg-
menter to explain this phenomenon. First we look
at the lexicon size of the MT training and test data.
While segmenting the MT data, CRF-basic gener-
ates an MT training lexicon size of 583K unique
word tokens, and MaxMatch has a much smaller lex-
icon size of 39K. CRF-Lex performs best on MT,
but the MT training lexicon size and test lexicon
OOV rate is still pretty high compared to MaxMatch.
Only examining the MT training and test lexicon
size still doesn’t fully explain why CRF-Lex outper-
forms MaxMatch. MaxMatch generates a smaller MT
lexicon and lower OOV rate, but for MT it wasn’t
better than CRF-Lex, which has a bigger lexicon and
higher OOV rate. In order to understand why Max-
Match performs worse on MT than CRF-Lex but bet-
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ter than CRF-basic, we use conditional entropy of
segmentation variations to measure consistency.

We use the gold segmentation of the SIGHAN
test data as a guideline. For every work type wi,
we collect all the different pattern variations vi j in
the segmentation we want to examine. For exam-
ple, for a word “ABC” in the gold segmentation, we
look at how it is segmented with a segmenter. There
are many possibilities. If we use cx and cy to indi-
cate other Chinese characters and to indicate white
spaces, “cx ABC cy” is the correct segmentation,
because the three characters are properly segmented
from both sides, and they are concatenated with each
other. It can also be segmented as “cx A BC cy”,
which means although the boundary is correct, the
first character is separated from the other two. Or,
it can be segmented as “cxA BCcy”, which means
the first character was actually part of the previous
word, while BC are the beginning of the next word.
Every time a particular word type wi appears in the
text, we consider a segmenter more consistent if it
can segment wi in the same way every time, but it
doesn’t necessarily have to be the same as the gold
standard segmentation. For example, if “ABC” is a
Chinese person name which appears 100 times in the
gold standard data, and one segmenter segment it as
cx A BC cy 100 times, then this segmenter is still
considered to be very consistent, even if it doesn’t
exactly match the gold standard segmentation. Us-
ing this intuition, the conditional entropy of segmen-
tation variations H(V |W ) is defined as follows:

H(V |W ) = −∑
wi

P(wi)∑
vi j

P(vi j|wi) logP(vi j|wi)

= −∑
wi

∑
vi j

P(vi j,wi) logP(vi j|wi)

Now we can look at the overall conditional en-
tropy H(V |W ) to compare the consistency of each
segmenter. In Table 4, we can see that even though
MaxMatch has a much smaller MT lexicon size than
CRF-Lex, when we examine the consistency of how
MaxMatch segments in context, we find the condi-
tional entropy is much higher than CRF-Lex. We can
also see that CRF-basic has a higher conditional en-
tropy than the other two. The conditional entropy
H(V |W ) shows how consistent each segmenter is,
and it correlates with the MT performance in Ta-
ble 4. Note that consistency is only one of the com-
peting factors of how good a segmentation is for

MT performance. For example, a character-based
segmentation will always have the best consistency
possible, since every word ABC will just have one
pattern: cx A B C cy. But from Section 3.1 we
see that CharBased performs worse than both Max-
Match and CRF-basic on MT, because having word
segmentation can help the granularity of the Chinese
lexicon match that of the English lexicon.

In conclusion, for MT performance, it is helpful
to have consistent segmentation, while still having a
word segmentation matching the granularity of the
segmented Chinese lexicon and the English lexicon.

4 Optimal Average Token Length for MT

We have shown earlier that word-level segmentation
vastly outperforms character based segmentation in
MT evaluations. Since the word segmentation stan-
dard under consideration (Chinese Treebank (Xue
et al., 2005)) was neither specifically designed nor
optimized for MT, it seems reasonable to investi-
gate whether any segmentation granularity in con-
tinuum between character-level and CTB-style seg-
mentation is more effective for MT. In this section,
we present a technique for directly optimizing a seg-
mentation property—characters per token average—
for translation quality, which yields significant im-
provements in MT performance.

In order to calibrate the average word length pro-
duced by our CRF segmenter—i.e., to adjust the rate
of word boundary predictions (yt = +1), we apply
a relatively simple technique (Minkov et al., 2006)
originally devised for adjusting the precision/recall
tradeoff of any sequential classifier. Specifically, the
weight vector w and feature vector of a trained lin-
ear sequence classifier are augmented at test time
to include new class-conditional feature functions to
bias the classifier towards particular class labels. In
our case, since we wish to increase the frequency of
word boundaries, we add a feature function:

f0(x,yt−1,yt , t) =
{

1 if yt = +1
0 otherwise

Its weight λ0 controls the extent of which the classi-
fier will make positive predictions, with very large
positive λ0 values causing only positive predic-
tions (i.e., character-based segmentation) and large
negative values effectively disabling segmentation
boundaries. Table 5 displays how changes of the
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λ0 −1 0 1 2 4 8 32
len 1.64 1.62 1.61 1.59 1.55 1.37 1

Table 5: Effect of the bias parameter λ0 on the average number
of character per token on MT data.

bias parameter λ0 affect segmentation granularity.4

Since we are interested in analyzing the different
regimes of MT performance between CTB segmen-
tation and character-based, we performed a grid
search in the range between λ0 = 0 (maximum-
likelihood estimate) and λ0 = 32 (a value that is
large enough to produce only positive predictions).
For each λ0 value, we ran an entire MT training and
testing cycle, i.e., we re-segmented the entire train-
ing data, ran GIZA++, acquired phrasal translations
that abide to this new segmentation, and ran MERT
and evaluations on segmented data using the same
λ0 values.
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Figure 1: A bias towards more segment boundaries (λ0 > 0)
yields better MT performance and worse segmentation results.

Segmentation and MT results are displayed in
Figure 1. First, we observe that an adjustment of
the precision and recall tradeoff by setting nega-

4Note that character-per-token averages provided in the ta-
ble consider each non-Chinese word (e.g., foreign names, num-
bers) as one character, since our segmentation post-processing
prevents these tokens from being segmented.

tive bias values (λ0 = −2) slightly improves seg-
mentation performance. We also notice that rais-
ing λ0 yields relatively consistent improvements in
MT performance, yet causes segmentation perfor-
mance (F measure) to be increasingly worse. While
the latter finding is not particularly surprising, it fur-
ther confirms that segmentation and MT evaluations
can yield rather different outcomes. We chose the
λ0 = 2 on another dev set (MT02). On the test set
MT05, λ0 = 2 yields 31.47 BLEU, which represents
a quite large improvement compared to the unbiased
segmenter (30.95 BLEU). Further reducing the av-
erage number of characters per token yields gradual
drops of performance until character-level segmen-
tation (λ0 ≥ 32, 29.36 BLEU).

Here are some examples of how setting λ0 = 2
shortens the words in a way that can help MT.

• separating adjectives and pre-modifying adverbs:
é�(very big) →é(very)�(big)

• separating nouns and pre-modifying adjectives:
pÉØ(high blood pressure)
→p(high)ÉØ(blood pressure)

• separating compound nouns:
S�Ü(Department of Internal Affairs)
→S�(Internal Affairs)Ü(Department).

5 Improving Segmentation Consistency of
a Feature-based Sequence Model for
Segmentation

In Section 3.1 we showed that a statistical sequence
model with rich features can generalize better than
maximum matching segmenters. However, it also
inconsistently over-generates a big MT training lexi-
con and OOV words in MT test data, and thus causes
a problem for MT. To improve a feature-based se-
quence model for MT, we propose 4 different ap-
proaches to deal with named entities, optimal length
of word for MT and joint search for segmentation
and MT decoding.

5.1 Making Use of External Lexicons
One way to improve the consistency of the CRF
model is to make use of external lexicons (which
are not part of the segmentation training data) to
add lexicon-based features. All the features we use
are listed in Table 6. Our linguistic features are
adopted from (Ng and Low, 2004) and (Tseng et
al., 2005). There are three categories of features:
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Lexicon-based Features Linguistic Features
(1.1) LBegin(Cn),n ∈ [−2,1] (2.1) Cn,n ∈ [−2,1]
(1.2) LMid(Cn),n ∈ [−2,1] (2.2) Cn−1Cn,n ∈ [−1,1]
(1.3) LEnd(Cn),n ∈ [−2,1] (2.3) Cn−2Cn,n ∈ [1,2]
(1.4) LEnd(C−1)+LEnd(C0) (2.4) Single(Cn),n ∈ [−2,1]

+LEnd(C1) (2.5) UnknownBigram(C−1C0)
(1.5) LEnd(C−2)+LEnd(C−1) (2.6) ProductiveA f f ixes(C−1,C0)

+LBegin(C0)+LMid(C0) (2.7) Reduplication(C−1,Cn),n ∈ [0,1]
(1.6) LEnd(C−2)+LEnd(C−1)

+LBegin(C−1)
+LBegin(C0)+LMid(C0)

Table 6: Features for CRF-Lex

character identity n-grams, morphological and char-
acter reduplication features. Our lexicon-based fea-
tures are adopted from (Shi and Wang, 2007), where
LBegin(C0), LMid(C0) and LEnd(C0) represent the
maximum length of words found in a lexicon that
contain the current character as either the first, mid-
dle or last character, and we group any length equal
or longer than 6 together. The linguistic features
help capturing words that were unseen to the seg-
menter; while the lexicon-based features constrain
the segmenter with external knowledge of what se-
quences are likely to be words.

We built a CRF segmenter with all the features
listed in Table 6 (CRF-Lex). The external lexicons
we used for the lexicon-based features come from
various sources including named entities collected
from Wikipedia and the Chinese section of the UN
website, named entities collected by Harbin Institute
of Technology, the ADSO dictionary, EMM News
Explorer, Online Chinese Tools, Online Dictionary
from Peking University and HowNet. There are
423,224 distinct entries in all the external lexicons.

The MT lexicon consistency of CRF-Lex in Table
4 shows that the MT training lexicon size has been
reduced by 29.5% and the MT test data OOV rate is
reduced by 34.1%.

5.2 Joint training of Word Segmentation and
Proper Noun Tagging

Named entities are an important source for OOV
words, and in particular are ones which it is bad to
break into pieces (particularly for foreign names).
Therefore, we use the proper noun (NR) part-of-
speech tag information from CTB to extend the label
sets of our CRF model from 2 to 4 ({beginning of a
word, continuation of a word} × {NR, not NR}).
This is similar to the “all-at-once, character-based”
POS tagging in (Ng and Low, 2004), except that

Segmentation Performance
Segmenter F measure OOV Recall IV Recall

CRF-Lex-NR 0.943 0.753 0.970
CRF-Lex 0.940 0.729 0.970

MT Performance
Segmenter MT03 (dev) MT05 (test)

CRF-Lex-NR 32.96 31.27
CRF-Lex 32.70 30.95

Table 7: CRF-Lex-NR vs CRF-Lex

we are only tagging proper nouns. We call the 4-
label extension CRF-Lex-NR. The segmentation and
MT performance of CRF-Lex-NR is listed in Table 7.
With the 4-label extension, the OOV recall rate im-
proved by 3.29%; while the IV recall rate stays the
same. Similar to (Ng and Low, 2004), we found the
overall F measure only goes up a tiny bit, but we do
find a significant OOV recall rate improvement.

On the MT performance, CRF-Lex-NR has a 0.32
BLEU gain on the test set MT05. In addition to the
BLEU improvement, CRF-Lex-NR also provides ex-
tra information about proper nouns, which can be
combined with postprocessing named entity transla-
tion modules to further improve MT performance.

6 Conclusion

In this paper, we investigated what segmentation
properties can improve machine translation perfor-
mance. First, we found that neither character-based
nor a standard word segmentation standard are opti-
mal for MT, and show that an intermediate granular-
ity is much more effective. Using an already com-
petitive CRF segmentation model, we directly opti-
mize segmentation granularity for translation qual-
ity, and obtain an improvement of 0.73 BLEU point
on MT05 over our lexicon-based segmentation base-
line. Second, we augment our CRF model with
lexicon and proper noun features in order to im-
prove segmentation consistency, which provide a
0.32 BLEU point improvement.
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Bonneau-Maynard, Hélène, 107
Brunning, Jamie, 131
Byrne, William, 131

Callison-Burch, Chris, 70
Cer, Daniel, 26
Chang, Pi-Chuan, 224
Chen, Yu, 179
Cordova, Aaron, 199
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Schroeder, Josh, 70
Schwartz, Richard, 183
Schwenk, Holger, 119
Senellart, Jean, 119, 175
Shawe-Taylor, John, 155
Smith, Noah A., 9
Stymne, Sara, 135
Sumita, Eiichiro, 208, 216

Tihanyi, László, 111
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