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Introduction

The ACL 2007 Workshop on Statistical Machine Translation (WMT-07) took place on Saturday,
June 23 in Prague, Czech Republic, immediately proceeding annual meeting of the Association for
Computational Linguistics, which was hosted by Charles University. This was the second time this
workshop had been held, following the first workshop at the 2006 HLT-NAACL conference. But its
ancestry can be traced back further to the ACL 2005 Workshop on Building and Using Parallel Texts,
and even the ACL 2001 Workshop on Data-Driven Machine Translation.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
workshop we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages and languages with partial
free word order.

Over the last years, interest in statistical machine translation has been risen dramatically. We received
an overwhelming number of full paper submission, 38 in total. Given our limited capacity as a one-day
workshop, we were only able to accept 12 full papers for oral presentation and 9 papers for poster
presentation, an acceptance rate of 55%. In a second poster session, 16 additional shared task papers
were presented.

Due to the large number of submission this was the first time our workshop featured poster
presentations. The first poster session was held in the morning and focused on research posters,
while the second poster session was held in the afternoon and gave participants of the shared task
the opportunity to present their approaches. The rest of the day was devoted to oral paper presentations
and an invited talk by Jean Senellart of SYSTRAN Language Translation Technology, Paris.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation
we conducted a shared task that brought together machine translation systems for an evaluation on
previously unseen data. This year’s task resembled the shared tasks of previous years in many ways,
but also included a variety of manual evaluations of the MT systems’ outputs, and a variety of automated
evaluation metrics. As a special challenge this year, we posed the problem of domain adaptation.

The results of the shared task were announced at the workshop, and these proceedings also include an
overview paper for the shared task that summarizes the results, as well as provides information about
the data used and any procedures that were followed in conducting or scoring the task. In addition,
there are short papers from each participating team that describe their underlying system in some detail.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task, the participants of the MT Marathon, which was
organized by the University of Edinburgh in March this year, and all the other volunteers who helped
with the manual evaluations. We also acknowledge financial support for the manual evaluation by the
EuroMatrix project (funded by the European Commission under the Framework Programme 7).

Chris Callison-Burch, Philipp Koehn, Christof Monz, and Cameron Shaw Fordyce

Co-Organizers
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Abstract 

Today's statistical machine translation 
systems generalize poorly to new 
domains. Even small shifts can cause 
precipitous drops in translation quality. 
Phrasal systems rely heavily, for both 
reordering and contextual translation, on 
long phrases that simply fail to match out-
of-domain text. Hierarchical systems 
attempt to generalize these phrases but 
their learned rules are subject to severe 
constraints. Syntactic systems can learn 
lexicalized and unlexicalized rules, but the 
joint modeling of lexical choice and 
reordering can narrow the applicability of 
learned rules. The treelet approach models 
reordering separately from lexical choice, 
using a discriminatively trained order 
model, which allows  treelets to apply 
broadly, and has shown better 
generalization to new domains, but suffers 
a factorially large search space. We 
introduce a new reordering model based 
on dependency order templates, and show 
that it outperforms both phrasal and treelet 
systems on in-domain and out-of-domain 
text, while limiting the search space. 

1 Introduction 

Modern phrasal SMT systems such as (Koehn et 
al., 2003) derive much of their power from being 
able to memorize and use long phrases. Phrases 
allow for non-compositional translation, local 
reordering and contextual lexical choice. 
However the phrases are fully lexicalized, which 
means they generalize poorly to even slightly out-
of-domain text. In an open competition (Koehn & 
Monz, 2006) systems trained on parliamentary 
proceedings were tested on text from 'news 

commentary' web sites, a very slightly different 
domain. The 9 phrasal systems in the English to 
Spanish track suffered an absolute drop in BLEU 
score of between 4.4% and 6.34% (14% to 27% 
relative). The treelet system of Menezes et al. 
(2006) fared somewhat better but still suffered an 
absolute drop of 3.61%.  

Clearly there is a need for approaches with 
greater powers of generalization. There are 
multiple facets to this issue, including handling of 
unknown words, new senses of known words etc. 
In this work, we will focus on the issue of 
reordering, i.e. can we learn how to transform the 
sentence structure of one language into the 
sentence structure of another, in a way that is not 
tied to a specific domain or sub-domains, or 
indeed, sequences of individual words.   

An early attempt at greater generality in a 
purely phrasal setting was the alignment template 
approach (Och & Ney 2004); newer approaches 
include formally syntactic (Chiang 2005), and 
linguistically syntactic approaches (Quirk et al. 
2005), (Huang et al. 2006). In the next section, we 
examine these representative approaches to the 
reordering problem. 

2 Related Work 

Our discussion of related work will be grounded 
in the following tiny English to Spanish example, 
where the training set includes:  

a very old book 
un libro más  antiguo 
a  book  very old1 

the old man 
el  hombre viejo 
the man    old 

it is very important 
es muy  importante 
is very important 

                                                           
1 English gloss of Spanish sentences in italics. 
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and the test sentence and reference translation are 
a very old man 
un hombre muy  viejo 
a  man    very old 

Note that while the first training pair has the 
correct structure for the test sentence, most of the 
contextually correct lexical choices come from 
the other two pairs. 

2.1 Phrasal translation, Alignment templates 

The relevant phrases (i.e. those that match the test 
sentence) extracted from these training pairs are 
shown in Table 2.1. Only phrases up to size 3 are 
shown. The ones in italics are 'correct' in that they 
can lead to the reference translation. Note that 
none of the multi-word phrases lead to the 
reference, so the local reordering often captured 
in the phrasal model is no help at all in ordering 
this sentence. The system is unable to learn the 
correct structure from the first sentence because 
the words are wrong, and from the second 
sentence even though the phrase old man has the 
right words in the right order, it does not lead to 
the reference translation because the translation of 
very cannot be inserted in the right place.  

a un 
very más 
old antiguo 
very old más antiguo 
old viejo 
man hombre 
old man hombre viejo 
very muy 
Table 2.1: Relevant extracted phrases 

Looking at this as a sparse data issue we might 
suspect that generalization could solve the 
problem. The alignment template approach (Och 
& Ney, 2004) uses word classes rather than 
lexical items to model phrase translation. Yet this 
approach loses the advantage of context-sensitive 
lexical selection: the word translation model 
depends only on the word classes to subcategorize 
for translations, which leads to less accurate 
lexical choice in practice (Zens & Ney, 2004). 

2.2 Hierarchical translation 

Hierarchical systems (Chiang, 2005) induce a 
context-free grammar with one non-terminal 

directly from the parallel corpus, with the 
advantage of not requiring any additional 
knowledge source or tools, such as a treebank or a 
parser. However this can lead to an explosion of 
rules. In order to make the problem tractable and 
avoid spurious ambiguity, Chiang restricts the 
learned rules in several ways. The most 
problematic of these is that every rule must have 
at least one pair of aligned words, and that 
adjacent non-terminals are not permitted on the 
source side. In Table 2.2 we show the additional 
hierarchical phrases that would be learned from 
our training pairs under these restrictions. Again 
only those applicable to the test sentence are 
shown and the 'correct' rules, i.e. those that lead to 
the reference, are italicized. 

X1 old X1 antiguo 
very X1 más X1 
very old X1 X1 más antiguo 
X1 old X2 X2 X1 antiguo 
very X1 X2 X2 más X1 
X1 man hombre X1 
old X1 X1 viejo 
X1 old man X1 hombre viejo 
X1 very X1 muy 
very X2 muy X2 
X1 very X2 X1 muy X2 
Table 2.2: Additional hierarchical phrases 

Note that even though from the first pair, we learn 
several rules with the perfect reordering for the 
test sentence, they do not lead to the reference 
because they drag along the contextually incorrect 
lexical choices. From the second pair, we learn a 
rule (X1 old man) that has the right contextual 
word choice, but  does not lead to the reference, 
because the paucity of the grammar's single non-
terminal causes this rule to incorrectly imply that 
the translation of very be placed before hombre. 

2.3 Constituency tree transduction 

An alternate approach is to use linguistic 
information from a parser. Transduction rules 
between Spanish strings and English trees can be 
learned from a word-aligned parallel corpus with 
parse trees on one side (Graehl & Knight, 2004). 
Such rules can be used to translate from Spanish 
to English by searching for the best English 
language tree for a given Spanish language string 
(Marcu et al., 2006). Alternately English trees 
produced by a parser can be transduced to 

2



Spanish strings using the same rules (Huang et al., 
2006). Translation rules may reach beyond one 
level in the syntax tree; this extended domain of 
locality allows many phenomena including both 
lexicalized and unlexicalized rules. However 
reordering and translation are modeled jointly, 
which may exacerbate data sparsity. Furthermore 
it forces the system to pick between unlexicalized 
rules that capture reordering and lexicalized rules 
that model context-sensitive translation. 

For instance, the following rules can be 
extracted from the first sentence of the corpus: 
 

r1: un x1 x2 ՜ NP(DT(a) ADJP:x2 NN:x1) 
r2: x1 x2 ՜ ADJP(RB:x1 JJ:x2) 

  
Although together they capture the necessary 
reordering for our test sentence pair, they do not 
allow for context sensitive translations of the 
ambiguous terms very and old; each must be 
selected independently. Disappointingly, no 
single constituency tree transduction rule derived 
from this corpus translates old man as hombre 
viejo in a single step on the test sentence: the 
syntactic structures are slightly different, but the 
difference is sufficient to prevent matching. 2 
Again we note that phrases provide utility by 
capturing both reordering and context. While xRS 

                                                           
2 Marcu et al. (2006) and Zollmann et al. (2006) recognize 
this problem and attempt to alleviate it by grafting surface 
phrases into constituency trees by various methods. 

rules provide an elegant and powerful model of 
reordering, they come with a potential cost in 
context-sensitive translation.  

2.4 Dependency treelet translation 

We previously described (Quirk et al, 2005) a 
linguistically syntax-based system that parses the 
source language, uses word-based alignments to 
project a target dependency tree, and extracts 
paired dependency tree fragments (treelets) 
instead of surface phrases.  In contrast to the xRS 
approach, ordering is very loosely coupled with 
translation via a separate discriminatively trained 
dependency tree-based order model. The switch 
to a dependency parse also changes the 
conditioning information available for translation: 
related lexical items are generally adjacent, rather 
than separated by a path of unlexicalized non-
terminals. In effect, by using a looser matching 
requirement, treelets retain the context-sensitive 
lexical choice of phrases: treelets must only be a 
connected subgraph of the input sentence to be 
applicable; some children may remain uncovered. 

Figure 2.2 shows source dependency parses 
and projected target dependencies for our training 
data; Figure 2.3 shows the treelet pairs that this 
system would extract that match the input 

a very old book

DT RB JJ NN

ADJP

NP

un libro más antiguo

the old man

DT JJ NN

NP

el hombre viejo

it is very important

PN VB RB JJ

ADJP

VP

S

es muy importante  
Figure 2.1:  Constituency parses 

 
Figure 2.2: Dependency trees for training pairs 

 
Figure 2.3: Relevant extracted treelets 
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sentence (treelets of size 1 are not shown).  The 
second treelet supplies the order of viejo with 
respect to its head, and unlike the case with xRS 
rules, we can use this to make the correct 
contextual word choice. The difference is that 
because xRS rules provide both reordering and 
word choice, each rule must match all of the 
children at any given tree node. On the other 
hand, treelets are allowed to match more loosely. 
The translations of the unmatched children (un 
and muy in this case) are placed by exploring all 
possible orderings and scoring them with both 
order model and language model. Although this 
effectively decouples lexical selection from 
ordering, it comes at a huge cost in search space 
and translation quality may suffer due to search 
error. However, as mentioned in Section 1, this 
approach is able to generalize better to out-of-
domain data than phrasal approaches. Koehn and 
Monz (2006) also include a human evaluation, in 
which this system ranked noticeably higher than 
one might have predicted from its BLEU score.    

3 Dependency Order Templates 

The Dependency Order Templates approach 
leverages the power of the xR rule formalism, 
while avoiding the problems mentioned in Section 
2.3, by constructing the rules on the fly from two 
separately matched components: (a) Dependency 
treelet translation pairs described in Section 2.4 
that capture contextual lexical translations but are 
underspecified with respect to ordering, and (b) 
Order templates, which are unlexicalized rules 
(over dependency, rather than constituency trees) 
that capture reordering phenomena. 

Formally, an order template is an unlexicalized 
transduction rule mapping dependency trees 
containing only parts of speech to unlexicalized 
target language trees (see Figure 4.1b). 

Given an input sentence, we combine relevant 
treelet translation pairs and order templates to 
construct lexicalized transduction rules for that 
sentence, and then decode using standard 
transduction approaches. By keeping lexical and 
ordering information orthogonal until runtime, we 
can produce novel transduction rules not seen in 
the training corpus. This allows greater 
generalization capabilities than the constituency 
tree transduction approaches of Section 2.3. 

As compared to the treelet approach described 
in Section 2.4, the generalization capability is 
somewhat reduced. In the treelet system all 
reorderings are exhaustively evaluated, but the 
size of the search space necessitates tight pruning, 
leading to significant search error. By contrast, in 
the order template approach we consider only 
reorderings that are captured in some order 
template. The drastic reduction in search space 
leads to an overall improvement, not only in 
decoding speed, but also in translation quality due 
to reduced search error. 

3.1 Extracting order templates 

For each pair of parallel training sentences, we 
parse the source sentence, obtain a source 
dependency tree, and use GIZA++ word 
alignments to project a target dependency tree as 
described in Quirk et al. (2005).  

Given this pair of aligned source and target 
dependency trees, we recursively extract one 
order template for each pair of aligned non-leaf 
source and target nodes. In the case of multi-word 
alignments, all contiguous 3  aligned nodes are 
added to the template. Next we recursively add 
child nodes as follows: For each node in the 
template, add all its children. For each such child, 
if it is aligned, stop recursing, if it is unaligned, 
recursively add its children.     

On each template node we remove the lexical 
items; we retain the part of speech on the source 
nodes (we do not use target linguistic features). 
We also keep node alignment information4. The 
resulting aligned source and target sub-graphs 
comprise the order template. Figure 4.1b lists the 
order templates extracted from the training pairs 
in Figure 2.1 that capture all the patterns 
necessary to correctly reorder the test sentence. 

4 Decoding 

Decoding is treated as a problem of syntax-
directed transduction. Input sentences are 
segmented into a token stream, annotated with 
part-of-speech information, and parsed into 
                                                           
3 If a multi-word alignment is not contiguous in either source 
or target dependency tree no order template is extracted. 
4 If a source or target node aligns to a tree node outside the 
template, the template breaks phrasal cohesion and is 
currently discarded. We intend to address these 'structural 
divergence' patterns in future work. 
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unlabeled dependency trees. At each node in the 
input dependency tree we first find the set of 
matching treelet pairs: A pair matches if its source 
side corresponds to a connected subgraph of the 
input tree. Next we find matching order 
templates: order templates must also match a 
connected subgraph of the input tree, but in 
addition, for each input node, the template must 
match either all or none of its children 5 . 
Compatible combinations of treelets and order 
templates are merged to form xR rules. Finally, 
we search for the best transduction according to 
the constructed xR rules as scored by a log-linear 
combination of models (see Section 5). 

4.1 Compatibility 

A treelet and an order template are considered 
compatible if the following conditions are met: 
The treelet and the matching portions of the 
template must be structurally isomorphic. Every 
treelet node must match an order template node. 
Matching nodes must have the same part of 
speech. Unaligned treelet nodes must match an 
unaligned template node. Aligned treelet nodes 
must match aligned template nodes. Nodes that 
are aligned to each other in the treelet pair must 
match template nodes that are aligned to each 
other. 

4.2 Creating transduction rules 

Given a treelet, we can form a set of tree 
transduction rules as follows. We iterate over 
each source node n in the treelet pair; let s be the 
corresponding node in the input tree (identified 
during the matching). If, for all children of s there 
is a corresponding child of n, then this treelet 
specifies the placement of all children and no 
changes are necessary. Otherwise we pick a 
template that matched at s and is compatible with 
the treelet. The treelet and template are unified to 
produce an updated rule with variables on the 
source and target sides for each uncovered child 
of s. When all treelet nodes have been visited, we 
are left with a transduction rule that specifies the 
translation of all nodes in the treelet and contains 
variables that specify the placement of all 

                                                           
5 This is so the resulting rules fit within the xR formalism. At 
each node, a rule either fully specifies its ordering, or 
delegates the translation of the subtree to other rules.  

uncovered nodes. Due to the independence of 
ordering and lexical information, we may produce 
novel transduction rules not seen in the training 
corpus. Figure 4.1 shows this process as it applies 
to the test sentence in Section 2. 

If, at any node s, we cannot find a matching 
template compatible with the current treelet, we 
create an artificial source order template, which 
simply preserves the source language order in the 
target translation. We add a feature function that 
counts the number of such templates and train its 
weight during minimum error rate training. 

4.3 Transduction using xR rules 

In the absence of a language model or other 
contextually dependent features, finding the 
highest scoring derivation would be a simple 
dynamic program (Huang et al. 2006) 6.However 
exact search using an ݊ -gram language model 
leads to split states for each ݊ -gram context. 
Instead we use an approximate beam search 
moving bottom-up in the tree, much like a CKY 
parser. Candidates in this search are derivations 
with respect to the transducer. 

Each transduction rule ݎ  has a vector of 
variables ݒଵ, … ݒ . Each variable is associated 
with an input node ܵሺݒሻ. For each input node ݏ, 
we keep a beam of derivations ܾሾݏሿ. Derivations 
are represented as a pair ݎۃ, ۄ܍  where ݎ  is a 
transduction rule and ܍ א Գ is a vector with one 
integer for each of the ݇  variables in ݎ . The 
interpretation is that the complete candidate can 
be constructed by recursively substituting for each 

                                                           
6 Like Chiang (2005) we only search for the yield of the most 
likely derivation, rather than the most likely yield. 

Figure 4.1: Merging templates and treelets 
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ݒ א ଵݒ  … ݒ  the candidate constructed from 
the ݁ th entry in the beam ܾሾܵሺݒሻሿ.  

Figure 4.2 describes the transduction process. 
Since we approach decoding as xR transduction, 
the process is identical to that of constituency-
based algorithms (e.g. Huang and Chiang, 2007). 
There are several free parameters to tune: 
• Beam size – Maximum number of candidates 

per input node (in this paper we use 100) 
• Beam threshold – maximum range of scores 

between top and bottom scoring candidate 
(we use a logprob difference of 30) 

• Maximum combinations considered – To 
bound search time, we can stop after a 
specified number of elements are popped off 
the priority queue (we use 5000) 

5 Models 

We use all of the Treelet models we described in 
Quirk et al. (2005) namely:  
• Treelet table with translation probabilities 

estimated using maximum likelihood, with 
absolute discounting.  

• Discriminative tree-based order model. 
• Forward and backward lexical weighting, 

using Model-1 translation probabilities. 
• Trigram language model using modified 

Kneser-Ney smoothing.  
• Word and phrase count feature functions. 

In addition, we introduce the following: 
• Order template table, with template 

probabilities estimated using maximum 
likelihood, with absolute discounting. 

• A feature function that counts the number of 
artificial source order templates (see below) 
used in a candidate. 

The models are combined in a log-linear 
framework, with weights trained using minimum 
error rate training to optimize the BLEU score. 

6 Experiments 

We evaluated the translation quality of the system 
using the BLEU metric (Papineni et al., 2002). 
We compared our system to Pharaoh, a leading 
phrasal SMT decoder (Koehn et al., 2003), and 
our treelet system. We report numbers for English 
to Spanish. 

6.1 Data 

We used the Europarl corpus provided by the 
NAACL 2006 Statistical Machine Translation 
workshop. The target language model was trained 
using only the target side of the parallel corpus. 
The larger monolingual corpus was not utilized.  
The corpus consists of European Parliament 
proceedings, 730,740 parallel sentence pairs of 
English-Spanish, amounting to about 15M words 
in each language. The test data consists of 2000 
sentences each of development (dev), 
development-test (devtest) and test data (test) 
from the same domain. There is also a separate set 
of 1064 test sentences (NC-test) gathered from 
"news commentary" web sites.  

6.2 Training 

We parsed the source (English) side of the corpus 
using NLPWIN, a broad-coverage rule-based 
parser able to produce syntactic analyses at 
varying levels of depth (Heidorn, 2002). For the 
purposes of these experiments we used a 
dependency tree output with part-of-speech tags 
and unstemmed, case-normalized surface words. 
For word alignment we used GIZA++, under a 
training regimen of five iterations of Model 1, 
five iterations of HMM, and five iterations of 
Model 4, in both directions. The forward and 
backward alignments were symmetrized using a 
tree-based heuristic combination. The word 

GetTranslationBeam(ݏ) // memoized 
    prioq ՚  
    beam ՚  
    for ݎ א ࣬ሺݏሻ 
        Enqueue(prioq, ݎۃ, ۄ, EarlyScore(ݎۃ, ۄ)) 
    while Size(prioq)  0 
,ݎۃ         ۄ܍ ՚ PopBest(prioq) 
        AddToBeam(beam, ݎۃ, ,ݎۃ)TrueScore ,ۄ܍  ((ۄ܍
        for ݅ in 1. .  |܍|
            Enqueue(prioq, ݎۃ, ܍  ۄ, 
                 EarlyScore(ݎۃ, ܍  ۄ)) 
    return beam 

EarlyScore(ݎۃ,  (ۄ܍
    ܿ ՚ RuleScore(ݎ) 
    for ݅ in 1. .  |܍|
ݏ         ՚ InputNode(GetVariable (ݎ, ݅)) 
        beam ՚ GetTranslationBeam(ݏ) 
        ܿ ՚ ܿ TrueScore(GetNthEntry(beam, ݁)) 
    return ܿ 

Figure 4.2: Beam tree transduction 

6



alignments and English dependency tree were 
used to project a target tree. From the aligned tree 
pairs we extracted a treelet table and an order 
template table.  

The comparison treelet system was identical 
except that no order template model was used. 

The comparison phrasal system was 
constructed using the same GIZA++ alignments 
and the heuristic combination described in (Och 
& Ney, 2003). Except for the order models 
(Pharaoh uses a penalty on the deviance from 
monotone), the same models were used. 

All systems used a treelet or phrase size of 7 
and a trigram language model. Model weights 
were trained separately for all 3 systems using 
minimum error rate training to maximize BLEU 
(Och, 2003) on the development set (dev). Some 
decoder pruning parameters were tuned on the 
development test (devtest). The test and NC-test 
data sets were not used until final tests. 

7 Results 

We present the results of our system comparisons 
in Table 7.1 and Figure 7.1 using three different 
test sets: The in-domain development test data 
(devtest), the in-domain blind test data (test) and 
the out-of-domain news commentary test data 
(NC-test). All differences (except phrasal vs. 
template on devtest), are statistically significant at 
the p>=0.99 level under the bootstrap resampling 
test. Note that while the systems are quite 
comparable on the in-domain data, on the out-of-
domain data the phrasal system's performance 
drops precipitously, whereas the performance of 
the treelet and order template systems drops much 
less, outperforming the phrasal system by 2.7% 
and 3.46% absolute BLEU. 

 devtest test NC-test
Phrasal 0.2910 0.2935 0.2354
Treelet 0.2819 0.2981 0.2624
Template 0.2896 0.3045 0.2700

Table 7.1: System Comparisons across domains 

Further insight may be had by comparing the 
recall 7  for different n-gram orders (Table 7.2). 
The phrasal system suffers a greater decline in the 
higher order n-grams than the treelet and template 
                                                           
7 n-gram precision cannot be directly compared across output 
from different systems due to different levels of 'brevity' 

systems, indicating that latter show improved 
generality in reordering. 

  1gm 2gm 3gm 4gm 
Test Phrasal 0.61 0.35 0.23 0.15 
 treelet 0.62 0.36 0.23 0.15 
 template 0.62 0.36 0.24 0.16 
NC-test phrasal 0.58 0.30 0.17 0.10 
 treelet 0.60 0.33 0.20 0.12 
 template 0.61 0.34 0.20 0.13 

Table 7.2: n-gram recall across domains 

7.1 Treelet vs. Template systems 

As described in Section 3.1, the order templates 
restrict the broad reordering space of the treelet 
system. Although in theory this might exclude 
reorderings necessary for some translations, Table 
7.3 shows that in practice, the drastic search space 
reduction allows the decoder to explore a wider 
beam and more rules, leading to reduced search 
error and increased translation speed. (The topK 
parameter is the number of phrases explored for 
each span, or rules/treelets for each input node.) 

 Devtest 
BLEU 

Sents. 
per sec 

Pharaoh, beam=100, topK=20 0.2910 0.94 
Treelet, beam=12, topK=5 0.2819 0.21 
Template, beam=100, topK=20 0.2896 0.56 

Table 7.3: Performance comparisons 

Besides the search space restriction, the other 
significant change in the template system is to 
include MLE template probabilities as an 

 
Figure 7.1: In-domain vs. Out-of-domain BLEU 
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additional feature function. Given that the 
template system operates over rules where the 
ordering is fully specified, and that most tree 
transduction systems use MLE rule probabilities 
to model both lexical selection and reordering, 
one might ask if the treelet system's 
discriminatively trained order model is now 
redundant. In Table 7.4 we see that this is not the 
case.8 (Differences are significant at p>=0.99.) 

 devtest test NC-test 
MLE model only 0.2769 0.2922 0.2512 
Discriminative and 
MLE models 

0.2896 0.3045 0.2700 

Table 7.4: Templates and discriminative order model 

Finally we examine the role of frequency 
thresholds in gathering templates. In Table 7.5 it 
may be seen that discarding singletons reduces 
the table size by a factor of 5 and improves 
translation speed with negligible degradation in 
quality. 

 devtest 
BLEU 

Number of 
templates 

Sentences 
per sec. 

No threshold 0.2898 752,165 0.40 
Threshold=1 0.2896 137,584 0.56 

Table 7.5: Effect of template count cutoffs 

8 Conclusions and Future Work 

We introduced a new model of Dependency Order 
Templates that provides for separation of lexical 
choice and reordering knowledge, thus allowing 
for greater generality than the phrasal and xRS 
approaches, while drastically limiting the search 
space as compared to the treelet approach. We 
showed BLEU improvements over phrasal of over 
1% in-domain and nearly 3.5% out-of-domain. As 
compared to the treelet approach we showed an 
improvement of about 0.5%, but a speedup of 
nearly 3x, despite loosening pruning parameters.  

Extraposition and long distance movement still 
pose a serious challenge to syntax-based machine 
translation systems. Most of the today's search 
algorithms assume phrasal cohesion. Even if our 
search algorithms could accommodate such 
movement, we don't have appropriate models to 

                                                           
8 We speculate that other systems using transducers with 
MLE probabilities may also benefit from additional 
reordering models. 

account for such phenomena. Our system already 
extracts extraposition templates, which are a step 
in the right direction, but may prove too sparse 
and brittle to account for the range of phenomena.  
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Abstract

Combinatorial Categorial Grammar (CCG)
supertags present phrase-based machine
translation with an opportunity to access
rich syntactic information at a word level.
The challenge is incorporating this informa-
tion into the translation process. Factored
translation models allow the inclusion of su-
pertags as a factor in the source or target lan-
guage. We show that this results in an im-
provement in the quality of translation and
that the value of syntactic supertags in flat
structured phrase-based models is largely
due to better local reorderings.

1 Introduction

In large-scale machine translation evaluations,
phrase-based models generally outperform syntax-
based models1. Phrase-based models are effective
because they capture the lexical dependencies be-
tween languages. However, these models, which
are equivalent to finite-state machines (Kumar and
Byrne, 2003), are unable to model long range word
order differences. Phrase-based models also lack the
ability to incorporate the generalisations implicit in
syntactic knowledge and they do not respect linguis-
tic phrase boundaries. This makes it difficult to im-
prove reordering in phrase-based models.

Syntax-based models can overcome some of the
problems associated with phrase-based models be-
cause they are able to capture the long range struc-
tural mappings that occur in translation. Recently

1www.nist.gov/speech/tests/mt/mt06eval official results.html

there have been a few syntax-based models that
show performance comparable to the phrase-based
models (Chiang, 2005; Marcu et al., 2006). How-
ever, reliably learning powerful rules from parallel
data is very difficult and prone to problems with
sparsity and noise in the data. These models also
suffer from a large search space when decoding with
an integrated language model, which can lead to
search errors (Chiang, 2005).

In this paper we investigate the idea of incorporat-
ing syntax into phrase-based models, thereby lever-
aging the strengths of both the phrase-based models
and syntactic structures. This is done using CCG
supertags, which provide a rich source of syntactic
information. CCG contains most of the structure of
the grammar in the lexicon, which makes it possi-
ble to introduce CCG supertags as a factor in a fac-
tored translation model (Koehn et al., 2006). Fac-
tored models allow words to be vectors of features:
one factor could be the surface form and other fac-
tors could contain linguistic information.

Factored models allow for the easy inclusion of
supertags in different ways. The first approach is to
generate CCG supertags as a factor in the target and
then apply an n-gram model over them, increasing
the probability of more frequently seen sequences
of supertags. This is a simple way of including syn-
tactic information in a phrase-based model, and has
also been suggested by Hassan et al. (2007). For
both Arabic-English (Hassan et al., 2007) and our
experiments in Dutch-English, n-gram models over
CCG supertags improve the quality of translation.
By preferring more likely sequences of supertags,
it is conceivable that the output of the decoder is
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more grammatical. However, its not clear exactly
how syntactic information can benefit a flat struc-
tured model: the constraints contained within su-
pertags are not enforced and relationships between
supertags are not linear. We perform experiments to
explore the nature and limits of the contribution of
supertags, using different orders of n-gram models,
reordering models and focussed manual evaluation.
It seems that the benefit of using n-gram supertag
sequence models is largely from improving reorder-
ing, as much of the gain is eroded by using a lexi-
calised reordering model. This is supported by the
manual evaluation which shows a 44% improvement
in reordering Dutch-English verb final sentences.

The second and novel way we use supertags is
to direct the translation process. Supertags on the
source sentence allows the decoder to make deci-
sions based on the structure of the input. The sub-
categorisation of a verb, for instance, might help se-
lect the correct translation. Using multiple depen-
dencies on factors in the source, we need a strat-
egy for dealing with sparse data. We propose using
a logarithmic opinion pool (Smith et al., 2005) to
combine the more specific models (which depend on
both words and supertags) with more general mod-
els (which only depends on words). This paper is the
first to suggest this approach for combining multiple
information sources in machine translation.

Although the addition of supertags to phrase-
based translation does show some improvement,
their overall impact is limited. Sequence models
over supertags clearly result in some improvements
in local reordering but syntactic information con-
tains long distance dependencies which are simply
not utilised in phrase-based models.

2 Factored Models

Inspired by work on factored language models,
Koehn et al. (2006) extend phrase-based models to
incorporate multiple levels of linguistic knowledge
as factors. Phrase-based models are limited to se-
quences of words as their units with no access to
additional linguistic knowledge. Factors allow for
richer translation models, for example, the gender or
tense of a word can be expressed. Factors also allow
the model to generalise, for example, the lemma of a
word could be used to generalise to unseen inflected

forms.
The factored translation model combines features

in a log-linear fashion (Och, 2003). The most likely
target sentence t̂ is calculated using the decision rule
in Equation 1:

t̂ = arg max
t

{
M∑

m=1

λmhm(sFs
1 , tFt

1 )

}
(1)

t̂ ∝
M∑

m=1

λmhm(sFs
1 , tFt

1 ) (2)

where M is the number of features, hm(sFs
1 , tFt

1 )
are the feature functions over the factors, and λ are
the weights which combine the features which are
optimised using minimum error rate training (Venu-
gopal and Vogel, 2005). Each function depends on a
vector sFs

1 of source factors and a vector tFt
1 of tar-

get factors. An example of a factored model used in
upcoming experiments is:

t̂ ∝
M∑

m=1

λmhm(sw, twc) (3)

where sw means the model depends on (s)ource
(w)ords, and twc means the model generates (t)arget
(w)ords and (c)cg supertags. The model is shown
graphically in Figure 1.

WordWord

CCG

SOURCE TARGET

Figure 1. Factored translation with source words deter-
mining target words and CCG supertags

For our experiments we used the following fea-
tures: the translation probabilities Pr(sFs

1 |tFt
1 ) and

Pr(tFt
1 |sFs

1 ), the lexical weights (Koehn et al., 2003)
lex(sFs

1 |tFt
1 ) and lex(tFt

1 |sFs
1 ), and a phrase penalty

e, which allows the model to learn a preference for
longer or shorter phrases. Added to these features
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is the word penalty e−1 which allows the model to
learn a preference for longer or shorter sentences,
the distortion model d that prefers monotone word
order, and the language model probability Pr(t).
All these features are logged when combined in the
log-linear model in order to retain the impact of very
unlikely translations or sequences.

One of the strengths of the factored model is it
allows for n-gram distributions over factors on the
target. We call these distributions sequence models.
By analogy with language models, for example, we
can construct a bigram sequence model as follows:

p(f1, f2, . . . fn) = p(f1)
n∏

i=2

p(fi|f(i−1))

where f is a factor (eg. CCG supertags) and n is
the length of the string. Sequence models over POS
tags or supertags are smaller than language models
because they have restricted lexicons. Higher or-
der, more powerful sequence models can therefore
be used.

Applying multiple factors in the source can lead to
sparse data problems. One solution is to break down
the translation into smaller steps and translate each
factor separately like in the following model where
source words are translated separately to the source
supertags:

t̂ ∝
M∑

m=1

λmhm(sw, tw) +
N∑

n=1

λnhn(sc, tw)

However, in many cases multiple dependencies
are desirable. For instance translating CCG su-
pertags independently of words could introduce er-
rors. Multiple dependencies require some form of
backing off to simpler models in order to cover the
cases where, for instance, the word has been seen in
training, but not with that particular supertag. Dif-
ferent backoff paths are possible, and it would be
interesting but prohibitively slow to apply a strat-
egy similar to generalised parallel backoff (Bilmes
and Kirchhoff, 2003) which is used in factored lan-
guage models. Backoff in factored language mod-
els is made more difficult because there is no ob-
vious backoff path. This is compounded for fac-
tored phrase-based translation models where one has

to consider backoff in terms of factors and n-gram
lengths in both source and target languages. Fur-
thermore, the surface form of a word is probably the
most valuable factor and so its contribution must al-
ways be taken into account. We therefore did not use
backoff and chose to use a log-linear combination of
features and models instead.

Our solution is to extract two translation models:

t̂ ∝
M∑

m=1

λmhm(swc, tw) +
N∑

n=1

λnhn(sw, tw) (4)

One model consists of more specific features m
and would return log probabilities, for example
log2Pr(tw|swc), if the particular word and supertag
had been seen before in training. Otherwise it re-
turns −C, a negative constant emulating log2(0).
The other model consist of more general features
n and always returns log probabilities, for example
log2Pr(tw|sw).

3 CCG and Supertags

CCGs have syntactically rich lexicons and a small
set of combinatory operators which assemble the
parse-trees. Each word in the sentence is assigned a
category from the lexicon. A category may either be
atomic (S, NP etc.) or complex (S\S, (S\NP)/NP
etc.). Complex categories have the general form
α/β or α\β where α and β are themselves cate-
gories. An example of a CCG parse is given:

Peter eats apples

NP (S\NP)/NP NP
>

S\NP
<

S
where the derivation proceeds as follows: “eats”

is combined with “apples” under the operation of
forward application. “eats” can be thought of as a
function that takes a NP to the right and returns a
S\NP. Similarly the phrase “eats apples” can be
thought of as a function which takes a noun phrase
NP to the left and returns a sentence S. This opera-
tion is called backward application.

A sentence together with its CCG categories al-
ready contains most of the information present in a
full parse. Because these categories are lexicalised,
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they can easily be included into factored phrase-
based translation. CCG supertags are categories that
have been provided by a supertagger. Supertags
were introduced by Bangalore (1999) as a way of in-
creasing parsing efficiency by reducing the number
of structures assigned to each word. Clark (2002)
developed a suppertagger for CCG which uses a
conditional maximum entropy model to estimate the
probability of words being assigned particular cat-
egories. Here is an example of a sentence that has
been supertagged in the training corpus:

We all agree on that .

NP NP\NP (S[dcl]\NP)/PP PP/NP NP .

The verb “agree” has been assigned a complex su-
pertag (S[dcl]\NP)/PP which determines the type
and direction of its arguments. This information can
be used to improve the quality of translation.

4 Experiments

The first set of experiments explores the effect of
CCG supertags on the target, translating from Dutch
into English. The last experiment shows the effect
of CCG supertags on the source, translating from
German into English. These language pairs present
a considerable reordering challenge. For example,
Dutch and German have SOV word order in subordi-
nate clauses. This means that the verb often appears
at the end of the clause, far from the position of the
English verb.

4.1 Experimental Setup

The experiments were run using Moses2, an open
source factored statistical machine translation sys-
tem. The SRILM language modelling toolkit (Stol-
cke, 2002) was used with modified Kneser-Ney dis-
counting and interpolation. The CCG supertag-
ger (Clark, 2002; Clark and Curran, 2004) was pro-
vided with the C&C Language Processing Tools3.
The supertagger was trained on the CCGBank in
English (Hockenmaier and Steedman, 2005) and in
German (Hockenmaier, 2006).

The Dutch-English parallel training data comes
from the Europarl corpus (Koehn, 2005) and ex-
cludes the proceedings from the last quarter of 2000.

2see http://www.statmt.org/moses/
3see http://svn.ask.it.usyd.edu.au/trac/candc/wiki

This consists of 855,677 sentences with a maximum
of 50 words per sentence. 500 sentences of tuning
data and the 2000 sentences of test data are taken
from the ACL Workshop on Building and Using Par-
allel Texts4.

The German-English experiments use data from
the NAACL 2006 Workshop on Statistical Machine
Translation5. The data consists of 751,088 sentences
of training data, 500 sentences of tuning data and
3064 sentences of test data. The English and Ger-
man training sets were POS tagged and supertagged
before lowercasing. The language models and the
sequence models were trained on the Europarl train-
ing data. Where not otherwise specified, the POS
tag and supertag sequence models are 5-gram mod-
els and the language model is a 3-gram model.

4.2 Sequence Models Over Supertags

Our first Dutch-English experiment seeks to estab-
lish what effect sequence models have on machine
translation. We show that supertags improve trans-
lation quality. Together with Shen et al. (2006) it is
one of the first results to confirm the potential of the
factored model.

Model BLEU

sw, tw 23.97
sw, twp 24.11
sw, twc 24.42
sw, twpc 24.43

Table 1. The effect of sequence models on Dutch-English
BLEU score. Factors are (w)ords, (p)os tags, (c)cg su-
pertags on the source s or the target t

Table 1 shows that sequence models over CCG su-
pertags in the target (model sw, twc) improves over
the baseline (model sw, tw) which has no supertags.
Supertag sequence models also outperform models
which apply POS tag sequence models (sw, twp)
and, interestingly do just as well as models which
apply both POS tag and supertag sequence mod-
els (sw, twps). Supertags are more informative than
POS tags as they contain the syntactic context of a
word.

These experiments were run with the distortion
limit set to 6. This means that at most 6 words in

4see http://www.statmt.org/wpt05/
5see http://www.statmt.org/wpt06/
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the source sentence can be skipped. We tried setting
the distortion limit to 15 to see if allowing longer
distance reorderings with CCG supertag sequence
models could further improve performance, however
it resulted in a decrease in performance to a BLEU

score of 23.84.

4.3 Manual Analysis
The BLEU score improvement in Table 1 does not
explain how the supertag sequence models affect the
translation process. As suggested by Callison-Burch
et al.(2006) we perform a focussed manual analysis
of the output to see what changes have occurred.

From the test set, we randomly selected 100
sentences which required reordering of verbs: the
Dutch sentences ended with a verb which had to be
moved forward in the English translation. We record
whether or not the verb was correctly translated and
whether it was reordered to the correct position in
the target sentence.

Model Translated Reordered
sw, tw 81 36
sw, twc 87 52

Table 2. Analysis of % correct translation and reordering
of verbs for Dutch-English translation

In Table 2 we can see that the addition of the CCG
supertag sequence model improved both the transla-
tion of the verbs and their reordering. However, the
improvement is much more pronounced for reorder-
ing. The difference in the reordering results is signif-
icant at p < 0.05 using the χ2 significance test. This
shows that the syntactic information in the CCG su-
pertags is used by the model to prefer better word
order for the target sentence.

In Figure 2 we can see two examples of Dutch-
English translations that have improved with the ap-
plication of CCG supertag sequence models. In the
first example the verb “heeft” occurs at the end of the
source sentence. The baseline model (sw, tw) does
not manage to translate “heeft”. The model with the
CCG supertag sequence model (sw, twc) translates it
correctly as “has” and reorders it correctly 4 places
to the left. The second example also shows the se-
quence model correctly translating the Dutch verb at
the end of the sentence “nodig”. One can see that it
is still not entirely grammatical.

The improvements in reordering shown here are
reorderings over a relatively short distance, two or
three positions. This is well within the 5-gram order
of the CCG supertag sequence model and we there-
fore consider this to be local reordering.

4.4 Order of the Sequence Model
The CCG supertags describe the syntactic context
of the word they are attached to. Therefore they
have an influence that is greater in scope than sur-
face words or POS tags. Increasing the order of
the CCG supertag sequence model should also in-
crease the ability to perform longer distance reorder-
ing. However, at some point the reliability of the
predictions of the sequence models is impaired due
to sparse counts.

Model None 1gram 3gram 5gram 7gram
sw, twc 24.18 23.96 24.19 24.42 24.32
sw, twpc 24.34 23.86 24.09 24.43 24.14

Table 3. BLUE scores for Dutch-English models which
apply CCG supertag sequence models of varying orders

In Table 3 we can see that the optimal order for
the CCG supertag sequence models is 5.

4.5 Language Model vs. Supertags
The language model makes a great contribution to
the correct order of the words in the target sentence.
In this experiment we investigate whether by using a
stronger language model the contribution of the se-
quence model will no longer be relevant. The rel-
ative contribution of the language mode and differ-
ent sequence models is investigated for different lan-
guage model n-gram lengths.

Model None 1gram 3gram 5gram 7gram
sw, tw - 21.22 23.97 24.05 24.13
sw, twp 21.87 21.83 24.11 24.25 24.06
sw, twc 21.75 21.70 24.42 24.67 24.60
sw, twpc 21.99 22.07 24.43 24.48 24.42

Table 4. BLEU scores for Dutch-English models which use
language models of increasing n-gram length. Column
None does not apply any language model. Model sw, tw

does not apply any sequence models, and model sw, twpc

applies both POS tag and supertag sequence models.

In Table 4 we can see that if no language model
is present(None), the system benefits slightly from
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source:hij kan toch niet beweren dat hij daar geen exacte informatie over heeft !
reference: how can he say he does not have any precise information ?
sw, tw:he cannot say that he is not an exact information about .
sw, twc: he cannot say that he has no precise information on this !

source: wij moeten hun verwachtingen niet beschamen . meer dan ooit hebben al die landen thans onze bijstand nodig
reference: we must not disappoint them in their expectations , and now more than ever these countries need our help
sw, tw:we must not fail to their expectations , more than ever to have all these countries now our assistance necessary
sw, twc: we must not fail to their expectations , more than ever , those countries now need our assistance

Figure 2. Examples where the CCG supertag sequence model improves Dutch-English translation

having access to all the other sequence models.
However, the language model contribution is very
strong and in isolation contributes more to transla-
tion performance than any other sequence model.
Even with a high order language model, applying
the CCG supertag sequence model still seems to im-
prove performance. This means that even if we use
a more powerful language model, the structural in-
formation contained in the supertags continues to be
beneficial.

4.6 Lexicalised Reordering vs. Supertags

In this experiment we investigate using a stronger
reordering model to see how it compares to the con-
tribution that CCG supertag sequence models make.
Moses implements the lexicalised reordering model
described by Tillman (2004), which learns whether
phrases prefer monotone, inverse or disjoint orienta-
tions with regard to adjacent phrases. We apply this
reordering models to the following experiments.

Model None Lex. Reord.
sw, tw 23.97 24.72
sw, twc 24.42 24.78

Table 5. Dutch-English models with and without a lexi-
calised reordering model.

In Table 5 we can see that lexicalised reorder-
ing improves translation performance for both mod-
els. However, the improvement that was seen us-
ing CCG supertags without lexicalised reordering,
almost disappears when using a stronger reordering
model. This suggests that CCG supertags’ contribu-
tion is similar to that of a reordering model. The lex-
icalised reordering model only learns the orientation
of a phrase with relation to its adjacent phrase, so its
influence is very limited in range. If it can replace

CCG supertags, it suggests that supertags’ influence
is also within a local range.

4.7 CCG Supertags on Source

Sequence models over supertags improve the perfor-
mance of phrase-based machine translation. How-
ever, this is a limited way of leveraging the rich syn-
tactic information available in the CCG categories.
We explore the potential of letting supertags direct
translation by including them as a factor on the
source. This is similar to syntax-directed translation
originally proposed for compiling (Aho and Ullman,
1969), and also used in machine translation (Quirk et
al., 2005; Huang et al., 2006). Information about the
source words’ syntactic function and subcategori-
sation can directly influence the hypotheses being
searched in decoding. These experiments were per-
formed on the German to English translation task,
in contrast to the Dutch to English results given in
previous experiments.

We use a model which combines more specific
dependencies on source words and source CCG su-
pertags, with a more general model which only has
dependancies on the source word, see Equation 4.
We explore two different ways of balancing the sta-
tistical evidence from these multiple sources. The
first way to combine the general and specific sources
of information is by considering features from both
models as part of one large log-linear model. How-
ever, by including more and less informative fea-
tures in one model, we may transfer too much ex-
planatory power to the more specific features. To
overcome this problem, Smith et al. (2006) demon-
strated that using ensembles of separately trained
models and combining them in a logarithmic opin-
ion pool (LOP) leads to better parameter values.
This approach was used as the second way in which
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we combined our models. An ensemble of log-linear
models was combined using a multiplicative con-
stant γ which we train manually using held out data.

t̂ ∝
M∑

m=1

λmhm(swc, tw) + γ

(
N∑

n=1

λnhn(sw, tw)

)

Typically, the two models would need to be nor-
malised before being combined, but here the multi-
plicative constant fulfils this rôle by balancing their
separate contributions. This is the first work sug-
gesting the application of LOPs to decoding in ma-
chine translation. In the future more sophisticated
translation models and ensembles of models will
need methods such as LOPs in order to balance sta-
tistical evidence from multiple sources.

Model BLEU

sw, tw 23.30
swc, tw 19.73
single 23.29
LOP 23.46

Table 6. German-English: CCG supertags are used as a
factor on the source. The simple models are combined in
two ways: either as a single log-linear model or as a LOP
of log-linear models

Table 6 shows that the simple, general model
(model sw, tw) performs considerably better than
the simple specific model, where there are multi-
ple dependencies on both words and CCG supertags
(model swc, tw). This is because there are words in
the test sentence that have been seen before but not
with the CCG supertag. Statistical evidence from
multiple sources must be combined. The first way
to combine them is to join them in one single log-
linear model, which is trained over many features.
This makes finding good weights difficult as the in-
fluence of the general model is greater, and its dif-
ficult for the more specific model to discover good
weights. The second method for combining the in-
formation is to use the weights from the separately
trained simple models and then combine them in a
LOP. Held out data is used to set the multiplicative
constant needed to balance the contribution of the
two models. We can see that this second approach is
more successful and this suggests that it is important

to carefully consider the best ways of combining dif-
ferent sources of information when using ensembles
of models. However, the results of this experiment
are not very conclusive. There is no uncertainty in
the source sentence and the value of modelling it us-
ing CCG supertags is still to be demonstrated.

5 Conclusion

The factored translation model allows for the inclu-
sion of valuable sources of information in many dif-
ferent ways. We have shown that the syntactically
rich CCG supertags do improve the translation pro-
cess and we investigate the best way of including
them in the factored model. Using CCG supertags
over the target shows the most improvement, espe-
cially when using targeted manual evaluation. How-
ever, this effect seems to be largely due to improved
local reordering. Reordering improvements can per-
haps be more reliably made using better reordering
models or larger, more powerful language models.
A further consideration is that supertags will always
be limited to the few languages for which there are
treebanks.

Syntactic information represents embedded
structures which are naturally incorporated into
grammar-based models. The ability of a flat struc-
tured model to leverage this information seems to be
limited. CCG supertags’ ability to guide translation
would be enhanced if the constraints encoded in
the tags were to be enforced using combinatory
operators.
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Abstract

We provide an in-depth analysis of the in-
tegration of an Arabic-to-English translit-
eration system into a general-purpose 
phrase-based statistical machine translation 
system. We study the integration from dif-
ferent aspects and evaluate the improve-
ment that can be attributed to the integra-
tion using the BLEU metric. Our experi-
ments show that a transliteration module 
can help significantly in the situation where 
the test data is rich with previously unseen 
named entities. We obtain 70% and 53% of 
the theoretical maximum improvement we 
could achieve, as measured by an oracle on 
development and test sets respectively for 
OOV words (out of vocabulary source 
words not appearing in the phrase table).

1 Introduction

Transliteration is the practice of transcribing a 
word or text written in one writing system into an-
other writing system. The most frequent candidates 
for transliteration are person names, locations, or-
ganizations and imported words. The lack of a 
fully comprehensive bilingual dictionary including 
the entries for all named entities (NEs) renders the 
task of transliteration necessary for certain natural 
language processing applications dealing with 
named entities. Two applications where translitera-
tion can be particularly useful are machine transla-
tion (MT) and cross lingual information retrieval. 
While transliteration itself is a relatively well-

studied problem, its effect on the aforementioned 
applications is still under investigation.

Transliteration as a self-contained task has its 
own challenges, but applying it to a real applica-
tion introduces new challenges. In this paper we 
analyze the efficacy of integrating a transliteration 
module into a real MT system and evaluate the 
performance.

When working on a limited domain, given a suf-
ficiently large amount of training data, almost all 
of the words in the unseen data (in the same do-
main) will have appeared in the training corpus. 
But this argument does not hold for NEs, because 
no matter how big the training corpus is, there will 
always be unseen names of people and locations. 
Current MT systems either leave such unknown 
names as they are in the final target text or remove 
them in order to obtain a better evaluation score. 
None of these methods can give the reader who is 
not familiar with the source language any informa-
tion about those out-of-vocabulary (OOV) words, 
especially when the source and target languages 
use different scripts. If these words are not names, 
one can usually guess what they are, by using the 
partial information of other parts of speech. But, in 
the case of names, there is no way to determine the 
individual or location the sentence is talking about. 
So, to improve the usability of a translation, it is 
particularly important to handle NEs well.

The importance of NEs is not yet reflected in the 
evaluation methods used in the MT community, 
the most common of which is the BLEU metric. 
BLEU (Papineni et al, 2002) was devised to pro-
vide automatic evaluation of MT output. In this 
metric n-gram similarity of the MT output is com-
puted with one or more references made by human 
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translators. BLEU does not distinguish between 
different words and gives equal weight to all. In 
this paper, we base our evaluation on the BLEU 
metric and show that using transliteration has im-
pact on it (and in some cases significant impact). 
However, we believe that such integration is more 
important for practical uses of MT than BLEU in-
dicates.

Other than improving readability and raising the 
BLEU score, another advantage of using a translit-
eration system is that having the right translation 
for a name helps the language model select a better 
ordering for other words. For example, our phrase 
table1 does not have any entry for “دالس” (Dulles) 
and when running MT system on the plain Arabic 
text we get

and this trip was cancelled […] by the american 
authorities responsible for security at the airport 
دالس .

We ran our MT system twice, once by suggest-
ing “dallas” and another time “dulles” as English 
equivalents for “دالس” and the decoder generated 
the following sentences, respectively:

and this trip was cancelled […] by the american 
authorities responsible for security at the airport 
at dallas .

and this trip was cancelled […] by the american 
authorities responsible for security at dulles air-
port .2

Every statistical MT (SMT) system assigns a 
probability distribution to the words that are seen 
in its parallel training data, including proper names. 
The richer the training data, the higher the chance 
for a given name in the test data to be found in the 
translation tables. In other words, an MT system 
with a relatively rich phrase table is able to trans-
late many of the common names in the test data, 
with all the remaining words being rare and foreign. 
So unlike a self-contained transliteration module, 
which typically deals with a mix of ‘easy’ and 

                                                
1 A table where the conditional probabilities of target 
phrases given source phrases (and vice versa) is kept.
2 Note that the language model can be trained on more 
text, and hence can know more NEs than the translation 
model does.

‘hard’ names, the primary use for a transliteration 
module embedded in an SMT system will be to 
deal with the ‘hard’ names left over after the 
phrase tables have provided translations for the 
‘easy’ ones. That means that when measuring the 
performance improvements caused by embedding 
a transliteration module in an MT system, one 
must keep in mind that such improvements are dif-
ficult to attain: they are won mainly by correctly 
transliterating ‘hard’ names. 

Another issue with OOV words is that some of 
them remained untranslated due to misspellings in 
the source text. For example, we encountered 
 ”ھیثرو“ instead of (”Hthearow“) ”ھثیرو“
(“Heathrow”) or “بریزر” (“Brezer”) instead of 
 .in our development test set (”Bremer“) ”بریمر“

Also, evaluation by BLEU (or a similar auto-
matic metric) is problematic. Almost all of the MT 
evaluations use one or more reference translations 
as the gold standard and, using some metrics, they 
give a score to the MT output. The problem with 
NEs is that they usually have more than a single 
equivalent in the target language (especially if they 
don't originally come from the target language) 
which may or may not have been captured in the 
gold standard. So even if the transliteration module 
comes up with a correct interpretation of a name it 
might not receive credit as far as the limited num-
ber of correct names in the references are con-
cerned.

Our first impression was that having more inter-
pretations for a name in the references would raise 
the transliteration module’s chance to generate at 
least one of them, hence improving the perform-
ance. But, in practice, when references do not 
agree on a name’s transliteration that is the sign of 
an ambiguity. In these cases, the transliteration 
module often suggests a correct transliteration that 
the decoder outputs correctly, but which fails to 
receive credit from the BLEU metric because this 
transliteration is not found in the references. As an 
example, for the name “سویریوس”, four references 
came up with four different interpretations: 
swerios, swiriyus, severius, sweires. A quick query 
in Google showed us another four acceptable in-
terpretations (severios, sewerios, sweirios, saw-
erios).

Machine transliteration has been an active re-
search field for quite a while (Al-Onaizan and 
Knight, 2002; AbdulJaleel and Larkey, 2003; Kle-
mentiev and Roth, 2006; Sproat et al, 2006) but to 
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our knowledge there is little published work on 
evaluating transliteration within a real MT system.

The closest work to ours is described in (Hassan 
and Sorensen, 2005) where they have a list of 
names in Arabic and feed this list as the input text 
to their MT system. They evaluate their system in 
three different cases: as a word-based NE transla-
tion, phrase-based NE translation and in presence 
of a transliteration module. Then, they report the 
BLEU score on the final output. Since their text is 
comprised of only NEs, the BLEU increase is quite 
high. Combining all three models, they get a 24.9 
BLEU point increase over the naïve baseline. The 
difference they report between their best method 
without transliteration and the one including trans-
literation is 8.12 BLEU points for person names 
(their best increase).

In section 2, we introduce different methods for 
incorporating a transliteration module into an MT 
system and justify our choice. In section 3, the 
transliteration module is briefly introduced and we 
explain how we prepared its output for use by the 
MT system. In section 4, an evaluation of the inte-
gration is provided. Finally, section 5 concludes 
the paper.

2 Our Approach

Before going into details of our approach, an 
overview of Portage (Sadat et al, 2005), the 
machine translation system that we used for our 
experiments and some of its properties should be 
provided.

Portage is a statistical phrase-based SMT system 
similar to Pharaoh (Koehn et al, 2003).  Given a 
source sentence, it tries to find the target sentence 
that maximizes the joint probability of a target sen-
tence and a phrase alignment according to a loglin-
ear model. Features in the loglinear model consist 
of a phrase-based translation model with relative-
frequency and lexical probability estimates; a 4-
gram language model using Kneser-Ney smooth-
ing, trained with the SRILM toolkit; a single-
parameter distortion penalty on phrase reordering; 
and a word-length penalty. Weights on the loglin-
ear features are set using Och's algorithm (Och, 
2003) to maximize the system's BLEU score on a 
development corpus. To generate phrase pairs from 
a parallel corpus, we use the "diag-and" phrase 
induction algorithm described in (Koehn et al, 

2003), with symmetrized word alignments gener-
ated using IBM model 2 (Brown et al, 1993).

Portage allows the use of SGML-like markup 
for arbitrary entities within the input text. The 
markup can be used to specify translations 
provided by external sources for the entities, such 
as rule-based translations of numbers and dates, or 
a transliteration module for OOVs in our work. 
Many SMT systems have this capability, so 
although the details given here pertain to Portage, 
the techniques described can be used in many 
different SMT systems.

As an example, suppose we already have two 
different transliterations with their probabilities for 
the Arabic name “محمد”. We can replace every 
occurrence of the “محمد” in the Arabic input text 
with the following:

<NAME target="mohammed|mohamed"
prob=".7|.3"> محمد </NAME>

By running Portage on this marked up text, the 
decoder chooses between entries in its own phrase 
table and the marked-up text. One thing that is 
important for our task is that if the entry cannot be 
found in Portage’s phrase tables, it is guaranteed 
that one of the candidates inside the markup will 
be chosen. Even if none of the candidates exist in 
the language model, the decoder still picks one of 
them, because the system assigns a small arbitrary 
probability (we typically use e-18) as unigram 
probability of each unseen word.

We considered four different methods for 
incorporating the transliteration module into the 
MT system. The first and second methods need an 
NE tagger and the other two do not require any 
external tools.

Method 1: use an NE tagger to extract the 
names in the Arabic input text. Then, run the 
transliteration module on them and assign 
probabilities to top candidates. Use the markup 
capability of Portage and replace each name in the 
Arabic text with the SGML-like tag including 
different probabilities for different candidates. 
Feed the marked-up text to Portage to translate.

Method 2: similar to method 1 but instead of 
using the marked-up text, a new phrase table, only 
containing entries for the names in the Arabic input 
text is built and added to Portage’s existing phrase 
tables. A weight is given to this phrase table and 
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then the decoder uses this phrase table as well as 
its own phrase tables to decide which translation to 
choose when encountering the names in the 
text.  The main difference between methods 1 and 
2 is that in our system, method 2 allows for a bleu-
optimal weight to be learned for the NE phrase 
table, whereas the weight on the rules for method 1 
has to be set by hand.

Method 3: run Portage on the plain Arabic text. 
Extract all untranslated Arabic OOVs and run the 
transliteration module on them. Replace them with 
the top candidate.

Method 4: run Portage on the plain Arabic text. 
Extract all untranslated Arabic OOVs and run the 
transliteration module on them. Replace them with 
SGML-like tags including different probabilities 
for different candidates, as described previously. 
Feed the marked-up text to Portage to translate.

The first two methods need a powerful NE 
tagger with a high recall value. We computed the 
recall value on the development set OOVs using 
two different NE taggers, Tagger A and Tagger B 
(each from a different research group). Taggers A 
and B showed a recall of 33% and 53% respec-
tively, both being low for our purposes. Another 
issue with these two methods is that for many of 
the names the transliteration module will compete 
with the internal phrase table. Our observations 
show that if a name exists in the phrase table, it is 
likely to be translated correctly. In general, 
observed parallel data (i.e. training data) should be 
a more reliable source of information than 
transliteration, encouraging us to use transliteration 
most appropriately as a ‘back-off’ method. In a 
few cases, the Arabic name is ambiguous with a 
common word and is mistakenly translated as such. 
For example, “ھانی ابو نحل” is an Arabic name that 
should be transliterated as “Hani Abu Nahl” but 
since “نحل” also means “solve”, the MT system 
outputs “Hani Abu Solve”. The advantage of the 
first two methods is that they can deal with such 
cases. But considering the noise in the NE 
detectors, handling them increases the risk of 
losing already correct translations of other names.

The third method is simple and easy to use but 
not optimal: it does not take advantage of the 
decoder’s internal features (notably the language 
models) and only picks up the highest scoring 
candidate from the transliteration module.

The fourth method only deals with those words 
that the MT system was unable to deal with and 
had to leave untranslated in the final text. 
Therefore whatever suggestions the transliteration 
module makes do not need to compete with the 
internal phrase tables, which is good because we 
expect the phrase tables to be a more reliable 
source of information. It is guaranteed that the 
translation quality will be improved (in the worst 
case, a bad transliteration is still more informative 
than the original word in Arabic script). Moreover, 
unlike the third method, we take advantage of all 
internal decoder features on the second pass. We 
adopt the fourth method for our experiment. The 
following example better illustrates how this 
approach works:

Example: Suppose we have the following sentence 
in the Arabic input text: 

.بلیر یقبل تقریر ھوتون بالکامل

Portage is run on the Arabic plain text and yields 
the following output:

blair accepts ھوتون report in full .

The Arabic word “ھوتون” (Hutton) is extracted and 
fed to the transliteration module. The 
transliteration module comes up with some English 
candidates, each with different probabilities as 
estimated by the HMM. They are rescaled (as will 
be explained in section 3) and the following 
markup text will be generated to replace the 
untranslated “ھوتون” in the first plain Arabic 
sentence:

<NAME target="hoton|hutton|authon" 
prob="0.1|0.00028|4.64e-05">ھوتون</NAME> 

Portage is then run on this newly marked up text 
(second pass). From now on, with the additional 
guidance of the language models, it is the 
decoder’s task to decide between different markup 
suggestions. For the above example, the following 
output will be generated:

blair accepts hutton report in full .
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3 Transliteration System

In this section we provide a brief overview of the 
embedded transliteration system we used for our 
experiment. For the full description refer to 
(Kashani et al, 2007).

3.1 Three Phase Transliteration

The transliteration module follows the noisy 
channel framework. The adapted spelling-based 
generative model is similar to (Al-Onaizan and 
Knight, 2002). It consists of three consecutive 
phases, the first two using HMMs and the Viterbi 
algorithm, and the third using a number of 
monolingual dictionaries to match the close entries 
or to filter out some invalid candidates from the 
first two phases.

Since in Arabic, the diacritics are usually 
omitted in writing, a name like “محمد” (Mohamed) 
would have an equivalent like “mhmd” if we only 
take into account the written letters. To address 
this issue, we run Viterbi in two different passes 
(each called a phase), using HMMs trained on data 
prepared in different ways.

In phase 1, the system tries to find the best 
transliterations of the written word, without caring 
about what the hidden diacritics would be (in our 
example, mhmd).

In phase 2, given the Arabic input and the output 
candidates from phase 1, the system fills in the 
possible blanks in between using the character-
based language model (yielding “mohamed” as a 
possible output, among others).

To prepare the character-level translation model 
for both phases we adopted an approach similar to 
(AbdulJaleel and Larkey, 2003).

In phase 3, the Google unigram model 
(LDC2006T13 from the LDC catalog) is first used 
to filter out the noise (i.e. those candidates that do 
not exist in the Google unigram are removed from 
the candidate list). Then a combination of some 
monolingual dictionaries of person names is used 
to find close matches between their entries and the 
HMM output candidates based on the Levenshtein 
distance metric.

3.2 Task-specific Changes to the Module

Due to the nature of the task at hand and by 
observing the development test set and its 

references, the following major changes became 
necessary:

Removing Part of Phase Three: By observing the 
OOV words in the development test set, we 
realized that having the monolingual dictionary in 
the pipeline and using the Levensthtein distance as 
a metric for adding the closest dictionary entries to 
the final output, does not help much, mainly 
because OOVs are rarely in the dictionary. So, the 
dictionary part not only slows down the execution 
but would also add noise to the final output (by 
adding some entries that probably are not the 
desired outputs). However, we kept the Google 
unigram filtering in the pipeline.

Rescaling HMM Probabilities: Although the 
transliteration module outputs HMM probability 
score for each candidate, and the MT system also 
uses probability scores, in practice the translitera-
tion scores have to be adjusted.  For example, if 
three consecutive candidates have log probabilities 
-40, -42 and -50, the decoder should be given val-
ues with similar differences in scale, comparable 
with the typical differences in its internal features 
(eg. Language Models). Knowing that the entries 
in the internal features usually have exponential 
differences, we adopted the following conversion 
formula:

p'i = 0.1*(pi/pmax)


Equation 1

where pi = 10(output of HMM for candidate i) and max is the 
best candidate.

We rescale the HMM probability so that the top 
candidate is (arbitrarily) given a probability of p'max

= 0.1.  It immediately follows that the rescaled 
score would be 0.1 * pi / pmax.  Since the decoder
combines its models in a log-linear fashion, we 
apply an exponent  to the HMM probabilities be-
fore scaling them, as way to control the weight of 
those probabilities in decoding.  This yields equa-
tion 1.  Ideally, we would like the weight  to be 
optimized the same way other decoder weights are 
optimized, but our decoder does not support this 
yet, so for this work we arbitrarily set the weight to 
 = 0.2, which seems to work well. For the above 
example, the distribution would be 0.1, 0.039 and 0.001.
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Prefix Detachment: Arabic is a morphologically 
rich language. Even after performing tokenization, 
some words still remain untokenized. If the 
composite word is frequent, there is a chance that it 
exists in the phrase table but many times it does 
not, especially if the main part of that word is a 
named entity. We did not want to delve into the 
details of morphology: we only considered two 
frequent prefixes: “و” (“va” meaning “and”) and 
 If a word starts .(al” determiner in Arabic“) ”ال“
with either of these two prefixes, we detach them 
and run the transliteration module once on the 
detached name and a second time on the whole 
word. The output candidates are merged 
automatically based on their scores, and the 
decoder decides which one to choose.

Keeping the Top 5 HMM Candidates: The 
transliteration module uses the Google unigram 
model to filter out the candidate words that do not 
appear above a certain threshold (200 times) on the 
Internet. This helps eliminate hundreds of 
unwanted sequences of letters. But, we decided to 
keep top-5 candidates on the output list, even if 
they are rejected by the Google unigram model 
because sometimes the transliteration module is
unable to suggest the correct equivalent or in other 
cases the OOV should actually be translated rather 
than transliterated 3 . In these cases, the closest 
literal transliteration will still provide the end user 
more information about the entity than the word in 
Arabic script would.

4 Evaluation

Although there are metrics that directly address NE 
translation performance4, we chose to use BLEU 
because our purpose is to assess NE translation 
within MT, and BLEU is currently the standard 
metric for MT.

                                                
3 This would happen especially for ancient names or 
some names that underwent sophisticated morphologi-
cal transformations (For example, Abraham in English 
and ابراھیم (Ibrahim) in Arabic).
4 NIST’s NE translation task 
(http://www.nist.gov/speech/tests/ace/index.htm) is an 
example.

4.1 Training Data

We used the data made available for the 2006 
NIST Machine Translation Evaluation. Our bilin-
gual training corpus consisted of 4M sentence pairs
drawn mostly from newswire and UN domains. 
We trained one language model on the English half 
of this corpus (137M running words), and another 
on the English Gigaword corpus (2.3G running 
words). For tuning feature weights, we used LDC's 
"multiple translation part 1" corpus, which contains 
1,043 sentence pairs. 

4.2 Test Data

We used the NIST MT04 evaluation set and the 
NIST MT05 evaluation set as our development and 
blind test sets. The development test set consists of 
1353 sentences, 233 of which contain OOVs. 
Among them 100 sentences have OOVs that are 
actually named entities. The blind test set consists 
of 1056 sentences, 189 of them having OOVs and 
131 of them having OOV named entities. The 
number of sentences for each experiment is 
summarized in table 1.

Whole Text OOV 
Sentences

OOV-NE 
Sentences

Dev test set 1353 233 100
Blind test set 1056 189 131

Table 1: Distribution of sentences in test sets.

4.3 Results

As the baseline, we ran the Portage without the 
transliteration module on development and blind 
test sets. The second column of table 2 shows 
baseline BLEU scores. We applied method 4 as 
outlined in section 2 and computed the BLEU 
score, also in order to compare the results we 
implemented method 3 on the same test sets. The 
BLEU scores obtained from methods 3 and 4 are 
shown in columns 3 and 4 of table 2.

baseline Method 3 Method 4 Oracle
Dev 44.67 44.71 44.83 44.90
Blind 48.56 48.62 48.80 49.01

Table 2: BLEU score on different test sets.

Considering the fact that only a small portion of 
the test set has out-of-vocabulary named entities, 

22



we computed the BLEU score on two different 
sub-portions of the test set: first, on the sentences 
with OOVs; second, only on the sentences 
containing OOV named entities. The BLEU 
increase on different portions of the test set is 
shown in table 3.

baseline Method 4
Dev OOV sentences 39.17 40.02

OOV-NE Sentences 44.56 46.31
blind OOV sentences 43.93 45.07

OOV-NE Sentences 42.32 44.87

Table 3: BLEU score on different 
portions of the test sets.

To set an upper bound on how much applying 
any transliteration module can contribute to the 
overall results, we developed an oracle-like 
dictionary for the OOVs in the test sets, which was 
then used to create a markup Arabic text. By 
feeding this markup input to the MT system we 
obtained the result shown in column 5 of table 2. 
This is the performance our system would achieve 
if it had perfect accuracy in transliteration, 
including correctly guessing what errors the human 
translators made in the references.  Method 4 
achieves 70% of this maximum gain on dev, and 
53% on blind.

5 Conclusion

This paper has described the integration of a trans-
literation module into a state-of-the-art statistical 
machine translation (SMT) system for the Arabic 
to English task. The final version of the translitera-
tion module operates in three phases. First, it gen-
erates English letter sequences corresponding to 
the Arabic letter sequence; for the typical case 
where the Arabic omits diacritics, this often means 
that the English letter sequence is incomplete (e.g., 
vowels are often missing). In the next phase, the 
module tries to guess the missing English letters. 
In the third phase, the module uses a huge collec-
tion of English unigrams to filter out improbable or 
impossible English words and names. We de-
scribed four possible methods for integrating this
module in an SMT system. Two of these methods 
require NE taggers of higher quality than those 
available to us, and were not explored experimen-
tally. Method 3 inserts the top-scoring candidate 
from the transliteration module in the translation 

wherever there was an Arabic OOV in the source. 
Method 4 outputs multiple candidates from the
transliteration module, each with a score; the SMT 
system combines these scores with language model 
scores to decide which candidate will be chosen. In 
our experiments, Method 4 consistently outper-
formed Model 3. Note that although we used 
BLEU as the metric for all experiments in this pa-
per, BLEU greatly understates the importance of
accurate transliteration for many practical SMT 
applications.
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Abstract

We investigate different representational
granularities for sub-lexical representation
in statistical machine translation work from
English to Turkish. We find that (i) rep-
resenting both Turkish and English at the
morpheme-level but with some selective
morpheme-grouping on the Turkish side of
the training data, (ii) augmenting the train-
ing data with “sentences” comprising only
the content words of the original training
data to bias root word alignment, (iii) re-
ranking the n-best morpheme-sequence out-
puts of the decoder with a word-based lan-
guage model, and (iv) using model iteration
all provide a non-trivial improvement over
a fully word-based baseline. Despite our
very limited training data, we improve from
20.22 BLEU points for our simplest model
to 25.08 BLEU points for an improvement
of 4.86 points or 24% relative.

1 Introduction
Statistical machine translation (SMT) from English-
to-Turkish poses a number of difficulties. Typo-
logically English and Turkish are rather distant lan-
guages: while English has very limited morphology
and rather fixed SVO constituent order, Turkish is an
agglutinative language with a very rich and produc-
tive derivational and inflectional morphology, and a
very flexible (but SOV dominant) constituent order.
Another issue of practical significance is the lack of
large scale parallel text resources, with no substan-
tial improvement expected in the near future.

In this paper, we investigate different represen-
tational granularities for sub-lexical representation
of parallel data for English-to-Turkish phrase-based

SMT and compare them with a word-based base-
line. We also employ two-levels of language mod-
els: the decoder uses a morpheme based LM while it
is generating an n-best list. The n-best lists are then
rescored using a word-based LM.

The paper is structured as follows: We first briefly
discuss issues in SMT and Turkish, and review re-
lated work. We then outline how we exploit mor-
phology, and present results from our baseline and
morphologically segmented models, followed by
some sample outputs. We then describe discuss
model iteration. Finally, we present a comprehen-
sive discussion of our approach and results, and
briefly discuss word-repair – fixing morphologicaly
malformed words – and offer a few ideas about the
adaptation of BLEU to morphologically complex
languages like Turkish.

2 Turkish and SMT
Our previous experience with SMT into Turkish
(Durgar El-Kahlout and Oflazer, 2006) hinted that
exploiting sub-lexical structure would be a fruitful
avenue to pursue. This was based on the observation
that a Turkish word would have to align with a com-
plete phrase on the English side, and that sometimes
these phrases on the English side could be discontin-
uous. Figure 1 shows a pair of English and Turkish
sentences that are aligned at the word (top) and mor-
pheme (bottom) levels. At the morpheme level, we
have split the Turkish words into their lexical mor-
phemes while English words with overt morphemes
have been stemmed, and such morphemes have been
marked with a tag.

The productive morphology of Turkish implies
potentially a very large vocabulary size. Thus,
sparseness which is more acute when very modest
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Figure 1: Word and morpheme alignments for a pair of English-Turkish sentences

parallel resources are available becomes an impor-
tant issue. However, Turkish employs about 30,000
root words and about 150 distinct suffixes, so when
morphemes are used as the units in the parallel texts,
the sparseness problem can be alleviated to some ex-
tent.

Our approach in this paper is to represent Turk-
ish words with their morphological segmentation.
We use lexical morphemes instead of surface mor-
phemes, as most surface distinctions are man-
ifestations of word-internal phenomena such as
vowel harmony, and morphotactics. With lexi-
cal morpheme representation, we can abstract away
such word-internal details and conflate statistics for
seemingly different suffixes, as at this level of repre-
sentation words that look very different on the sur-
face, look very similar.1 For instance, although the
words evinde ’in his house’ and masasında ’on his
table’ look quite different, the lexical morphemes
except for the root are the same: ev+sH+ndA vs.
masa+sH+ndA.

We should however note that although employ-
ing a morpheme based representations dramatically
reduces the vocabulary size on the Turkish side, it
also runs the risk of overloading distortion mecha-
nisms to account for both word-internal morpheme
sequencing and sentence level word ordering.

The segmentation of a word in general is not
unique. We first generate a representation that con-
tains both the lexical segments and the morpho-
logical features encoded for all possible segmenta-

1This is in a sense very similar to the more general problem
of lexical redundancy addressed by Talbot and Osborne (2006)
but our approach does not require the more sophisticated solu-
tion there.

tions and interpretations of the word. For the word
emeli for instance, our morphological analyzer gen-
erates the following with lexical morphemes brack-
eted with (..):
(em)em+Verb+Pos(+yAlH)ˆDB+Adverb+Since

since (someone) sucked (something)
(emel)emel+Noun+A3sg(+sH)+P3sg+Nom

his/her ambition
(emel)emel+Noun+A3sg+Pnon(+yH)+Acc

ambition (as object of a transitive verb)
These analyses are then disambiguated with a sta-
tistical disambiguator (Yüret and Türe, 2006) which
operates on the morphological features.2 Finally, the
morphological features are removed from each parse
leaving the lexical morphemes.

Using morphology in SMT has been recently ad-
dressed by researchers translation from or into mor-
phologically rich(er) languages. Niessen and Ney
(2004) have used morphological decomposition to
improve alignment quality. Yang and Kirchhoff
(2006) use phrase-based backoff models to translate
words that are unknown to the decoder, by morpho-
logically decomposing the unknown source word.
They particularly apply their method to translating
from Finnish – another language with very similar
structural characteristics to Turkish. Corston-Oliver
and Gamon (2004) normalize inflectional morphol-
ogy by stemming the word for German-English
word alignment. Lee (2004) uses a morphologically
analyzed and tagged parallel corpus for Arabic-
English SMT. Zolmann et al. (2006) also exploit
morphology in Arabic-English SMT. Popovic and
Ney (2004) investigate improving translation qual-

2This disambiguator has about 94% accuracy.
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ity from inflected languages by using stems, suffixes
and part-of-speech tags. Goldwater and McClosky
(2005) use morphological analysis on Czech text to
get improvements in Czech to English SMT. Re-
cently, Minkov et al. (2007) have used morphologi-
cal postprocessing on the output side using structural
information and information from the source side, to
improve SMT quality.

3 Exploiting Morphology
Our parallel data consists mainly of documents in
international relations and legal documents from
sources such as the Turkish Ministry of Foreign Af-
fairs, EU, etc. We process these as follows: (i) We
segment the words in our Turkish corpus into lex-
ical morphemes whereby differences in the surface
representations of morphemes due to word-internal
phenomena are abstracted out to improve statistics
during alignment.3 (ii) We tag the English side us-
ing TreeTagger (Schmid, 1994), which provides a
lemma and a part-of-speech for each word. We then
remove any tags which do not imply an explicit mor-
pheme or an exceptional form. So for instance, if
the word book gets tagged as +NN, we keep book
in the text, but remove +NN. For books tagged as
+NNS or booking tagged as +VVG, we keep book
and +NNS, and book and +VVG. A word like went is
replaced by go +VVD.4 (iii) From these morpholog-
ically segmented corpora, we also extract for each
sentence, the sequence of roots for open class con-
tent words (nouns, adjectives, adverbs, and verbs).
For Turkish, this corresponds to removing all mor-
phemes and any roots for closed classes. For En-
glish, this corresponds to removing all words tagged
as closed class words along with the tags such as
+VVG above that signal a morpheme on an open
class content word. We use this to augment the train-
ing corpus and bias content word alignments, with
the hope that such roots may get a chance to align
without any additional “noise” from morphemes and
other function words.

From such processed data, we compile the data
sets whose statistics are listed in Table 1. One can
note that Turkish has many more distinct word forms
(about twice as many as English), but has much less

3So for example, the surface plural morphemes +ler and
+lar get conflated to +lAr and their statistics are hence com-
bined.

4Ideally, it would have been very desirable to actually do
derivational morphological analysis on the English side, so that
one could for example analyze accession into access plus a
marker indicating nominalization.

Turkish Sent. Words (UNK) Uniq. Words
Train 45,709 557,530 52,897
Train-Content 56,609 436,762 13,767
Tune 200 3,258 1,442
Test 649 10,334 (545) 4,355
English
Train 45,709 723,399 26,747
Train-Content 56,609 403,162 19,791
Test 649 13,484 (231) 3,220

Morph- Uniq. Morp./ Uniq. Uniq.
Turkish emes Morp. Word Roots Suff.
Train 1,005,045 15,081 1.80 14,976 105
Tune 6,240 859 1.92 810 49
Test 18,713 2,297 1.81 2,220 77

Table 1: Statistics on Turkish and English training
and test data, and Turkish morphological structure

number of distinct content words than English.5 For
language models in decoding and n-best list rescor-
ing, we use, in addition to the training data, a mono-
lingual Turkish text of about 100,000 sentences (in
a segmented and disambiguated form).

A typical sentence pair in our data looks like
the following, where we have highlighted the con-
tent root words with bold font, coindexed them to
show their alignments and bracketed the “words”
that evaluation on test would consider.
• T: [kat1 +hl +ma] [ortaklık2 +sh +nhn]
[uygula3 +hn +ma +sh] [,] [ortaklık4]
[anlaşma5 +sh] [çerçeve6 +sh +nda]
[izle7 +hn +yacak +dhr] [.]

• E: the implementation3 of the acces-
sion1 partnership2 will be monitor7

+vvn in the framework6 of the
association4 agreement5 .

Note that when the morphemes/tags (starting with
a +) are concatenated, we get the “word-based”
version of the corpus, since surface words are di-
rectly recoverable from the concatenated represen-
tation. We use this word-based representation also
for word-based language models used for rescoring.

We employ the phrase-based SMT framework
(Koehn et al., 2003), and use the Moses toolkit
(Koehn et al., 2007), and the SRILM language mod-
elling toolkit (Stolcke, 2002), and evaluate our de-
coded translations using the BLEU measure (Pap-
ineni et al., 2002), using a single reference transla-
tion.

5The training set in the first row of 1 was limited to sen-
tences on the Turkish side which had at most 90 tokens (roots
and bound morphemes) in total in order to comply with require-
ments of the GIZA++ alignment tool. However when only the
content words are included, we have more sentences to include
since much less number of sentences violate the length restric-
tion when morphemes/function word are removed.
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Moses Dec. Parms. BLEU BLEU-c
Default 16.29 16.13
dl = -1, -weight-d = 0.1 20.16 19.77

Table 2: BLEU results for baseline experiments.
BLEU is for the model trained on the training set
BLEU-C is for the model trained on training set augmented with
the content words.

3.1 The Baseline System
As a baseline system, we trained a model using
default Moses parameters (e.g., maximum phrase
length = 7), using the word-based training corpus.
The English test set was decoded with both default
decoder parameters and with the distortion limit (-dl
in Moses) set to unlimited (-1 in Moses) and distor-
tion weight (-weight-d in Moses) set to a very low
value of 0.1 to allow for long distance distortions.6

We also augmented the training set with the con-
tent word data and trained a second baseline model.
Minimum error rate training with the tune set did not
provide any tangible improvements.7 Table 2 shows
the BLEU results for baseline performance. It can
be seen that adding the content word training data
actually hampers the baseline performance.

3.2 Fully Morphologically Segmented Model
We now trained a model using the fully morpho-
logically segmented training corpus with and with-
out content word parallel corpus augmentation. For
decoding, we used a 5-gram morpheme-based lan-
guage model with the hope of capturing local mor-
photactic ordering constraints, and perhaps some
sentence level ordering of words.8 We then decoded
and obtained 1000-best lists. The 1000-best sen-
tences were then converted to ”words” (by concate-
nating the morphemes) and then rescored with a 4-
gram word-based language model with the hope of
enforcing more distant word sequencing constraints.
For this, we followed the following procedure: We

6We arrived at this combination by experimenting with the
decoder to avoid the almost monotonic translation we were get-
ting with the default parameters.

7We ran MERT on the baseline model and the morphologi-
cally segmented models forcing -weight-d to range a very small
around 0.1, but letting the other parameters range in their sug-
gested ranges. Even though the procedure came back claiming
that it achieved a better BLEU score on the tune set, running
the new model on the test set did not show any improvement at
all. This may have been due to the fact that the initial choice
of -weight-d along with -dl set to 1 provides such a drastic
improvement that perturbations in the other parameters do not
have much impact.

8Given that on the average we have almost two bound mor-
phemes per “word” (for inflecting word classes), a morpheme
5-gram would cover about 2 “words”.

tried various linear combinations of the word-based
language model and the translation model scores on
the tune corpus, and used the combination that per-
formed best to evaluate the test corpus. We also ex-
perimented with both the default decoding parame-
ters, and the modified parameters used in the base-
line model decoding above.

The results in Table 3 indicate that the default de-
coding parameters used by the Moses decoder pro-
vide a very dismal results – much below the baseline
scores. We can speculate that as the constituent or-
ders of Turkish and English are very different, (root)
words may have to be scrambled to rather long dis-
tances along with the translations of functions words
and tags on the English side, to morphemes on the
Turkish side. Thus limiting maximum distortion
and penalizing distortions with the default higher
weight, result in these low BLEU results. Allowing
the decoder to consider longer range distortions and
penalizing such distortions much less with the mod-
ified decoding parameters, seem to make an enor-
mous difference in this case, providing close to al-
most 7 BLEU points improvement.9

We can also see that, contrary to the case with
the baseline word-based experiments, using the ad-
ditional content word corpus for training actually
provides a tangible improvement (about 6.2% rel-
ative (w/o rescoring)), most likely due to slightly
better alignments when content words are used.10

Rescoring the 1000-best sentence output with a 4-
gram word-based language model provides an addi-
tional 0.79 BLEU points (about 4% relative) – from
20.22 to 21.01 – for the model with the basic train-
ing set, and an additional 0.71 BLEU points (about
3% relative) – from 21.47 to 22.18– for the model
with the augmented training set. The cumulative im-
provement is 1.96 BLEU points or about 9.4% rela-
tive.

3.3 Selectively Segmented Model

A systematic analysis of the alignment files pro-
duced by GIZA++ for a small subset of the train-
ing sentences showed that certain morphemes on the

9The “morpheme” BLEU scores are much higher (34.43
on the test set) where we measure BLEU using decoded mor-
phemes as tokens. This is just indicative and but correlates with
word-level BLEU which we report in Table 3, and can be used
to gauge relative improvements to the models.

10We also constructed phrase tables only from the actual
training set (w/o the content word section) after the alignment
phase. The resulting models fared slightly worse though we do
not yet understand why.
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Moses Dec. Parms. BLEU BLEU-c
Default 13.55 NA
dl = -1, -weight-d = 0.1 20.22 21.47
dl = -1, -weight-d = 0.1
+ word-level LM rescoring 21.01 22.18

Table 3: BLEU results for experiments with fully
morphologically segmented training set

Turkish side were almost consistently never aligned
with anything on the English side: e.g., the com-
pound noun marker morpheme in Turkish (+sh) does
not have a corresponding unit on the English side
since English noun-noun compounds do not carry
any overt markers. Such markers were never aligned
to anything or were aligned almost randomly to to-
kens on the English side. Since we perform deriva-
tional morphological analysis on the Turkish side
but not on the English side, we noted that most ver-
bal nominalizations on the English side were just
aligned to the verb roots on the Turkish side and
the additional markers on the Turkish side indicat-
ing the nominalization and agreement markers etc.,
were mostly unaligned.

For just these cases, we selectively attached such
morphemes (and in the case of verbs, the interven-
ing morphemes) to the root, but otherwise kept other
morphemes, especially any case morphemes, still by
themselves, as they almost often align with preposi-
tions on the English side quite accurately.11

This time, we trained a model on just the content-
word augmented training corpus, with the better per-
forming parameters for the decoder and again did
1000-best rescoring.12 The results for this experi-
ment are shown in Table 4. The resulting BLEU
represents 2.43 points (11% relative) improvement
over the best fully segmented model (and 4.39 points
21.7% compared to the very initial morphologically
segmented model). This is a very encouraging result
that indicates we should perhaps consider a much
more detailed analysis of morpheme alignments to
uncover additional morphemes with similar status.
Table 5 provides additional details on the BLEU

11It should be noted that what to selectively attach to the root
should be considered on a per-language basis; if Turkish were
to be aligned with a language with similar morphological mark-
ers, this perhaps would not have been needed. Again one per-
haps can use methods similar to those suggested by Talbot and
Osborne (2006).

12Decoders for the fully-segmented model and selectively
segmented model use different 5-gram language models, since
the language model corpus should have the same selectively
segmented units as those in the training set. However, the word-
level language models used in rescoring are the same.

Moses Dec. Parms. BLEU-c
dl = -1, -weight-d = 0.1
+ word-level LM rescoring 22.18
(Full Segmentation (from Table 3))
dl = -1, -weight-d = 0.1 23.47
dl = -1, -weight-d = 0.1
+ word-level LM rescoring 24.61

Table 4: BLEU results for experiments with selec-
tively segmented and content-word augmented train-
ing set

Range Sent. BLEU-c
1 - 10 172 44.36
1 - 15 276 34.63
5 - 15 217 33.00
1 - 20 369 28.84
1 - 30 517 27.88
1 - 40 589 24.90

All 649 24.61

Table 5: BLEU Scores for different ranges of
(source) sentence length for the result in Table 4

scores for this model, for different ranges of (En-
glish source) sentence length.

4 Sample Rules and Translations
We have extracted some additional statistics from
the translations produced from English test set. Of
the 10,563 words in the decoded test set, a total of
957 words (9.0 %) were not seen in the training cor-
pus. However, interestingly, of these 957 words, 432
(45%) were actually morphologically well-formed
(some as complex as having 4-5 morphemes!) This
indicates that the phrase-based translation model
is able to synthesize novel complex words.13 In
fact, some phrase table entries seem to capture
morphologically marked subcategorization patterns.
An example is the phrase translation pair
after examine +vvg ⇒

+acc incele+dhk +abl sonra

which very much resembles a typical structural
transfer rule one would find in a symbolic machine
translation system
PP(after examine +vvg NPeng) ⇒

PP(NPturk+acc incele+dhk +abl sonra)

in that the accusative marker is tacked to the
translation of the English NP.

Figure 2 shows how segments are translated to
Turkish for a sample sentence. Figure 3 shows the
translations of three sentences from the test data

13Though whether such words are actually correct in their
context is not necessarily clear.
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çocuk [[ child ]]
hak+lar+sh +nhn [[ +nns +pos right ]]
koru+hn+ma+sh [[ protection ]]
+nhn [[ of ]]
teşvik et+hl+ma+sh [[ promote ]]
+loc [[ +nns in ]] ab [[ eu ]]
ve ulus+lararasi standart +lar

[[ and international standard +nns ]]
+dat uygun [[ line with ]] +dhr . [[ .]]

Figure 2: Phrasal translations selected for a sample
sentence

Inp.: 1 . everyone’s right to life shall be protected by law .
Trans.: 1 . herkesin yaşama hakkı kanunla korunur.
Lit.: everyone’s living right is protected with law .
Ref.: 1 . herkesin yaşam hakkı yasanın koruması altındadır .
Lit.: everyone’s life right is under the protection of the law.

Inp.: promote protection of children’s rights in line with eu and
international standards .
Trans.: çocuk haklarının korunmasının ab ve uluslararası
standartlara uygun şekilde geliştirilmesi.
Lit.: develop protection of children’s rights in accordance with
eu and international standards .
Ref.: ab ve uluslararası standartlar doǧrultusunda çocuk
haklarının korunmasının teşvik edilmesi.
Lit.: in line with eu and international standards pro-
mote/motivate protection of children’s rights .

Inp.: as a key feature of such a strategy, an accession partner-
ship will be drawn up on the basis of previous european council
conclusions.
Trans.: bu stratejinin kilit unsuru bir katılım ortaklıǧı bel-
gesi hazırlanacak kadarın temelinde , bir önceki avrupa konseyi
sonuçlarıdır .
Lit.: as a key feature of this strategy, accession partnership doc-
ument will be prepared ??? based are previous european council
resolutions .
Ref.: bu stratejinin kilit unsuru olarak , daha önceki ab zirve
sonuçlarına dayanılarak bir katılım ortaklıǧı oluşturulacaktır.
Lit.: as a key feature of this strategy an accession partnership
based on earlier eu summit resolutions will be formed .

Figure 3: Some sample translations

along with the literal paraphrases of the translation
and the reference versions. The first two are quite
accurate and acceptable translations while the third
clearly has missing and incorrect parts.

5 Model Iteration
We have also experimented with an iterative ap-
proach to use multiple models to see if further im-
provements are possible. This is akin to post-editing
(though definitely not akin to the much more so-
phisticated approach in described in Simard et al.
(2007)). We proceeded as follows: We used the
selective segmentation based model above and de-
coded our English training data ETrain and English
test data ETest to obtain T1Train and T1Test re-

Step BLEU
From Table 4 24.61
Iter. 1 24.77
Iter. 2 25.08

Table 6: BLEU results for two model iterations

spectively. We then trained the next model using
T1Train and TTrain, to build a model that hopefully
will improve upon the output of the previous model,
T1Test, to bring it closer to TTest. This model when
applied to T1Train and T1Test produce T2Train and
T2Test respectively.

We have not included the content word corpus
in these experiments, as (i) our few very prelimi-
nary experiments indicated that using a morpheme-
based models in subsequent iterations would per-
form worse than word-based models, and (ii) that for
word-based models adding the content word training
data was not helpful as our baseline experiments in-
dicated. The models were tested by decoding the
output of the previous model for original test data.
For word-based decoding in the additional iterations
we used a 3-gram word-based language model but
reranked the 1000-best outputs using a 4-gram lan-
guage model. Table 6 provides the BLEU results for
these experiments corresponding to two additional
model iterations.

The BLEU result for the second iteration, 25.08,
represents a cumulative 4.86 points (24% relative)
improvement over the initial fully morphologically
segmented model using only the basic training set
and no rescoring.

6 Discussion
Translation into Turkish seems to involve processes
that are somewhat more complex than standard sta-
tistical translation models: sometimes words on the
Turkish side are synthesized from the translations
of two or more (SMT) phrases, and errors in any
translated morpheme or its morphotactic position
render the synthesized word incorrect, even though
the rest of the word can be quite fine. If we just
extract the root words (not just for content words
but all words) in the decoded test set and the ref-
erence set, and compute root word BLEU, we ob-
tain 30.62, [64.6/35.7/23.4/16.3]. The unigram pre-
cision score shows that we are getting almost 65% of
the root words correct. However, the unigram pre-
cision score with full words is about 52% for our
best model. Thus we are missing about 13% of the
words although we seem to be getting their roots
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correct. With a tool that we have developed, BLEU+
(Tantuǧ et al., 2007), we have investigated such mis-
matches and have found that most of these are ac-
tually morphologically bogus, in that, although they
have the root word right, the morphemes are either
not the applicable ones or are in a morphotactically
wrong position. These can easily be identified with
the morphological generator that we have. In many
cases, such morphologically bogus words are one
morpheme edit distance away from the correct form
in the reference file. Another avenue that could be
pursued is the use of skip language models (sup-
ported by the SRILM toolkit) so that the content
word order could directly be used by the decoder.14

At this point it is very hard to compare how our re-
sults fare in the grand scheme of things, since there
is not much prior results for English to Turkish SMT.
Koehn (2005) reports on translation from English to
Finnish, another language that is morphologically as
complex as Turkish, with the added complexity of
compounding and stricter agreement between mod-
ifiers and head nouns. A standard phrase-based sys-
tem trained with 941,890 pairs of sentences (about
20 times the data that we have!) gives a BLEU score
of 13.00. However, in this study, nothing specific for
Finnish was employed, and one can certainly em-
ploy techniques similar to presented here to improve
upon this.

6.1 Word Repair
The fact that there are quite many erroneous words
which are actually easy to fix suggests some ideas to
improve unigram precision. One can utilize a mor-
pheme level “spelling corrector” that operates on
segmented representations, and corrects such forms
to possible morphologically correct words in or-
der to form a lattice which can again be rescored
to select the contextually correct one.15 With the
BLEU+ tool, we have done one experiment that
shows that if we could recover all morphologically
bogus words that are 1 and 2 morpheme edit dis-
tance from the correct form, the word BLEU score
could rise to 29.86, [60.0/34.9/23.3/16.] and 30.48
[63.3/35.6/23.4/16.4] respectively. Obviously, these
are upper-bound oracle scores, as subsequent candi-
date generation and lattice rescoring could make er-

14This was suggested by one of the reviewers.
15It would however perhaps be much better if the decoder

could be augmented with a filter that could be invoked at much
earlier stages of sentence generation to check if certain gener-
ated segments violate hard-constraints (such as morphotactic
constraints) regardless of what the statistics say.

rors, but nevertheless they are very close to the root
word BLEU scores above.

Another path to pursue in repairing words is to
identify morphologically correct words which are
either OOVs in the language model or for which
the language model has low confidence. One can
perhaps identify these using posterior probabilities
(e.g., using techniques in Zens and Ney (2006)) and
generate additional morphologically valid words
that are “close” and construct a lattice that can be
rescored.

6.2 Some Thoughts on BLEU
BLEU is particularly harsh for Turkish and the mor-
pheme based-approach, because of the all-or-none
nature of token comparison, as discussed above.
There are also cases where words with different
morphemes have very close morphosemantics, con-
vey the relevant meaning and are almost inter-
changeable:
• gel+hyor (geliyor - he is coming) vs. gel+makta

(gelmekte - he is (in a state of) coming) are essentially
the same. On a scale of 0 to 1, one could rate these at
about 0.95 in similarity.

• gel+yacak (gelecek - he will come) vs. gel+yacak+dhr
(gelecektir - he will come) in a sentence final position.
Such pairs could be rated perhaps at 0.90 in similarity.

• gel+dh (geldi - he came (past tense)) vs. gel+mhs (gelmiş
- he came (hearsay past tense)). These essentially mark
past tense but differ in how the speaker relates to the event
and could be rated at perhaps 0.70 similarity.

Note that using stems and their synonyms as used
in METEOR (Banerjee and Lavie, 2005) could also
be considered for word similarity.

Again using the BLEU+ tool and a slightly dif-
ferent formulation of token similarity in BLEU com-
putation, we find that using morphological similar-
ity our best score above, 25.08 BLEU increases to
25.14 BLEU, while using only root word synonymy
and very close hypernymy from Wordnet, gives us
25.45 BLEU. The combination of rules and Wordnet
match gives 25.46 BLEU. Note that these increases
are much less than what can (potentially) be gained
from solving the word-repair problem above.

7 Conclusions
We have presented results from our investigation
into using different granularity of sub-lexical rep-
resentations for English to Turkish SMT. We have
found that employing a language-pair specific rep-
resentation somewhere in between using full word-
forms and fully morphologically segmented repre-
sentations and using content words as additional
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data provide a significant boost in BLEU scores,
in addition to contributions of word-level rescoring
of 1000-best outputs and model iteration, to give a
BLEU score of 25.08 points with very modest par-
allel text resources. Detailed analysis of the errors
point at a few directions such as word-repair, to im-
prove word accuracy. This also suggests perhaps
hooking into the decoder, a mechanism for imposing
hard constraints (such as morphotactic constraints)
during decoding to avoid generating morphologi-
cally bogus words. Another direction is to introduce
exploitation of limited structures such as bracketed
noun phrases before considering full-fledged syntac-
tic structure.
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Abstract

Current statistical machine translation sys-
tems handle the translation process as the
transformation of a string of symbols into
another string of symbols. Normally the
symbols dealt with are the words in differ-
ent languages, sometimes with some addi-
tional information included, like morpho-
logical data. In this work we try to push
the approach to the limit, working not on the
level of words, but treating both the source
and target sentences as a string of letters.
We try to find out if a nearly unmodified
state-of-the-art translation system is able to
cope with the problem and whether it is ca-
pable to further generalize translation rules,
for example at the level of word suffixes and
translation of unseen words. Experiments
are carried out for the translation of Catalan
to Spanish.

1 Introduction

Most current statistical machine translation systems
handle the translation process as a “blind” transfor-
mation of a sequence of symbols, which represent
the words in a source language, to another sequence
of symbols, which represent words in a target lan-
guage. This approach allows for a relative simplic-
ity of the models, but also has drawbacks, as re-
lated word forms, like different verb tenses or plural-
singular word pairs, are treated as completely differ-
ent entities.

Some efforts have been made e.g. to integrate
more information about the words in the form of Part

Of Speech tags (Popović and Ney, 2005), using addi-
tional information about stems and suffixes (Popović
and Ney, 2004) or to reduce the morphological vari-
ability of the words (de Gispert, 2006). State of the
art decoders provide the ability of handling different
word forms directly in what has been called factored
translation models (Shen et al., 2006).

In this work, we try to go a step further and treat
the words (and thus whole sentences) as sequences
of letters, which have to be translated into a new se-
quence of letters. We try to find out if the trans-
lation models can generalize and generate correct
words out of the stream of letters. For this approach
to work we need to translate between two related
languages, in which a correspondence between the
structure of the words can be found.

For this experiment we chose a Catalan-Spanish
corpus. Catalan is a romance language spoken in the
north-east of Spain and Andorra and is considered
by some authors as a transitional language between
the Iberian Romance languages (e.g. Spanish) and
Gallo-Romance languages (e.g. French). A common
origin and geographic proximity result in a similar-
ity between Spanish and Catalan, albeit with enough
differences to be considered different languages. In
particular, the sentence structure is quite similar in
both languages and many times a nearly monotoni-
cal word to word correspondence between sentences
can be found. An example of Catalan and Spanish
sentences is given in Figure 1.

The structure of the paper is as follows: In Sec-
tion 2 we review the statistical approach to machine
translation and consider how the usual techniques
can be adapted to the letter translation task. In Sec-
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Catalan Perqùe a mi m’agradaria estar-hi dues, una o dues setmanes, més o menys, depenent del
preu i cada hotel.

Spanish Porque a ḿı me gustaŕıa quedarme dos, una o dos semanas, más o menos, dependiendo del
precio y cada hotel.

English Because I would like to be there two, one or two weeks, more or less, depending on the
price of each hotel.

Catalan Si baixa aqúı tenim una guia de la ciutat que li podem facilitar en la que surt informació
sobre els llocs ḿes interessants de la ciutat.

Spanish Si baja aqúı tenemos una guı́a de la ciudad que le podemos facilitar en la que sale infor-
macíon sobre los sitios ḿas interesantes de la ciudad.

English If you come down here we have a guide book of the city that you can use, inthere is
information about the most interesting places in the city.

Figure 1: Example Spanish and Catalan sentences (the English translation is provided for clarity).

tion 3 we present the results of the letter-based trans-
lation and show how to use it for improving transla-
tion quality. Although the interest of this work is
more academical, in Section 4 we discuss possible
practical applications for this approach. The paper
concludes in Section 5.

2 From Words To Letters

In the standard approach to statistical machine trans-
lation we are given a sentence (sequence of words)
fJ
1

= f1 . . . fJ in a source language which is to be
translated into a sentencêeI

1
= ê1 . . . êI in a target

language. Bayes decision rule states that we should
choose the sentence which maximizes the posterior
probability

êI

1
= argmax

eI

1

p(eI

1
|fJ

1
) , (1)

where theargmax operator denotes the search pro-
cess. In the original work (Brown et al., 1993) the
posterior probabilityp(eI

1
|fJ

1
) is decomposed fol-

lowing a noisy-channel approach, but current state-
of-the-art systems model the translation probabil-
ity directly using a log-linear model(Och and Ney,
2002):

p(eI

1
|fJ

1
) =

exp
(

∑

M

m=1
λmhm(eI

1
, fJ

1
)
)

∑

ẽI

1

exp
(

∑

M

m=1
λmhm(ẽI

1
, fJ

1
)
) ,

(2)
with hm different models,λm scaling factors and
the denominator a normalization factor that can be

ignored in the maximization process. Theλm are
usually chosen by optimizing a performance mea-
sure over a development corpus using a numerical
optimization algorithm like the downhill simplex al-
gorithm (Press et al., 2002).

The most widely used models in the log lin-
ear combination are phrase-based models in source-
to-target and target-to-source directions, ibm1-like
scores computed at phrase level, also in source-to-
target and target-to-source directions, a target lan-
guage model and different penalties, like phrase
penalty and word penalty.

This same approach can be directly adapted to the
letter-based translation framework. In this case we
are given a sequence of lettersFJ

1
corresponding

to a source (word) stringfJ
1

, which is to be trans-
lated into a sequence of lettersEI

1
corresponding to

a stringeI
1

in a target language. Note that in this case
whitespaces are also part of the vocabulary and have
to be generated as any other letter. It is also impor-
tant to remark that, without any further restrictions,
the word sequenceseI

1
corresponding to a generated

letter sequenceEI
1

are not even composed of actual
words.

2.1 Details of the Letter-Based System

The vocabulary of the letter-based translation sys-
tem is some orders of magnitude smaller than the
vocabulary of a full word-based translation system,
at least for European languages. A typical vocabu-
lary size for a letter-based system would be around
70, considering upper- and lowercase letter, digits,
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whitespace and punctuation marks, while the vocab-
ulary size of a word-based system like the ones used
in current evaluation campaigns is in the range of
tens or hundreds of thousands words. In a normal
situation there are no unknowns when carrying out
the actual translation of a given test corpus. The sit-
uation can be very different if we consider languages
like Chinese or Japanese.

This small vocabulary size allows us to deal with
a larger context in the models used. For the phrase-
based models we extract all phrases that can be used
when translating a given test corpus, without any
restriction on the length of the source or the tar-
get part1. For the language model we were able to
use a high-ordern-gram model. In fact in our ex-
periments a 16-gram letter-based language model is
used, while state-of-the-art translation systems nor-
mally use 3 or 4-grams (word-based).

In order to better try to generate “actual words”
in the letter-based system, a new model was added
in the log-linear combination, namely the count of
words generated that have been seen in the training
corpus, normalized with the length of the input sen-
tence. Note however that this models enters as an ad-
ditional feature function in the model and it does not
constitute a restriction of the generalization capabil-
ities the model can have in creating “new words”.
Somehow surprisingly, an additional word language
model did not help.

While the vocabulary size is reduced, the average
sentence length increases, as we consider each let-
ter to be a unit by itself. This has a negative impact
in the running time of the actual implementation of
the algorithms, specially for the alignment process.
In order to alleviate this, the alignment process was
split into two passes. In the first part, a word align-
ment was computed (using the GIZA++ toolkit (Och
and Ney, 2003)). Then the training sentences were
split according to this alignment (in a similar way to
the standard phrase extraction algorithm), so that the
length of the source and target part is around thirty
letters. Then, a letter-based alignment is computed.

2.2 Efficiency Issues

Somewhat counter-intuitively, the reduced vocabu-
lary size does not necessarily imply a reduced mem-

1For the word-based system this is also the case.

ory footprint, at least not without a dedicated pro-
gram optimization. As in a sensible implementa-
tions of nearly all natural language processing tools,
the words are mapped to integers and handled as
such. A typical implementation of a phrase table is
then a prefix-tree, which is accessed through these
word indices. In the case of the letter-based transla-
tion, the phrases extracted are much larger than the
word-based ones, in terms of elements. Thus the to-
tal size of the phrase table increases.

The size of the search graph is also larger for
the letter-based system. In most current systems
the generation algorithm is a beam search algorithm
with a “source synchronous” search organization.
As the length of the source sentence is dramatically
increased when considering letters instead of words,
the total size of the search graph is also increased, as
is the running time of the translation process.

The memory usage for the letter system can ac-
tually be optimized, in the sense that the letters can
act as “indices” themselves for addressing the phrase
table and the auxiliary mapping structure is not nec-
essary any more. Furthermore the characters can be
stored in only one byte, which provides a signifi-
cant memory gain over the word based system where
normally four bytes are used for storing the indices.
These gains however are not expected to counteract
the other issues presented in this section.

3 Experimental Results

The corpus used for our experiment was built in the
framework of the LC-STAR project (Conejero et al.,
2003). It consists of spontaneous dialogues in Span-
ish, Catalan and English2 in the tourism and travel-
ling domain. The test corpus (and an additional de-
velopment corpus for parameter optimization) was
randomly extracted, the rest of the sentences were
used as training data. Statistics for the corpus can
be seen in Table 1. Details of the translation system
used can be found in (Mauser et al., 2006).

The results of the word-based and letter-based
approaches can be seen in Table 2 (rows with la-
bel “Full Corpus”). The high BLEU scores (up to
nearly 80%) denote that the quality of the trans-
lation is quite good for both systems. The word-

2The English part of the corpus was not used in our experi-
ments.
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Spanish Catalan
Training Sentences 40 574

Running Words 482 290 485 514
Vocabulary 14 327 12 772
Singletons 6 743 5 930

Test Sentences 972
Running Words 12 771 12 973
OOVs [%] 1.4 1.3

Table 1: Corpus Statistics

based system outperforms the letter-based one, as
expected, but the letter-based system also achieves
quite a good translation quality. Example transla-
tions for both systems can be found in Figure 2. It
can be observed that most of the words generated
by the letter based system are correct words, and in
many cases the “false” words that the system gen-
erates are very close to actual words (e.g. “elos” in-
stead of “los” in the second example of Figure 2).

We also investigated the generalization capabili-
ties of both systems under scarce training data con-
ditions. It was expected that the greater flexibility
of the letter-based system would provide an advan-
tage of the approach when compared to the word-
based approach. We randomly selected subsets of
the training corpus of different sizes ranging from
1 000 sentences to 40 000 (i.e. the full corpus) and
computed the translation quality on the same test
corpus as before. Contrary to our hopes, however,
the difference in BLEU score between the word-
based and the letter-based system remained fairly
constant, as can be seen in Figure 3, and Table 2
for representative training corpus sizes.

Nevertheless, the second example in Figure 2 pro-
vides an interesting insight into one of the possi-
ble practical applications of this approach. In the
example translation of the word-based system, the
word “centreamericans” was not known to the sys-
tem (and has been explicitly marked as unknown in
Figure 2). The letter-based system, however, was
able to correctly learn the translation from “centre-”
to “centro-” and that the ending “-ans” in Catalan
is often translated as “-anos” in Spanish, and thus
a correct translation has been found. We thus chose
to combine both systems, the word-based system do-
ing most of the translation work, but using the letter-

based system for the translation of unknown words.
The results of this combined approach can be found
in Table 2 under the label “Combined System”. The
combination of both approaches leads to a 0.5% in-
crease in BLEU using the full corpus as training ma-
terial. This increase is not very big, but is it over a
quite strong baseline and the percentage of out-of-
vocabulary words in this corpus is around 1% of the
total words (see Table 1). When the corpus size is
reduced, the gain in BLEU score becomes more im-
portant, and for the small corpus size of 1 000 sen-
tences the gain is 2.5% BLEU. Table 2 and Figure 3
show more details.

4 Practical Applications

The approach described in this paper is mainly of
academical interest. We have shown that letter-
based translation is in principle possible between
similar languages, in our case between Catalan and
Spanish, but can be applied to other closely related
language pairs like Spanish and Portuguese or Ger-
man and Dutch. The approach can be interesting for
languages where very few parallel training data is
available.

The idea of translating unknown words in a letter-
based fashion can also have applications to state-of-
the-art translation systems. Nowadays most auto-
matic translation projects and evaluations deal with
translation from Chinese or Arabic to English. For
these language pairs the translation of named en-
tities poses an additional problem, as many times
they were not previously seen in the training data
and they are actually one of the most informative
words in the texts. The “translation” of these enti-
ties is in most cases actually a (more or less pho-
netic) transliteration, see for example (Al-Onaizan
and Knight, 2002). Using the proposed approach for
the translation of these words can provide a tighter
integration in the translation process and hopefully
increase the translation performance, in the same
way as it helps for the case of the Catalan-Spanish
translation for unseen words.

Somewhat related to this problem, we can find an
additional application in the field of speech recog-
nition. The task of grapheme-to-phoneme conver-
sion aims at increasing the vocabulary an ASR sys-
tem can recognize, without the need for additional
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BLEU WER PER
Word-Based System Full Corpus 78.9 11.4 10.6

10k 74.0 13.9 13.2
1k 60.0 21.3 20.1

Letter-Based System Full Corpus 72.9 14.7 13.5
10k 69.8 16.5 15.1
1k 55.8 24.3 22.8

Combined System Full Corpus 79.4 11.2 10.4
10k 75.2 13.4 12.6
1k 62.5 20.2 19.0

Table 2: Translation results for selected corpus sizes. All measures arepercentages.

Source (Cat) Bé, en principi seria per a les vacances de Setmana Santa que són les seg̈uents que tenim
ara, entrant a juliol.

Word-Based Bueno, en principio serı́a para las vacaciones de Semana Santa que son las siguientes que
tenemos ahora, entrando en julio.

Letter-Based Bueno, en principio serı́a para las vacaciones de Semana Santa que son las siguientes que
tenemos ahora, entrando bamos en julio .

Reference Bueno, en principio serı́a para las vacaciones de Semana Santa que son las siguientes que
tenemos ahora, entrando julio.

Source (Cat) Jo li recomanaria per exemple que intentés apropar-se a algun paı́s véı tamb́e com poden ser
els päısos centreamericans, una mica més al nord Panaḿa.

Word-Based Yo le recomendarı́a por ejemplo que intentase acercarse a algún páıs vecino tambíen como
pueden ser los paı́ses UNKNOWNcentreamericans, un poco más al norte Panaḿa.

Letter-Based Yo le recomendarı́a por ejemplo que intentaseo acercarse a algún páıs véı tambíen como
pueden ser elos paı́ses centroamericanos, un poco más al norte Panaḿa.

Combined Yo le recomendarı́a por ejemplo que intentase acercarse a algún páıs vecino tambíen como
pueden ser los paı́ses centroamericanos, un poco más al norte Panaḿa.

Reference Yo le recomendarı́a por ejemplo que intentase acercarse a algún páıs vecino tambíen como
pueden ser los paı́ses centroamericanos, un poco más al norte Panaḿa.

Figure 2: Example translations of the different approaches. For the word-based system an unknown word
has been explicitly marked.
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Figure 3: Translation quality depending of the corpus size.

acoustic data. The problem can be formulated as a
translation from graphemes (“letters”) to a sequence
of graphones (“pronunciations”), see for example
(Bisani and Ney, 2002). The proposed letter-based
approach can also be adapted to this task.

Lastly, a combination of both, word-based and
letter-based models, working in parallel and perhaps
taking into account additional information like base
forms, can be helpful when translating from or into
rich inflexional languages, like for example Spanish.

5 Conclusions

We have investigated the possibility of building a
letter-based system for translation between related
languages. The performance of the approach is quite
acceptable, although, as expected, the quality of the
word-based approach is superior. The combination
of both techniques, however, allows the system to
translate words not seen in the training corpus and
thus increase the translation quality. The gain is spe-
cially important when the training material is scarce.

While the experiments carried out in this work are
more interesting from an academical point of view,

several practical applications has been discussed and
will be the object of future work.
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Abstract

This paper describes a novel model using
dependency structures on the source side
for syntax-based statistical machine transla-
tion: Dependency Treelet String Correspon-
dence Model (DTSC). The DTSC model
maps source dependency structures to tar-
get strings. In this model translation pairs of
source treelets and target strings with their
word alignments are learned automatically
from the parsed and aligned corpus. The
DTSC model allows source treelets and tar-
get strings with variables so that the model
can generalize to handle dependency struc-
tures with the same head word but with dif-
ferent modifiers and arguments. Addition-
ally, target strings can be also discontinuous
by using gaps which are corresponding to
the uncovered nodes which are not included
in the source treelets. A chart-style decod-
ing algorithm with two basic operations–
substituting and attaching–is designed for
the DTSC model. We argue that the DTSC
model proposed here is capable of lexical-
ization, generalization, and handling discon-
tinuous phrases which are very desirable for
machine translation. We finally evaluate our
current implementation of a simplified ver-
sion of DTSC for statistical machine trans-
lation.

1 Introduction

Over the last several years, various statistical syntax-
based models were proposed to extend traditional

word/phrase based models in statistical machine
translation (SMT) (Lin, 2004; Chiang, 2005; Ding
et al., 2005; Quirk et al., 2005; Marcu et al., 2006;
Liu et al., 2006). It is believed that these models
can improve the quality of SMT significantly. Com-
pared with phrase-based models, syntax-based mod-
els lead to better reordering and higher flexibility
by introducing hierarchical structures and variables
which make syntax-based models capable of hierar-
chical reordering and generalization. Due to these
advantages, syntax-based approaches are becoming
an active area of research in machine translation.

In this paper, we propose a novel model based on
dependency structures: Dependency Treelet String
Correspondence Model (DTSC). The DTSC model
maps source dependency structures to target strings.
It just needs a source language parser. In contrast to
the work by Lin (2004) and by Quirk et al. (2005),
the DTSC model does not need to generate target
language dependency structures using source struc-
tures and word alignments. On the source side, we
extract treelets which are any connected subgraphs
and consistent with word alignments. While on the
target side, we allow the aligned target sequences
to be generalized and discontinuous by introducing
variables and gaps. The variables on the target side
are aligned to the corresponding variables of treelets,
while gaps between words or variables are corre-
sponding to the uncovered nodes which are not in-
cluded by treelets. To complete the translation pro-
cess, we design two basic operations for the decod-
ing: substituting and attaching. Substituting is used
to replace variable nodes which have been already
translated, while attaching is used to attach uncov-
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ered nodes to treelets.
In the remainder of the paper, we first define de-

pendency treelet string correspondence in section
2 and describe an algorithm for extracting DTSCs
from the parsed and word-aligned corpus in section
3. Then we build our model based on DTSC in sec-
tion 4. The decoding algorithm and related pruning
strategies are introduced in section 5. We also spec-
ify the strategy to integrate phrases into our model
in section 6. In section 7 we evaluate our current
implementation of a simplified version of DTSC for
statistical machine translation. And finally, we dis-
cuss related work and conclude.

2 Dependency Treelet String
Correspondence

A dependency treelet string correspondenceπ is a
triple < D, S, A > which describes a translation
pair < D, S > and their alignmentA, whereD is
the dependency treelet on the source side andS is
the translation string on the target side.< D,S >
must be consistent with the word alignmentM of
the corresponding sentence pair

∀(i, j) ∈ M, i ∈ D ↔ j ∈ S

A treelet is defined to be any connected subgraph,
which is similar to the definition in (Quirk et al.,
2005). Treelet is more representatively flexible than
subtree which is widely used in models based on
phrase structures (Marcu et al., 2006; Liu et al.,
2006). The most important distinction between the
treelet in (Quirk et al., 2005) and ours is that we al-
low variables at positions of subnodes. In our defini-
tion, the root node must be lexicalized but the subn-
odes can be replaced with a wild card. The target
counterpart of a wildcard node inS is also replaced
with a wild card. The wildcards introduced in this
way generalize DTSC to match dependency struc-
tures with the same head word but with different
modifiers or arguments.

Another unique feature of our DTSC is that we al-
low target strings with gaps between words or wild-
cards. Since source treelets may not cover all subn-
odes, the uncovered subnodes will generate a gap as
its counterpart on the target side. A sequence of con-
tinuous gaps will be merged to be one gap and gaps
at the beginning and the end ofS will be removed
automatically.
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Figure 1: DTSC examples. Note that∗ represents
variable andG represents gap.

Gap can be considered as a special kind of vari-
able whose counterpart on the source side is not
present. This makes the model more flexible to
match more partial dependency structures on the
source side. If only variables can be used, the model
has to match subtrees rather than treelets on the
source side. Furthermore, the positions of variables
on the target side are fixed so that some reorderings
related with them can be recorded in DTSC. The po-
sitions of gaps on the target side, however, are not
fixed until decoding. The presence of one gap and
its position can not be finalized until attaching op-
eration is performed. The introduction of gaps and
the related attaching operation in decoding is the
most important distinction between our model and
the previous syntax-based models.

Figure 1 shows several different DTSCs automat-
ically extracted from our training corpus. The top
left DTSC is totally lexicalized, while the top right
DTSC has one variable and the bottom has two vari-
ables and one gap. In the bottom DTSC, note that
the node© which is aligned to the gapG of the
target string is an uncovered node and therefore not
included in the treelet actually. Here we just want
to show there is an uncovered node aligned with the
gapG.

Each node at the source treelet has three attributes

1. The head word

2. The category, i.e. the part of speech of the head
word

3. The node order which specifies the local order
of the current node relative to its parent node.
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Figure 2: An example dependency tree and its align-
ments

Note that the node order is defined at the context of
the extracted treelets but not the context of the orig-
inal tree. For example, the attributes for the node与
in the bottom DTSC of Figure 1 are{与, P, -1}. For
two treelets, if and only if their structures are iden-
tical and each corresponding nodes share the same
attributes, we say they arematched.

3 Extracting DTSCs

To extract DTSCs from the training corpus, firstly
the corpus must be parsed on the source side and
aligned at the word level. The source structures pro-
duced by the parser are unlabelled, ordered depen-
dency trees with each word annotated with a part-of-
speech. Figure 2 shows an example of dependency
tree really used in our extractor.

When the source language dependency trees and
word alignments between source and target lan-
guages are obtained, the DTSC extraction algorithm
runs in two phases along the dependency trees and
alignments. In the first step, the extractor annotates
each node with specific attributes defined in section
3.1. These attributes are used in the second step
which extracts all possible DTSCs rooted at each
node recursively.

3.1 Node annotation

For each source dependency noden, we define three
attributes: word span, node span and crossed.
Word span is defined to be the target word sequence
aligned with the head word ofn, while node spanis
defined to be the closure of the union of node spans
of all subnodes ofn and its word span. These two at-
tributes are similar to those introduced by Lin (Lin,
2004). The third attributecrossedis an indicator that
has binary values. If the node span ofn overlaps
the word span of its parent node or the node span

of its siblings, thecrossedindicator ofn is 1 and
n is therefore a crossed node, otherwise thecrossed
indicator is 0 andn is a non-crossed node. Only
non-crossed nodes can generate DTSCs because the
target word sequence aligned with the whole subtree
rooted at it does not overlap any other sequences and
therefore can be extracted independently.

For the dependency tree and its alignments shown
in Figure 2, only the node财政 is a crossed node
since its node span ([4,5]) overlaps the word span
([5,5]) of its parent node援助.

3.2 DTSCs extraction

The DTSC extraction algorithm (shown in Figure 3)
runs recursively. For each non-crossed node, the al-
gorithm generates all possible DTSCs rooted at it by
combining DTSCs from some subsets of its direct
subnodes. If one subnoden selected in the com-
bination is a crossed node, all other nodes whose
word/node spans overlap the node span ofn must be
also selected in this combination. This kind of com-
bination is defined to be consistent with the word
alignment because the DTSC generated by this com-
bination is consistent with the word alignment. All
DTSCs generated in this way will be returned to the
last call and outputted. For each crossed node, the
algorithm generates pseudo DTSCs1 using DTSCs
from all of its subnodes. These pseudo DTSCs will
be returned to the last call but not outputted.

During the combination of DTSCs from subnodes
into larger DTSCs, there are two major tasks. One
task is to generate the treelet using treelets from
subnodes and the current node. This is a basic tree
generation operation. It is worth mentioning that
some non-crossed nodes are to be replaced with a
wild card so the algorithm can learn generalized
DTSCs described in section 2. Currently, we re-
place any non-crossed node alone or together with
their sibling non-crossed nodes. The second task
is to combine target strings. The word sequences
aligned with uncovered nodes will be replaced with
a gap. The word sequences aligned with wildcard
nodes will be replaced with a wild card.

If a non-crossed noden hasm direct subnodes,
all 2m combinations will be considered. This will
generate a very large number of DTSCs, which is

1Some words in the target string are aligned with nodes
which are not included in the source treelet.
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DTSCExtractor(Dnode n)
< := ∅ (DTSC container of n)
for each subnodek of n do

R := DTSCExtractor(k)
L := L

⋃
R

end for
if n.crossed! = 1 and there are no subnodes whose span
overlaps the word span ofn then

Create a DTSCπ =< D, S, A > where the dependency
treeletD only contains the noden (not including any chil-
dren of it)
outputπ
for each combinationc of n’s subnodesdo

if c is consistent with the word alignmentthen
Generate all DTSCsR by combining DTSCs (L)
from the selected subnodes with the current noden
< := <⋃

R
end if

end for
output<
return<

else ifn.crossed == 1 then
Create pseudo DTSCsP by combining all DTSCs from
n’s all subnodes.
< := <⋃

P
return<

end if

Figure 3: DTSC Extraction Algorithm.

undesirable for training and decoding. Therefore we
filter DTSCs according to the following restrictions

1. If the number of direct subnodes of noden is
larger than 6, we only consider combining one
single subnode withn each time because in this
case reorderings of subnodes are always mono-
tone.

2. On the source side, the number of direct subn-
odes of each node is limited to be no greater
thanary-limit; the height of treeletD is limited
to be no greater thandepth-limit.

3. On the target side, the length ofS (including
gaps and variables) is limited to be no greater
than len-limit; the number of gaps inS is lim-
ited to be no greater thangap-limit.

4. During DTSC combination, the DTSCs from
each subnode are sorted by size (in descending
order). Only the topcomb-limitDTSCs will be
selected to generate larger DTSCs.

As an example, for the dependency tree and its
alignments in Figure 2, all DTSCs extracted by the

Treelet String

(继续/VV/0) go on
(巴勒斯坦/NR/0) Palestine
(向/P/0) to
(向/P/0 (巴勒斯坦/NR/1)) to Palestine
(向/P/0 (∗/1)) to ∗
(援助/NN/0 (财政/NN/-1)) financial aid
(提供/VV/0) providing
(提供/VV/0 (∗/1)) providing∗
(提供/VV/0 (∗/-1)) providingG ∗
(提供/VV/0 (继续/VV/-1)) go on providing
(提供/VV/0 (∗/-1)) ∗ providing
(提供/VV/0 (∗1/-1) (∗2/1)) providing∗2 ∗1
(提供/VV/0 (∗1/-1 ) (∗2/1)) ∗1 providing∗2

Table 1: Examples of DTSCs extracted from Figure
2. Alignments are not shown here because they are
self-evident.

algorithm with parameters{ ary-limit = 2, depth-
limit = 2, len-limit = 3, gap-limit = 1, comb-limit
= 20} are shown in the table 1.

4 The Model

Given an input dependency tree, the decoder gen-
erates translations for each dependency node in
bottom-up order. For each node, our algorithm will
search allmatched DTSCs automatically learned
from the training corpus by the way mentioned in
section 3. When the root node is traversed, the trans-
lating is finished. This complicated procedure in-
volves a large number of sequences of applications
of DTSC rules. Each sequence of applications of
DTSC rules can derive a translation.

We define a derivationδ as a sequence of appli-
cations of DTSC rules, and letc(δ) ande(δ) be the
source dependency tree and the target yield ofδ, re-
spectively. The score ofδ is defined to be the prod-
uct of the score of the DTSC rules used in the trans-
lation, and timed by other feature functions:

§(δ) =
∏

i

§(i) · plm(e)λ
lm · exp(−λapA(δ)) (1)

where §(i) is the score of theith application of
DTSC rules,plm(e) is the language model score,
and exp(−λapA(δ)) is the attachment penalty,
whereA(δ) calculates the total number of attach-
ments occurring in the derivationδ. The attach-
ment penalty gives some control over the selection
of DTSC rules which makes the model prefer rules
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with more nodes covered and therefore less attach-
ing operations involved.

For the score of DTSC ruleπ, we define it as fol-
lows:

§(π) =
∏

j

fj(π)λj (2)

where thefj are feature functions defined on DTSC
rules. Currently, we used features proved to be ef-
fective in phrase-based SMT, which are:

1. The translation probabilityp(D|S).

2. The inverse translation probabilityp(S|D).

3. The lexical translation probabilityplex(D|S)
which is computed over the words that occur
on the source and target sides of a DTSC rule
by the IBM model 1.

4. The inverse lexical translation probability
plex(S|D) which is computed over the words
that occur on the source and target sides of a
DTSC rule by the IBM model 1.

5. The word penaltywp.

6. The DTSC penaltydp which allows the model
to favor longer or shorter derivations.

It is worth mentioning how to integrate the N-
gram language mode into our DTSC model. During
decoding, we have to encounter many partial transla-
tions with gaps and variables. For these translations,
firstly we only calculate the language model scores
for word sequences in the translations. Later we up-
date the scores when gaps are removed or specified
by attachments or variables are substituted. Each up-
dating involves merging two neighbor substringssl

(left) andsr (right) into one bigger strings. Let the
sequence ofn − 1 (n is the order of N-gram lan-
guage model used) rightmost words ofsl besr

l and
the sequence ofn−1 leftmost words ofsr besl

r. we
have:

LM(s) = LM(sl) + LM(sr) + LM(sr
l s

l
r)

−LM(sr
l )− LM(sl

r) (3)

whereLM is the logarithm of the language model
probability. We only need to compute the increment
of the language model score:

4LM = LM(sr
l s

l
r)− LM(sr

l )− LM(sl
r) (4)

for each noden of the input treeT , in bottom-up orderdo
Get allmatchedDTSCs rooted atn
for eachmatchedDTSCπ do

for each wildcard noden∗ in π do
Substitute the corresponding wildcard on the target
side with translations from the stack ofn∗

end for
for each uncovered noden@ by π do

Attach the translations from the stack ofn@ to the
target side at the attaching point

end for
end for

end for

Figure 4: Chart-style Decoding Algorithm for the
DTSC Model.

Melamed (2004) also used a similar way to integrate
the language model.

5 Decoding

Our decoding algorithm is similar to the bottom-up
chart parsing. The distinction is that the input is a
tree rather than a string and therefore the chart is in-
dexed by nodes of the tree rather than spans of the
string. Also, several other tree-based decoding al-
gorithms introduced by Eisner (2003), Quirk et al.
(2005) and Liu et al. (2006) can be classified as the
chart-style parsing algorithm too.

Our decoding algorithm is shown in Figure 4.
Given an input dependency tree, firstly we generate
the bottom-up order by postorder transversal. This
order guarantees that any subnodes of noden have
been translated before noden is done. For each
noden in the bottom-up order, allmatchedDTSCs
rooted atn are found, and a stack is also built for it to
store the candidate translations. A DTSCπ is said to
match the input dependency subtreeT rooted atn if
and only if there is a treelet rooted atn thatmatches
2 the treelet ofπ on the source side.

For each matched DTSCπ, two operations will
be performed on it. The first one issubstituting
which replaces a wildcard node with the correspond-
ing translated node. The second one isattaching
which attaches an uncovered node toπ. The two op-
erations are shown in Figure 5. For each wildcard
noden∗, translations from the stack of it will be se-
lected to replace the corresponding wildcard on the

2The words, categories and orders of each corresponding
nodes are matched. Please refer to the definition ofmatched
in section 2.
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Attach ⇓
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eeeeeee YYYYYYY

B
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C E
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Figure 5: Substituting and attaching operations for
decoding.Xe is the translation ofX. Node that∗ is
a wildcard node to be substituted and node© is an
uncovered node to be attached.

target side and the scores of new translations will be
calculated according to our model. For each uncov-
ered noden@, firstly we determine where transla-
tions from the stack ofn@ should be attached on the
target side. There are several different mechanisms
for choosing attaching points. Currently, we imple-
ment a heuristic way: on the source side, we find the
noden@

p which is the nearest neighbor ofn@ from
its parent and sibling nodes, then the attaching point
is the left/right of the counterpart ofn@

p on the target
side according to their relative order. As an example,
see the uncovered node© in Figure 5. The nearest
node to it is nodeB. Since node© is at the right
of nodeB, the attaching point is the right ofBe.
One can search all possible points using an ordering
model. And this ordering model can also use infor-
mation from gaps on the target side. We believe this
ordering model can improve the performance and let
it be one of directions for our future research.

Note that the gaps on the target side are not neces-
sarily attaching points in our current attaching mech-
anism. If they are not attaching point, they will be
removed automatically.

The search space of the decoding algorithm is

very large, therefore some pruning techniques have
to be used. To speed up the decoder, the following
pruning strategies are adopted.

1. Stack pruning. We use three pruning ways.
The first one is recombination which converts
the search to dynamic programming. When
two translations in the same stack have the
samew leftmost/rightmost words, wherew de-
pends on the order of the language model, they
will be recombined by discarding the transla-
tion with lower score. The second one is the
threshold pruning which discards translations
that have a score worse thanstack-threshold
times the best score in the same stack. The
last one is the histogram pruning which only
keeps the topstack-limit best translations for
each stack.

2. Node pruning. For each node, we only keep
the top node-limit matched DTSCs rooted at
that node, as ranked by the size of source
treelets.

3. Operation pruning. For each operation, sub-
stituting and attaching, the decoding will gen-
erate a large number of partial translations3

for the current node. We only keep the top
operation-limit partial translations each time
according to their scores.

6 Integrating Phrases

Although syntax-based models are good at dealing
with hierarchical reordering, but at the local level,
translating idioms and similar complicated expres-
sions can be a problem. However, phrase-based
models are good at dealing with these translations.
Therefore, integrating phrases into the syntax-based
models can improve the performance (Marcu et al.,
2006; Liu et al., 2006). Since our DTSC model is
based on dependency structures and lexicalized nat-
urally, DTSCs are more similar to phrases than other
translation units based on phrase structures. This
means that phrases will be easier to be integrated
into our model.

The way to integrate phrases is quite straightfor-
ward: if there is a treelet rooted at the current node,

3There are wildcard nodes or uncovered nodes to be han-
dled.

45



of which the word sequence is continuous and iden-
tical to the source of some phrase, then a phrase-
style DTSC will be generated which uses the target
string of the phrase as its own target. The procedure
is finished during decoding. In our experiments, in-
tegrating phrases improves the performance greatly.

7 Current Implementation

To test our idea, we implemented the dependency
treelet string correspondence model in a Chinese-
English machine translation system. The current im-
plementation in this system is actually a simplified
version of the DTSC model introduced above. In
this version, we used a simple heuristic way for the
operation of attaching rather than a sophisticated sta-
tistical model which can learn ordering information
from the training corpus. Since dependency struc-
tures are more“flattened” compared with phrasal
structures, there are many subnodes which will not
be covered even by generalized matched DTSCs.
This means the attaching operation is very common
during decoding. Therefore better attaching model
which calculates the best point for attaching , we be-
lieve, will improve the performance greatly and is a
major goal for our future research.

To obtain the dependency structures of the source
side, one can parse the source sentences with a de-
pendency parser or parse them with a phrasal struc-
ture parser and then convert the phrasal structures
into dependency structures. In our experiments we
used a Chinese parser implemented by Xiong et
al. (2005) which generates phrasal structures. The
parser was trained on articles 1-270 of Penn Chinese
Treebank version 1.0 and achieved 79.4% (F1 mea-
sure). We then converted the phrasal structure trees
into dependency trees using the way introduced by
Xia (1999).

To obtain the word alignments, we use the way
of Koehn et al. (2005). After running GIZA++
(Och and Ney, 2000) in both directions, we apply
the“grow-diag-final” refinement rule on the in-
tersection alignments for each sentence pair.

The training corpus consists of 31, 149 sentence
pairs with 823K Chinese words and 927K English
words. For the language model, we used SRI Lan-
guage Modeling Toolkit (Stolcke, 2002) to train a
trigram model with modified Kneser-Ney smooth-

Systems BLEU-4
PB 20.88± 0.87
DTSC 20.20± 0.81
DTSC + phrases 21.46± 0.83

Table 2: BLEU-4 scores for our system and a
phrase-based system.

ing on the 31, 149 English sentences. We selected
580 short sentences of length at most 50 characters
from the 2002 NIST MT Evaluation test set as our
development corpus and used it to tuneλs by max-
imizing the BLEU score (Och, 2003), and used the
2005 NIST MT Evaluation test set as our test corpus.

From the training corpus, we learned 2, 729,
964 distinct DTSCs with the configuration{ ary-
limit = 4, depth-limit= 4, len-limit = 15, gap-limit
= 2, comb-limit = 20 }. Among them, 160,694
DTSCs are used for the test set. To run our de-
coder on the development and test set, we setstack-
thrshold = 0.0001,stack-limit = 100, node-limit =
100,operation-limit= 20.

We also ran a phrase-based system (PB) with a
distortion reordering model (Xiong et al., 2006) on
the same corpus. The results are shown in table 2.
For all BLEU scores, we also show the 95% confi-
dence intervals computed using Zhang’s significant
tester (Zhang et al., 2004) which was modified to
conform to NIST’s definition of the BLEU brevity
penalty. The BLEU score of our current system with
the DTSC model is lower than that of the phrase-
based system. However, with phrases integrated, the
performance is improved greatly, and the new BLEU
score is higher than that of the phrase-based SMT.
This difference is significant according to Zhang’s
tester. This result can be improved further using a
better parser (Quirk et al., 2006) or using a statisti-
cal attaching model.

8 Related Work

The DTSC model is different from previous work
based on dependency grammars by Eisner (2003),
Lin (2004), Quirk et al. (2005), Ding et al. (2005)
since they all deduce dependency structures on the
target side. Among them, the most similar work is
(Quirk et al., 2005). But there are still several major
differences beyond the one mentioned above. Our
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treelets allow variables at any non-crossed nodes and
target strings allow gaps, which are not available in
(Quirk et al., 2005). Our language model is calcu-
lated during decoding while Quirk’s language model
is computed after decoding because of the complex-
ity of their decoding.

The DTSC model is also quite distinct from pre-
vious tree-string models by Marcu et al. (2006)
and Liu et al. (2006). Firstly, their models are
based on phrase structure grammars. Secondly, sub-
trees instead of treelets are extracted in their mod-
els. Thirdly, it seems to be more difficult to integrate
phrases into their models. And finally, our model al-
low gaps on the target side, which is an advantage
shared by (Melamed, 2004) and (Simard, 2005).

9 Conclusions and Future Work

We presented a novel syntax-based model using
dependency trees on the source side–dependency
treelet string correspondence model–for statistical
machine translation. We described an algorithm to
learn DTSCs automatically from the training corpus
and a chart-style algorithm for decoding.

Currently, we implemented a simple version of
the DTSC model. We believe that our performance
can be improved greatly using a more sophisticated
mechanism for determining attaching points. There-
fore the most important future work should be to de-
sign a better attaching model. Furthermore, we plan
to use larger corpora for training and n-best depen-
dency trees for decoding, which both are helpful for
the improvement of translation quality.
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Abstract

Evaluation and error analysis of machine
translation output are important but difficult
tasks. In this work, we propose a novel
method for obtaining more details about ac-
tual translation errors in the generated output
by introducing the decomposition of Word
Error Rate (WER) and Position independent
word Error Rate (PER) over different Part-
of-Speech (POS) classes. Furthermore, we
investigate two possible aspects of the use
of these decompositions for automatic er-
ror analysis: estimation of inflectional errors
and distribution of missing words over POS

classes. The obtained results are shown to
correspond to the results of a human error
analysis. The results obtained on the Euro-
pean Parliament Plenary Session corpus in
Spanish and English give a better overview
of the nature of translation errors as well as
ideas of where to put efforts for possible im-
provements of the translation system.

1 Introduction

Evaluation of machine translation output is a very
important but difficult task. Human evaluation is
expensive and time consuming. Therefore a variety
of automatic evaluation measures have been studied
over the last years. The most widely used are Word
Error Rate (WER), Position independent word Error
Rate (PER), the BLEU score (Papineni et al., 2002)
and the NIST score (Doddington, 2002). These mea-
sures have shown to be valuable tools for comparing

different systems as well as for evaluating improve-
ments within one system. However, these measures
do not give any details about the nature of translation
errors. Therefore some more detailed analysis of the
generated output is needed in order to identify the
main problems and to focus the research efforts. A
framework for human error analysis has been pro-
posed in (Vilar et al., 2006), but as every human
evaluation, this is also a time consuming task.

This article presents a framework for calculating
the decomposition of WER and PER over different
POS classes, i.e. for estimating the contribution of
each POS class to the overall word error rate. Al-
though this work focuses on POSclasses, the method
can be easily extended to other types of linguis-
tic information. In addition, two methods for error
analysis using the WER and PER decompositons to-
gether with base forms are proposed: estimation of
inflectional errors and distribution of missing words
over POS classes. The translation corpus used for
our error analysis is built in the framework of the
TC-STAR project (tcs, 2005) and contains the tran-
scriptions of the European Parliament Plenary Ses-
sions (EPPS) in Spanish and English. The translation
system used is the phrase-based statistical machine
translation system described in (Vilar et al., 2005;
Matusov et al., 2006).

2 Related Work

Automatic evaluation measures for machine trans-
lation output are receiving more and more atten-
tion in the last years. The BLEU metric (Pap-
ineni et al., 2002) and the closely related NIST met-
ric (Doddington, 2002) along with WER and PER
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have been widely used by many machine translation
researchers. An extended version of BLEU which
usesn-grams weighted according to their frequency
estimated from a monolingual corpus is proposed
in (Babych and Hartley, 2004). (Leusch et al., 2005)
investigate preprocessing and normalisation meth-
ods for improving the evaluation using the standard
measures WER, PER, BLEU and NIST. The same set
of measures is examined in (Matusov et al., 2005)
in combination with automatic sentence segmenta-
tion in order to enable evaluation of translation out-
put without sentence boundaries (e.g. translation of
speech recognition output). A new automatic met-
ric METEOR (Banerjee and Lavie, 2005) uses stems
and synonyms of the words. This measure counts
the number of exact word matches between the out-
put and the reference. In a second step, unmatched
words are converted into stems or synonyms and
then matched. The TER metric (Snover et al., 2006)
measures the amount of editing that a human would
have to perform to change the system output so that
it exactly matches the reference. The CDER mea-
sure (Leusch et al., 2006) is based on edit distance,
such as the well-known WER, but allows reordering
of blocks. Nevertheless, none of these measures or
extensions takes into account linguistic knowledge
about actual translation errors, for example what is
the contribution of verbs in the overall error rate,
how many full forms are wrong whereas their base
forms are correct, etc. A framework for human error
analysis has been proposed in (Vilar et al., 2006)
and a detailed analysis of the obtained results has
been carried out. However, human error analysis,
like any human evaluation, is a time consuming task.

Whereas the use of linguistic knowledge for im-
proving the performance of a statistical machine
translation system is investigated in many publi-
cations for various language pairs (like for exam-
ple (Nießen and Ney, 2000), (Goldwater and Mc-
Closky, 2005)), its use for the analysis of translation
errors is still a rather unexplored area. Some auto-
matic methods for error analysis using base forms
and POS tags are proposed in (Popović et al., 2006;
Popovíc and Ney, 2006). These measures are based
on differences between WER and PER which are cal-
culated separately for each POS class using subsets
extracted from the original texts. Standard overall
WER and PER of the original texts are not at all

taken into account. In this work, the standard WER

and PER are decomposed and analysed.

3 Decomposition of WER and PER over
POS classes

The standard procedure for evaluating machine
translation output is done by comparing the hypoth-
esis documenthyp with given reference translations
ref , each one consisting ofK sentences (or seg-
ments). The reference documentref consists of
R reference translations for each sentence. Let the
length of the hypothesis sentencehypk be denoted
asNhypk

, and the reference lengths of each sentence
Nref k,r

. Then, the total hypothesis length of the doc-
ument isNhyp =

∑

k Nhypk
, and the total reference

length isNref =
∑

k N∗

ref k
whereN∗

ref k

is defined
as the length of the reference sentence with the low-
est sentence-level error rate as shown to be optimal
in (Leusch et al., 2005).

3.1 Standard word error rates (overview)

The word error rate (WER) is based on the Lev-
enshtein distance (Levenshtein, 1966) - the mini-
mum number of substitutions, deletions and inser-
tions that have to be performed to convert the gen-
erated texthyp into the reference textref . A short-
coming of the WER is the fact that it does not allow
reorderings of words, whereas the word order of the
hypothesis can be different from word order of the
reference even though it is correct translation. In
order to overcome this problem, the position inde-
pendent word error rate (PER) compares the words
in the two sentences without taking the word order
into account. The PER is always lower than or equal
to the WER. On the other hand, shortcoming of the
PER is the fact that the word order can be impor-
tant in some cases. Therefore the best solution is to
calculate both word error rates.

Calculation of WER: The WER of the hypothe-
sishyp with respect to the referenceref is calculated
as:

WER =
1

N∗

ref

K
∑

k=1

min
r

dL(ref k,r, hypk)

where dL(ref k,r, hypk) is the Levenshtein dis-
tance between the reference sentenceref k,r and the
hypothesis sentencehypk. The calculation of WER
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is performed using a dynamic programming algo-
rithm.

Calculation of PER: The PER can be calcu-
lated using the countsn(e, hypk) and n(e, ref k,r)
of a worde in the hypothesis sentencehypk and the
reference sentenceref k,r respectively:

PER =
1

N∗

ref

K
∑

k=1

min
r

dPER(ref k,r, hypk)

where

dPER(ref k,r, hypk) =
1

2

(

|Nref k,r
− Nhypk

|+

∑

e

|n(e, ref k,r) − n(e, hypk)|

)

3.2 WER decomposition over POS classes

The dynamic programming algorithm for WER en-
ables a simple and straightforward identification of
each erroneous word which actually contributes to
WER. Let errk denote the set of erroneous words
in sentencek with respect to the best reference and
p be a POS class. Thenn(p, errk) is the number of
errors inerrk produced by words with POS classp.
It should be noted that for the substitution errors, the
POS class of the involved reference word is taken
into account. POS tags of the reference words are
also used for the deletion errors, and for the inser-
tion errors the POS class of the hypothesis word is
taken. The WER for the word classp can be calcu-
lated as:

WER(p) =
1

N∗

ref

K
∑

k=1

n(p, errk)

The sum over all classes is equal to the standard
overall WER.

An example of a reference sentence and hypothe-
sis sentence along with the corresponding POS tags
is shown in Table 1. The WER errors, i.e. actual
words participating in WER together with their POS

classes can be seen in Table 2. The reference words
involved in WER are denoted as reference errors,
and hypothesis errors refer to the hypothesis words
participating in WER.

Standard WER of the whole sentence is equal
to 4/12 = 33.3%. The contribution of nouns is

reference:
Mister#N Commissioner#N ,#PUN

twenty-four#NUM hours#N
sometimes#ADV can#V be#V too#ADV

much#PRON time#N .#PUN

hypothesis:
Mrs#N Commissioner#N ,#PUN

twenty-four#NUM hours#N is#V
sometimes#ADV too#ADV

much#PRON time#N .#PUN

Table 1: Example for illustration of actual errors: a
POS tagged reference sentence and a corresponding
hypothesis sentence

reference errors hypothesis errors error type
Mister#N Mrs#N substitution
sometimes#ADV is#V substitution
can#V deletion
be#V sometimes#ADV substitution

Table 2: WER errors: actual words which are partici-
pating in the word error rate and their corresponding
POS classes

WER(N) = 1/12 = 8.3%, of verbs WER(V) =
2/12 = 16.7% and of adverbs WER(ADV) =
1/12 = 8.3%

3.3 PER decomposition over POS classes

In contrast to WER, standard efficient algorithms for
the calculation of PER do not give precise informa-
tion about contributing words. However, it is pos-
sible to identify all words in the hypothesis which
do not have a counterpart in the reference, and vice
versa. These words will be referred to as PER errors.

reference errors hypothesis errors
Mister#N Mrs#N
be#V is#V
can#V

Table 3: PER errors: actual words which are partic-
ipating in the position independent word error rate
and their corresponding POS classes

An illustration of PER errors is given in Table 3.
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The number of errors contributing to the standard
PER according to the algorithm described in 3.1 is 3
- there are two substitutions and one deletion. The
problem with standard PER is that it is not possible
to detect which words are the deletion errors, which
are the insertion errors, and which words are the sub-
stitution errors. Therefore we introduce an alterna-
tive PER based measure which corresponds to the
F-measure. Letherrk refer to the set of words in the
hypothesis sentencek which do not appear in the
reference sentencek (referred to as hypothesis er-
rors). Analogously, letrerrk denote the set of words
in the reference sentencek which do not appear in
the hypothesis sentencek (referred to as reference
errors). Then the following measures can be calcu-
lated:

• reference PER (RPER) (similar to recall):

RPER(p) =
1

N∗

ref

K
∑

k=1

n(p, rerrk)

• hypothesis PER (HPER) (similar to precision):

HPER(p) =
1

Nhyp

K
∑

k=1

n(p, herrk)

• F-based PER (FPER):

FPER(p) =
1

N∗

ref + Nhyp

·

·
K

∑

k=1

(n(p, rerrk) + n(p, herrk))

Since we are basically interested in all words with-
out a counterpart, both in the reference and in the
hypothesis, this work will be focused on FPER. The
sum of FPER over all POS classes is equal to the
overall FPER, and the latter is always less or equal
to the standard PER.

For the example sentence presented in Table 1, the
number of hypothesis errorsn(e, herrk) is 2 and the
number of reference errorsn(e, rerrk) is 3 wheree
denotes the word. The number of errors contributing
to the standard PER is 3, since|Nref − Nhyp | = 1
and

∑

e |n(e, ref k) − n(e, hypk)| = 5. The stan-
dard PER is normalised over the reference length

Nref = 12 thus being equal to 25%. The FPER is the
sum of hypothesis and reference errors divided by
the sum of hypothesis and reference length: FPER =
(2 + 3)/(11 + 12) = 5/23 = 21.7%. The contribu-
tion of nouns is FPER(N) = 2/23 = 8.7% and the
contribution of verbs is FPER(V) = 3/23 = 13%.

4 Applications for error analysis

The decomposed error rates described in Section 3.2
and Section 3.3 contain more details than the stan-
dard error rates. However, for more precise informa-
tion about certain phenomena some kind of further
analysis is required. In this work, we investigate two
possible aspects for error analysis:

• estimation of inflectional errors by the use of
FPER errors and base forms

• extracting the distribution of missing words
over POS classes using WER errors, FPER er-
rors and base forms.

4.1 Inflectional errors

Inflectional errors can be estimated using FPER

errors and base forms. From each reference-
hypothesis sentence pair, only erroneous words
which have the common base forms are taken
into account. The inflectional error rate of each POS

class is then calculated in the same way as FPER.
For example, from the PER errors presented in Ta-
ble 3, the words “is” and “be” are candidates for an
inflectional error because they are sharing the same
base form “be”. Inflectional error rate in this exam-
ple is present only for the verbs, and is calculated in
the same way as FPER, i.e. IFPER(V) = 2/23 =
8.7%.

4.2 Missing words

Distribution of missing words over POS classes can
be extracted from the WER and FPER errors in the
following way: the words considered as missing are
those which occur as deletions in WER errors and
at the same time occur only as reference PER errors
without sharing the base form with any hypothesis
error. The use of both WER and PER errors is much
more reliable than using only the WER deletion er-
ros because not all deletion errors are produced by
missing words: a number of WER deletions appears
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due to reordering errors. The information about the
base form is used in order to eliminate inflectional
errors. The number of missing words is extracted for
each word class and then normalised over the sum of
all classes. For the example sentence pair presented
in Table 1, from the WER errors in Table 2 and the
PER errors in Table 3 the word “can” will be identi-
fied as missing.

5 Experimental settings

5.1 Translation System

The machine translation system used in this work
is based on the statistical aproach. It is built as
a log-linear combination of seven different statisti-
cal models: phrase based models in both directions,
IBM1 models at the phrase level in both directions,
as well as target language model, phrase penalty and
length penalty are used. A detailed description of the
system can be found in (Vilar et al., 2005; Matusov
et al., 2006).

5.2 Task and corpus

The corpus analysed in this work is built in the
framework of the TC-STAR project. The training
corpus contains more than one million sentences and
about 35 million running words of the European Par-
liament Plenary Sessions (EPPS) in Spanish and En-
glish. The test corpus contains about 1 000 sentences
and 28 000 running words. The OOV rates are low,
about 0.5% of the running words for Spanish and
0.2% for English. The corpus statistics can be seen
in Table 4. More details about the EPPSdata can be
found in (Vilar et al., 2005).

TRAIN Spanish English

Sentences 1 167 627
Running words 35 320 646 33 945 468
Vocabulary 159 080 110 636

TEST

Sentences 894 1 117
Running words 28 591 28 492
OOVs 0.52% 0.25%

Table 4: Statistics of the training and test corpora
of the TC-STAR EPPS Spanish-English task. Test
corpus is provided with two references.

6 Error analysis

The translation is performed in both directions
(Spanish to English and English to Spanish) and the
error analysis is done on both the English and the
Spanish output. Morpho-syntactic annotation of the
English references and hypotheses is performed us-
ing the constraint grammar parser ENGCG (Vouti-
lainen, 1995), and the Spanish texts are annotated
using the FreeLing analyser (Carreras et al., 2004).
In this way, all references and hypotheses are pro-
vided with POS tags and base forms. The decom-
position of WER and FPER is done over the ten
main POS classes: nouns (N), verbs (V), adjectives
(A), adverbs (ADV), pronouns (PRON), determiners
(DET), prepositions (PREP), conjunctions (CON),
numerals (NUM) and punctuation marks (PUN). In-
flectional error rates are also estimated for each POS

class using FPER counts and base forms. Addition-
ally, details about the verb tense and person inflec-
tions for both languages as well as about the adjec-
tive gender and person inflections for the Spanish
output are extracted. Apart from that, the distribu-
tion of missing words over the ten POS classes is
estimated using the WER and FPER errors.

6.1 WER and PER (FPER) decompositions

Figure 1 presents the decompositions of WER and
FPER over the ten basic POS classes for both lan-
guages. The largest part of both word error rates
comes from the two most important word classes,
namely nouns and verbs, and that the least critical
classes are punctuations, conjunctions and numbers.

Adjectives, determiners and prepositions are sig-
nificantly worse in the Spanish output. This is partly
due to the richer morphology of the Spanish lan-
guage. Furthermore, the histograms indicate that the
number of erroneus nouns and pronouns is higher
in the English output. As for verbs, WER is higher
for English and FPER for Spanish. This indicates
that there are more problems with word order in the
English output, and more problems with the correct
verb or verb form in the Spanish output.

In addition, the decomposed error rates give an
idea of where to put efforts for possible improve-
ments of the system. For example, working on im-
provements of verb translations could reduce up to
about 10% WER and 7% FPER, working on nouns
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Figure 1: Decomposition of WER and FPER [%]
over the ten basic POSclasses for English and Span-
ish output

up to 8% WER and 5% FPER, whereas there is no
reason to put too much efforts on e.g. adverbs since
this could lead only to about 2% of WER and FPER

reduction.1

6.2 Inflectional errors

Inflectional error rates for the ten POS classes are
presented in Figure 2. For the English language,
these errors are significant only for two POSclasses:
nouns and verbs. The verbs are the most problem-
atic category in both languages, for Spanish having
almost two times higher error rate than for English.
This is due to the very rich morphology of Spanish
verbs - one base form might have up to about fourty
different inflections.

1Reduction of FPER leads to a similar reduction of PER.
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Figure 2: Inflectional error rates [%] for English and
Spanish output

Nouns have a higher error rate for English than
for Spanish. The reason for this difference is not
clear, since the noun morphology of neither of the
languages is particularly rich - there is only distinc-
tion between singular and plural. One possible ex-
planation might be the numerous occurences of dif-
ferent variants of the same word, like for example
“Mr” and “Mister”.

In the Spanish output, two additional POS classes
are showing significant error rate: determiners and
adjectives. This is due to the gender and number in-
flections of those classes which do not exist in the
English language - for each determiner or adjective,
there are four variants in Spanish and only one in En-
glish. Working on inflections of Spanish verbs might
reduce approximately 2% of FPER, on English verbs
about 1%. Improvements of Spanish determiners
could lead up to about 2% of improvements.

6.2.1 Comparison with human error analysis

The results obtained for inflectional errors are
comparable with the results of a human error anal-
ysis carried out in (Vilar et al., 2006). Although it
is difficult to compare all the numbers directly, the
overall tendencies are the same: the largest num-
ber of translation errors are caused by Spanish verbs,
and much less but still a large number of errors by
English verbs. A much smaller but still significant
number of errors is due to Spanish adjectives, and
only a few errors of English adjectives are present.

Human analysis was done also for the tense and
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person of verbs, as well as for the number and gen-
der of adjectives. We use more detailed POS tags in
order to extract this additional information and cal-
culate inflectional error rates for such tags. It should
be noted that in contrast to all previous error rates,
these error rates are not disjunct but overlapping:
many words are contributing to both.

The results are shown in Figure 3, and the tenden-
cies are again the same as those reported in (Vilar
et al., 2006). As for verbs, tense errors are much
more frequent than person errors for both languages.
Adjective inflections cause certain amount of errors
only in the Spanish output. Contributions of gender
and of number are aproximately equal.
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A numberA genderV personV tense

inflectional errors of verbs and adjectives [%]
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Figure 3: More details about inflections: verb tense
and person error rates and adjective gender and num-
ber error rates [%]

6.3 Missing words

Figure 4 presents the distribution of missing words
over POS classes. This distribution has a same be-
haviour as the one obtained by human error analysis.
Most missing words for both languages are verbs.
For English, the percentage of missing verbs is sig-
nificantly higher than for Spanish. The same thing
happens for pronouns. The probable reason for this
is the nature of Spanish verbs. Since person and
tense are contained in the suffix, Spanish pronouns
are often omitted, and auxiliary verbs do not exist
for all tenses. This could be problematic for a trans-
lation system, because it processes only one Spanish
word which actually contains two (or more) English
words.
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Figure 4: Distribution of missing words over POS

classes [%] for English and Spanish output

Prepositions are more often missing in Spanish
than in English, as well as determiners. A probable
reason is the disproportion of the number of occur-
rences for those classes between two languages.

7 Conclusions

This work presents a framework for extraction of lin-
guistic details from standard word error rates WER

and PER and their use for an automatic error analy-
sis. We presented a method for the decomposition of
standard word error rates WER and PER over ten ba-
sic POS classes. We also carried out a detailed anal-
ysis of inflectional errors which has shown that the
results obtained by our method correspond to those
obtained by a human error analysis. In addition, we
proposed a method for analysing missing word er-
rors.

We plan to extend the proposed methods in order
to carry out a more detailed error analysis, for ex-
ample examining different types of verb inflections.
We also plan to examine other types of translation
errors like for example errors caused by word order.
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Abstract

In order to simultaneously translate speech
into multiple languages an extension of
stochastic finite-state transducers is pro-
posed. In this approach the speech trans-
lation model consists of a single network
where acoustic models (in the input) and the
multilingual model (in the output) are em-
bedded.

The multi-target model has been evaluated
in a practical situation, and the results have
been compared with those obtained using
several mono-target models. Experimental
results show that the multi-target one re-
quires less amount of memory. In addition, a
single decoding is enough to get the speech
translated into multiple languages.

1 Introduction

In this work we deal with finite-state models which
constitute an important framework in syntactic pat-
tern recognition for language and speech processing
applications (Mohri et al., 2002; Pereira and Riley,
1997). One of their outstanding characteristics is the
availability of efficient algorithms for both optimiza-
tion and decoding purposes.

Specifically, stochastic finite-state transducers
(SFSTs) have proved to be useful for machine trans-
lation tasks within restricted domains. There are
several approaches implemented over SFSTs which
range from word-based systems (Knight and Al-
Onaizan, 1998) to phrase-based systems (Pérez et
al., 2007). SFSTs usually offer high speed during

the decoding step and they provide competitive re-
sults in terms of error rates. In addition, SFSTs have
proved to be versatile models, which can be easily
integrated with other finite-state models, such as a
speech recognition system for speech-input transla-
tion purposes (Vidal, 1997). In fact, the integrated
architecture has proved to work better than the de-
coupled one. Our main goal is, hence, to extend
and assess these methodologies to accomplish spo-
ken language multi-target translation.

As far as multilingual translation is concerned,
there are two main trends in machine translation de-
voted to translate an input string simultaneously into
m languages (Hutchins and Somers, 1992): inter-
lingua and parallel transfer. The former has his-
torically been a knowledge-based technique that re-
quires a deep-analysis effort, and the latter consists
on m decoupled translators in a parallel architec-
ture. These translators can be either knowledge or
example-based. On the other hand, in (González
and Casacuberta, 2006) an example based technique
consisting of a single SFST that cope with multiple
target languages was presented. In that approach,
when translating an input sentence, only one search
through the multi-target SFST is required, instead of
the m independent decoding processes required by
the mono-target translators.

The classical layout for speech-input multi-target
translation includes a speech recognition system in
a serial architecture with m decoupled text-to-text
translators. Thus, this architecture entails a decod-
ing stage of the speech signal into the source lan-
guage text, and m further decoding stages to trans-
late the source text into each of the m target lan-
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guages. If we supplant the m translators with the
multi-target SFST, the problem would be reduced to
2 searching stages. Nevertheless, in this paper we
propose a natural way for acoustic models to be in-
tegrated in the multilingual network itself, in such
a way that the input speech signal can be simulta-
neously decoded and translated into m target lan-
guages. As a result, due to the fact that there is just
a single searching stage, this novel approach entails
less computational cost.

The remainder of the present paper is structured
as follows: section 2 describes both multi-target SF-
STs and the inference algorithm from training ex-
amples; in section 3 a novel integrated architecture
for speech-input multi-target translation is proposed;
section 4 presents a practical application of these
methods, including the experimental setup and the
results they produced; finally, section 5 summarizes
the main conclusions of this work.

2 Multi-target stochastic finite-state
transducers

A multi-target SFST is a generalization of standard
SFSTs, in such a way that every input string in the
source language results in a tuple of output strings
each being associated to a different target language.

2.1 Definition

A multi-target stochastic finite-state transducer is a
tuple T = 〈Σ,∆1 . . .∆m, Q, q0, R, F, P 〉, where:

Σ is a finite set of input symbols (source vocabu-
lary);

∆1 . . .∆m are m finite sets of output symbols (tar-
get vocabularies);

Q is a finite set of states;

q0 ∈ Q is the initial state;

R ⊆ Q×Σ×∆∗1 . . .∆
∗
m×Q is a set of transitions

such as (q, w, p̃1, . . . , p̃m, q
′), which is a tran-

sition from the state q to the state q′, with the
source symbol w and producing the substrings
(p̃1, . . . , p̃m);

P : R → [0, 1] is the transition probability distri-
bution;

F : Q → [0, 1] is the final state probability distri-
bution;

The probability distributions satisfy the stochastic
constraint:

∀q ∈ Q (1)

F (q)+
∑

w,p̃1,...,p̃m,q′
P (q, w, p̃1, . . . , p̃m, q

′) = 1

2.2 Training the multilingual translation model
Both topology and parameters of an SFST can
be learned fully automatically from bilingual ex-
amples making use of underlying alignment mod-
els (Casacuberta and Vidal, 2004). Furthermore,
a multi-target SFST can be inferred from a multi-
lingual set of samples (González and Casacuberta,
2006). Even though in realistic situations multilin-
gual corpora are too scarce, recent works (Popović
et al., 2005) show that bilingual corpora covering the
same domain are sufficient to obtain generalized cor-
pora based on which one can subsequently create the
required collections of aligned tuples.

The inference algorithm, GIAMTI (grammatical
inference and alignments for multi-target transducer
inference), requires a multilingual corpus, that is, a
finite set of multilingual samples (s, t1, . . . , tm) ∈
Σ∗×∆∗1×· · ·×∆∗m, where ti denotes the translation
of the source sentence s into the i-th target language;
Σ denotes the source language vocabulary, and ∆i

the i-th target language vocabulary; the algorithm
can be outlined as follows:

1. Each multilingual sample is transformed into
a single string from an extended vocabulary
(Γ ⊆ Σ × ∆∗1 × · · · × ∆∗m) using a labeling
function (Lm). This transformation searches an
adequate monotonic segmentation for each of
the m source-target language pairs on the basis
of bilingual alignments such as those given by
GIZA++ (Och, 2000). A monotonic segmen-
tation copes with monotonic alignments, that
is, j < k ⇒ aj < ak following the notation
of (Brown et al., 1993). Each source token,
which can be either a word or a phrase (Pérez
et al., 2007), is then joined with a target phrase
of each language as the corresponding segmen-
tation suggests. Each extended symbol consists
of a token from the source language plus zero
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(b) Spanish-English

0 1temperaturas | temperatura | NIL 2maximas | maximoak | high temperatures
minimas | minimoak | low temperatures 3en | NIL | NIL 5descenso | jaitsiko da | falling

ascenso | igoko da | rising

(c) Multi-target SFST from Spanish into English and Basque.

Figure 1: Example of a trilingual alignment over a trilingual sentence extracted from the task under consid-
eration;the related multi-target SFST (with Spanish as input, and English and Basque as output).

or more words from each target language in
their turn.

2. Once the set of multilingual samples has been
converted into a set of single extended strings
(z ∈ Γ∗), a stochastic regular grammar can be
inferred. Specifically, in this work we deal with
k-testable in the string-sense grammars (Garcı́a
and Vidal, 1990), which are considered to be
a syntactic approach of the n-gram models. In
addition, they allow the integration of several
order models in a single smoothed automa-
ton (Torres and Varona, 2001).

3. The extended symbols associated with the
transitions of the automaton are transformed
into one input token and m output phrases
(w/p̃1| . . . |p̃m) by the inverse labeling function
(L−m), leading to the required transducer.

Example An illustration of the inference of the
multi-target SFST can be shown over a couple of
simple trilingual sentences from the corpus (where
“B” stands for Basque, “S” for Spanish and “E” for
English):

1-B tenperatura maximoa jaitsiko da

1-S temperaturas máximas en descenso

1-E high temperatures falling

2-B tenperatura minimoa igoko da

2-S temperaturas mı́nimas en ascenso

2-E low temperatures rising

From the alignments, depicted in Figures 1(a)
and 1(b), an input-language-synchronized
monotonous segmentation can be built (bear in
mind that we are considering Spanish as the input
language). The corresponding extended strings with
the following constituents for the first and second
samples respectively are the following ones:

1 temperaturas|tenperatura|λ
mı́nimas|minimoa|low temperatures
en|λ|λ
descenso|jaitsiko da|falling
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2 temperaturas|tenperatura|λ
máximas|maximoa|high temperatures
en|λ|λ
ascenso|igoko da|rising

Finally, from this representation of the data, the
multi-target SFST can be built as shown in Fig-
ure 1(c).

2.3 Decoding

Given an input string s (a sentence in the source lan-
guage), the decoding module has to search the opti-
mal m output strings tm ∈ ∆∗1 × · · · ×∆∗m (a sen-
tence in each of the target language) according to the
underlying translation model (T ):

t̂m = arg max
tm∈∆∗1×···×∆∗m

PT (s, tm) (2)

Solving equation (2) is a hard computational prob-
lem, however, it can be efficiently computed under
the so called maximum approach as follows:

PT (s, tm) ≈ max
φ(s,tm)

PT (φ(s, tm)) (3)

where φ(s, tm) is a translation form, that is, a se-
quence of transitions in the multi-target SFST com-
patible with both the input and the m output strings.

φ(s, tm) : (q0, w1, p̃
m
1 , q1) · · · (qJ−1, wJ , p̃

m
J , qJ)

The input string (s) is a sequence of J input sym-
bols, s = wJ1 , and each of the m output strings
consists of J phrases in its corresponding language
tm = (t1, · · · , tm) = (p̃1)J1 , · · · , (p̃m)J1 . Thus, the
probability supplied by the multi-target SFST to the
translation form is given by:

PT (φ(s, tm)) = F (qJ)
J∏
j=1

P (qj−1, wj , p̃
m
j , qj)

(4)
In this context, the Viterbi algorithm can be used

to obtain the optimal sequence of states through the
multi-target SFST for a given input string. As a
result, the established m translations are built con-
catenating the (J) output phrases for each language
through the optimal path.

3 An embedded architecture for
speech-input multi-target translation

3.1 Statistical framework

Given the acoustic representation (x) of a speech
signal, the goal of multi-target speech translation
is to find the most likely m target strings (tm);
that is, one string (ti) per target language involved
(i ∈ {1, . . . ,m}). This approach is summarized
in eq. (5), where the hidden variable s can be in-
terpreted as the transcription of the speech signal:

t̂m = arg max
tm

P (tm|x) = arg max
tm

∑
s

P (tm, s|x)

(5)
Making use of Bayes’ rule, the former expression

turns into:

t̂m = arg max
tm

∑
s

P (tm, s)P (x|tm, s) (6)

Empirically, there is no loss of generality if we as-
sume that the acoustic signal representation depends
only on the source string, i.e. P (x|tm, s) is inde-
pendent of tm. In this sense, eq. (6) can be rewritten
as:

t̂m = arg max
tm

∑
s

P (tm, s)P (x|s) (7)

Equation (7) combines a standard acoustic model,
P (x|s), and a multi-target translation model,
P (tm, s), both of whom can be integrated on the fly
during the searching routine as shown in Figure 2.
That is, each acoustic sub-network is only expanded
at decoding time when it is required.

The outer sum is computationally very expensive
to search for the optimal tuple of target strings tm

in an effective way. Thus we make use of the so
called Viterbi approximation, which finds the best
path over the whole transducer.

3.2 Practical issues

The underlying recognizer used in this work is our
own continuous-speech recognition system, which
implements stochastic finite-state models at all lev-
els: acoustic-phonetic, lexical and syntactic, and
which allows to infer them based on samples.

The signal analysis was carried out in a stan-
dard way, based on the classical Mel-cepstrum
parametrization. Each phone-like unit was modeled
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1 /e/ | NIL | NIL 2/n/ | NIL | NIL

Figure 2: Integration on the fly of acoustic models in one edge of the SFST shown in Figure 1(c)

by a typical left to right hidden Markov model. A
phonetically-balanced Spanish database, called Al-
bayzin (Moreno et al., 1993), was used to train these
models.

The lexical model consisted of the extended to-
kens of the multi-target SFST instead of running
words. The acoustic transcription for each extended
token was automatically obtained on the basis of the
input projection of each unit, that is, the Spanish vo-
cabulary in this case.

Instead of the usual language model, we make use
of the multi-target SFST itself, which had the syn-
tactic structure provided by a k-testable in the strict
sense model, with k=3, and Witten-Bell smoothing.
Note that the SFST implicitly involves both input
and output language models.

4 Experimental results

4.1 Task and corpus

The described general methodology has been put
into practice in a highly practical application that
aims to translate on-line TV weather forecasts into
several languages, taking the speech of the presen-
ter as the input and producing as output text-strings,
or sub-titles, in several languages. For this purpose,
we used the corpus METEUS which consists of a
set of trilingual sentences, in English, Spanish and
Basque, as extracted from weather forecast reports
that had been published on the Internet. Let us no-
tice that it is a real trilingual corpus, which they are
usually quite scarce.

Basque is a pre-Indoeuropean language of still
unknown origin. It is a minority language, spo-
ken in a small area of Europe and also within some
small American communities (such as that in Reno,
Nevada). In the Basque Country (located in the
north of Spain) it has an official status along with
Spanish. However, despite having coexisted for cen-
turies in the same area, they differ greatly both in

syntax and in semantics. Hence, efforts are being
devoted nowadays to machine translation tools in-
volving these two languages (Alegria et al., 2004),
although they are still scarce. With regard to the or-
der of the phrases within a sentence, the most com-
mon one in Basque is Subject plus Objects plus Verb
(even though some alternative structures are also ac-
cepted), whereas in Spanish and English other con-
structions such as Subject plus Verb plus Objects are
more frequent (see Figures 1(a) and 1(b)). Another
difference between Basque and Spanish or English
is that Basque is an extremely inflected language.

In this experiment we intend to translate Span-
ish speech simultaneously into both Basque and En-
glish. Just by having a look at the main features of
the corpus in Table 1, we can realize that there are
substantial differences among these three languages,
in terms both of the size of the vocabulary and of the
amount of running words. These figures reveal the
agglutinant nature of the Basque language in com-
parison with English or Spanish.

Spanish Basque English

Tr
ai

ni
ng

Total sentences 14,615
Different sentences 7,225 7,523 6,634
Words 191,156 187,462 195,627
Vocabulary 702 1,147 498
Average Length 13.0 12.8 13.3

Te
st

Sentences 500
Words 8,706 8,274 9,150
Average Length 17.4 16.5 18.3
Perplexity (3grams) 4.8 6.7 5.8

Table 1: Main features of the METEUS corpus.

With regard to the speech test, the input consisted
of the speech signal recorded by 36 speakers, each
one reading out 50 sentences from the test-set in Ta-
ble 1. That is, each sentence was read out by at least
three speakers. The input speech resulted in approx-
imately 3.50 hours of audio signal. Needless to say,
the application that we envisage has to be speaker-
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independent if it is to be realistic.

4.2 System evaluation
The performance obtained by the acoustic integra-
tion has been experimentally tested for both multi-
target and mono-target devices. As a matter of com-
parison, text-input translation results are also re-
ported.

The multi-target SFST was learned from the train-
ing set described in Table 1 using the previously de-
scribed GIAMTI algorithm. The 500 test sentences
were then translated by the multi-target SFST. The
translation provided by the system in each language
was compared to the corresponding reference sen-
tence. Additionally, two mono-target SFSTs were
inferred with their outputs for the aforementioned
test to be taken as baseline. The evaluation includes
both computational cost and performance of the sys-
tem.

4.2.1 Computational cost
The expected searching time and the amount of

memory that needs to be allocated for a given model
are two key parameters to bear in mind in speech-
input machine translation applications. These val-
ues can be objectively measured in terms of the size
and on the average branching factor of the model
displayed in Table 2.

multi-target mono-target
S2B S2E

Nodes 52,074 35,034 20,148
Edges 163,146 115,526 69,690
Branching factor 3.30 3.13 3.46

Table 2: Features of multi-target model and the two
decoupled mono-target models (one for Spanish to
Basque translation, referred to as S2B, and the sec-
ond for Spanish to English, S2E).

Adding the edges up for the two mono-target SF-
STs that take part in the decoupled architecture (see
Table 2), we conclude that the decoupled model
needs a total of 185, 216 edges to be allocated in
memory, which represents an increment of 13%
in memory-space with respect to the multi-target
model.

On the other hand, the multi-target approach of-
fers a slightly smaller branching factor than each
mono-target approach. As a result, fewer paths have

to be explored with the multi-target approach than
with the decoupled one, which suggests that search-
ing for a translation might be faster. As a matter of
fact, experimental results in Table 3 show that the
mono-target architecture works 11% more slowly
than the multi-target one for speech-input machine
translation and decoding, and 30% for text to text
translation.

Time (s)

multi-target mono-target
S2B+S2E

Text-input 0.36 0.47
Speech-input 16.9 18.9

Table 3: Average time needed to translate each input
sentence into two languages.

Summarizing, in terms of computational cost
(space and time), a multi-target SFST performs bet-
ter than the mono-target decoupled system.

4.2.2 Performance
So far, the capability of the systems has been as-

sessed in terms of time and spatial costs. However,
the quality of the translations they provide is, doubt-
less, the most relevant evaluation criterion. In or-
der to determine the performance of the system in
a quantitative manner, the following evaluation pa-
rameters were computed for each scenario: bilingual
evaluation under study (BLEU), position indepen-
dent error rate (PER) and word error rate (WER).
Both text and speech-input translation results pro-
vided by the multi-target and the mono-target mod-
els respectively are shown in Table 4.

As can be derived from the translation results,
for text-input translation the classical approach per-
forms slightly better than the multi-target one, but
for speech-input translation from Spanish into En-
glish is the other way around. In any case, the dif-
ferences in performance are marginal.

Comparing the text-input with the speech-input
results we realize that, as could be expected, the pro-
cess of speech signal decoding is itself introducing
some errors. In an attempt to measure these errors,
the text transcription of the recognized input signal
was extracted and compared to the input reference
in terms of WER as shown in the last row of the Ta-
ble 4. Note that even though the input sentences are
the same the three results differ due to the fact that
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we are making use of different SFST models that de-
code and translate at the same time.

multi-target mono-target
S2B S2E S2B S2E

Te
xt BLEU 42.7 66.7 43.4 67.8

PER 39.9 19.9 38.2 19.0
WER 48.0 27.5 46.2 26.6

Sp
ee

ch

BLEU 39.5 59.0 39.2 61.1
PER 42.2 25.3 41.5 23.6
WER 51.5 33.9 50.5 31.9
recognition WER 10.7 9.3 9.1

Table 4: Text-input and speech-input translation re-
sults for Spanish into Basque (S2B) and Spanish into
English (S2E) using a multi-target SFST (columns
on the left) or two mono-target SFSTs (columns on
the right). The last row shows Spanish speech de-
coding results using each of the three devices.

In these series of experiments the same task has
been compared with two extremely different lan-
guage pairs under the same conditions. There is a
noticeable difference in terms of quality between the
English and the Basque translations. The underlying
reason might be due to the fact that SFST models
do not capture properly the rich morphology of the
Basque as they have to face long-distance reordering
issues. These differences in the performance of the
system when translating into English or into Basque
have been previously detected in other works (Or-
tiz et al., 2003). In our case, a manual review of the
models and the obtained translations encourage us to
make use of reordering models in future work, since
they have proved to report good results in a similar
framework (Kanthak et al., 2005).

5 Concluding remarks and further work

The main contribution of this paper is the proposal
of a fully embedded architecture for multiple speech
translation. Thus, acoustic models are integrated on
the fly into a multi-target translation model. The
most significant feature of this approach is its abil-
ity to carry out both the recognition and the transla-
tion into multiple languages integrated in a unique
model. Due to the finite-state nature of this model,
the speech translation engine is based on a Viterbi-
like algorithm.

In contrast to the mono-target systems, multi-
target SFSTs enable the translation from one source

language simultaneously into several target lan-
guages with lower computational costs (in terms
of space and time) and comparable qualitative re-
sults. Moreover, the integration of several languages
and acoustic models is straightforward on means of
finite-state devices.

Nevertheless, the integrated architecture needs
more parameters to be estimated. In fact, as the
amount of targets increase the data sparseness might
become a difficult problem to cope with. In future
work we intend to make a deeper study on the per-
formance of the multi-target system with regard to
the amount of parameters to be estimated. In ad-
dition, as the first step of the learning algorithm is
decisive, we are planning to make use of reordering
models in an attempt to face up to with long dis-
tance reordering and in order to homogenize all the
languages involved.
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Abstract 

We propose a novel syntax-based model 
for statistical machine translation in which 
meta-structure (MS) and meta-structure se-
quence (SMS) of a parse tree are defined. 
In this framework, a parse tree is decom-
posed into SMS to deal with the structure 
divergence and the alignment can be recon-
structed at different levels of recombination 
of MS (RM). RM pairs extracted can per-
form the mapping between the sub-
structures across languages.  As a result, 
we have got not only the translation for the 
target language, but an SMS of its parse 
tree at the same time. Experiments with 
BLEU metric show that the model signifi-
cantly outperforms Pharaoh, a state-art-the-
art phrase-based system. 

1 Introduction 

The statistical approach has been widely used in 
machine translation, which use the noisy-channel-
based model. A joint probability model, proposed 
by Marcu and Wong (2002), is a kind of phrase-
based one. Och and Ney (2004) gave a framework 
of alignment templates for this kind of models. All 
of the phrase-based models outperformed the 
word-based models, by automatically learning 
word and phrase equivalents from bilingual corpus 
and reordering at the phrase level. But it has been 
found that phrases longer than three words have 
little improvement in the performance (Koehn, 
2003). Above the phrase level, these models have a 
simple distortion model that reorders phrases inde-
pendently, without consideration of their contents 

and syntactic information. 
In recent years, applying different statistical 

learning methods to structured data has attracted 
various researchers. Syntax-based MT approaches 
began with Wu (1997), who introduced the Inver-
sion Transduction Grammars. Utilizing syntactic 
structure as the channel input was introduced into 
MT by Yamada (2001). Syntax-based models have 
been presented in different grammar formalisms. 
The model based on Head-transducer was pre-
sented by Alshawi (2000). Daniel Gildea (2003) 
dealt with the problem of the parse tree isomor-
phism with a cloning operation to either tree-to-
string or tree-to-tree alignment models. Ding and 
Palmer (2005) introduced a version of probabilistic 
extension of Synchronous Dependency Insertion 
Grammars (SDIG) to deal with the pervasive 
structure divergence. All these approaches don’t 
model the translation process, but formalize a 
model that generates two languages at the same 
time, which can be considered as some kind of tree 
transducers. Graehl and Knight (2004) described 
the use of tree transducers for natural language 
processing and addressed the training problems for 
this kind of transducers.  

In this paper, we define a model based on the 
MS decomposition of the parse trees for statistical 
machine translation, which can capture structural 
variations and has a proven generation capacity. 
During the translation process of our model, the 
parse tree of the source language is decomposed 
into different levels of MS and then transformed 
into the ones of the target language in the form of 
RM. The source language can be reordered accord-
ing to the structure transformation. At last, the tar-
get translation string is generated in the scopes of 
RM. In the framework of this model,  
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Figure 1: MS and the SMS and RM for a given parser tree 

 
the RM transformation can be regarded as produc-
tion rules and be extracted automatically from the 
bilingual corpus. The overall translation probabil-
ity is thus decomposed.  

In the rest of this paper, we first give the 
definitions for MS, SMS, RM and the 
decomposition of the parse tree in section 2.1, we 
give a detailed description of our model in section 
2.2, section 3 describes the training details and 
section 4 describes the decoding algorithms, and 
then the experiment (section 5) proves that our 
model can outperform the baseline model, 
pharaoh, under the same condition.  

2 The model 

2.1 MS for a parse tree 

      A source language sentence (s1 s2 s3 s4 s5 s6), 
and its parse tree S-P, are given in Figure 1.We 
also give the translation of the sentence, which is 
illustrated as (t1 t2 t3).Its parse tree is T-P.  

Definition 1 
MS of a parse tree  
We call a sub-tree a MS of a parse tree, if it sat-

isfies the following constraints: 
1. An MS should be a sub-tree of a parse tree 
2. Its direct sons of the leaf nodes in the sub-

tree are the words or punctuations of the sen-
tence  

For example, each of the sub-trees in the right- 
hand of Figure 1 is an MS for the parse tree of S-P.  

 The sub-tree of [I [G, D, H]] of S-P is not an MS, 
because the direct sons of the leaf nodes, G, D, H,  

are not words in the sentence of (s1 s2 s3 s4 s5 
s6).  

Definition 2 SMS and RM 
A sequence of MS is called a meta-structure 

sequence (SMS) of a parse tree if and only if,   
1. Its elements are MS of the parse tree 
2. The parse tree can be reconstructed with the 
elements in the same order as in the sequence. 
  It is denoted as SMS [T(S)].1 Two examples 

for the concept of SMS can be found in Figure1. 
RM(recombination of MS) is a sub-sequence 

of SMS. We can express an SMS as differ-
ent )]([1 STRM k .The parse tree of S-P in Figure1 
is decomposed into SMS and expressed in the 
framework of RM. The two RM, ][2

1 PSRM − , 
are used to express its parse tree in Figure1.It is 
noted that there is structure divergence between 
the two parse trees in Figure1. The corresponding 
node of Node I in the tree S-P cannot be found in 
the tree T-P. But under the conception of RM, the 
structure alignments can be achieved at the level 
of RM, which is illustrated in Figure2. 

 
Figure2.The RM alignments for S-P and T-P 

                                                 
1 T[S] denotes the parse tree of a given sentence  
   f and e denote the foreign and target sentences 
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  In Figure2, both of the parse trees are decom-
posed and reconstructed in the forms of RM. The 
alignments based on RM are illustrated at the 
same time. 

2.2 Description of the model   

In the framework of Statistical machine transla-
tion, the task is to find the sentence e for the given 
foreign language f, which can be described in the 
following formulation.  

)}|(max{arg
~

fePe
e

=                     (1) 

To make the model have the ability to model 
the structure transformation, some hidden vari-
ables are introduced into the probability equation. 
To make the equations simple to read, we take 
some denotations different from the above defini-
tions. SMS[T(S)] is denoted as SM[T(S)].  

The first variable is the SM[T(S)], we induce 
the equation as follows， 

 
∑=

))((
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))],([|()|)]([(
)]([
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                 （2） 
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))],([)],(SM[|( ffTSMeTeP                  (3)  
 

 In order to simplify this model we have two as-
sumptions: 

An assumption is that the generation of SMS [T 
(e)] is only related with SMS[T(f)]: 

))],([|)]([( ffTSMeTSMP  
)])([|)]([( fTSMeTSMP≡  

                                                                            (4)  
Here we do all segmentations for any SMS 

of [T (f)] to get different )]([1 fTRM k . 
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                                                                    (5) 

The use of RM is to decompose bi-lingual 
parse trees and get the alignments in different 
hierarchical levels of the structure. 

Now we have another assumption that all 
)|)]([( ffTSMP should have the same prob-

abilityα . A simplified form for this model is 
derived:  

=)|( feP  
×∑ ∑ α

))(( ))((fTSM eTSM

))],([)],([|(

)])([|)]([(
)]([ 1

ffTRMeTRMeP

fTRMeTRMP

ii

fTRM

k

i
ii

×

∑ ∏
=

  

                                                                        (6) 
, Where ))],([)],([|( ffTRMeTRMeP ii can be re-
garded as a lexical transformation process, which 
will be further decomposed. 
   In order to model the direct translation process 
better by extending the feature functions, the di-
rect translation probability is obtained in the 
framework of maximum entropy model: 
 
( )

( )
( )∑ ∑
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                                                                            (7) 
We can achieve the translation according to 

the function below: 
 

( ){ }∑ =
=

M

m mm
ffTSMeTSMee h1

)],([)],([,exp[maxarg~ λ       

                                                                             (8) 
A detailed list of the feature functions for the 

model and some explanations are given as below: 
 Just as the derivation in the model, we take 

into consideration of the structure trans-
formation when selecting the features. The 
MS are combined in the forms of RM and 
transformed as a whole structure. 

 ( ) ∏
=

=
k

i
ii fTRMeTRMPfeh

1
1 )])([|)]([(log,                                 

                                                                            (9) 

( ) ∏
=

=
k

i
ii eTRMfTRMPfeh

1
2 )])([|)]([(log,     

                                                                         (10) 
 Features to model lexical transformation 

processes, and its inverted version, where 
the symbol L (RMi [T(S)]) denotes the 
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words belonging to this sub-structure in the 
sentence. In Figure1, L (RM1) denotes the 
words, s1 s2 s3, in the source language. 
This part of transformation happens in the 
scope of each RM, which means that all 
the words in any RM can be transformed 
into the target language words just in the 
way of phrase-based model, serving as an-
other reordering factor at a different level: 

 
( ) ∏

=

=
k

i
ii fTRMLeTRMLPfeh

1
3

)])([(|)]))([((log,  

                                                                           (11) 
( ) ∏

=

=
k

i
ii eTRMLfTRMLPfeh

1
4 )])([(|)]))([((log,  

                                                                           (12) 
 We define a 3-gram model for the RM of 

the target language, which is called a struc-
ture model according to the function of it 
in this model.  

 
( ) )])([)],([|)]([(log, 12
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                                                                           (13) 
        This feature can model the recombination of 

the parse structure of the target sentences.  For 
example in Figure3, ),|( BBAACCP  is used to de-
scribe the probability of the RM sequence, (AA, 
BB) should be followed by RM (CC) in  the 
translation process. This function can ensure 
that a more reasonable sub-tree can be generated 
for the target language. That would be explained 
further in section 3. 

                

 
    Figure3. The 3-gram structure model   

    
 The 3-gram language model is also used  

 
( ) )(log,

6
ePfeh =                                                                    

(14) 
The phrase-based model (Koehn, 2003) is a 

special case of this framework, if we take the 
whole structure of the parse tree as the only MS of 

the parse tree of the sentence, and set some special 
feature weights to zero. 

From the description above, we know the 
framework of this model. When transformed to 
target languages, the source language is reordered 
at the RM level first. In this process, only the 
knowledge of the structure is taken into 
consideration. It is obvious that a lot of sentences 
in the source language can have the same RM. So 
this model has better generative ability. At the 
same time, RM is a subsequence of SMS, which 
consists of different hierarchical MS. So RM is a 
structure, which can model the structure mapping 
across the sub-tree structure. By decomposing the 
source parse tree, the isomorphic between the 
parse trees can be obtained, at the level of RM. 

When reordering at the RM level, this model 
just takes an RM as a symbol, and it can perform a 
long distance reordering job according to the 
knowledge of RM alignments.  

3 Training        

For training the model, a parallel tree corpus is 
needed. The methods and details are described as 
follows:  

3.1 Decomposition of the parse tree 

To reduce the amount of MS used in decoding 
and training, we take some constrains for the MS. 

（1）.The height of the sub-tree shouldn’t be 
greater than a fixed valueα  ; 

    （ 2）.  β≥−
)(

)(
heightN

nodesLeafN
 

Given a parse tree, we get the initial SMS in 
such a top -down and left- to –right way.  

Any node is deleted if the sub-tree can’t satisfy 
the constrains (1), (2). 

 
 Figure3. Decomposition of a parse tree 
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RMS for Ch-Parse Tree  RMS for EN-Parse Tree Pro for transformation 
AP[AP[AP[a-a]-usde]-m] NPB [DT-JJ-NN-PUNC.] 0.000155497 
AP[AP[AP[r-a]-usde]-m] NPB[PDT-DT-JJ-NN] 0.0151515 
AP[AP[BMP[m-q]-a]-usde] wj ADVP [RB-RB-PUNC.] 0.00344828 
AP[AP[BMP[m-q]-a]-usde] wj DT CD JJ NNS PUNC 0.0833333 
AP[AP[BMP[m-q]-a]-usde] wj DT JJ NN NNS PUNC. 0.015625 

Table 1 some examples of the RM transformation  
 

RM1            RM2 RM3 P(RM3|RM1,RM2)
IN  NP-A[NPB[PRP-NN] IN 0.2479237 
NPB NP-A[NPB[PRP-NN] VBZ 0.2479235 
IN NP-A[NPB[PRP-NN] MD 0.6458637 
<s> NP-A[NPB[PRP-NN] VBD 0.904308 

Table 2 Examples for the 3-gram structure model of RM 
 
Generate all of the SMS by deleting a node in 

any Ms to generate new SMS, applying the same 
operation to any SMS 

3.2 Parallel SMS and Estimation of the pa-
rameters for RM transformations 

We can get bi-lingual SMS by recombining all 
the possible SMS obtained from the parallel 
parse trees. nm ∗  Parallel SMS can be obtained 
if m is the number of SMS for a parse tree in the 
source language, n for the target one. 
The alignments of the parallel MS and extrac-

tion can be performed in such a simple way. 
Given the parallel tree corpus, we first get the 
alignments based on the level of words, for which 
we used GIZA++ in both of the directions. Ac-
cording to the knowledge of the word alignments, 
we derived the alignments of leave nodes of the 
given parse trees, which are the direct root nodes 
of the words. Then all the knowledge of the words 
is discarded for the RM extraction. The next step 
for the extraction of the RM is based on the popu-
lar phrase-extraction algorithm of the phrase-
based statistical machine translation model. The 
present alignment and phrase extraction methods 
can be applied to the extraction of the MS and RM 
[T(S)]. 

),(
),(

)|(
EiFi

RM

EIFi
FiEI RMRMCount

RMRMCount
RMRMP

Ei

∑
=  

    ),( BAountC is the expected number of times A 
is aligned with B in the training corpus.Table1 
shows some parameters for this part in the model. 

Training n-gram model for the monolingual 

structure model is based on the English RM of 
each parse tree, selected from the parallel tree cor-
pus. The 3-gram structure model is defined as fol-
lows: 

=−− )])([)],([|)]([( 12 eTRMeTRMeTRMP iiI
                                                    

),,(
),,(

12

12

jII
j

III

RMRMRMCount
RMRMRMCount

−−

−−

∑
    

),,( CBAountC  is the times of the situation, in 
which the RM is consecutive sub-trees of the 
parse trees in the training set. Some 3-gram pa-
rameters in the training task are given in Table2. 

We didn’t meet with the serious data sparseness 
problem in this part of work, because most of the 
MS structures have occurred enough times for 
parameters estimation. But we still set some 
fixed value for the unseen parameters in the 
training set. 

4 Decoding  

A beam search algorithm is applied to this 
model for decoding, which is based on the frame 
of the beam search for phrase-based statistical 
machine translation (Koehn et al, 03). 

Here the process of the hypothesis generation is 
presented. Given a sentence and its parse tree, all 
the possible candidate RM are collected, which 
can cover a part of the parse tree at the bottom. 
With the candidates, the hypotheses can be 
formed and extended. 

For example, all the parse tree’s leaf nodes of a 
Chinese sentence in Figure4, are covered by [r], 
[ pron ] and  VP[vg-BNP[pron-n]] in the order of 
choosing candidate RM{ (1),  (2), (3)}.  
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Figure4. Process of translation based on RM 

),( VBDWRBr                                              (1) 

如何→how did                                                   
                                                                         

),( PRPpron                                                   (2) 
                                                                            
你→you                                                              

 

 
]])[[

]],[[(
NNDTNPBVBVP

npronBNPvgVP
−−

−−
                 

(3)  
得到 这些  信息→ find the information 
    
Before the next expansion of a hypothesis, the 

words in the scope of the present RM are trans-
lated into the target language and the correspond-
ing )]([ eTRM i  is generated. For example, when  

),( VBDWRBr , is used to expand the hypothe-

sis , the words in the sub-tree are translated into 
the target language, 如何→how did.        

We also need to calculate the cost for the hy-
potheses according to the parameters in the model 
to perform the beam search. The task for the beam 
search is to find the hypothesis with the least cost.  
When the expansion of a hypothesis comes to the 
final state, the target language is generated. All of 
the leave nodes of the parse tree for the source 
language are covered. The parser for the target 
language isn’t used for decoding. But a target 
SMS is generated during the process of decoding 
to achieve better reordering performance. 

5 Experiments   

The experiment was conducted for the task of 
Chinese-to-English translation. A corpus, which 
consists of 602,701 sentence pairs, was used as 
the training set. We took CLDC 863 test set as our 
test set (http://www.chineseldc.org/resourse.asp), 
which consists of 467 sentences with an average 
length of 14.287 Chinese words and 4 references. 
To evaluate the result of the translation, the BLEU 
metric (Papineni et al. 2002) was used.  

5.1 The baseline 

System used for comparison was Pharaoh 
(Koehn et al., 2003; Koehn, 2004), which uses a 
beam search algorithm for decoding. In its model, 
it takes the following features: language model, 
phrase translation probability in the two directions, 
distortion model, word penalty and phrase penalty, 
all of which can be achieved with the training 
toolkits distributed by Koehn. The training set and 
development set mentioned above were used to 
perform the training task and to tune the feature 
weights by the minimum error training algorithm. 
All the other settings were the same as the default 
ones. SRI Language Modeling Toolkit was used 
to train a 3-gram language model. After training, 
164 MB  language model were obtained. 

5.2 Our model 

All the common features shared with Pharaoh 
were trained with the same toolkits and the same 
corpus. Besides those features, we need to train 
the structure transformation model and the mono-
lingual structure model for our model. First, 
10,000 sentence pairs were selected to achieve the  
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BLEU-n n-gram precisions System 4 1 2 3 4 5 6 7 8 

Pharaoh 0.2053 0.6449 0.4270 0.2919 0.2053 0.1480 0.1061 0.0752 0.0534
Ms  sys-
tem 

0.2232 0.6917 0.4605 0.3160 0.2232 0.1615 0.1163 0.0826 0.0587

Table3. Comparison of Pharaoh and our system 
  Features 

System Plm(e) P(RT) P( IRT ) Pw( f|e ) Pw( e|f ) Word Phr Ph(RM) 
Pharaoh 0.151 ---- ------ 0.08 0.14 -0.29 0.26 ----- 
MS sys-

tem 
0.157 0.16 0.23 0.06 0.11 -0.20 0.22 0.36 

Table4.Feature weights obtained by minimum error rate training on development set 
 

training set for this part of task. The Collins parser 
and a Chinese parser of our own lab were used. 
After processing this corpus, we get a parallel tree 
corpus. SRI Language Modeling Toolkits were 
used again to train this part of parameters. In this 
experiment, we set 3=α ,and 5.1=β . 149MB 

)]([ sTRMS  pairs and a 25 MB 3-gram mono-
lingual structure model were obtained.  

6. Conclusion and Future work 

A framework for statistical machine translation 
is created in this paper. The results of the experi-
ments show that this model gives better perform-
ance, compared with the baseline system. 

This model can incorporate the syntactic infor-
mation into the process of translation and model 
the sub-structure projections across the parallel 
parse trees. 

The advantage of this frame work lies in that 
the reordering operations can be performed at the 
different levels according to the hierarchical RM 
of the parse tree. 

But we should notice that some independent as-
sumptions were made in the decomposition of the 
parse tree. In the future, a proper method should 
be introduced into this model to achieve the most 
possible decomposition of the parse tree. In fact, 
we can incorporate some other feature functions 
into the model to model the structure transforma-
tion more effectively.  
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Abstract

Modern statistical machine translation sys-
tems may be seen as using two components:
feature extraction, that summarizes informa-
tion about the translation, and a log-linear
framework to combine features. In this pa-
per, we propose to relax the linearity con-
straints on the combination, and hence relax-
ing constraints of monotonicity and indepen-
dence of feature functions. We expand fea-
tures into a non-parametric, non-linear, and
high-dimensional space. We extend empir-
ical Bayes reward training of model param-
eters to meta parameters of feature genera-
tion. In effect, this allows us to trade away
some human expert feature design for data.
Preliminary results on a standard task show
an encouraging improvement.

1 Introduction

In recent years, statistical machine translation have
experienced a quantum leap in quality thanks to au-
tomatic evaluation (Papineni et al., 2002) and error-
based optimization (Och, 2003). The conditional
log-linear feature combination framework (Berger,
Della Pietra and Della Pietra, 1996) is remarkably
simple and effective in practice. Therefore, re-
cent efforts (Och et al., 2004) have concentrated on
feature design – wherein more intelligent features
may be added. Because of their simplicity, how-
ever, log-linear models impose some constraints on
how new information may be inserted into the sys-
tem to achieve the best results. In other words,

new information needs to beparameterizedcare-
fully into one or more real valued feature functions.
Therefore, that requires some human knowledge and
understanding. When not readily available, this
is typically replaced with painstaking experimenta-
tion. We propose to replace that step with automatic
training of non-parametric agnostic features instead,
hopefully relieving the burden of finding the optimal
parameterization.

First, we define the model and the objective func-
tion training framework, then we describe our new
non-parametric features.

2 Model

In this section, we describe the general log-linear
model used for statistical machine translation, as
well as a training objective function and algorithm.

The goal is to translate a French (source) sentence
indexed byt, with surface stringft. Among a set of
Kt outcomes, we denote an English (target) a hy-
pothesis with surface stringe(t)k indexed byk.

2.1 Log-linear Model

The prevalent translation model in modern systems
is a conditional log-linear model (Och and Ney,
2002). From a hypothesise(t)k , we extract features

h
(t)
k , abbreviatedhk, as a function ofe(t)k andft. The

conditional probability of a hypothesise(t)k given a
source sentenceft is:

pk , p(e
(t)
k |ft) ,

exp[λ · hk]

Zft;λ
,
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where thepartition functionZft;λ is given by:

Zft;λ =
∑

j

exp[λ · hj ].

The vector of parameters of the modelλ, gives a
relative importance to each feature function compo-
nent.

2.2 Training Criteria

In this section, we quickly review how to adjustλ
to get better translation results. First, let us define
the figure of merit used for evaluation of translation
quality.

2.2.1 BLEU Evaluation

The BLEU score (Papineni et al., 2002) was de-
fined to measure overlap between a hypothesized
translation and a set of human references.n-gram
overlap counts{cn}4

n=1 are computed over the test
set sentences, and compared to the total counts of
n-grams in the hypothesis:

c
n,(t)
k , max. # of matchingn-grams for hyp.e(t)k ,

a
n,(t)
k , # of n-grams in hypothesise(t)k .

Those quantities are abbreviatedck andak to sim-
plify the notation. The precision ratioPn for ann-
gram ordern is:

Pn ,

∑

t c
n,(t)
k

∑

t a
n,(t)
k

.

A brevity penaltyBP is also taken into account, to
avoid favoring overly short sentences:

BP , min{1; exp(1−
r

a
)},

wherer is the average length of the shortest sen-
tence1, anda is the average length of hypotheses.
The BLEU score the set of hypotheses{e(t)k } is:

B({e
(t)
k }) , BP · exp

( 4
∑

n=1

1

4
logPn

)

.

1As implemented by NISTmteval-v11b.pl.

Oracle BLEU hypothesis: There is no easy way
to pick the set hypotheses from ann-best list that
will maximize the overall BLEU score. Instead, to
compute oracle BLEU hypotheses, we chose, for
each sentence independently, the hypothesis with the
highest BLEU score computed for a sentence itself.
We believe that it is a relatively tight lower bound
and equal for practical purposes to the true oracle
BLEU.

2.2.2 Maximum Likelihood

Used in earlier models (Och and Ney, 2002), the
likelihood criterion is defined as the likelihood of an
oracle hypothesise(t)k∗ , typically a single reference
translation, or alternatively the closest match which
was decoded. When the model is correct and infi-
nite amounts of data are available, this method will
converge to the Bayes error (minimum achievable
error), where we define a classification task of se-
lectingk∗ against all others.

2.2.3 Regularization Schemes

One can convert a maximum likelihood problem
into maximuma posterioriusing Bayes’ rule:

arg max
λ

∏

t

p(λ|{e
(t)
k , ft}) = arg max

λ

∏

t

pkp0(λ),

where p0(·) is the prior distribution ofλ. The
most frequently used prior in practice is the normal
prior (Chen and Rosenfeld, 2000):

log p0(λ) , −
||λ||2

2σ2
− log |σ|,

whereσ2 > 0 is the variance. It can be thought of
as the inverse of a Lagrange multiplier when work-
ing with constrained optimization on the Euclidean
norm of λ. When not interpolated with the likeli-
hood, the prior can be thought of as a penalty term.
The entropy penalty may also be used:

H , −
1

T

T
∑

t=1

Kt
∑

k=1

pk log pk.

Unlike the Gaussian prior, the entropy is indepen-
dent of parameterization (i.e., it does not depend on
how features are expressed).
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2.2.4 Minimum Error Rate Training

A good way of trainingλ is to minimize empirical
top-1 error on training data (Och, 2003). Compared
to maximum-likelihood, we now give partial credit
for sentences which are only partially correct. The
criterion is:

arg max
λ

∑

t

B({e
(t)

k̂
}) : e

(t)

k̂
= arg max

e
(t)
j

pj.

We optimize theλ so that the BLEU score of the
most likely hypotheses is improved. For that reason,
we call this criterionBLEU max. This function is
not convex and there is no known exact efficient op-
timization for it. However, there exists a linear-time
algorithm for exact line search against that objec-
tive. The method is often used in conjunction with
coordinate projection to great success.

2.2.5 Maximum Empirical Bayes Reward

The algorithm may be improved by giving partial
credit for confidencepk of the model to partially cor-
rect hypotheses outside of the most likely hypothe-
sis (Smith and Eisner, 2006):

1

T

T
∑

t=1

Kt
∑

k=1

pk logB({ek(t)}).

Instead of the BLEU score, we use its logrithm, be-
cause we think it is exponentially hard to improve
BLEU. This model is equivalent to the previous
model whenpk give all the probability mass to the
top-1. That can be reached, for instance, whenλ
has a very large norm. There is no known method
to train against this objective directly, however, ef-
ficient approximations have been developed. Again,
it is not convex.

It is hoped that this criterion is better suited for
high-dimensional feature spaces. That is our main
motivation for using this objective function through-
out this paper. With baseline features and on our
data set, this criterion also seemed to lead to results
similar to Minimum Error Rate Training.

We can normalizeB to a probability measure
b({e

(t)
k }). The empirical Bayes reward also coin-

cides with a divergenceD(p||b).

2.3 Training Algorithm

We train our model using a gradient ascent method
over an approximation of the empirical Bayes re-
ward function.

2.3.1 Approximation

Because the empirical Bayes reward is defined
over a set of sentences, it may not be decomposed
sentence by sentence. This is computationally bur-
densome. Its sufficient statistics arer,

∑

t ck and
∑

t ak. The function may be reconstructed in a first-
order approximation with respect to each of these
statistics. In practice this has the effect of commut-
ing the expectation inside of the functional, and for
that reason we call this criterionBLEU soft. This ap-
proximation is calledlinearization (Smith and Eis-
ner, 2006). We used a first-order approximation for
speed, and ease of interpretation of the derivations.
The new objective function is:

J , log B̄P +

4
∑

n=1

1

4
log

∑

t Ecn,(t)
k

∑

t Ean,(t)
k

,

where the average bleu penalty is:

log B̄P , min{0; 1 −
r

Ek,ta
1,(t)
k

}.

The expectation is understood to be under the cur-
rent estimate of our log-linear model. BecauseB̄P is
not differentiable, we replace the hard min function
with a sigmoid, yielding:

log B̄P ≈ u(r − Ek,ta
1,(t)
k )

(

1−
r

Ek,ta
1,(t)
k

)

,

with the sigmoid functionu(x) defines a soft step
function:

u(x) ,
1

1 + e−τx
,

with a parameterτ ≫ 1.

2.3.2 Gradients and Sufficient Statistics

We can obtain the gradients of the objective func-
tion using the chain rule by first differentiating with
respect to the probability. First, let us decompose
the log-precision of the expected counts:

log P̃n = log Ecn,(t)
k − log Ean,(t)

k .
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Eachn-gram precision may be treated separately.
For eachn-gram order, let us define sufficient statis-
ticsψ for the precision:

ψc
λ ,

∑

t,k

(∇λpk)ck; ψa
λ ,

∑

t,k

(∇λpk)ak,

where the gradient of the probabilities is given by:

∇λpk = pk(hk − h̄),

with:

h̄ ,

Kt
∑

j=1

pjhj .

The derivative of the precisioñPn is:

∇λlog P̃n =
1

T

[

ψc
λ

Eck
−

ψa
λ

Eak

]

For the length, the derivative oflog B̄P is:

u(r−Ea)
[

(
r

a
− 1)[1 − u(r − Ea)]τ +

r

(Ea)2

]

ψa1
λ ,

whereψa1
λ is the1-gram component ofψa

λ. Finally,
the derivative of the entropy is:

∇λH =
∑

k,t

(1 + log pk)∇λpk.

2.3.3 RProp

For all our experiments, we chose RProp (Ried-
miller and Braun, 1992) as the gradient ascent al-
gorithm. Unlike other gradient algorithms, it is only
based on the sign of the gradient components at each
iteration. It is relatively robust to the objective func-
tion, requires little memory, does not require meta
parameters to be tuned, and is simple to implement.
On the other hand, it typically requires more iter-
ations than stochastic gradient (Kushner and Yin,
1997) or L-BFGS (Nocedal and Wright, 1999).

Using fairly conservative stopping criteria, we ob-
served that RProp was about 6 times faster than Min-
imum Error Rate Training.

3 Adding Features

The log-linear model is relatively simple, and is usu-
ally found to yield good performance in practice.
With these considerations in mind, feature engineer-
ing is an active area of research (Och et al., 2004).

Because the model is fairly simple, some of the in-
telligence must be shifted to feature design. After
having decided what new information should go in
the overall score, there is an extra effort involved
in expressing orparameterizingfeatures in a way
which will be easiest for the model learn. Experi-
mentation is usually required to find the best config-
uration.

By adding non-parametric features, we propose
to mitigate the parameterization problem. We will
not add new information, but rather, propose a way
to insulate research from the parameterization. The
system should perform equivalently invariant of any
continuous invertible transformation of the original
input.

3.1 Existing Features

The baseline system is a syntax based machine
translation system as described in (Quirk, Menezes
and Cherry, 2005). Our existing feature set includes
11 features, among which the following:

• Target hypothesis word count.

• Treelet count used to construct the candidate.

• Target language models, based on the Giga-
word corpus (5-gram) and target side of parallel
training data (3-gram).

• Order models, which assign a probability to the
position of each target node relative to its head.

• Treelet translation model.

• Dependency-based bigram language models.

3.2 Re-ranking Framework

Our algorithm works in a re-ranking framework.
In particular, we are adding features which are not
causal or additive. Features for a hypothesis may
not be accumulating by looking at the English (tar-
get) surface string words from the left to the right
and adding a contribution per word. Word count,
for instance, is causal and additive. This property
is typically required for efficient first-pass decod-
ing. Instead, we look at a hypothesis sentence as a
whole. Furthermore, we assume that theKt-best list
provided to us contains the entire probability space.

75



In particular, the computation of the partition func-
tion is performed over allKt-best hypotheses. This
is clearly not correct, and is the subject of further
study. We use then-best generation scheme inter-
leaved withλ optimization as described in (Och,
2003).

3.3 Issues with Parameterization

As alluded to earlier, when designing a new feature
in the log-linear model, one has to be careful to find
the best embodiment. In general, a set of features
must satisfy the following properties, ranked from
strict to lax:

• Linearity (warping)

• Monotonicity

• Independence (conjunction)

Firstly, a feature should be linearly correlated with
performance. There should be no region were it
matters less than other regions. For instance, in-
stead of a word count, one might consider adding
its logarithm instead. Secondly, the “goodness” of a
hypothesis associated with a feature must be mono-
tonic. For instance, using the signed difference be-
tween word count in the French (source) and En-
glish (target) does not satisfy this. (In that case, one
would use the absolute value instead.) Lastly, there
should be no inter-dependence between features. As
an example, we can consider adding multiple lan-
guage model scores. Whether we should consider
ratios those of, globally linearly or log-linearly in-
terpolating them, is open to debate. When features
interact across dimensions, it becomes unclear what
the best embodiment should be.

3.4 Non-parametric Features

A generic solution may be sought in non-parametric
processing. Our method can be derived from a quan-
tized Parzen estimate of the feature density function.

3.4.1 Parzen Window

The Parzen window is an early empirical kernel
method (Duda and Hart, 1973). For an observation
hm, we extrapolate probability mass around it with
a smoothing windowΦ(·). The density function is:

p(h) =
1

M

K
∑

m=1

Φ(h− hm),

assumingΦ(·) is a density function. Parzen win-
dows converge to the true density estimate, albeit
slowly, under weak assumptions.

3.4.2 Bin Features

One popular way of using continuous features in
log-linear models is to convert a single continuous
feature into multiple “bin” features. Each bin feature
is defined as the indicator function of whether the
original continuous feature was in a certain range.
The bins were selected so that each bin collects an
equal share of the probability mass. This is equiva-
lent to the maximum likelihood estimate of the den-
sity function subject to a fixed number of rectangular
density kernels. Since that mapping is not differen-
tiable with respect to the original features, one may
use sigmoids to soften the boundaries.

Bin features are useful to relax the requirements
of linearity and monotonicity. However, because
they work on each feature individually, they do not
address the problem of inter-dependence between
features.

3.4.3 Gaussian Mixture Model Features

Bin features may be generalized to multi-
dimensional kernels by using a Gaussian smoothing
window instead of a rectangular window. The direct
analogy is vector quantization. The idea is to weight
specific regions of the feature space differently. As-
suming that we haveM Gaussians each with mean
vectorµm and diagonal covariance matrixCm, and
prior weightwm. We will addm new features, each
defined as the posterior in the mixture model:

hm ,
wmN (h;µm, Cm)
∑

r wrN (h;µr, Cr)
.

It is believed that any reasonable choice of kernels
will yield roughly equivalent results (Povey et al.,
2004), if the amount of training data and the number
of kernels are both sufficiently large. We show two
methods for obtaining clusters. In contrast with bins,
lossless representation becomes rapidly impossible.

ML kernels: The canonical way of obtaining clus-
ter is to use the standard Gaussian mixture training.
First, a single Gaussian is trained on the whole data
set. Then, the Gaussian is split into two Gaussians,
with each mean vector perturbed, and the Gaus-
sians are retrained using maximum-likelihood in an
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expectation-maximization framework (Rabiner and
Huang, 1993). The number of Gaussians is typically
increased exponentially.

Perceptron kernels: We also experimented with
another quicker way of obtaining kernels. We
chose an equal prior and a global covariance matrix.
Means were obtained as follows: for each sentence
in the training set, if the top-1 candidate was differ-
ent from the approximate maximum oracle BLEU
hypothesis, both were inserted. It is a quick way
to bootstrap and may reach the oracle BLEU score
quickly.

In the limit, GMMs will converge to the oracle
BLEU. In the next section, we show how to re-
estimate these kernels if needed.

3.5 Re-estimation Formulæ

Features may also be trained using the same empir-
ical maximum Bayes reward. Letθ be the hyper-
parameter vector used to generate features. In the
case of language models, for instance, this could be
backoff weights. Let us further assume that the fea-
ture values are differentiable with respect toθ. Gra-
dient ascent may be applied again but this time with
respect toθ. Using the chain rule:

∇θJ = (∇θh)(∇hpk)(∇pk
J),

with ∇hpk = pk(1− pk)λ. Let us take the example
of re-estimating the mean of a Gaussian kernelµm:

∇µmhm = −wmhm(1− hm)C−1
m (µm − h),

for its own feature, and for other posteriorsr 6= m:

∇µmhr = −wrhrhmC
−1
m (µm − h),

which is typically close to zero if no two Gaussians
fire simultaneously.

4 Experimental Results

For our experiments, we used the standard NIST
MT-02 data set to evaluate our system.

4.1 NIST System

A relatively simple baseline was used for our exper-
iments. The system is syntactically-driven (Quirk,
Menezes and Cherry, 2005). The system was trained

on 175k sentences which were selected from the
NIST training data (NIST, 2006) to cover words in
source language sentences of the MT02 develop-
ment and evaluation sets. The5-gram target lan-
guage model was trained on the Gigaword mono-
lingual data using absolute discounting smoothing.
In a single decoding, the system generated 1000 hy-
potheses per sentence whenever possible.

4.2 Leave-one-out Training

In order to have enough data for training, we gen-
erated ourn-best lists using 10-fold leave-one-out
training: base feature extraction models were trained
on 9/10th of the data, then used for decoding the
held-out set. The process was repeated for all 10
parts. A singleλ was then optimized on the com-
bined lists of all systems. Thatλ was used for an-
other round of 10 decodings. The process was re-
peated until it reached convergence after 7 iterations.
Each decoding generated about 100 hypotheses, and
there was relatively little overlap across decodings.
Therefore, there were about 1M hypotheses in total.

The combined list of all iterations was used for all
subsequent experiments of feature expansion.

4.3 BLEU Training Results

We tried training systems under the empirical Bayes
reward criterion, and appending either bin or GMM
features. We will find that bin features are es-
sentially ineffective while GMM features show a
modest improvement. We did not retrain hyper-
parameters.

4.3.1 Convexity of the Empirical Bayes Reward

The first question to ask is how many local op-
tima does the cost surface have using the standard
features. A complex cost surface indicates that some
gain may be had with non-linear features, but it also
shows that special care should be taken during op-
timization. Non-convexity is revealed by sensitivity
to initialization points. Thus, we decided to initial-
ize from all vertices of the unit hypercube, and since
we had 11 features, we ran211 experiments. The
histogram of BLEU scores on dev data after conver-
gence is shown on Figure 1. We also plotted the his-
togram of an example dimension in Figure 2. The
range of BLEU scores and lambdas is reasonably
narrow. Even thoughλ seems to be bimodal, we see
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that this does not seriously affect the BLEU score.
This is not definitive evidence but we provisionally
pretend that the cost surface is almost convex for
practical purposes.
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Figure 1: Histogram of BLEU scores after training
from 211 initializations.
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Figure 2: Histogram of oneλ parameter after train-
ing from211 initializations.

4.3.2 Bin Features

A log-linear model can be converted into a bin
feature model nearly exactly by settingλ values
in such a way that scores will be equal. Equiva-
lent weights (marked as ‘original’ in Figure 3) have
the shape of an error function (erf): this is because
the input feature is a cummulative random variable,
which quickly converges to a Gaussian (by the cen-
tral limit theorem). After training theλ weights for
the log-linear model, weights may be converted into

bins and re-trained. On Figure 3, we show that relax-
ing the monotonicity constraint leads to rough val-
ues forλ. Surprisingly, the BLEU score and ob-
jective on thetraining set only increases marginally.
Starting fromλ = 0, we obtained nearly exactly the
same training objective value. By varying the num-
ber of bins (20-50), we observed similar behavior as
well.
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Figure 3: Values before and after training bin fea-
tures. Monotonicity constraint has been relaxed.
BLEU score is virtually unchanged.

4.3.3 GMM Features

Experiments were carried out with GMM fea-
tures. The summary is shown on Table 1. The
baseline was the log-linear model trained with the
baseline features. The baseline features are included
in all systems. We trained GMM models using the
iterative mixture splitting interleaved with EM re-
estimation, split up to 1024 and 16384 Gaussians,
which we call GMM-ML-1k and GMM-ML-16k re-
spectively. We also used the “perceptron” selec-
tion features on the training set to bootstrap quickly
to 300k Gaussians (GMM-PCP-300k), and ran the
same algorithm on the development set (GMM-
PCP-2k). Therefore, GMM-PCP-300k had 300k
features, and was trained on 175k sentences (each
with about 700 hypotheses). For all experiments but
“unreg” (unregularized), we chose a prior Gaussian
prior with variance empirically by looking at the de-
velopment set. For all but GMM-PCP-300k, regu-
larization did not seem to have a noticeably positive
effect on development BLEU scores. All systems
were seeded with the baseline log-linear model, and
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all additional weights set to zero, and then trained
with about 50 iterations, but convergence in BLEU
score, empirical reward, and development BLEU
score occurred after about 30 iterations. In that set-
ting, we found that regularized empirical Bayes re-
ward, BLEU score on training data, and BLEU score
on development and evaluation to be well corre-
lated. Cursory experiments revealed that using mul-
tiple initializations did not significantly alter the fi-
nal BLEU score.

System Train Dev Eval
Oracle 14.10 N/A N/A
Baseline 10.95 35.15 25.95
GMM-ML-1k 10.95 35.15 25.95
GMM-ML-16k 11.09 35.25 25.89
GMM-PCP-2k 10.95 35.15 25.95
GMM-PCP-300k-unreg 13.00 N/A N/A
GMM-PCP-300k 12.11 35.74 26.42

Table 1: BLEU scores for GMM features vs the lin-
ear baseline, using different selection methods and
number of kernels.

Perceptron kernels based on the training set im-
proved the baseline by 0.5 BLEU points. We mea-
sured significance with the Wilcoxon signed rank
test, by batching 10 sentences at a time to produce
an observation. The difference was found to be sig-
nificant at a 0.9-confidence level. The improvement
may be limited due to local optima or the fact that
original feature are well-suited for log-linear mod-
els.

5 Conclusion

In this paper, we have introduced a non-parametric
feature expansion, which guarantees invariance to
the specific embodiment of the original features.
Feature generation models, including feature ex-
pansion, may be trained using maximum regular-
ized empirical Bayes reward. This may be used as
an end-to-end framework to train all parameters of
the machine translation system. Experimentally, we
found that Gaussian mixture model (GMM) features
yielded a 0.5 BLEU improvement.

Although this is an encouraging result, further
study is required on hyper-parameter re-estimation,
presence of local optima, use of complex original

features to test the effectiveness of the parameteri-
zation invariance, and evaluation on a more compet-
itive baseline.
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Abstract 

In this paper, we present a Bayesian Learn-
ing based method to train word dependent 
transition models for HMM based word 
alignment. We present word alignment re-
sults on the Canadian Hansards corpus as 
compared to the conventional HMM and 
IBM model 4. We show that this method 
gives consistent and significant alignment 
error rate (AER) reduction. We also con-
ducted machine translation (MT) experi-
ments on the Europarl corpus. MT results 
show that word alignment based on this 
method can be used in a phrase-based ma-
chine translation system to yield up to 1% 
absolute improvement in BLEU score, 
compared to a conventional HMM, and 
0.8% compared to a IBM model 4 based 
word alignment. 

1 Introduction 

Word alignment is an important step of most 
modern approaches to statistical machine 
translation (Koehn et al., 2003). The classical 
approaches to word alignment are based on IBM 
models 1-5 (Brown et al., 1994) and the HMM 
based alignment model (Vogel et al., 1996) (Och 
and Ney, 2000a, 2000b), while recently 
discriminative approaches (Moore, 2006) and 
syntax based approaches (Zhang and Gildea, 2005) 
for word alignment are also studied. In this paper, 
we present improvements to the HMM based 
alignment model originally proposed by (Vogel et 
al., 1996, Och and Ney, 2000a).  

Although HMM based word alignment ap-
proaches give good performance, one weakness of 
it is the coarse transition models. In the HMM 
based alignment model (Vogel et al., 1996), it is 
assumed that the HMM transition probabilities de-
pend only on the jump width from the last state to 
the next state. Therefore, the knowledge of transi-
tion probabilities given a particular source word e 
is not sufficiently modeled. 

In order to improve transition models in the 
HMM based alignment, Och and Ney (2000a) ex-
tended the transition models to be word-class de-
pendent. In that approach, words of the source lan-
guage are first clustered into a number of word 
classes, and then a set of transition parameters is 
estimated for each word class. In (2002), Toutano-
va et al. modeled self-transition (i.e., jump width is 
zero) probability separately from other transition 
probabilities. A word dependent self-transition 
model P(stay|e) is introduced to decide whether to 
stay at the current source word e at the next step, or 
jump to a different word. It was also shown that 
with the assumption that a source word with fertili-
ty greater than one generates consecutive words in 
the target language, this probability approximates 
fertility modeling. Deng and Byrne in (2005) im-
proved this idea. They proposed a word-to-phrase 
HMM in which a source word dependent phrase 
length model is used to model the approximate 
fertility, i.e., the length of consecutive target words 
generated by the source word. It provides more 
powerful modeling of approximate fertility than 
the single P(stay|e) parameter.  

However, these methods only model the proba-
bility of state occupancy rather than a full set of 
transition probabilities. Important knowledge of 
jumping from e to another position, e.g., jumping 
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forward (monotonic alignment) or jumping back-
ward (non-monotonic alignment), is not modeled.  

In this paper, we present a method to further im-
prove the transition models for HMM alignment 
model. For each source word e, we not only model 
its self-transition probability, but also the probabil-
ity of jumping from word e to a different word. For 
this purpose, we estimate a full transition model 
for each source word.  

A key problem for detailed word-dependent 
transition modeling is data sparsity. In (Toutanova 
et al., 2002), the word dependent self-transition 
probability P(stay|e) is interpolated with the global 
HMM self-transition probability to alleviate the 
data sparsity problem, where an interpolation 
weight is used for all words and that weight is 
tuned on a hold-out set. In the proposed word de-
pendent transition model, because there are a large 
number of parameters to estimate, the data sparsity 
problem is even more severe. Moreover, since the 
sparsity of different words are very different, it is 
difficult to find a one-size-fits-all interpolation 
weight, and therefore simple linear interpolation is 
not optimal. In order to address this problem, we 
use Bayesian learning so that the transition model 
parameters are estimated by maximum a posteriori 
(MAP) training. With the help of the prior distribu-
tion of the model, the training is regularized and 
results in robust models.  

In the next section we briefly review modeling 
of transition probabilities in a conventional HMM 
alignment model (Vogel et al., 1996, Och and Ney, 
2000a). Then we describe the equations of MAP 
training for word dependent transition models. In 
section 5, we present word alignment results that 
show significant alignment error rate reductions 
compared to the baseline HMM and IBM model 4. 
We also conducted phrase-based machine transla-
tion experiments on the Europarl corpus, English – 
French track, and shown that the proposed method 
can lead to significant BLEU score improvement 
compared to the HMM and IBM model 4.  

2 Baseline HMM alignment model 

We briefly review the HMM based word alignment 
models (Vogel, 1996, Och and Ney, 2000a). Let’s 
denote by 1 1( ,..., )J

Jf f f=  as the French sentence, 

1 1( ,..., )I
Ie e e=  as the English sentence, and 

1 1( ,..., )J
Ja a a= as the alignment that specifies the 

position of the English word aligned to each 
French word. In the HMM based word alignment, 
a HMM is built at English side, i.e., each (position, 
word) pair, ( , )

jj aa e , is a HMM state, which emits 

the French word fj. In order to mitigate the sparse 
data problem, it is assumed that the emission prob-
ability only depends on the English word, i.e., 

( | , ) ( | )
j jj j a j ap f a e p f e= , and the transition prob-

ability only  depends on the position of the last 
state and the length of the English sentence, i.e., 

11 1( | , , ) ( | , )
jj j a j jp a a e I p a a I
−− −= . Then, Vogel et 

al. (1996) give 
 

 
1

1 1 1
1

( | ) ( | , ) ( | )
j

J

J
J I

j j j a
ja

p f e p a a I p f e−
=

⎡ ⎤= ⎣ ⎦∑∏  (1) 

 
In the HMM of (Vogel et al., 1996), it is further 

assumed these transition probabilities 

1( | , )− ′= =j jp a i a i I  depend only on the jump 

width (i - i'), i.e.,   
 

1

( )
( | , )

( )
I

l

c i i
p i i I

c l i
=

′−′ =
′−∑

             (2) 

 
Therefore, the transition probability 

1( | , )j jp a a I−  depends on aj-1 but only through the 

distortion set {c(i - i')}. 
In (Och and Ney, 2000a), the word null is intro-

duced to generate the French words that don't align 
to any English words. If we denote by j_ the posi-
tion of the last French word before j that aligns to a 
non-null English word, the transition probabilities 

1( | , )j jp a i a i I− ′= =  in (1) is computed as 

_( | , ) ( | , )j jp a i a i I p i i I′ ′= = = % , where 

 

0

0

                            if    0
( | , )

(1 ) ( | , )  otherwise

p i
p i i I

p p i i I

=⎧′ = ⎨ ′− ⋅⎩
%  

 
state i=0 denotes the state of a null word at the 
English side, and p0 is the probability of jumping 
to state 0, which is estimated from hold-out data.  

For convenience, we denote by 

{ }( | , ), ( | )j ip i i I p f e′Λ =  the HMM parameter set. 
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In the training stage, Λ are usually estimated 
through maximum likelihood (ML) training, i.e.,  

 

1 1arg max ( | , )J I
ML p f e

Λ
Λ = Λ   (3) 

 
and the efficient Expectation-Maximization al-

gorithm can be used to optimize Λ iteratively until 
convergence (Rabiner 1989).  

For the interest of this paper, we elaborate tran-
sition parameter estimation with more details. 
These transition probabilities { }( | , )p i i I′  is a mul-

tinomial distribution estimated according to (2), 
where at each iteration the distortion set {c(i - i')} 
is the fractional count of transitions with jump 
width d = i - i', i.e.,  

 
1

1 1 1
1 1

( ) Pr( , | , , )
J I

J I
j j

j i

c d a i a i d f e
−

+
= =

′= = = + Λ∑∑ (4) 

 
where Λ' is the model obtained from the immediate 
previous iteration and these terms in (4) can be 
efficiently computed by using the Forward-
Backward algorithm (Rabiner 1989). In practice, 
we can bucket the distortion parameters {c(d)} into 
a few buckets as implemented in (Liang et al., 
2006). In our implementation, 15 buckets are used 
for c(≤-7), c(-6), ... c(0), ..., c(≥7). The probability 
mass for transitions with jump width larger than 6 
is uniformly divided. As suggested in (Liang et al., 
2006), we also use two separate sets of distortion 
parameters for transitioning into the first state, and 
for transitioning out of the last state, respectively. 
Finally, we further smooth transition probabilities 
with a uniform distribution as described in (Och 
and Ney, 2000a),   

_ _

1
( | , ) (1 ) ( | , )j j j jp a a I p a a I

I
α α′ = ⋅ + − ⋅ . 

After training, Viterbi decoding is used to find 
the best alignment sequence 1ˆ

Ja . i.e., 

1

1 _
1

ˆ arg max ( | , ) ( | )
jJ

J
J

j j j a
a j

a p a a I p f e
=

⎡ ⎤= ⎣ ⎦∏ . 

 

3 Word-dependent transition models in 
HMM based alignment model 

As discussed in the previous sections, conventional 
transition models that only depend on source word 

positions are not accurate enough. There are only 
limited distortion parameters to model the transi-
tion between HMM states for all English words, 
and the knowledge of transition probabilities given 
a particular source word is not represented. In or-
der to improve the transition model in HMM, we 
extend the transition probabilities to be word de-
pendent so that the probability of jumping from 
state aj_to aj not only depends on aj_, but also de-
pends on the English word at position aj_. This 
gives 

_

1

1 1 _
1

( | ) ( | , , ) ( | )
j j

J

J
J I

j j a j a
ja

p f e p a a e I p f e
=

⎡ ⎤= ⎣ ⎦∑∏ . 

Compared to (1), we need to estimate the transition 
parameter 

__( | , , )
jj j ap a a e I  which is

_jae  depen-

dent. Correspondingly, the HMM parameters we 

need to estimate are { }( | , , ), ( | )i j ip i i e I p f e′′Λ = , 

which provides a much richer set of free parame-
ters to model transition probabilities.   

4 Bayesian Learning for word-dependent 
transition models  

4.1 Maximum a posteriori training  

Using ML training, we can obtain the estimation 
formula for word dependent transition probabilities 

{ }( | , , )p i i e I′  similar as (2), i.e., 

1

( ; )
( | , , )

( ; )
ML I

l

c i i e
p i i e I

c l i e
=

′−′ =
′−∑

  (5) 

where at each training iteration the word dependent 
distortion set {c(i - i';e)} is computed by 

1

1 1 1
1 1

( ; )

( ) Pr( , | , , )
j

J I
J I

a j j
j i

c d e

e e a i a i d f eδ
−

+
= =

=

′= = = + Λ∑∑
     (6) 
where d = i - i' is the jump width, and ( )

jae eδ = is 

the Kronecker delta function that equals one if 

jae e= , and zero otherwise. 

However, for many non-frequent words, the 
data samples for c(d;e) is very limited and there-
fore may lead to a biased model that severely over-
fits to the sparse data. In order to address this issue, 
maximum a posteriori (MAP) framework is ap-
plied (Gauvain and Lee, 1994). In MAP training, 
an appropriate prior distribution is used to incorpo-
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rate prior knowledge into the model parameter es-
timation,   

1 1 1arg max ( | , ) ( | )J I I
MAP p f e g e

Λ
Λ = Λ Λ   (7) 

where the prior distribution 1( | )Ig eΛ  characterizes 
the distribution  of the model parameter set Λ giv-
en the English sentence. The relation between ML 
and MAP estimation is through the Bayes' theorem 
where the posterior distribution 

1 1 1 1 1( | , ) ( | , ) ( | )J I J I Ip f e p f e g eΛ ∝ Λ Λ , and 

1 1( | , )J Ip f e Λ is the likelihood function.  
In transition model estimation, the transition 

model { }( | , , )ip i i e I′′  is a multinomial distribution. 

Its conjugate prior distribution is a Dirichlet distri-
bution taking the following form (Bishop 2006), 

( ) , 1
1

1

( | , , ) | ( | , , ) i i

I
vI

i i
i

g p i i e I e p i i e I ′ −
′ ′

=

′ ′∝ ∏  (8) 

where{ },i iv ′  is the set of hyper-parameters of the 

prior distribution. Note that for mathematic tracta-
bility, ,i iv ′  needs to be greater than 1, which is 

usually the case in practice.  
Substitute (8) into (7) and using EM algorithm, 

we can obtain the iterative MAP training formula 
for transition models (Gauvain and Lee, 1994) 

,

,
1 1

( ; ) 1
( | , , )

( ; )

i i
MAP I I

i l
l l

c i i e v
p i i e I

c l i e v I

′

′
= =

′− + −
′ =

′− + −∑ ∑
 (9) 

4.2 Setting hyper-parameters for the prior 
distribution 

In Bayesian learning, the hyper-parameter set 

{ },i iv ′ of the prior distribution is assumed known 

based on a subjective knowledge about the model. 
In our method, we set the prior with word-
independent transition probabilities.  

 

, ( | , ) 1i iv p i i Iτ′ ′= ⋅ +     (10) 

 
where τ is a positive parameter that needs to tune 
on a hold-out data set. We will investigate the ef-
fect of τ with experimental results in later sections. 

Substituting (10) into (9), the MAP based transi-
tion model training formula becomes 

 

1

( ; ) ( | , )
( | , , )

( ; )
MAP I

l

c i i e p i i I
p i i e I

c l i e

τ

τ
=
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 (11) 

 
Note that for frequent words that have a large 

amount of data samples for c(d;e), the sum of 

1,...,
( ; )

=
′−∑ l I

c l i e  is large, so that ( | , , )MAPp i i e I′ is 

dominated by the data distribution. For rare words 
that have low counts of c(d;e), ( | , , )MAPp i i e I′  will 
approach to the word independent model. On the 
other hand, for the same word, when a small τ is 
used, a weak prior is applied, and the transition 
probability is more dependent on the training data 
of that word. When τ becomes larger and larger, a 
stronger prior knowledge is applied, and the word 
dependent transition model will approach to the 
word-independent transition model. Therefore, we 
can vary the parameter τ to control the contribution 
of prior distribution in model training and tune the 
word alignment performance. 

5 Experimental Results  

5.1 Word alignment on the Canadian Han-
sards English-French corpus  

We evaluated our word dependent transition mod-
els for HMM based word alignment on the Eng-
lish-French Hansards corpus. Only a subset of 
500K sentence pairs was used in our experiments 
including 447 test sentence-pairs. Tests sentence-
pairs were manually aligned and were marked with 
both sure and possible alignments (Och and Ney 
2000a). Using this annotation, we report the word 
alignment performance in terms of alignment error 
rate (AER) as defined by Och and Ney (2000a): 

 
| | | |

1
| | | |

A S A P
AER

A S

∩ + ∩= −
+

   (12) 

 
where S denotes the set of sure gold alignments, P 
denotes the set of possible gold alignments, A de-
notes the set of alignments generated by the word 
alignment method under test.  

We first trained the IBM model 1 and then a 
baseline HMM model as described in section 2 on 
the Hansards corpus. As the common practice, we 
initialized the translation probabilities of model 1 
with uniform distribution over word pairs occur 
together in a same sentence pair. HMM was initia-
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lized with uniform transition probabilities and 
model 1 translation probabilities. Both model 1 and 
HMM were trained with 5 iterations. For the pro-
posed word dependent transition model based 
HMM (WDHMM), we used the same settings as 
the HMM baseline except that the transition prob-
ability is computed according to (11). We also 
trained  IBM model 4 using GIZA++ provided by 
Och and Ney (2000c), where 5 iterations of  model 
4 training was performed after 5 iterations of mod-
el 1 plus 5 iterations of HMM. 

The effect of hyper-parameters in the prior dis-
tribution for WDHMM is shown in Figure 1. The 
horizontal dot line represents the AER given by the 
baseline HMM. The dash-line curve represents the 
AERs of WDHMM given different τ’s. We vary 
the value of τ in the range from 0 to 1E5 and 
present that range in a log-scale in the figure. Since 
τ = 0 is not a valid value in the log domain, we ac-
tually use the left-most point in the figure to 
represent the case of τ = 0. From Fig. 1 it is shown 
that when τ is zero, we actually use the ML trained 
word-dependent transition model. Due to the 
sparse data problem, the model is poorly estimated 
and lead to a high AER. When increase τ to a larg-
er value, a stronger prior is applied to give a more 
robust model. Then in a large range 
of [100,2000]τ ∈ , WDHMM outperforms baseline 
HMM significantly. When τ gets even larger, MAP 
model training becomes being over-dominated by 
the prior distribution, and that eventually results in 
a performance approaching to that of the baseline 
HMM. Fig. 1 only presents AER results that are 
calculated after combination of word alignments of 
both E→F and F→E directions based on a set of 
heuristics proposed by Och and Ney (2000b). We 
have observed the similar trend of AER change for 
the E→F and F→E alignment directions, respec-
tively. However, due to the limit of the space, we 
didn’t include them in this paper.  
In table 1-3, we give a detailed comparison be-
tween baseline HMM, WDHMM (with τ = 1000), 
and IBM model 4. Compared to the baseline 
HMM, the proposed WDHMM can reduce AER by 
more than 13%. It even outperforms IBM model 4 
after two direction word alignment combination. 
Meanwhile we noticed  that although IBM model 4 
gives superior performance over the baseline 
HMM on both of the two alignment directions, its 
AER after combination is almost the same as that 
of the baseline HMM.  We hypothesize that it may 

due to the modeling mechanism difference be-
tween HMM and model 4.  
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Figure 1: The AER of HMM baseline and the AER 

of WDHMM as the prior parameter τ is varied from 0 to 
1E5. Note that the x axis is in log scale and we use the 
left-most point in the figure to represent the case of τ = 
0. These results are calculated after combination of 
word alignments of both E→F and F→E directions.  

 
model E → F F → E combined 
baseline HMM  12.7 13.7 9.8 
WDHMM  
(τ = 1000) 

11.6 12.7 8.5 

IBM model 4 
(GIZA++) 

11.3 12.1 9.7 

Table 1: Comparison of test set AER between vari-
ous models trained on 500K sentence pairs. All numbers 
are in percentage. 

 
model E → F F → E combined 
baseline HMM  85.2 83.1 91.7 
WDHMM  
(τ = 1000) 

86.1 83.8 93.3 

IBM model 4 
(GIZA++) 

87.2 86.2 91.6 

Table 2: Comparison of test set Precision between 
various models trained on 500K sentence pairs. All 
numbers are in percentage. 

 
model E → F F → E combined 
baseline HMM  90.6 91.4 88.3 
WDHMM  
(τ = 1000) 

91.9 92.6 89.1 

IBM model 4 
(GIZA++) 

91.1 90.8 88.4 

Table 3: Comparison of test set Recall between vari-
ous models trained on 500K sentence pairs. All numbers 
are in percentage. 
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5.2 Machine translation on Europarl corpus 

We further tested our WDHMM on a phrase-based 
machine translation system to see whether our im-
provement on word alignment can also improve 
MT accuracy measured by BLEU score (Papineni 
et al., 2002). The machine translation experiment 
was conducted on the English-to-French track of 
NAACL 2006 Europarl evaluation workshop. The 
supplied training corpus contains 688K sentence 
pairs. Text data are already tokenized. In our expe-
riment, we first lower-cased all text, then word 
clustering was performed to cluster words of Eng-
lish and French into 32 word classes respectively 
using the tool provided by (J. Goodman). Then 
word alignment was performed. Both baseline 
HMM and IBM model 4 use word-class based 
transition models, and in WDHMM the word-class 
based transition model was used for prior distribu-
tion. The IBM model 4 is trained by GIZA++ with 
a regimen of 5 iterations of Model 1, 5 iterations of 
HMM, and 5 iterations of Model 4. Alignments of 
both directions are generated and then are com-
bined by heuristic rules described in (Och and Ney 
2000b). Then phrase table was extracted from the 
word aligned bilingual texts. The maximum phrase 
length was set to 7. In the phrase-based MT system, 
there are four channel models. They are direct 
maximum likelihood estimate of the probability of 
target phrase given source phrase, and the same 
estimate of source given target; we also compute 
the lexicon weighting features for source given 
target and target given source, respectively. Other 
models include word count and phrase count, and a 
3-gram language model provided by the workshop. 
These models are combined in a log-linear frame-
work with different weights (Och and Ney, 2002). 
The model weight vector is trained on a dev set 
with 2000 English sentences, each of which has 
one French translation reference. In the experiment, 
only the first 500 sentences were used to train the 
log-linear model weight vector, where minimum 
error rate (MER) training was used (Och, 2003). 
After MER training, the weight vector that gives 
the best accuracy on the development set was se-
lected. We then applied it to tests. There are 2000 
sentences in the development-test set devtest, 2000 
sentences in a test set test, and 1064 out-of-domain 
sentences called nc-test. The Pharaoh phrase-based 
decoder (Koehn 2004b) was used for decoding. 
The maximum re-ordering limit for decoding was 

set to 7. We used default settings for all other pa-
rameters. 

We present BLEU scores of MT systems using 
different word alignments on all three test sets, 
where Fig 2 shows BLEU scores of the two in-
domain tests, and Fig 3 shows MT results on the 
out-of-domain test set. In testing, the prior parame-
ter τ of WDHMM was varied in the range of [20, 
5000].  

In Fig. 2, the horizontal dash line and the hori-
zontal dot line represent BLEU scores of the base-
line HMM on devtest set and test set, respectively. 
The dash-line curve and dot-line curve represent 
the BLEU scores of WDHMM on these two tests. 
It is shown in the figure that WDHMM can 
achieve the best BLEU scores on both devtest and 
test when the prior parameter τ is set to 100. Fur-
thermore, WDHMM also gives considerable im-
provement on BLEU score over the baseline HMM 
in a broad range of τ from 50 to 1000, which indi-
cates that WDHMM works pretty stable within a 
reasonable range of prior distributions.  

In Fig. 3, the horizontal dash line represents the 
BLEU score of baseline HMM on nc-test set and 
the dash-line curve represents BLEU scores of 
WDHMM on the out-of-domain test. The best 
BLEU is obtained at τ = 500. It is interesting to see 
that the best τ for the out-of-domain test is larger 
than that of an in-domain test. One possible expla-
nation is that for out-of-domain data, we need 
more robust modeling for outliers other than more 
accurate (in-domain) modeling. However, since the 
difference between τ = 500 and τ = 100 are very 
small, further experiments are needed before we 
can draw a conclusion.  

We gives a detailed BLEU-wise comparison be-
tween baseline HMM and WDHMM in Table 4, 
where for WDHMM, τ =100 is used since it gives 
the best performance on the development-test set 
devtest. In the same table, we also provide BLEU 
results of using IBM model 4. Compared to base-
line HMM alignment model, WDHMM can im-
prove the BLEU score nearly 1% on in-domain test 
sets, and the improvement reduces to about 0.5% 
on the out-of-domain test. When compared to IBM 
model 4, WDHMM still gives higher BLEU 
scores, and outperform model 4 by about 0.8% on 
the test set. However the gain is reduced to 0.3% 
on devtest and 0.5% on the out-of-domain nc-test. 
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Figure 2: Machine translation results on Europarl, 

English to French track, devtest and test sets. The 
BLEU score of HMM baseline and the BLEU score of 
WDHMM as the prior parameter τ is varied from 20 to 
5000. Note that the x axis is in log scale.  
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Figure 3: Machine translation results on Europarl, 

English to French track, out-of-domain test sets. The 
BLEU score of HMM baseline and the BLEU score of 
WDHMM as the prior parameter τ is varied from 20 to 
5000. Note that the x axis is in log scale. 

 
model devtest test nc-test 
baseline HMM  29.69 29.65 20.51 
WDHMM (τ = 100) 30.59 30.65 20.96 
IBM model 4 30.29 29.86 20.51 

Table 4: Comparison of BLEU scores on devtest, test, 
and nc-test set between various word alignment models. 
All numbers are in percentage. 

 
In order to verify whether these gains from 

WDHMM are statistically significant, we imple-
mented paired bootstrap resampling method pro-
posed by Koehn (2004b) to compute statistical sig-
nificance of the above test results. In table 5, it is 
shown that BLEU gains of WDHMM over HMM 

and IBM-4 on different test sets, except the gain 
over IBM model 4 on the devtest set, are statistical-
ly significant with a significance level > 95%. 

 
significance level  devtest test nc-test 
WDHMM (τ=100) 
vs. HMM 

99.9% 99.9% 99.5% 

WDHMM (τ=100)  
vs. IBM model 4 

93.7% 99.9% 99.3% 

Table 5: Statistical significance test of the BLEU im-
provement of WDHMM  (τ = 100) vs. HMM baseline, 
and WDHMM  (τ = 100) vs. IBM model 4 on devtest, 
test, and nc-test sets. 

5.3 Runtime performance of WDHMM  

WDHMM runs as fast as a normal HMM, and 
the extra memory needed for the word dependent 
transition model is proportional to the vocabulary 
size of the source language given that the distortion 
sets of {c(d;e)}  are bucketed. Runtime speed of 
WDHMM and IBM-model 4 using GIZA++ is ta-
bulated in table 6. The results are based on Euro-
parl English to French alignment and these tests 
were conducted on a fast PC with 3.0GHz CPU 
and 16GB memory. In Table 6, WDHMM includes 
5 iterations of model 1 training followed by 5 itera-
tions of WDHMM, while "IBM model 4" includes 
5 iterations for model 1, 5 iterations for HMM, and 
5 iterations for model 4. It is shown in Table 6 that 
WDHMM is more than four times faster to pro-
duce the end-to-end word alignment. 

 
model   runtime 

(min) 
WDHMM   121 

IBM model 4    537 
Table 6: comparison of runtime performance bew-

teen WDHMM training and IBM model 4 training using 
GIZA++. 

6 Discussion 

Other works have been done to improve transition 
models in HMM based word alignment. Och and 
Ney (2000a) have suggested estimating word-class 
based transition models so as to provide more de-
tailed transition probabilities. However, due to the 
sparse data problem, only a small number of word 
classes are usually used and the many words in the 
same class still have to share the same transition 
model. Toutanova et al. (2002) has proposed to 
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estimate a word-dependent self-transition model 
P(stay|e) so that each word can have its own prob-
ability to decide whether to stay or jump to a dif-
ferent word. Later Deng and Byrne (2005) pro-
posed a word dependent phrase length model to 
better model state occupancy. However, these 
model can only model the probability of self-
jumping. Important knowledge of jumping from e 
to a different position should also be word depen-
dent but is not modeled.  

Another interesting comparison is between 
WDHMM and the fertility-based models, e.g., 
IBM model 3-5. Compared to these models, a ma-
jor disadvantage of HMM is the absence of a mod-
el of source word fertility. However, as discussed 
in (Toutanova et al. 2002),the word dependent self-
transition model can be viewed as an approxima-
tion of fertility model. i.e., it models the number of 
consecutive target words generated by the source 
word with a geometric distribution. Therefore, with 
a well estimated word dependent transition model, 
this weakness of HMM is alleviated. 

In this work, we proposed estimating a full 
word-dependent transition models in HMM based 
word alignment, and with Bayesian learning we 
can achieve robust model estimation under the 
sparse data condition. We have conducted a series 
of experiments to evaluate this method on word 
alignment and machine translation tests, and show 
significant improvement over baseline HMM in 
terms of AER and BLEU. It also performs better 
than the much more complicated IBM model 4 
based word alignment model on various word 
alignment and machine translation tasks.  
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Abstract

Statistical machine translation, as well as
other areas of human language processing,
have recently pushed toward the use of large
scalen-gram language models. This paper
presents efficient algorithmic and architec-
tural solutions which have been tested within
the Moses decoder, an open source toolkit
for statistical machine translation. Exper-
iments are reported with a high perform-
ing baseline, trained on the Chinese-English
NIST 2006 Evaluation task and running on
a standard Linux 64-bit PC architecture.
Comparative tests show that our representa-
tion halves the memory required by SRI LM
Toolkit, at the cost of 44% slower translation
speed. However, as it can take advantage
of memory mapping on disk, the proposed
implementation seems to scale-up much bet-
ter to very large language models: decoding
with a 289-million 5-gram language model
runs in 2.1Gb of RAM.

1 Introduction

In recent years, we have seen an increasing interest
toward the application ofn-gram Language Mod-
els (LMs) in several areas of computational lin-
guistics (Lapata and Keller, 2006), such as ma-
chine translation, word sense disambiguation, text
tagging, named entity recognition, etc. The origi-
nal framework ofn-gram LMs was principally au-
tomatic speech recognition, under which most of
the standard LM estimation techniques (Chen and

Goodman, 1999) were developed. Nowadays, the
availability of larger and larger text corpora is stress-
ing the need for efficient data structures and algo-
rithms to estimate, store and access LMs. Unfortu-
nately, the rate of progress in computer technology
seems for the moment below the space requirements
of such huge LMs, at least by considering standard
lab equipment.

Statistical machine translation (SMT) is today
one of the research areas that, together with speech
recognition, is pushing mostly toward the use of
huge n-gram LMs. In the 2006 NIST Machine
Translation Workshop (NIST, 2006), best perform-
ing systems employed 5-grams LMs estimated on at
least 1.3 billion-word texts. In particular, Google
Inc. presented SMT results with LMs trained on
8 trillion-word texts, and announced the availabil-
ity of n-gram statistics extracted from one trillion
of words. Then-gram Google collection is now
publicly available through LDC, but their effective
use requires either to significantly expand computer
memory, in order to use existing tools (Stolcke,
2002), or to develop new ones.

This work presents novel algorithms and data
structures suitable to estimate, store, and access
very large LMs. The software has been integrated
into a popular open source SMT decoder called
Moses.1 Experimental results are reported on the
Chinese-English NIST task, starting from a quite
well-performing baseline, that exploits a large 5-
gram LM.

This paper is organized as follows. Section 2
presents techniques for the estimation and represen-

1http://www.statmt.org/moses/
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tation in memory ofn-gram LMs that try to optimize
space requirements. Section 3 describes methods
implemented in order to efficiently access the LM
at run time, namely by theMoses SMT decoder.
Section 4 presents a list of experiments addressing
specific questions on the presented implementation.

2 Language Model Estimation

LM estimation starts with the collection ofn-grams
and their frequency counters. Then, smoothing pa-
rameters are estimated (Chen and Goodman, 1999)
for eachn-gram level; infrequentn-grams are possi-
bly pruned and, finally, a LM file is created contain-
ingn-grams with probabilities and back-off weights.

2.1 N -gram Collection

Clearly, a first bottleneck of the process might occur
if all n-grams have to be loaded in memory. This
problem is overcome by splitting the collection ofn-
grams statistics into independent steps and by mak-
ing use of an efficient data-structure to collect and
storen-grams. Hence, first the dictionary of the cor-
pus is extracted and split intoK word lists, balanced
with respect to the frequency of the words. Then,
for each list, onlyn-grams whose first word belongs
to the list are extracted from the corpus. The value
of K is determined empirically and should be suffi-
ciently large to permit to fit the partialn-grams into
memory. The collection of each subset ofn-grams
exploits a dynamic prefix-tree data structure shown
in Figure 1. It features a table with all collected 1-
grams, each of which points to its 2-gram succes-
sors, namely the 2-grams sharing the same 1-gram
prefix. All 2-gram entries point to all their 3-gram
successors, and so on. Successor lists are stored
in memory blocks allocated on demand through a
memory pool. Blocks might contain different num-
ber of entries and use 1 to 6 bytes to encode fre-
quencies. In this way, a minimal encoding is used
in order to represent the highest frequency entry of
each block. This strategy permits to cope well with
the high sparseness ofn-grams and with the pres-
ence of relatively few highly-frequentn-grams, that
require counters encoded with 6 bytes.

The proposed data structure differs from other im-
plementations mainly in the use of dynamic alloca-
tion of memory required to store frequencies ofn-

3      
w | fr | succ | ptr | flags

6      3      8      1      

3      
w | fr

1      

1-gr      2-gr      3-gr      

Figure 1: Dynamic data structure for storingn-
grams. Blocks of successors are allocated on de-
mand and might vary in the number of entries
(depth) and bytes used to store counters (width).
Size in bytes is shown to encode words (w), frequen-
cies (fr), and number of (succ), pointer to (ptr) and
table type of (flags) successors.

grams. In the structure proposed by (Wessel et al.,
1997) counters ofn-grams occurring more than once
are stored into 4-byte integers, while singletonn-
grams are stored in a special table with no counters.
This solution permits to save memory at the cost of
computational overhead during the collection ofn-
grams. Moreover, for historical reasons, this work
ignores the issue with huge counts. In the SRILM
toolkit (Stolcke, 2002),n-gram counts are accessed
through a special class type. Counts are all repre-
sented as 4-byte integers by applying the following
trick: counts below a given threshold are represented
as unsigned integers, while those above the thresh-
old, which are typically very sparse, correspond in-
deed to indexes of a table storing their actual value.
To our opinion, this solution is ingenious but less
general than ours, which does not make any assump-
tion about the number of different high order counts.

2.2 LM Smoothing

For the estimation of the LM, a standard interpo-
lation scheme (Chen and Goodman, 1999) is ap-
plied in combination with a well-established and
simple smoothing technique, namely the Witten-
Bell linear discounting method (Witten and Bell,
1991). Smoothing of probabilities up from 2-grams
is performed separately on each subset ofn-grams.

89



For example, smoothing statistics for a 5-gram
(v, w, x, y, z) are computed by means of statistics
that are local to the subset ofn-grams starting with
v. Namely, they are the countersN(v, w, x, y, z),
N(v, w, x, y), and the numberD(v, w, x, y) of dif-
ferent words observed in context(v, w, x, y).

Finally, K LM files are created, by just read-
ing through then-gram files, which are indeed not
loaded in memory. During this phase pruning of in-
frequentn-grams is also permitted. Finally, all LM
files are joined, global 1-gram probabilities are com-
puted and added, and a single large LM file, in the
standard ARPA format (Stolcke, 2002), is generated.

We are well aware that the implemented smooth-
ing method is below the state-of-the-art. However,
from one side, experience tells that the gap in per-
formance between simple and sophisticated smooth-
ing techniques shrinks when very large corpora are
used; from the other, the chosen smoothing method
is very suited to the kind of decomposition we are
applying to then-gram statistics. In the future, we
will nevertheless address the impact of more sophis-
ticated LM smoothing on translation performance.

2.3 LM Compilation

The final textual LM can be compiled into a binary
format to be efficiently loaded and accessed at run-
time. Our implementation follows the one adopted
by the CMU-Cambridge LM Toolkit (Clarkson and
Rosenfeld, 1997) and well analyzed in (Whittaker
and Raj, 2001). Briefly,n-grams are stored in
a data structure which privileges memory saving
rather than access time. In particular, single com-
ponents of eachn-gram are searched, via binary
search, into blocks of successors stored contigu-
ously (Figure 2). Further improvements in mem-
ory savings are obtained by quantizing both back-off
weights and probabilities.

2.4 LM Quantization

Quantization provides an effective way of reducing
the number of bits needed to store floating point
variables. (Federico and Bertoldi, 2006) showed that
best results were achieved with the so-calledbinning
method. This method partitions data points into uni-
formly populated intervals or bins. Bins are filled in
in a greedy manner, starting from the lowest value.
The center of each bin corresponds to the mean value

1-gr 2-gr 3-gr

3      
w   | bo | pr | idx

1      1      4      

w  | pr
3      1      

Figure 2: Static data structure for LMs. Number of
bytes are shown used to encode single words (w),
quantized back-off weights (bo) and probabilities
(pr), and start index of successors (idx).

of all its points. Quantization is applied separately
at eachn-gram level and distinctly to probabilities
or back-off weights. The chosen level of quantiza-
tion is 8 bits (1 byte), that experimentally showed to
introduce negligible loss in translation performance.

The quantization algorithm can be applied to any
LM represented with the ARPA format. Quantized
LMs can also be converted into a binary format that
can be efficiently uploaded at decoding time.

3 Language Model Access

One motivation of this work is the assumption that
efficiency, both in time and space, can be gained by
exploiting peculiarities of the way the LM is used
by the hosting program, i.e. the SMT decoder. An
analysis of the interaction between the decoder and
the LM was carried out, that revealed some impor-
tant properties. The main result is shown in Figure 3,
which plots all calls to a 3-gram LM byMoses dur-
ing the translation from German to English of the
following text, taken from the Europarl task:

ich bin kein christdemokrat und
glaube daher nicht an wunder .
doch ich m öchte dem europ äischen
parlament , so wie es gegenw ürtig
beschaffen ist , f ür seinen
grossen beitrag zu diesen arbeiten
danken.

Translation of the above text requires about 1.7 mil-
lion calls of LM probabilities, that however involve
only 120,000 different 3-grams. The plot shows typ-
ical locality phenomena, that is the decoder tends to
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Figure 3: LM calls during translation of a German
text: each point corresponds to a specific 3-gram.

access the LMn-grams in nonuniform, highly local-
ized patterns. Locality is mainly temporal, namely
the first call of ann-gram is easily followed by
other calls of the samen-gram. This property sug-
gests that gains in access speed can be achieved by
exploiting a cache memory in which to store al-
ready calledn-grams. Moreover, the relatively small
amount of involvedn-grams makes viable the access
of the LM from disk on demand. Both techniques
are briefly described.

3.1 Caching of probabilities

In order to speed-up access time of LM probabilities
different cache memories have been implemented
through the use of hash tables. Cache memories are
used to store all finaln-gram probabilities requested
by the decoder, LM states used to recombine theo-
ries, as well as all partialn-gram statistics computed
by accessing the LM structure. In this way, the need
of performing binary searches, at every level of the
LM tables, is reduced at a minimum.

All cache memories are reset before decoding
each single input set.

3.2 Memory Mapping

Since a limited collection of alln-grams is needed
to decode an input sentence, the LM is loaded on
demand from disk. The data structure shown in Fig-
ure 2 permits indeed to efficiently exploit the so-
calledmemory mappedfile access.2 Memory map-
ping basically permits to include a file in the address

2POSIX-compliant operating systems and Windows support
some form of memory-mapped file access.

Memory

1-gr 2-gr 3-gr
Disk file

Figure 4: Memory mapping of the LM on disk.
Only the memory pages (grey blocks) of the LM that
are accessed while decoding the input sentence are
loaded in memory.

space of a process, whose access is managed as vir-
tual memory (see Figure 4).

During decoding of a sentence, only thosen-
grams, or better memory pages, of the LM that are
actually accessed are loaded into memory, which re-
sults in a significant reduction of the resident mem-
ory space required by the process. Once the decod-
ing of the input sentence is completed, all loaded
pages are released, so that resident memory is avail-
able for then-gram probabilities of the following
sentence. A remarkable feature is that memory-
mapping also permits to share the same address
space among multiple processes, so that the same
LM can be accessed by several decoding processes
(running on the same machine).

4 Experiments

In order to assess the quality of our implementa-
tion, henceforth named IRSTLM, we have designed
a suite of experiments with a twofold goal: from
one side the comparison of IRSTLM against a pop-
ular LM library, namely the SRILM toolkit (Stol-
cke, 2002); from the other, to measure the actual
impact of the implementation solution discussed in
previous sections. Experiments were performed on a
common statistical MT platform, namelyMoses, in
which both the IRSTLM and SRILM toolkits have
been integrated.

The following subsection lists the questions
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set type |W|
source target

large parallel 83.1M 87.6M
giga monolingual - 1.76G

NIST 02 dev 23.7K 26.4K
NIST 03 test 25.6K 28.5K
NIST 04 test 51.0K 58.9K
NIST 05 test 31.2K 34.6K
NIST 06 nw test 18.5K 22.8K
NIST 06 ng test 9.4K 11.1K
NIST 06 bn test 12.0K 13.3K

Table 1: Statistics of training, dev. and test sets.
Evaluation sets of NIST campaigns include 4 ref-
erences: in table, average lenghts are provided.

which our experiments aim to answer.

Assessing Questions
1. Is LM estimation feasible for large amounts of

data?

2. How does IRSTLM compare with SRILM
w.r.t.:
(a) decoding speed?
(b) memory requirements?
(c) translation performance?

3. How does LM quantization impact in terms of

(a) memory consumption?
(b) decoding speed?
(c) translation performance?
(d) tuning of decoding parameters?

4. What is the impact of caching on decoding
speed?

5. What are the advantages of memory mapping?

Task and Experimental Setup

The task chosen for our experiments is the transla-
tion of news from Chinese to English, as proposed
by the NIST MT Evaluation Workshop of 2006.3

A translation system was trained according to the
large-datacondition. In particular, all the allowed
bilingual corpora have been used for estimating the
phrase-table. The target side of these texts was also
employed for the estimation of three 5-gram LMs,
henceforth namedlarge. In particular, two LMs

3www.nist.gov/speech/tests/mt/

were estimated with the SRILM toolkit by prun-
ing singletons events and by employing the Witten-
Bell and the absolute discounting (Kneser and Ney,
1995) smoothing methods; the shorthand for these
two LMs will be “lrg-sri-wb” and “lrg-sri-kn”, re-
spectively. Another large LM was estimated with the
IRSTLM toolkit, by employing the only smoothing
method available in the package (Witten-Bell) and
by pruning singletonsn-grams; its shorthand will be
“lrg”. An additional, much larger, 5-gram LM was
instead trained with the IRSTLM toolkit on the so-
called English Gigaword corpus, one of the allowed
monolingual resources for this task.

Automatic translation was performed by means of
Moses which, among other things, permits the con-
temporary use of more LMs, feature we exploited in
our experiments as specified later.

Optimal interpolation weights for the log-linear
model were estimated by running a minimum error
training algorithm, available in theMoses toolkit,
on the evaluation set of the NIST 2002 campaign.
Tests were performed on the evaluation sets of the
successive campaigns (2003 to 2006). Concern-
ing the NIST 2006 evaluation set, results are given
separately for three different types of texts, namely
newswire (nw) and newsgroup (ng) texts, and broad-
cast news transcripts (bn).

Table 1 gives figures about training, development
and test corpora, while Table 2 provides main statis-
tics of the estimated LMs.

LM millions of
1-gr 2-gr 3-gr 4-gr 5-gr

lrg-sri-kn 0.3 5.2 5.9 7.1 6.8
lrg-sri-wb 0.3 5.2 6.4 7.8 6.8

lrg 0.3 5.3 6.6 8.4 8.0
giga 4.5 64.4 127.5 228.8 288.6

Table 2: Statistics of LMs.

MT performance are provided in terms of case-
insensitive BLEU and NIST scores, as computed
with the NIST scoring tool. For time reasons,
the decoder run with monotone search; prelimi-
nary experiments showed that this choice does not
affect comparison of LMs. Reported decoding
speed is the elapsed real time measured with the
Linux/UNIX time command divided by the num-
ber of source words to be translated. dual Intel/Xeon
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CPU 3.20GHz with 8Gb RAM. Experiments run on
dual Intel/Xeon CPUs 3.20GHz/8Gb RAM.

4.1 LM estimation

First of all, let us answer the question (number 1)
on the feasibility of the procedure for the estima-
tion of huge LMs. Given the amount of training data
employed, it is worth to provide some details about
the estimation process of the “giga” LM. According
to the steps listed in Section 2.1, the whole dictio-
nary was split intoK = 14 frequency balanced lists.
Then, 5-grams beginning with words from each list
were extracted and stored. Table 3 shows some fig-
ures about these dictionaries and 5-gram collections.
Note that the dictionary size increases with the list
index: this means only that more frequent words
were used first. This stage run in few hours with
1-2Gb parallel processes.

list dictionary number of 5-grams:
index size observed distinct non-singletons

0 4 217M 44.9M 16.2M
1 11 164M 65.4M 20.7M
2 8 208M 85.1M 27.0M
3 44 191M 83.0M 26.0M
4 64 143M 56.6M 17.8M
5 137 142M 62.3M 19.1M
6 190 142M 64.0M 19.5M
7 548 142M 66.0M 20.1M
8 783 142M 63.3M 19.2M
9 1.3K 141M 67.4M 20.2M
10 2.5K 141M 69.7M 20.5M
11 6.1K 141M 71.8M 20.8M
12 25.4K 141M 74.5M 20.9M
13 4.51M 141M 77.4M 20.6M

total 4.55M 2.2G 951M 289M

Table 3: Estimation of the “giga” LM: dictionary
and 5-gram statistics (K = 14).

The actual estimation of the LM was performed
with the scheme presented in Section 2.2. For each
collection of non-singletons 5-grams, a sub-LM was
built by computing smoothedn-gram (n = 1 · · · 5)
probabilities and interpolation parameters. Again,
by exploiting parallel processing, this phase took
only few hours on standard HW resources. Finally,
sub-LMs were joined in a single LM, which can be
stored in two formats: (i) the standard textual ARPA

LM format quantization file size

lrg-sri-kn textual n 893Mb
lrg-sri-wb textual n 952Mb

lrg textual n 1088Mb
y 789Mb

binary n 368Mb
y 220Mb

giga textual n 28.0Gb
y 21.0Gb

binary n 8.5Gb
y 5.1Gb

Table 4: Figures of LM files.

format, and (ii) the binary format of Section 2.3. In
addition, LM probabilities can be quantized accord-
ing to the procedure of Section 2.4.

The estimation of the “lrg-sri” LMs, performed
by means of the SRILM toolkit, took about 15 min-
utes requiring 5Gb of memory. The “lrg” LM was
estimated as the “giga” LM in about half an hour
demanding only few hundreds of Mb of memory.

Table 4 lists the size of files storing various ver-
sions of the “large” and “giga” LMs which differ in
format and/or type.

4.2 LM run-time usage

Tables 5 and 6 shows BLEU and NIST scores, re-
spectively, measured on test sets for each specific
LM configuration. The first two rows of the two ta-
bles regards runs ofMoses with the SRILM, that
uses “lrg-sri” LMs. The other rows refer to runs of
Moses with IRSTLM, either using LM “lrg” only,
or both LMs, “lrg” and “giga”. LM quantization is
marked by a “q”.

Finally, in Table 7 figures about the decoding pro-
cesses are recorded. For each LM configuration, the
process size, both virtual and resident, is provided
together with the average time required for translat-
ing a source word with/without the activation of the
caching mechanism described in Section 3.1. It is
to worth noticing that the “giga” LM (both original
and quantized) is loaded through the memory map-
ping service presented in Section 3.2.

Table 7 includes most of the answers to question
number 2:

2.a Under the same conditions,Moses running
with SRILM permits almost double faster
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LM NIST test set
03 04 05 06 06 06

nw ng bn

lrg-sri-kn 28.74 30.52 26.99 29.28 23.47 27.27
lrg-sri-wb 28.05 29.86 26.52 28.37 23.13 26.37

lrg 28.49 29.84 26.97 28.69 23.28 26.70
q-lrg 28.05 29.66 26.48 28.58 22.64 26.05

lrg+giga 30.77 31.93 29.09 29.74 24.39 28.50
q-lrg+q-giga30.42 31.47 28.62 29.76 24.28 28.23

Table 5: BLEU scores on NIST evaluation sets for
different LM configurations.

LM NIST test set
03 04 05 06 06 06

nw ng bn

lrg-sri-kn 8.73 9.29 8.47 8.98 7.81 8.52
lrg-sri-wb 8.52 9.14 8.27 8.96 7.90 8.34

lrg 8.73 9.21 8.45 8.95 7.82 8.47
q-lrg 8.60 9.11 8.32 8.88 7.73 8.31

lrg+giga 9.08 9.49 8.80 8.92 7.86 8.66
q-lrg+q-giga 8.93 9.38 8.65 9.05 7.99 8.60

Table 6: NIST scores on NIST evaluation sets for
different LM configurations.

translation than IRSTLM (13.33 vs. 6.80
words/s). Anyway, IRSTLM can be sped-up to
7.52 words/s by applying caching.

2.b IRSTLM requires about half memory than
SRILM for storing an equivalent LM during
decoding. If the LM is quantized, the gain is
even larger. Concerning file sizes (Table 4), the
size of IRSTLM binary files is about 30% of
the corresponding textual versions. Quantiza-
tion further reduces the size to 20% of the orig-
inal textual format.

2.c Performance of IRSTLM and SRILM on the
large LMs smoothed with the same method are
comparable, as expected (see entries “lrg-sri-
wb” and “lrg” of Tables 5 and 6). The small
differences are due to different probability val-
ues assigned by the two libraries to out-of-
vocabulary words.

Concerning quantization, gains in terms of memory
space (question 3.a) have already been highlighted
(see answer 2.b). For the remaining points:

3.b comparing “lrg” vs. “q-lrg” rows and

LM process size cachingdec. speed
virtual resident (src w/s)

lrg-sri-kn/wb 1.2Gb 1.2Gb - 13.33
lrg 750Mb 690Mb n 6.80

y 7.42
q-lrg 600Mb 540Mb n 6.99

y 7.52
lrg+giga 9.9Gb 2.1Gb n 3.52

y 4.28
q-lrg+q-giga 6.8Gb 2.1Gb n 3.64

y 4.35

Table 7: Process size and decoding speed with/wo
caching for different LM configurations.

“lrg+giga” vs. “q-lrg+q-giga” rows of Ta-
ble 7, it results that quantization allows only a
marginal decoding time reduction (1-3%)

3.c comparing the same rows of Tables 5 and 6, it
can be claimed that quantization doesn’t affect
translation performance in a significant way

3.d no specific training of decoder weights is re-
quired since the original LM and its quan-
tized version are equivalent. For example,
by translating the NIST 05 test set with the
weights estimated on the “lrg+giga” configu-
ration, the following BLEU/NIST scores are
got: 28.99/8.79 with the “q-lrg+q-giga” LMs,
29.09/8.80 with the “lrg+giga” LMs (the latter
scores are also given in Tables 5 and 6). Em-
ploying weights estimated on “q-lrg+q-giga”
scores are: 28.58/8.66 with “lrg+giga” LMs,
28.62/8.65 with “q-lrg+q-giga” LMs (again
also in Tables 5 and 6). Also on other test sets
differences are negligible.

Table 7 answers the question number 4 on
caching, by reporting the decoding speed-up due to
this mechanism: a gain of 8-9% is observed on “lrg”
and “q-lrg” configurations, of 20-21% in case also
“giga/q-giga” LMs are employed.

The answer to the last question is that thanks to
the memory mapping mechanism it is possible run
Moses with huge LMs, which is expected to im-
prove performance. Tables 5 and 6 provide quan-
titative support to the statement. In fact, a gain of
1-2 absolute BLEU was measured on different test
sets when “giga” LM was employed in addition to
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NIST test set
03 04 05 06 06 06

nw ng bn

BLEU
ci 33.62 35.04 31.92 32.74 26.18 32.43
cs 31.44 32.99 29.95 30.49 24.35 31.10

NIST
ci 9.27 9.75 9.00 9.24 8.00 8.97
cs 8.88 9.40 8.64 8.82 7.69 8.77

Table 8: Case insensitive (ci) and sensitive (cs)
scores of the best performing system.

“lrg” LM. The SRILM-based decoder would require
a process of about 30Gb to load the “giga” LM; on
the contrary, the virtual size of the IRSTLM-based
decoder is 6.8Gb, while the actual resident memory
is only 2.1Gb.

4.3 Best Performing System

Experimental results discussed so far are not the best
we are able to get. In fact, the adopted setup fixed
the monotone search and the use of no reordering
model. Then, in order to allow a fair comparison
of the IRSTLM-basedMoses system with the ones
participating to the NIST MT evaluation campaigns,
we have (i) set the maximum reordering distance to
6 and (ii) estimated a lexicalized reordering model
on the large parallel data by means of the training
option “orientation-bidirectional-fe”.

Table 8 shows BLEU/NIST scores measured on
test sets by employing the IRSTLM-basedMoses
with this setting and employing “q-lrg+q-giga”
LMs. It ranks at the top 5 systems (out of 24) with
respect to the results of the NIST 06 evaluation cam-
paign.

5 Conclusions

We have presented a method for efficiently estimat-
ing and handling large scalen-gram LMs for the
sake of statistical machine translation. LM estima-
tion is performed by splitting the task with respect
to the initial word of then-grams, and by merging
the resulting sub-LMs. Estimated LMs can be quan-
tized and compiled in a compact data structure. Dur-
ing the search, LM probabilities are cached and only
the portion of effectively used LMn-grams is loaded
in memory from disk. This method permits indeed

to exploit locality phenomena shown by the search
algorithm when accessing LM probabilities. Results
show an halving of memory requirements, at the cost
of 44% slower decoding speed. In addition, loading
the LM on demand permits to keep the size of mem-
ory allocated to the decoder nicely under control.

Future work will investigate the way for includ-
ing more sophisticated LM smoothing methods in
our scheme and will compare IRSTLM and SRILM
toolkits on increasing size training corpora.
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Abstract

We introduce a novel evaluation scheme for
the human evaluation of different machine
translation systems. Our method is based
on direct comparison of two sentences at a
time by human judges. These binary judg-
ments are then used to decide between all
possible rankings of the systems. The ad-
vantages of this new method are the lower
dependency on extensive evaluation guide-
lines, and a tighter focus on a typical eval-
uation task, namely the ranking of systems.
Furthermore we argue that machine transla-
tion evaluations should be regarded as sta-
tistical processes, both for human and au-
tomatic evaluation. We show how confi-
dence ranges for state-of-the-art evaluation
measures such as WER and TER can be
computed accurately and efficiently without
having to resort to Monte Carlo estimates.
We give an example of our new evaluation
scheme, as well as a comparison with classi-
cal automatic and human evaluation on data
from a recent international evaluation cam-
paign.

1 Introduction

Evaluation of machine translation (MT) output is a
difficult and still open problem. As in other natu-
ral language processing tasks, automatic measures
which try to asses the quality of the translation
can be computed. The most widely known are the
Word Error Rate (WER), the Position independent
word Error Rate (PER), the NIST score (Dodding-
ton, 2002) and, especially in recent years, the BLEU
score (Papineni et al., 2002) and the Translation Er-

ror Rate (TER) (Snover et al., 2005). All of the-
ses measures compare the system output with one
or more gold standard references and produce a nu-
merical value (score or error rate) which measures
the similarity between the machine translation and a
human produced one. Once such reference transla-
tions are available, the evaluation can be carried out
in a quick, efficient and reproducible manner.

However, automatic measures also have big dis-
advantages; (Callison-Burch et al., 2006) describes
some of them. A major problem is that a given sen-
tence in one language can have several correct trans-
lations in another language and thus, the measure of
similarity with one or even a small amount of ref-
erence translations will never be flexible enough to
truly reflect the wide range of correct possibilities of
a translation. 1 This holds in particular for long sen-
tences and wide- or open-domain tasks like the ones
dealt with in current MT projects and evaluations.

If the actual quality of a translation in terms of
usefulness for human users is to be evaluated, human
evaluation needs to be carried out. This is however
a costly and very time-consuming process. In this
work we present a novel approach to human evalu-
ation that simplifies the task for human judges. In-
stead of having to assign numerical scores to each
sentence to be evaluated, as is done in current evalu-
ation procedures, human judges choose the best one
out of two candidate translations. We show how this
method can be used to rank an arbitrary number of
systems and present a detailed analysis of the statis-
tical significance of the method.

1Compare this with speech recognition, where apart from
orthographic variance there is only one correct reference.
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2 State-of-the-art

The standard procedure for carrying out a human
evaluation of machine translation output is based on
the manual scoring of each sentence with two nu-
merical values between 1 and 5. The first one mea-
sures the fluency of the sentence, that is its readabil-
ity and understandability. This is a monolingual fea-
ture which does not take the source sentence into
account. The second one reflects the adequacy, that
is whether the translated sentence is a correct trans-
lation of the original sentence in the sense that the
meaning is transferred. Since humans will be the
end users of the generated output,2 it can be ex-
pected that these human-produced measures will re-
flect the usability and appropriateness of MT output
better than any automatic measure.

This kind of human evaluation has however addi-
tional problems. It is much more time consuming
than the automatic evaluation, and because it is sub-
jective, results are not reproducible, even from the
same group of evaluators. Furthermore, there can
be biases among the human judges. Large amounts
of sentences must therefore be evaluated and proce-
dures like evaluation normalization must be carried
out before significant conclusions from the evalua-
tion can be drawn. Another important drawback,
which is also one of the causes of the aforemen-
tioned problems, is that it is very difficult to define
the meaning of the numerical scores precisely. Even
if human judges have explicit evaluation guidelines
at hand, they still find it difficult to assign a numeri-
cal value which represents the quality of the transla-
tion for many sentences (Koehn and Monz, 2006).

In this paper we present an alternative to this eval-
uation scheme. Our method starts from the obser-
vation that normally the final objective of a human
evaluation is to find a “ranking” of different systems,
and the absolute score for each system is not relevant
(and it can even not be comparable between differ-
ent evaluations). We focus on a method that aims to
simplify the task of the judges and allows to rank the
systems according to their translation quality.

3 Binary System Comparisons

The main idea of our method relies in the fact
that a human evaluator, when presented two differ-
ent translations of the same sentence, can normally
choose the best one out of them in a more or less

2With the exception of cross-language information retrieval
and similar tasks.

definite way. In social sciences, a similar method
has been proposed by (Thurstone, 1927).

3.1 Comparison of Two Systems

For the comparison of two MT systems, a set of
translated sentence pairs is selected. Each of these
pairs consists of the translations of a particular
source sentence from the two systems. The human
judge is then asked to select the “best” translation of
these two, or to mark the translations to be equally
good. We are aware that the definition of “best” here
is fuzzy. In our experiments, we made a point of not
giving the evaluators explicit guidelines on how to
decide between both translations. As a consequence,
the judges were not to make a distinction between
fluency and adequacy of the translation. This has a
two-fold purpose: on the one hand it simplifies the
decision procedure for the judges, as in most of the
cases the decision is quite natural and they do not
need to think explicitly in terms of fluency and ade-
quacy. On the other hand, one should keep in mind
that the final goal of an MT system is its usefulness
for a human user, which is why we do not want to
impose artificial constraints on the evaluation proce-
dure. If only certain quality aspects of the systems
are relevant for the ranking, for example if we want
to focus on the fluency of the translations, explicit
guidelines can be given to the judges. If the evalua-
tors are bilingual they can use the original sentences
to judge whether the information was preserved in
the translation.

After our experiment, the human judges provided
feedback on the evaluation process. We learned
that the evaluators normally selected the translation
which preserved most of the information from the
original sentence. Thus, we expect to have a slight
preference for adequacy over fluency in this evalu-
ation process. Note however that adequacy and flu-
ency have shown a high correlation3 in previous ex-
periments. This can be explained by noting that a
low fluency renders the text incomprehensible and
thus the adequacy score will also be low.

The difference in the amount of selected sen-
tences of each system is an indicator of the differ-
ence in quality between the systems. Statistics can
be carried out in order to decide whether this differ-
ence is statistically significant; we will describe this
in more detail in Section 3.4.

3At least for “sensible” translation systems. Academic
counter-examples could easily be constructed.
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3.2 Evaluation of Multiple Systems

We can generalize our method to find a ranking of
several systems as follows: In this setting, we have
a set of n systems. Furthermore, we have defined an
order relationship “is better than” between pairs of
these systems. Our goal now is to find an ordering
of the systems, such that each system is better than
its predecessor. In other words, this is just a sorting
problem – as widely known in computer science.

Several efficient sorting algorithms can be found
in the literature. Generally, the efficiency of sort-
ing algorithms is measured in terms of the number
of comparisons carried out. State-of-the-art sort-
ing algorithms have a worst-case running time of
O(n log n), where n is the number of elements to
sort. In our case, because such binary comparisons
are very time consuming, we want to minimize the
absolute number of comparisons needed. This mini-
mization should be carried out in the strict sense, not
just in an asymptotic manner.

(Knuth, 1973) discusses this issue in detail. It is
relatively straightforward to show that, in the worst
case, the minimum number of comparisons to be
carried out to sort n elements is at least dlog n!e
(for which n log n is an approximation). It is not
always possible to reach this minimum, however, as
was proven e.g. for the case n = 12 in (Wells, 1971)
and for n = 13 in (Peczarski, 2002). (Ford Jr and
Johnson, 1959) propose an algorithm called merge
insertion which comes very close to the theoretical
limit. This algorithm is sketched in Figure 1. There
are also algorithms with a better asymptotic runtime
(Bui and Thanh, 1985), but they only take effect for
values of n too large for our purposes (e.g., more
than 100). Thus, using the algorithm from Figure 1
we can obtain the ordering of the systems with a
(nearly) optimal number of comparisons.

3.3 Further Considerations

In Section 3.1 we described how to carry out the
comparison between two systems when there is only
one human judge carrying out this comparison. The
comparison of systems is a very time consuming
task. Therefore it is hardly possible for one judge
to carry out the evaluation on a whole test corpus.
Usually, subsets of these test corpora are selected
for human evaluations instead. In order to obtain
a better coverage of the test corpus, but also to try
to alleviate the possible bias of a single evaluator, it
is advantageous to have several evaluators carrying
out the comparison between two systems. However,

there are two points that must be considered.
The first one is the selection of sentences each hu-

man judge should evaluate. Assume that we have al-
ready decided the amount of sentences m each eval-
uator has to work with (in our case m = 100). One
possibility is that all human judges evaluate the same
set of sentences, which presumably will cancel pos-
sible biases of the evaluators. A second possibility is
to give each judge a disjunct set of sentences. In this
way we benefit from a higher coverage of the corpus,
but do not have an explicit bias compensation.

In our experiments, we decided for a middle
course: Each evaluator receives a randomly selected
set of sentences. There are no restrictions on the se-
lection process. This implicitly produces some over-
lap while at the same time allowing for a larger set
of sentences to be evaluated. To maintain the same
conditions for each comparison, we also decided
that each human judge should evaluate the same set
of sentences for each system pair.

The other point to consider is how the evaluation
results of each of the human judges should be com-
bined into a decision for the whole system. One
possibility would be to take only a “majority vote”
among the evaluators to decide which system is the
best. By doing this, however, possible quantitative
information on the quality difference of the systems
is not taken into account. Consequently, the output is
strongly influenced by statistical fluctuations of the
data and/or of the selected set of sentences to eval-
uate. Thus, in order to combine the evaluations we
just summed over all decisions to get a total count of
sentences for each system.

3.4 Statistical Significance

The evaluation of MT systems by evaluating trans-
lations of test sentences – be it automatic evaluation
or human evaluation – must always be regarded as
a statistical process: Whereas the outcome, or score
R, of an evaluation is considered to hold for “all”
possible sentences from a given domain, a test cor-
pus naturally consists of only a sample from all these
sentences. Consequently, R depends on that sam-
ple of test sentences. Furthermore, both a human
evaluation score and an automatic evaluation score
for a hypothesis sentence are by itself noisy: Hu-
man evaluation is subjective, and as such is subject
to “human noise”, as described in Section 2. Each
automatic score, on the other hand, depends heavily
on the ambiguous selection of reference translations.
Accordingly, evaluation scores underly a probability
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1. Make pairwise comparisons of bn/2c disjoint pairs of elements. (If n is odd, leave one element out).

2. Sort the bn/2c larger elements found in step 1, recursively by merge insertion.

3. Name the bn/2c elements found in step 2 a1, a2, . . . , abn/2c and the rest b1, b2, . . . , bdn/2e, such that
a1 ≤ a2 ≤ · · · ≤ abn/2c and bi ≤ ai for 1 ≤ i ≤ bn/2c. Call b1 and the a’s the “main chain”.

4. Insert the remaining b’s into the main chain, using binary insertion, in the following order (ignore the
bj such that j > dn/2e): b3, b2; b5, b4; b11, . . . , b6; . . . ; btk , . . . , btk−1+1; . . . with tk = 2k+1+(−1)k

3 .

Figure 1: The merge insertion algorithm as presented in (Knuth, 1973).

distribution, and each evaluation result we achieve
must be considered as a sample from that distribu-
tion. Consequently, both human and automatic eval-
uation results must undergo statistical analysis be-
fore conclusions can be drawn from them.

A typical application of MT evaluation – for ex-
ample in the method described in this paper – is to
decide whether a given MT system X , represented
by a set of translated sentences, is significantly better
than another system Y with respect to a given eval-
uation measure. This outcome is traditionally called
the alternative hypothesis. The opposite outcome,
namely that the two systems are equal, is known
as the null hypothesis. We say that certain values
of RX , RY confirm the alternative hypothesis if the
null hypothesis can be rejected with a given level
of certainty, e.g. 95%. In the case of comparing
two MT systems, the null hypothesis would be “both
systems are equal with regard to the evaluation mea-
sure; that is, both evaluation scores R, R′ come from
the same distribution R0”.

As R is randomly distributed, it has an expecta-
tion E[R] and a standard error se[R]. Assuming a
normal distribution for R, we can reject the null hy-
pothesis with a confidence of 95% if the sampled
score R is more than 1.96 times the standard error
away from the null hypothesis expectation:

R significant ⇔ |E[R0]−R| > 1.96 se[R0] (1)

The question we have to solve is: How can we es-
timate E[R0] and se[R0]? The first step is that we
consider R and R0 to share the same standard error
se[R0] = se[R]. This value can then be estimated
from the test data. In a second step, we give an es-
timate for E[R0], either inherent in the evaluation
measure (see below), or from the estimate for the
comparison system R′.

A universal estimation method is the bootstrap
estimate: The core idea is to create replications of

R by random sampling from the data set (Bisani
and Ney, 2004). Bootstrapping is generally possi-
ble for all evaluation measures. With a high number
of replicates, se[R] and E[R0] can be estimated with
satisfactory precision.

For a certain class of evaluation measures, these
parameters can be estimated more accurately and ef-
ficiently from the evaluation data without resorting
to Monte Carlo estimates. This is the class of er-
rors based on the arithmetic mean over a sentence-
wise score: In our binary comparison experiments,
each judge was given hypothesis translations ei,X ,
ei,Y . She could then judge ei,X to be better than,
equal to, or worse than ei,Y . All these judgments
were counted over the systems. We define a sentence
score ri,X,Y for this evaluation method as follows:

ri,X,Y :=


+1 ei,X is better than ei,Y

0 ei,X is equal to ei,Y

−1 ei,X is worse than ei,Y

. (2)

Then, the total evaluation score for a binary com-
parison of systems X and Y is

RX,Y :=
1
m

m∑
i=1

ri,X,Y , (3)

with m the number of evaluated sentences.
For this case, namely R being an arithmetic mean,

(Efron and Tibshirani, 1993) gives an explicit for-
mula for the estimated standard error of the score
RX,Y . To simplify the notation, we will use R in-
stead of RX,Y from now on, and ri instead of ri,X,Y .

se[R] =
1

m− 1

√√√√ m∑
i=1

(ri −R)2 . (4)

With x denoting the number of sentences where
ri = 1, and y denoting the number of sentences
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where ri = −1,

R =
x− y

m
(5)

and with basic algebra

se[R] =
1

m− 1

√
x + y − (x− y)2

m
. (6)

Moreover, we can explicitly give an estimate for
E[R0]: The null hypothesis is that both systems are
“equally good”. Then, we should expect as many
sentences where X is better than Y as vice versa,
i.e. x = y. Thus, E[R0] = 0.

Using Equation 4, we calculate se[R] and thus a
significance range for adequacy and fluency judg-
ments. When comparing two systems X and Y ,
we assume for the null hypothesis that se[R0] =
se[RX ] and E[R0] = E[RY ] (or vice versa).

A very useful (and to our knowledge new) result
for MT evaluation is that se[R] can also be explic-
itly estimated for weighted means – such as WER,
PER, and TER. These measures are defined as fol-
lows: Let di, i = 1, . . . ,m denote the number of “er-
rors” (edit operations) of the translation candidate ei

with regard to a reference translation with length li.
Then, the total error rate will be computed as

R :=
1
L

m∑
i=1

di (7)

where

L :=
m∑

i=1

li (8)

As a result, each sentence ei affects the overall score
with weight li – the effect of leaving out a sen-
tence with length 40 is four times higher than that
of leaving out one with length 10. Consequently,
these weights must be considered when estimating
the standard error of R:

se[R] =

√√√√ 1
(m− 1)(L− 1)

m∑
i=1

(
di

li
−R

)2

· li

(9)
With this Equation, Monte-Carlo-estimates are no

longer necessary for examining the significance of
WER, PER, TER, etc. Unfortunately, we do not ex-
pect such a short explicit formula to exist for the
standard BLEU score. Still, a confidence range
for BLEU can be estimated by bootstrapping (Och,
2003; Zhang and Vogel, 2004).

Spanish English
Train Sentences 1.2M

Words 32M 31M
Vocabulary 159K 111K
Singletons 63K 46K

Test Sentences 1 117
Words 26K

OOV Words 72

Table 1: Statistics of the EPPS Corpus.

4 Evaluation Setup

The evaluation procedure was carried out on the data
generated in the second evaluation campaign of the
TC-STAR project4. The goal of this project is to
build a speech-to-speech translation system that can
deal with real life data. Three translation directions
are dealt with in the project: Spanish to English, En-
glish to Spanish and Chinese to English. For the sys-
tem comparison we concentrated only in the English
to Spanish direction.

The corpus for the Spanish–English language pair
consists of the official version of the speeches held in
the European Parliament Plenary Sessions (EPPS),
as available on the web page of the European Parlia-
ment. A more detailed description of the EPPS data
can be found in (Vilar et al., 2005). Table 1 shows
the statistics of the corpus.

A total of 9 different MT systems participated in
this condition in the evaluation campaign that took
place in February 2006. We selected five representa-
tive systems for our study. Henceforth we shall refer
to these systems as System A through System E. We
restricted the number of systems in order to keep the
evaluation effort manageable for a first experimental
setup to test the feasibility of our method. The rank-
ing of 5 systems can be carried out with as few as 7
comparisons, but the ranking of 9 systems requires
19 comparisons.

5 Evaluation Results

Seven human bilingual evaluators (6 native speakers
and one near-native speaker of Spanish) carried out
the evaluation. 100 sentences were randomly cho-
sen and assigned to each of the evaluators for every
system comparison, as discussed in Section 3.3. The
results can be seen in Table 2 and Figure 2. Counts

4http://www.tc-star.org/
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Figure 2: Results of the binary comparisons. Number of times the winning system was really judged “better”
vs. number of times it was judged “worse”. Results in hatched area can not reject null hypothesis, i.e. would
be considered insignificant.

missing to 100 and 700 respectively denote “same
quality” decisions.

As can be seen from the results, in most of the
cases the judges clearly favor one of the systems.
The most notable exception is found when compar-
ing systems A and C, where a difference of only 3
sentences is clearly not enough to decide between
the two. Thus, the two bottom positions in the final
ranking could be swapped.

Figure 2(a) shows the outcome for the binary
comparisons separately for each judge, together with
an analysis of the statistical significance of the re-
sults. As can be seen, the number of samples (100)
would have been too low to show significant re-
sults in many experiments (data points in the hatched
area). In some cases, the evaluator even judged bet-
ter the system which was scored to be worse by the
majority of the other evaluators (data points above
the bisector). As Figure 2(b) shows, “the only thing
better than data is more data”: When we summarize
R over all judges, we see a significant difference
(with a confidence of 95%) at all comparisons but
two (A vs. C, and E vs. B). It is interesting to note
that exactly these two pairs do not show a significant
difference when using a majority vote strategy.

Table 3 shows also the standard evaluation met-

rics. Three BLEU scores are given in this table, the
one computed on the whole corpus, the one com-
puted on the set used for standard adequacy and flu-
ency computations and the ones on the set we se-
lected for this task5. It can be seen that the BLEU
scores are consistent across all data subsets. In this
case the ranking according to this automatic measure
matches exactly the ranking found by our method.
When comparing with the adequacy and fluency
scores, however, the ranking of the systems changes
considerably: B D E C A. However, the difference
between the three top systems is quite small. This
can be seen in Figure 3, which shows some auto-
matic and human scores for the five systems in our
experiments, along with the estimated 95% confi-
dence range. The bigger difference is found when
comparing the bottom systems, namely System A
and System C. While our method produces nearly
no difference the adequacy and fluency scores indi-
cate System C as clearly superior to System A. It is
worth noting that the both groups use quite different
translation approaches (statistical vs. rule-based).

5Regretfully these two last sets were not the same. This is
due to the fact that the “AF Test Set” was further used for eval-
uating Text-to-Speech systems, and thus a targeted subset of
sentences was selected.
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Sys E1 E2 E3 E4 E5 E6 E7
∑

A 29 19 38 17 32 29 41 205
B 40 59 48 53 63 64 45 372
C 32 22 29 23 32 34 42 214
D 39 61 59 50 64 58 46 377
A 32 31 31 31 47 38 40 250
C 37 29 32 22 39 45 43 247
A 36 28 17 28 34 37 31 211
E 41 47 44 43 53 45 58 331
B 26 29 18 24 43 36 33 209
E 34 33 28 27 32 29 43 226
B 34 28 30 31 40 41 48 252
D 23 17 23 17 24 28 38 170
A 36 14 27 9 31 30 34 181
D 34 50 40 50 57 61 57 349

Final ranking (best—worst): E B D A C

Table 2: Result of the binary system comparison.
Numbers of sentences for which each system was
judged better by each evaluator (E1-E7).

Subset: Whole A+F Binary
Sys BLEU BLEU A F BLEU
A 36.3 36.2 2.93 2.46 36.3
B 49.4 49.3 3.74 3.58 49.2
C 36.3 36.2 3.53 3.31 36.1
D 48.2 46.8 3.68 3.48 47.7
E 49.8 49.6 3.67 3.46 49.4

Table 3: BLEU scores and Adequacy and Fluency
scores for the different systems and subsets of the
whole test set. BLEU values in %, Adequacy (A)
and Fluency (F) from 1 (worst) to 5 (best).

6 Discussion

In this section we will review the main drawbacks of
the human evaluation listed in Section 2 and analyze
how our approach deals with them. The first one
was the use of explicit numerical scores, which are
difficult to define exactly. Our system was mainly
designed for the elimination of this issue.

Our evaluation continues to be time consuming.
Even more, the number of individual comparisons
needed is in the order of log(n!), in contrast with the
standard adequacy-fluency evaluation which needs
2n individual evaluations (two evaluations per sys-
tem, one for fluency, another one for adequacy). For
n in the range of 1 up to 20 (a realistic number of
systems for current evaluation campaigns) these two
quantities are comparable. And actually each of our
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Figure 3: Normalized evaluation scores. Higher
scores are better. Solid lines show the 95% con-
fidence range. Automatic scores calculated on the
whole test set, human scores on the A+F subset.

evaluations should be simpler than the standard ad-
equacy and fluency ones. Therefore the time needed
for both evaluation procedures is probably similar.

Reproducibility of the evaluation is also an impor-
tant concern. We computed the number of “errors”
in the evaluation process, i.e. the number of sen-
tences evaluated by two or more evaluators where
the evaluators’ judgement was different. Only in
10% of the cases the evaluation was contradictory,
in the sense that one evaluator chose one sentence as
better than the other, while the other evaluator chose
the other one. In 30% of the cases, however, one
evaluator estimated both sentences to be of the same
quality while the other judged one sentence as supe-
rior to the other one. As comparison, for the fluency-
adequacy judgement nearly one third of the com-
mon evaluations have a difference in score greater or
equal than two (where the maximum would be four),
and another third a score difference of one point6.

With respect to biases, we feel that it is almost im-
possible to eliminate them if humans are involved. If
one of the judges prefers one kind of structure, there
will a bias for a system producing such output, in-
dependently of the evaluation procedure. However,
the suppression of explicit numerical scores elimi-
nates an additional bias of evaluators. It has been
observed that human judges often give scores within

6Note however that possible evaluator biases can have a
great influence in these statistics.
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a certain range (e.g. in the mid-range or only ex-
treme values), which constitute an additional diffi-
culty when carrying out the evaluation (Leusch et
al., 2005). Our method suppresses this kind of bias.

Another advantage of our method is the possibil-
ity of assessing improvements within one system.
With one evaluation we can decide if some modi-
fications actually improve performance. This eval-
uation even gives us a confidence interval to weight
the significance of an improvement. Carrying out
a full adequacy-fluency analysis would require a lot
more effort, without giving more useful results.

7 Conclusion

We presented a novel human evaluation technique
that simplifies the task of the evaluators. Our method
relies on two basic observations. The first one is that
in most evaluations the final goal is to find a ranking
of different systems, the absolute scores are usually
not so relevant. Especially when considering human
evaluation, the scores are not even comparable be-
tween two evaluation campaigns. The second one
is the fact that a human judge can normally choose
the best one out of two translations, and this is a
much easier process than the assessment of numeri-
cal scores whose definition is not at all clear. Taking
this into consideration we suggested a method that
aims at finding a ranking of different MT systems
based on the comparison of pairs of translation can-
didates for a set of sentences to be evaluated.

A detailed analysis of the statistical significance
of the method is presented and also applied to some
wide-spread automatic measures. The evaluation
methodology was applied for the ranking of 5 sys-
tems that participated in the second evaluation cam-
paign of the TC-STAR project and comparison with
standard evaluation measures was performed.
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Abstract 

We present a method for evaluating the 

quality of Machine Translation (MT) 

output, using labelled dependencies 

produced by a Lexical-Functional 

Grammar (LFG) parser. Our dependency-

based method, in contrast to most popular 

string-based evaluation metrics, does not 

unfairly penalize perfectly valid syntactic 

variations in the translation, and the 

addition of WordNet provides a way to 

accommodate lexical variation. In 

comparison with other metrics on 16,800 

sentences of Chinese-English newswire 

text, our method reaches high correlation 

with human scores.  

1 Introduction 

Since the creation of BLEU (Papineni et al., 2002) 

and NIST (Doddington, 2002), the subject of 

automatic evaluation metrics for MT has been 

given quite a lot of attention. Although widely 

popular thanks to their speed and efficiency, both 

BLEU and NIST have been criticized for 

inadequate accuracy of evaluation at the segment 

level (Callison-Burch et al., 2006). As string 

based-metrics, they are limited to superficial 

comparison of word sequences between a 

translated sentence and one or more reference 

sentences, and are unable to accommodate any 

legitimate grammatical variation when it comes to 

lexical choices or syntactic structure of the 

translation, beyond what can be found in the 

multiple references. A natural next step in the field 

of evaluation was to introduce metrics that would 

better reflect our human judgement by accepting 

synonyms in the translated sentence or evaluating 

the translation on the basis of what syntactic 

features it shares with the reference. 

Our method follows and substantially extends 

the earlier work of Liu and Gildea (2005), who use 

syntactic features and unlabelled dependencies to 

evaluate MT quality, outperforming BLEU on 

segment-level correlation with human judgement. 

Dependencies abstract away from the particulars of 

the surface string (and syntactic tree) realization 

and provide a “normalized” representation of 

(some) syntactic variants of a given sentence.  

While Liu and Gildea (2005) calculate n-gram 

matches on non-labelled head-modifier sequences 

derived by head-extraction rules from syntactic 

trees, we automatically evaluate the quality of 

translation by calculating an f-score on labelled 

dependency structures produced by a Lexical-

Functional Grammar (LFG) parser. These 

dependencies differ from those used by Liu and 

Gildea (2005), in that they are extracted according 

to the rules of the LFG grammar and they are 

labelled with a type of grammatical relation that 

connects the head and the modifier, such as 

subject, determiner, etc. The presence of 

grammatical relation labels adds another layer of 

important linguistic information into the 

comparison and allows us to account for partial 

matches, for example when a lexical item finds 

itself in a correct relation but with an incorrect 

partner. Moreover, we use a number of best parses 

for the translation and the reference, which serves 

to decrease the amount of noise that can be 

introduced by the process of parsing and extracting 

dependency information. 

The translation and reference files are 

analyzed by a treebank-based, probabilistic LFG 

parser (Cahill et al., 2004), which produces a set of 

dependency triples for each input. The translation 

set is compared to the reference set, and the 

number of matches is calculated, giving the 
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precision, recall, and f-score for each particular 

translation.   

In addition, to allow for the possibility of valid 

lexical differences between the translation and the 

references, we follow Kauchak and Barzilay 

(2006) in adding a number of synonyms in the 

process of evaluation to raise the number of 

matches between the translation and the reference, 

leading to a higher score. 

In an experiment on 16,800 sentences of 

Chinese-English newswire text with segment-level 

human evaluation from the Linguistic Data 

Consortium’s (LDC) Multiple Translation project, 

we compare the LFG-based evaluation method 

with other popular metrics like BLEU, NIST, 

General Text Matcher (GTM) (Turian et al., 2003), 

Translation Error Rate (TER) (Snover et al., 

2006)1, and METEOR (Banerjee and Lavie, 2005), 

and we show that combining dependency 

representations with synonyms leads to a more 

accurate evaluation that correlates better with 

human judgment. Although evaluated on a 

different test set, our method also outperforms the 

correlation with human scores reported in Liu and 

Gildea (2005). 

The remainder of this paper is organized as 

follows: Section 2 gives a basic introduction to 

LFG; Section 3 describes related work; Section 4 

describes our method and gives results of the 

experiment on the Multiple Translation data; 

Section 5 discusses ongoing work; Section 6 

concludes. 

2 Lexical-Functional Grammar 

In Lexical-Functional Grammar (Kaplan and 

Bresnan, 1982; Bresnan, 2001) sentence structure 

is represented in terms of c(onstituent)-structure 

and f(unctional)-structure. C-structure represents 

the word order of the surface string and the 

hierarchical organisation of phrases in terms of 

CFG trees. F-structures are recursive feature (or 

attribute-value) structures, representing abstract 

grammatical relations, such as subj(ect), obj(ect), 

obl(ique), adj(unct), etc., approximating to 

predicate-argument structure or simple logical 

forms. C-structure and f-structure are related in 

                                                 
1
 We omit HTER (Human-Targeted Translation Error 

Rate), as it is not fully automatic and requires human 

input. 

terms of functional annotations (attribute-value 

structure equations) in c-structure trees, describing 

f-structures.  

While c-structure is sensitive to surface 

rearrangement of constituents, f-structure abstracts 

away from the particulars of the surface 

realization. The sentences John resigned yesterday 

and Yesterday, John resigned will receive different 

tree representations, but identical f-structures, 

shown in (1). 

 

(1) C-structure:                         F-structure: 

 
              S 
                  
      
 NP                      VP 
   |                     
John       
              V               NP-TMP 
               |                      | 
       resigned       yesterday 
                         

SUBJ        PRED   john 
                 NUM    sg 
                 PERS   3 
PRED       resign 
TENSE     past 
ADJ      {[PRED   yesterday]} 

 

 

                     S 
                  
      
    NP       NP       VP 
      |                 |            | 
Yesterday  John        V              

                                    | 
                            resigned                             

SUBJ        PRED   john 
                 NUM    sg 
                 PERS   3 
PRED       resign 
TENSE     past 
ADJ      {[PRED   yesterday]} 
 

 

 

Note that if these sentences were a translation-

reference pair, they would receive a less-than-

perfect score from string-based metrics. For 

example, BLEU with add-one smoothing
2
 gives 

this pair a score of barely 0.3781. This is because, 

although all three unigrams from the “translation” 

(John; resigned; yesterday) are present in the 

reference, which contains four items including the 

comma (Yesterday; ,; John; resigned), the 

“translation” contains only one bigram (John 

resigned) that matches the “reference” (Yesterday 

,; , John; John resigned), and no matching 

trigrams. 

The f-structure can also be described in terms 

of a flat set of triples. In triples format, the f-

structure in (1) is represented as follows: 

{subj(resign, john), pers(john, 3), num(john, sg), 

tense(resign, past), adj(resign, yesterday), 

pers(yesterday, 3), num(yesterday, sg)}. 

                                                 
2
 We use smoothing because the original BLEU metric 

gives zero points to sentences with fewer than one four-

gram. 
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Cahill et al. (2004) presents a set of Penn-II 

Treebank-based LFG parsing resources. Their 

approach distinguishes 32 types of dependencies, 

including grammatical functions and 

morphological information. This set can be divided 

into two major groups: a group of predicate-only 

dependencies and non-predicate dependencies. 

Predicate-only dependencies are those whose path 

ends in a predicate-value pair, describing 

grammatical relations. For example, for the f-

structure in (1), predicate-only dependencies would 

include: {subj(resign, john), adj(resign, 

yesterday)}.  

Other predicate-only dependencies include: 

apposition, complement, open complement, 

coordination, determiner, object, second object, 

oblique, second oblique, oblique agent, possessive, 

quantifier, relative clause, topic, and relative 

clause pronoun. The remaining non-predicate 

dependencies are: adjectival degree, coordination 

surface form, focus, complementizer forms: if, 

whether, and that, modal, number, verbal particle, 

participle, passive, person, pronoun surface form, 

tense, and infinitival clause. 

In parser evaluation, the quality of the f-

structures produced automatically can be checked 

against a set of gold standard sentences annotated 

with f-structures by a linguist. The evaluation is 

conducted by calculating the precision and recall 

between the set of dependencies produced by the 

parser, and the set of dependencies derived from 

the human-created f-structure. Usually, two 

versions of f-score are calculated: one for all the 

dependencies for a given input, and a separate one 

for the subset of predicate-only dependencies. 

In this paper, we use the parser developed by 

Cahill et al. (2004), which automatically annotates 

input text with c-structure trees and f-structure 

dependencies, obtaining high precision and recall 

rates. 3  

3 Related work 

3.1 String-based metrics 

The insensitivity of BLEU and NIST to perfectly 

legitimate syntactic and lexical variation has been 

raised, among others, in Callison-Burch et al. 

(2006), but the criticism is widespread. Even the 

                                                 
3
 A demo of the parser can be found at http://lfg-

demo.computing.dcu.ie/lfgparser.html 

creators of BLEU point out that it may not 

correlate particularly well with human judgment at 

the sentence level (Papineni et al., 2002).  

Recently a number of attempts to remedy these 

shortcomings have led to the development of other 

automatic MT evaluation metrics. Some of them 

concentrate mainly on word order, like General 

Text Matcher (Turian et al., 2003), which 

calculates precision and recall for translation-

reference pairs, weighting contiguous matches 

more than non-sequential matches, or Translation 

Error Rate (Snover et al., 2006), which computes 

the number of substitutions, insertions, deletions, 

and shifts necessary to transform the translation 

text to match the reference. Others try to 

accommodate both syntactic and lexical 

differences between the candidate translation and 

the reference, like CDER (Leusch et al., 2006), 

which employs a version of edit distance for word 

substitution and reordering; or METEOR 

(Banerjee and Lavie, 2005), which uses stemming 

and WordNet synonymy. Kauchak and Barzilay 

(2006) and Owczarzak et al. (2006) use 

paraphrases during BLEU and NIST evaluation to 

increase the number of matches between the 

translation and the reference; the paraphrases are 

either taken from WordNet
4
 in Kauchak and 

Barzilay (2006) or derived from the test set itself 

through automatic word and phrase alignment in 

Owczarzak et al. (2006). Another metric making 

use of synonyms is the linear regression model 

developed by Russo-Lassner et al. (2005), which 

makes use of stemming, WordNet synonymy, verb 

class synonymy, matching noun phrase heads, and 

proper name matching. Kulesza and Shieber 

(2004), on the other hand, train a Support Vector 

Machine using features such as proportion of n-

gram matches and word error rate to judge a given 

translation’s distance from human-level quality.  

3.2 Dependency-based metric 

The metrics described above use only string-based 

comparisons, even while taking into consideration 

reordering. By contrast, Liu and Gildea (2005) 

present three metrics that use syntactic and 

unlabelled dependency information. Two of these 

metrics are based on matching syntactic subtrees 

between the translation and the reference, and one 

                                                 
4
 http://wordnet.princeton.edu/ 
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is based on matching headword chains, i.e. 

sequences of words that correspond to a path in the 

unlabelled dependency tree of the sentence. 

Dependency trees are created by extracting a 

headword for each node of the syntactic tree, 

according to the rules used by the parser of Collins 

(1999), where every subtree represents the 

modifier information for its root headword. The 

dependency trees for the translation and the 

reference are converted into flat headword chains, 

and the number of overlapping n-grams between 

the translation and the reference chains is 

calculated. Our method, extending this line of 

research with the use of labelled LFG 

dependencies, partial matching, and n-best parses, 

allows us to considerably outperform Liu and 

Gildea’s (2005) highest correlations with human 

judgement (they report 0.144 for the correlation 

with human fluency judgement, 0.202 for the 

correlation with human overall judgement), 

although it has to be kept in mind that such 

comparison is only tentative, as their correlation is 

calculated on a different test set. 

4 LFG f-structure in MT evaluation 

LFG-based automatic MT evaluation reflects the 

same process that underlies the evaluation of 

parser-produced f-structure quality against a gold 

standard: we parse the translation and the 

reference, and then, for each sentence, we check 

the set of labelled translation dependencies against 

the set of labelled reference dependencies, 

counting the number of matches. As a result, we 

obtain the precision and recall scores for the 

translation, and we calculate the f-score for the 

given pair.  

4.1 Determining parser noise 

Because we are comparing two outputs that were 

produced automatically, there is a possibility that 

the result will not be noise-free, even if the parser 

fails to provide a parse only in 0.1% of cases. 

To assess the amount of noise that the parser 

introduces, Owczarzak et al. (2006) conducted an 

experiment where 100 English sentences were 

hand-modified so that the position of adjuncts was 

changed, but the sentence remained grammatical 

and the meaning was not influenced. This way, an 

ideal parser should give both the source and the 

modified sentence the same f-structure, similarly to 

the example presented in (1). The modified 

sentences were treated like a translation file, and 

the original sentences played the part of the 

reference. Each set was run through the parser, and 

the dependency triples obtained from the 

“translation” were compared against the 

dependency triples for the “reference”, calculating 

the f-score. Additionally, the same “translation-

reference” set was scored with other metrics (TER, 

METEOR, BLEU, NIST, and GTM). The results, 

including the distinction between f-scores for all 

dependencies and predicate-only dependencies, 

appear in Table 1. 

 
 baseline modified 

TER 0.0 6.417 

METEOR   1.0 0.9970 

BLEU 1.0000 0.8725 

NIST 11.5232 11.1704 (96.94%) 

GTM 100 99.18 

dep f-score  100 96.56 

dep_preds f-score 100 94.13 

Table 1. Scores for sentences with reordered adjuncts 

 

The baseline column shows the upper bound for a 

given metric: the score which a perfect translation, 

word-for-word identical to the reference, would 

obtain.
5
 The other column lists the scores that the 

metrics gave to the “translation” containing 

reordered adjunct. As can be seen, the dependency 

and predicate-only dependency scores are lower 

than the perfect 100, reflecting the noise 

introduced by the parser. 

 We propose that the problem of parser 

noise can be alleviated by introducing a number of 

best parses into the comparison between the 

translation and the reference. Table 2 shows how 

increasing the number of parses available for 

comparison brings our method closer to an ideal 

noise-free parser.  

 

                                                 
5
 Two things have to be noted here: (1) in the case of 
NIST the perfect score differs from text to text, which is 

why the percentage points are provided along the 

numerical score, and (2) in the case of TER the lower 

the score, the better the translation, so the perfect 

translation will receive 0, and there is no upper bound 

on the score, which makes this particular metric 

extremely difficult to directly compare with others. 
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 dependency f-score 

1 best 96.56 

2 best 97.31 

5 best 97.90 

10 best 98.31 

20 best 98.59 

30 best 98.74 

50 best 98.79 

baseline 100 

Table 2.  Dependency f-scores for sentences with reordered 

adjuncts with n-best parses available 

 

It has to be noted, however, that increasing the 

number of parses beyond a certain threshold does 

little to further improve results, and at the same 

time it considerably decreases the efficiency of the 

method, so it is important to find the right balance 

between these two factors. In our opinion, the 

optimal value would be 10-best parses. 

4.2 Correlation with human judgement – 

MultiTrans 

4.2.1 Experimental design 

To evaluate the correlation with human 

assessment, we used the data from the Linguistic 

Data Consortium Multiple Translation Chinese 

(MTC) Parts 2 and 4, which consists of multiple 

translations of Chinese newswire text, four human-

produced references, and segment-level human 

scores for a subset of the translation-reference 

pairs. Although a single translated segment was 

always evaluated by more than one judge, the 

judges used a different reference every time, which 

is why we treated each translation-reference-

human score triple as a separate segment. In effect, 

the test set created from this data contained 16,800 

segments. As in the previous experiment, the 

translation was scored using BLEU, NIST, GTM, 

TER, METEOR, and our labelled dependency-

based method. 

4.2.2 Labelled dependency-based method 

We examined a number of modifications of the 

dependency-based method in order to find out 

which one gives the highest correlation with 

human scores. The correlation differences between 

immediate neighbours in the ranking were often 

too small to be statistically significant; however, 

there is a clear overall trend towards improvement.  

Besides the plain version of the dependency f-

score, we also looked at the f-score calculated on 

predicate dependencies only (ignoring “atomic” 

features such as person, number, tense, etc.), which 

turned out not to correlate well with human 

judgements. 

Another addition was the use of 2-, 10-, or 50-

best parses of the translation and reference 

sentences, which partially neutralized parser noise 

and resulted in increased correlations.  

We also created a version where predicate 

dependencies of the type subj(resign,John) are split 

into two parts, each time replacing one of the 

elements participating in the relation with a 

variable, giving in effect subj(resign,x) and 

subj(y,John). This lets us score partial matches, 

where one correct lexical object happens to find 

itself in the correct relation, but with an incorrect 

“partner”.  

Lastly, we added WordNet synonyms into the 

matching process to accommodate lexical 

variation, and to compare our WordNet-enhanced 

method with the WordNet-enhanced version of 

METEOR.  

4.2.3 Results 

We calculated Pearson’s correlation coefficient for 

segment-level scores that were given by each 

metric and by human judges. The results of the 

correlation are shown in Table 3. Note that the 

correlation for TER is negative, because in TER 

zero is the perfect score, in contrast to other 

metrics where zero is the worst possible score; 

however, this time the absolute values can be 

easily compared to each other. Rows are ordered 

by the highest value of the (absolute) correlation 

with the human score. 

First, it seems like none of the metrics is very 

good at reflecting human fluency judgments; the 

correlation values in the first column are 

significantly lower than the correlation with 

accuracy. This finding has been previously 

reported, among others, in Liu and Gildea (2005). 

However, the dependency-based method in almost 

all its versions has decidedly the highest 

correlation in this area. This can be explained by 

the method’s sensitivity to the grammatical 

structure of the sentence: a more grammatical 

translation is also a translation that is more fluent. 

As to the correlation with human evaluation of 

translation accuracy, our method currently falls 
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short of METEOR. This is caused by the fact that 

METEOR assign relatively little importance to the 

position of a specific word in a sentence, therefore 

rewarding the translation for content rather than 

linguistic form. Interestingly, while METEOR, 

with or without WordNet, considerably 

outperforms all other metrics when it comes to the 

correlation with human judgements of translation 

accuracy, it falls well behind most versions of our 

dependency-based method in correlation with 

human scores of translation fluency. 

Surprisingly, adding partial matching to the 

dependency-based method resulted in the greatest 

increase in correlation levels, to the extent that the 

partial-match versions consistently outperformed 

versions with a larger number of parses available 

but without the partial match. The most interesting 

effect was that the partial-match versions (even 

those with just a single parse) offered results 

comparable to or higher than the addition of 

WordNet to the matching process when it comes to 

accuracy and overall judgement. 

5 Current and future work 

Fluency and accuracy are two very different 

aspects of translation quality, each with its own set 

of conditions along which the input is evaluated. 

Therefore, it seems unfair to expect a single 

automatic metric to correlate highly with human 

judgements of both at the same time. This pattern 

is very noticeable in Table 3: if a metric is 

(relatively) good at correlating with fluency, its 

accuracy correlation suffers (GTM might serve as 

an example here), and the opposite holds as well 

(see METEOR’s scores). It does not mean that any 

improvement that increases the method’s 

correlation with one aspect will result in a decrease 

in the correlation with the other aspect; but it does 

suggest that a possible way of development would 

be to target these correlations separately, if we 

want our automated metrics to reflect human 

scores better. At the same time, string-based 

metrics might have already exhausted their 

potential when it comes to increasing their 

correlation with human evaluation; as has been 

pointed out before, these metrics can only tell us 

that two strings differ, but they cannot distinguish 

legitimate grammatical variance from 

ungrammatical variance. As the quality of MT  
 

 

Table 3. Pearson’s correlation between human scores and 

evaluation metrics. Legend: d = dependency f-score, _pr = 

predicate-only f-score, 2, 10, 50 = n-best parses; var = 

partial-match version; M = METEOR, WN = WordNet6 

 

improves, the community will need metrics that are 

more sensitive in this respect. After all, the true 

quality of MT depends on producing grammatical 

output which describes the same concept as the 

source utterance, and the string identity with a 

reference is only a very selective approximation of 

this goal.  

                                                 
6
 In general terms, an increase of 0.022 or more between 

any two scores in the same column is significant with a 

95% confidence interval. The statistical significance of 

correlation differences was calculated using Fisher’s z’ 

transformation and the general formula for confidence 

interval. 

 

fluency  accuracy  average  

d_50+WN 0.177 M+WN 0.294 M+WN 0.255 

d+WN 0.175 M   0.278 d_50_var 0.252 

d_50_var 0.174 d_50_var 0.273 d_50+WN 0.250 

GTM 0.172 NIST 0.273 d_10_var 0.250 

d_10_var 0.172 d_10_var 0.273 d_2_var 0.247 

d_50 0.171 d_2_var 0.270 d+WN 0.244 

d_2_var 0.168 d_50+WN 0.269 d_50 0.243 

d_10 0.168 d_var 0.266 d_var 0.243 

d_var 0.165 d_50 0.262 M   0.242 

d_2 0.164 d_10 0.262 d_10 0.242 

d   0.161 d+WN 0.260 NIST 0.238 

BLEU 0.155 d_2 0.257 d_2 0.237 

M+WN 0.153 d  0.256 d   0.235 

M   0.149 d_pr 0.240 d_pr 0.216 

NIST 0.146 GTM 0.203 GTM 0.208 

d_pr 0.143 BLEU 0.199 BLEU 0.197 

TER -0.133 TER -0.192 TER -0.182 
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 In order to maximize the correlation with 

human scores of fluency, we plan to look more 

closely at the parser output, and implement some 

basic transformations which would allow an even 

deeper logical analysis of input (e.g. passive to 

active voice transformation). 

  Additionally, we want to take advantage of 

the fact that the score produced by the dependency-

based method is the proportional average of 

matches for a group of up to 32 (but usually far 

fewer) different dependency types. We plan to 

implement a set of weights, one for each 

dependency type, trained in such a way as to 

maximize the correlation of the final dependency f-

score with human evaluation. In a preliminary 

experiment, for example, assigning a low weight to 

the topic dependency increases our correlations 

slightly (this particular case can also be seen as a 

transformation into a more basic logical form by 

removing non-elementary dependency types). 

 In a similar direction, we want to 

experiment more with the f-score calculations. 

Initial check shows that assigning a higher weight 

to recall than to precision improves results. 

 To improve the correlation with accuracy 

judgements, we would like to experiment using a 

paraphrase set derived from a large parallel corpus, 

as described in Owczarzak et al. (2006). While 

retaining the advantage of having a similar size to 

a corresponding set of WordNet synonyms, this set 

will also capture low-level syntactic variations, 

which can increase the number of matches.  

6 Conclusions 

In this paper we present a linguistically-

motivated method for automatically evaluating the 

output of Machine Translation. Most currently 

used popular metrics rely on comparing translation 

and reference on a string level. Even given 

reordering, stemming, and synonyms for individual 

words, current methods are still far from reaching 

human ability to assess the quality of translation, 

and there exists a need in the community to 

develop more dependable metrics. Our method 

explores one such direction of development, 

comparing the sentences on the level of their 

grammatical structure, as exemplified by their f-

structure labelled dependency triples produced by 

an LFG parser. In our experiments we showed that 

the dependency-based method correlates higher 

than any other metric with human evaluation of 

translation fluency, and shows high correlation 

with the average human score. The use of 

dependencies in MT evaluation has not been 

extensively researched before (one exception here 

would be Liu and Gildea (2005)), and requires 

more research to improve it, but the method shows 

potential to become an accurate evaluation metric.  
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Abstract

Attempts to estimate phrase translation
probablities for statistical machine transla-
tion using iteratively-trained models have
repeatedly failed to produce translations as
good as those obtained by estimating phrase
translation probablities from surface statis-
tics of bilingual word alignments as de-
scribed by Koehn, et al. (2003). We pro-
pose a new iteratively-trained phrase trans-
lation model that produces translations of
quality equal to or better than those pro-
duced by Koehn, et al.’s model. Moreover,
with the new model, translation quality de-
grades much more slowly as pruning is tigh-
tend to reduce translation time.

1 Introduction

Estimates of conditional phrase translation probabil-
ities provide a major source of translation knowl-
edge in phrase-based statistical machine translation
(SMT) systems. The most widely used method for
estimating these probabilities is that of Koehn, et
al. (2003), in which phrase pairs are extracted from
word-aligned bilingual sentence pairs, and their
translation probabilities estimated heuristically from
surface statistics of the extracted phrase pairs. We
will refer to this approach as “the standard model”.

There have been several attempts to estimate
phrase translation probabilities directly, using gen-
erative models trained iteratively on a parallel cor-
pus using the Expectation Maximization (EM) algo-
rithm. The first of these models, that of Marcu and

Wong (2002), was found by Koehn, et al. (2003),
to produce translations not quite as good as their
method. Recently, Birch et al. (2006) tried the
Marcu and Wong model constrained by a word
alignment and also found that Koehn, et al.’s model
worked better, with the advantage of the standard
model increasing as more features were added to the
overall translation model. DeNero et al. (2006) tried
a different generative phrase translation model anal-
ogous to IBM word-translation Model 3 (Brown et
al., 1993), and again found that the standard model
outperformed their generative model.

DeNero et al. (2006) attribute the inferiority of
their model and the Marcu and Wong model to a hid-
den segmentation variable, which enables the EM
algorithm to maximize the probability of the train-
ing data without really improving the quality of the
model. We propose an iteratively-trained phrase
translation model that does not require different seg-
mentations to compete against one another, and we
show that this produces translations of quality equal
to or better than those produced by the standard
model. We find, moreover, that with the new model,
translation quality degrades much more slowly as
pruning is tightend to reduce translation time.

Decoding efficiency is usually considered only in
the design and implementation of decoding algo-
rithms, or the choice of model structures to support
faster decoding algorithms. We are not aware of any
attention previously having been paid to the effect of
different methods of parameter estimation on trans-
lation efficiency for a given model structure.

The time required for decoding is of great im-
portance in the practical application of SMT tech-
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nology. One of the criticisms of SMT often made
by adherents of rule-based machine translation is
that SMT is too slow for practical application. The
rapidly falling price of computer hardware has ame-
liorated this problem to a great extent, but the fact re-
mains that every factor of 2 improvement in transla-
tion efficiency means a factor of 2 decrease in hard-
ware cost for intensive applications of SMT, such
as a web-based translation service (“Translate this
page”). SMT surely needs all the help in can get in
this regard.

2 Previous Approaches

Koehn, et al.’s (2003) method of estimating phrase-
translation probabilities is very simple. They start
with an automatically word-aligned corpus of bilin-
gual sentence pairs, in which certain words are
linked, indicating that they are translations of each
other, or that they are parts of phrases that are trans-
lations of each other. They extract every possi-
ble phrase pair (up to a given length limit) that (a)
contains at least one pair of linked words, and (b)
does not contain any words that have links to other
words not included in the phrase pair.1 In other
words, word alignment links cannot cross phrase
pair boundaries. Phrase translation probabilities are
estimated simply by marginalizing the counts of
phrase instances:

p(x|y) =
C(x, y)∑
x′ C(x′, y)

This method is used to estimate the conditional
probabilities of both target phrases give source
phrases and source phrases given target phrases.

In contrast to the standard model, DeNero, et al.
(2006) estimate phrase translation probabilities ac-
cording to the following generative model:

1. Begin with a source sentencea.

2. Stochastically segmenta into some number of
phrases.

3. For each selected phrase ina, stochastically
choose a phrase position in the target sentence
b that is being generated.

1This method of phrase pair extraction was originally de-
scribed by Och et al. (1999).

4. For each selected phrase ina and the corre-
sponding phrase position inb, stochastically
choose a target phrase.

5. Read off the target sentenceb from the se-
quence of target phrases.

DeNero et al.’s analysis of why their model per-
forms relatively poorly hinges on the fact that the
segmentation probabilities used in step 2 are, in
fact, not trained, but simply assumed to be uniform.
Given complete freedom to select whatever segmen-
tation maximizes the likelihood of any given sen-
tence pair, EM tends to favor segmentations that
yield source phrases with as few occurrences as pos-
sible, since more of the associated conditional prob-
ability mass can be concentrated on the target phrase
alignments that are possible in the sentence at hand.
Thus EM tends to maximize the probability of the
training data by concentrating probability mass on
the rarest source phrases it can construct to cover
the training data. The resulting probability estimates
thus have less generalizability to unseen data than
if probability mass were concentrated on more fre-
quently occurring source phrases.

3 A Segmentation-Free Model

To avoid the problem identified by DeNero et al.,
we propose an iteratively-trained model that does
not assume a segmentation of the training data into
non-overlapping phrase pairs. We refer to our model
as “iteratively-trained” rather than “generative” be-
cause we have not proved any of the mathematical
properties usually associated with generative mod-
els; e.g., that the training procedure maximizes the
likelihood of the training data. We will motivate
the model, however, with a generative story as to
how phrase alignments are produced, given a pair of
source and target sentences. Our model extends to
phrase alignment the concept of a sentence pair gen-
erating a word alignment developed by Cherry and
Lin (2003).

Our model is defined in terms of two stochastic
processes,selectionandalignment, as follows:

1. For each word-aligned sentence pair, we iden-
tify all the possible phrase pair instances ac-
cording to the criteria used by Koehn et al.
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2. Each source phrase instance that is included in
any of the possible phrase pair instances inde-
pendently selects one of the target phrase in-
stances that it forms a possible phrase pair in-
stance with.

3. Each target phrase instance that is included in
any of the possible phrase pair instances inde-
pendently selects one of the source phrase in-
stances that it forms a possible phrase pair in-
stance with.

4. A source phrase instance is aligned to a target
phrase instance, if and only if each selects the
other.

Given a set of selection probability distributions
and a word-aligned parallel corpus, we can eas-
ily compute the expected number of alignment in-
stances for a given phrase pair type. The probability
of a pair of phrase instancesx andy being aligned is
simply ps(x|y) × ps(y|x), whereps is the applica-
ble selection probability distribution. The expected
number of instances of alignment,E(x, y), for the
pair of phrasesx andy, is just the sum of the align-
ment probabilities of all the possible instances of
that phrase pair type.

From the expected number of alignments and the
total number of occurrences of each source and tar-
get phrase type in the corpus (whether or not they
particpate in possible phrase pairs), we estimate the
conditional phrase translation probabilities as

pt(y|x) =
E(x, y)
C(x)

, pt(x|y) =
E(x, y)
C(y)

,

whereE denotes expected counts, andC denotes
observed counts.

The use of the total observed counts of particu-
lar source and target phrases (instead of marginal-
ized expected joint counts) in estimating the condi-
tional phrase translation probabilities, together with
the multiplication of selection probabilities in com-
puting the alignment probability of particular phrase
pair instances, causes the conditional phrase transla-
tion probability distributions generally to sum to less
than1.0. We interpret the missing probability mass
as the probability that a given word sequence does
not translate as any contiguous word sequence in the
other language.

We have seen how to derive phrase translation
probabilities from the selection probabilities, but
where do the latter come from? We answer this
question by adding the following constraint to the
model:

The selection probabilities for each phrase
instance are obtained by renormalizing the
corresponding phrase translation probabil-
ities over the non-null choices presented
by the word-aligned sentence pair.

Symbolically, we can express this as

ps(x|y) =
pt(x|y)∑
x′ pt(x′|y)

whereps denotes selection probability,pt denotes
translation probability, andx′ ranges over the phrase
instances that could possibly align toy.

This model immediately suggests (and, in fact,
was designed to suggest) the following EM-like
training procedure:

1. Initialize the translation probability distribu-
tions to be uniform. (It doesn’t matter at this
point whether the possibility of no translation
is included or not.)

2. E step: Compute the expected phrase alignment
counts according to the model, deriving the se-
lection probabilities from the current estimates
of the translation probabilities as described.

3. M step: Re-estimate the phrase translation
probabilities according to the expected phrase
alignment counts as described.

4. Repeat the E and M steps, until the desired de-
gree of convergence is obtained.

We view this training procedure as iteratively try-
ing to find a set of phrase translation probabilities
that satisfies all the constraints of the model, al-
though we have not proved that this training proce-
dure always converges. We also have not proved that
the procedure maximizes the likelihood of anything,
although we find empirically that each iteration de-
creases the conditional entropy of the phrase trans-
lation model. In any case, the training procedure
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seems to work well in practice. It is also very simi-
lar to the joint training procedure for HMM word-
alignment models in both directions described by
Liang et al. (2006), which was the original inspira-
tion for our training procedure.

4 Experimental Set-Up and Data

We evaluated our phrase translation model com-
pared to the standard model of Koehn et al. in the
context of a fairly typical end-to-end phrase-based
SMT system. The overall translation model score
consists of a weighted sum of the following eight ag-
gregated feature values for each translation hypoth-
esis:

• the sum of the log probabilities of each source
phrase in the hypothesis given the correspond-
ing target phrase, computed either by our
model or the standard model,

• the sum of the log probabilities of each tar-
get phrase in the hypothesis given the corre-
sponding source phrase, computed either by
our model or the standard model,

• the sum of lexical scores for each source phrase
given the corresponding target phrase,

• the sum of lexical scores for each target phrase
given the corresponding source phrase,

• the log of the target language model probability
for the sequence of target phrases in the hypoth-
esis,

• the total number of words in the target phrases
in the hypothesis,

• the total number of source/target phrase pairs
composing the hypothesis,

• the distortion penalty as implemented in the
Pharaoh decoder (Koehn, 2003).

The lexical scores are computed as the (unnor-
malized) log probability of the Viterbi alignment for
a phrase pair under IBM word-translation Model 1
(Brown et al., 1993). The feature weights for the
overall translation models were trained using Och’s
(2003) minimum-error-rate training procedure. The
weights were optimized separately for our model

and for the standard phrase translation model. Our
decoder is a reimplementation in Perl of the algo-
rithm used by the Pharaoh decoder as described by
Koehn (2003).2

The data we used comes from an English-French
bilingual corpus of Canadian Hansards parliamen-
tary proceedings supplied for the bilingual word
alignment workshop held at HLT-NAACL 2003
(Mihalcea and Pedersen, 2003). Automatic sentence
alignment of this data was provided by Ulrich Ger-
mann. We used 500,000 sentences pairs from this
corpus for training both the phrase translation mod-
els and IBM Model 1 lexical scores. These 500,000
sentence pairs were word-aligned using a state-of-
the-art word-alignment method (Moore et al., 2006).
A separate set of 500 sentence pairs was used to train
the translation model weights, and two additional
held-out sets of 2000 sentence pairs each were used
as test data.

The two phrase translation models were trained
using the same set of possible phrase pairs extracted
from the word-aligned 500,000 sentence pair cor-
pus, finding all possible phrase pairs permitted by
the criteria followed by Koehn et al., up to a phrase
length of seven words. This produced approximately
69 million distinct phrase pair types. No pruning of
the set of possible phrase pairs was done during or
before training the phrase translation models. Our
phrase translation model and IBM Model 1 were
both trained for five iterations. The training pro-
cedure for our phrase translation model trains mod-
els in both directions simultaneously, but for IBM
Model 1, models were trained separately in each di-
rection. The models were then pruned to include
only phrase pairs that matched the source sides of
the small training and test sets.

5 Entropy Measurements

To verify that our iterative training procedure was
behaving as expected, after each training iteration
we measured the conditional entropy of the model
in predicting English phrases given French phrases,

2Since Perl is a byte-code interpreted language, absolute de-
coding times will be slower than with the standard machine-
language-compiled implementation of Pharaoh, but relative
times between models should be comparable.
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according to the formula

H(E|F ) =
∑
f

p(f)
∑
e

pt(e|f) log2 pt(e|f),

wheree and f range over the English and French
phrases that occur in the extracted phrase pairs, and
p(f) was estimated according to the relative fre-
quency of these French phrases in a 2000 sentence
sample of the French sentences from the 500,000
word-aligned sentence pairs. Over the five train-
ing iterations, we obtained a monotonically decreas-
ing sequence of entropy measurements in bits per
phrase: 1.329, 1.177, 1.146, 1.140, 1.136.

We also compared the conditional entropy of the
standard model to the final iteration of our model,
estimatingp(f) using the first of our 2000 sentence
pair test sets. For this data, our model measured 1.38
bits per phrase, and the standard model measured
4.30 bits per phrase. DeNero et al. obtained corre-
sponding measurements of 1.55 bits per phrase and
3.76 bits per phrase, for their model and the stan-
dard model, using a different data set and a slightly
different estimation method.

6 Translation Experiments

We wanted to look at the trade-off between decod-
ing time and translation quality for our new phrase
translation model compared to the standard model.
Since this trade-off is also affected by the settings of
various pruning parameters, we compared decoding
time and translation quality, as measured by BLEU

score (Papineni et al, 2002), for the two models on
our first test set over a broad range of settings for the
decoder pruning parameters.

The Pharaoh decoding algorithm, has five pruning
parameters that affect decoding time:

• Distortion limit

• Translation table limit

• Translation table threshold

• Beam limit

• Beam threshold

The distortion limit is the maximum distance al-
lowed between two source phrases that produce ad-
jacent target phrases in the decoder output. The dis-
tortion limit can be viewed as a model parameter,

as well as a pruning paramter, because setting it to
an optimum value usually improves translation qual-
ity over leaving it unrestricted. We carried out ex-
periments with the distortion limit set to 1, which
seemed to produce the highest BLEU scores on our
data set with the standard model, and also set to 5,
which is perhaps a more typical value for phrase-
based SMT systems. Translation model weights
were trained separately for these two settings, be-
cause the greater the distortion limit, the higher the
distortion penalty weight needed for optimal trans-
lation quality.

The translation table limit and translation table
threshold are applied statically to the phrase trans-
lation table, which combines all components of the
overall translation model score that can be com-
puted for each phrase pair in isolation. This in-
cludes all information except the distortion penalty
score and the part of the language model score that
looks atn-grams that cross target phrase boundaries.
The translation table limit is the maximum number
of translations allowed in the table for any given
source phrase. The translation table threshold is
the maximum difference in combined translation ta-
ble score allowed between the highest scoring trans-
lation and lowest scoring translation for any given
source phrase. The beam limit and beam threshold
are defined similarly, but they apply dynamically to
the sets of competing partial hypotheses that cover
the same number of source words in the beam search
for the highest scoring translation.

For each of the two distortion limits we tried, we
carried out a systematic search for combinations of
settings of the other four pruning parameters that
gave the best trade-offs between decoding time and
BLEU score. Starting at a setting of 0.5 for the
threshold parameters3 and 5 for the limit parameters
we performed a hill-climbing search over step-wise
relaxations of all combinations of the four parame-
ters, incrementing the threshold parameters by 0.5
and the limit parameters by 5 at each step. For each
resulting point that provided the best BLEU score yet
seen for the amount of decoding time used, we iter-

3We use difference in weighted linear scores directly for
our pruning thresholds, whereas the standard implementation of
Pharaoh expresses these as probability ratios. Hence the specific
values for these parameters are not comparable to published de-
scriptions of experiments using Pharaoh, although the effects of
pruning are exactly the same.
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ated the search.
The resulting possible combinations of BLEU

score and decoding time for the two phrase trans-
lation models are displayed in Figure 1, for a distor-
tion limit of 1, and Figure 2, for a distortion limit
of 5. BLEU score is reported on a scale of 1–100
(BLEU[%]), and decoding time is measured in mil-
liseconds per word. Note that the decoding time axis
is presented on a log scale.

The points that represent pruning parameter set-
tings one might consider using in a practical system
are those on or near the upper convex hull of the
set of points for each model. These upper-convex-
hull points are highlighted in the figures. Points far
from these boundaries represent settings of one or
more of the parameters that are too restrictive to ob-
tain good translation quality, together with settings
of other parameters that are too permissive to obtain
good translation time.

Examining the results for a distortion limit of
1, we found that the BLEU score obtained with
the loosest pruning parameter settings (2.5 for both

threshold paramters, and 25 for both limit parame-
ters) were essentially identical for the two mod-
els: 30.42 BLEU[%]. As the pruning parameters
are tightened to reduce decoding time, however,
the new model performs much better. At a decod-
ing time almost 6 times faster than for the settings
that produced the highest BLEU score, the change
in score was only−0.07 BLEU[%] with the new
model. To obtain a slightly worse4 BLEU score
(−0.08 BLEU[%]) using the standard model took
90% more decoding time.

It does appear, however, that the best BLEU score
for the standard model is slightly better than the best
BLEU score for the new model: 30.43 vs. 30.42.
It is in fact currious that there seem to be numer-
ous points where the standard model gets a slightly
better BLEU score than it does with with the loos-
est pruning settings, which should have the lowest
search error.

We conjectured that this might be an artifact of

4Points on the convex hulls with exactly comparable BLEU
scores do not often occur.
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our test procedure. If a model is at all reasonable,
most search errors will reduce the ultimate objec-
tive function, in our case the BLEU score, but oc-
casionally a search error will increase the objective
function just by chance. The smaller the number of
search errors in a particular test, the greater the like-
lihood that, by chance, more search errors will in-
crease the objective function than decrease it. Since
we are sampling a fairly large number of combi-
nations of pruning parameter settings (179 for the
standard model with a distortion limit of 1), it is
possible that a small number of these have more
“good” search errors than “bad” search errors sim-
ply by chance, and that this accounts for the small
number of points (13) at which the BLEU score ex-
ceeds that of the point which should have the fewest
search errors. This effect may be more pronounced
with the standard model than with the new model,
simply because there is more noise in the standard
model.

To test the hypothesis that the BLEU scores
greater than the score for the loosest pruning set-
tings simply represent noise in the data, we col-
lected all the pruning settings that produced BLEU

scores greater than or equal to the the one for the
loosest pruning settings, and evaluated the standard
model at those settings on our second held-out test
set. We then looked at the correlation between the
BLEU scores for these settings on the two test sets,
and found that it was very small and negative, with
r = −0.099. The standard F-test for the significance
of a correlation yieldedp = 0.74; in other words,
completely insignificant. This strongly suggests that
the apparent improvement in BLEU score for certain
tighter pruning settings is illusory.

As a sanity check, we tested the BLEU score cor-
relation between the two test sets for the points on
the upper convex hull of the plot for the standard
model, between the point with the fastest decod-
ing time and the point with the highest BLEU score.
That correlation was very high, withr = 0.94,
which was significant at the levelp = 0.0004 ac-
cording to the F-test. Thus the BLEU score differ-
ences along most of the upper convex hull seem to
reflect reality, but not in the region where they equal
or exceed the score for the loosest pruning settings.

At a distortion limit of 5, there seems no question
that the new model performs better than the standard

model. The difference BLEU scores for the upper-
convex-hull points ranges from about 0.8 to 0.2
BLEU[%] for comparable decoding times. Again,
the advantage of the new model is greater at shorter
decoding times. Compared to the results with a dis-
tortion limit of 1, the standard model loses transla-
tion quality, with a change of about−0.2 BLEU[%]
for the loosest pruning settings, while the new model
gains very slightly (+0.04 BLEU[%]).

7 Conclusions

This study seems to confirm DeNero et al.’s diagno-
sis that the main reason for poor performance of pre-
vious iteratively-trained phrase translation models,
compared to Koehn et al.’s model, is the effect of the
hidden segmentation variable in these models. We
have developed an iteratively-trained phrase transla-
tion model that is segmentation free, and shown that,
at a minimum, it eliminates the shortfall in BLEU

score compared to the standard model. With a larger
distortion limit, the new model produced transla-
tions with a noticably better BLEU score.

From a practical point of view, the main result
is probably that BLEU score degrades much more
slowly with our model than with the standard model,
when the decoding search is tuned for speed. For
some settings that appear reasonable, this difference
is close to a factor of 2, even if there is no differ-
ence in the translation quality obtainable when prun-
ing is loosened. For high-demand applications like
web page translation, roughly half of the investment
in translation servers could be saved while provid-
ing this level of translation quality with the same re-
sponse time.
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Abstract

Most state-of-the-art statistical machine
translation systems use log-linear models,
which are defined in terms of hypothesis fea-
tures and weights for those features. It is
standard to tune the feature weights in or-
der to maximize a translation quality met-
ric, using held-out test sentences and their
corresponding reference translations. How-
ever, obtaining reference translations is ex-
pensive. In this paper, we introduce a new
full-sentence paraphrase technique, based
on English-to-English decoding with an MT
system, and we demonstrate that the result-
ing paraphrases can be used to drastically re-
duce the number of human reference transla-
tions needed for parameter tuning, without a
significant decrease in translation quality.

1 Introduction

Viewed at a very high level, statistical machine
translation involves four phases: language and trans-
lation model training, parameter tuning, decoding,
and evaluation (Lopez, 2007; Koehn et al., 2003).
Since their introduction in statistical MT by Och and
Ney (2002), log-linear models have been a standard
way to combine sub-models in MT systems. Typi-
cally such a model takes the form

∑
i

λiφi(f̄ , ē) (1)

where φi are features of the hypothesis e and λi are
weights associated with those features.

Selecting appropriate weights λi is essential
in order to obtain good translation performance.
Och (2003) introduced minimum error rate train-
ing (MERT), a technique for optimizing log-linear

model parameters relative to a measure of translation
quality. This has become much more standard than
optimizing the conditional probability of the train-
ing data given the model (i.e., a maximum likelihood
criterion), as was common previously. Och showed
that system performance is best when parameters are
optimized using the same objective function that will
be used for evaluation; BLEU (Papineni et al., 2002)
remains common for both purposes and is often re-
tained for parameter optimization even when alter-
native evaluation measures are used, e.g., (Banerjee
and Lavie, 2005; Snover et al., 2006).

Minimum error rate training—and more gener-
ally, optimization of parameters relative to a trans-
lation quality measure—relies on data sets in which
source language sentences are paired with (sets of)
reference translations. It is widely agreed that, at
least for the widely used BLEU criterion, which is
based on n-gram overlap between hypotheses and
reference translations, the criterion is most accu-
rate when computed with as many distinct reference
translations as possible. Intuitively this makes sense:
if there are alternative ways to phrase the meaning
of the source sentence in the target language, then
the translation quality criterion should take as many
of those variations into account as possible. To do
otherwise is to risk the possibility that the criterion
might judge good translations to be poor when they
fail to match the exact wording within the reference
translations that have been provided.

This reliance on multiple reference translations
creates a problem, because reference translations are
labor intensive and expensive to obtain. A com-
mon source of translated data for MT research is the
Linguistic Data Consortium (LDC), where an elab-
orate process is undertaken that involves translation
agencies, detailed translation guidelines, and qual-
ity control processes (Strassel et al., 2006). Some
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efforts have been made to develop alternative pro-
cesses for eliciting translations, e.g., from users on
the Web (Oard, 2003) or from informants in low-
density languages (Probst et al., 2002). However,
reference translations for parameter tuning and eval-
uation remain a severe data bottleneck for such ap-
proaches.

Note, however, one crucial property of reference
translations: they are paraphrases, i.e., multiple ex-
pressions of the same meaning. Automatic tech-
niques exist for generating paraphrases. Although
one would clearly like to retain human transla-
tions as the benchmark for evaluation of translation,
might it be possible to usefully increase the number
of reference translations for tuning by using auto-
matic paraphrase techniques?

In this paper, we demonstrate that it is, in fact,
possible to do so. Section 2 briefly describes our
translation framework. Section 3 lays out a novel
technique for paraphrasing, designed with the ap-
plication to parameter tuning in mind. Section 4
presents evaluation results using a state of the art sta-
tistical MT system, demonstrating that half the hu-
man reference translations in a standard 4-reference
tuning set can be replaced with automatically gener-
ated paraphrases, with no significant decrease in MT
system performance. In Section 5 we discuss related
work, and in Section 6 we summarize the results and
discuss plans for future research.

2 Translation Framework

The work described in this paper makes use
of the Hiero statistical MT framework (Chiang,
2007). Hiero is formally based on a weighted syn-
chronous context-free grammar (CFG), containing
synchronous rules of the form

X → 〈ē, f̄ , φk
1(f̄ , ē, X)〉 (2)

where X is a symbol from the nonterminal alpha-
bet, and ē and f̄ can contain both words (terminals)
and variables (nonterminals) that serve as placehold-
ers for other phrases. In the context of statistical
MT, where phrase-based models are frequently used,
these synchronous rules can be interpreted as pairs
of hierarchical phrases. The underlying strength
of a hierarchical phrase is that it allows for effec-
tive learning of not only the lexical re-orderings, but

phrasal re-orderings, as well. Each φ(ē, f̄ , X) de-
notes a feature function defined on the pair of hierar-
chical phrases.1 Feature functions represent condi-
tional and joint co-occurrence probabilities over the
hierarchical paraphrase pair.

The Hiero framework includes methods to learn
grammars and feature values from unannotated par-
allel corpora, without requiring syntactic annotation
of the data. Briefly, training a Hiero model proceeds
as follows:

• GIZA++ (Och and Ney, 2000) is run on the
parallel corpus in both directions, followed by
an alignment refinement heuristic that yields a
many-to-many alignment for each parallel sen-
tence.

• Initial phrase pairs are identified following the
procedure typically employed in phrase based
systems (Koehn et al., 2003; Och and Ney,
2004).

• Grammar rules in the form of equation (2)
are induced by “subtracting” out hierarchical
phrase pairs from these initial phrase pairs.

• Fractional counts are assigned to each pro-
duced rule:

c(X → 〈ē, f̄〉) =
m∑

j=1

1
njr

(3)

where m is the number of initial phrase pairs
that give rise to this grammar rule and njr is
the number of grammar rules produced by the
jth initial phrase pair.

• Feature functions φk
1(f̄ , ē, X) are calculated

for each rule using the accumulated counts.

Once training has taken place, minimum error rate
training (Och, 2003) is used to tune the parameters
λi.

Finally, decoding in Hiero takes place using a
CKY synchronous parser with beam search, aug-
mented to permit efficient incorporation of language
model scores (Chiang, 2007). Given a source lan-
guage sentence f, the decoder parses the source lan-
guage sentence using the grammar it has learned

1Currently only one nonterminal symbol is used in Hiero
productions.

121



during training, with parser search guided by the
model; a target-language hypothesis is generated
simultaneously via the synchronous rules, and the
yield of that hypothesized analysis represents the hy-
pothesized string e in the target language.

3 Generating Paraphrases

As discussed in Section 1, our goal is to make it pos-
sible to accomplish the parameter-tuning phase us-
ing fewer human reference translations. We accom-
plish this by beginning with a small set of human
reference translations for each sentence in the devel-
opment set, and expanding that set by automatically
paraphrasing each member of the set rather than by
acquiring more human translations.

Most previous work on paraphrase has focused
on high quality rather than coverage (Barzilay and
Lee, 2003; Quirk et al., 2004), but generating ar-
tificial references for MT parameter tuning in our
setting has two unique properties compared to other
paraphrase applications. First, we would like to ob-
tain 100% coverage, in order to avoid modifications
to our minimum error rate training infrastructure.2

Second, we prefer that paraphrases be as distinct as
possible from the original sentences, while retaining
as much of the original meaning as possible.

In order to satisfy these two properties, we ap-
proach sentence-level paraphrase for English as
a problem of English-to-English translation, con-
structing the model using English-F translation, for
a second language F , as a pivot. Following Ban-
nard and Callison-Burch (2005), we first identify
English-to-F correspondences, then map from En-
glish to English by following translation units from
English to F and back. Then, generalizing their ap-
proach, we use those mappings to create a well de-
fined English-to-English translation model. The pa-
rameters of this model are tuned using MERT, and
then the model is used in an the (unmodified) sta-
tistical MT system, yielding sentence-level English
paraphrases by means of decoding input English
sentences. The remainder of this section presents
this process in detail.

2Strictly speaking, this was not a requirement of the ap-
proach, but rather a concession to practical considerations.

3.1 Mapping and Backmapping
We employ the following strategy for the induction
of the required monolingual grammar. First, we train
the Hiero system in standard fashion on a bilingual
English-F training corpus. Then, for each exist-
ing production in the resulting Hiero grammar, we
create multiple new English-to-English productions
by pivoting on the foreign hierarchical phrase in the
rule. For example, assume that we have the follow-
ing toy grammar for English-F , as produced by Hi-
ero:

X → 〈ē1, f̄1〉
X → 〈ē3, f̄1〉
X → 〈ē1, f̄2〉
X → 〈ē2, f̄2〉
X → 〈ē4, f̄2〉

If we use the foreign phrase f̄1 as a pivot and
backmap, we can extract the two English-to-English
rules: X → 〈ē1, ē3〉 and X → 〈ē3, ē1〉. Backmap-
ping using both f̄1 and f̄2 produces the following
new rules (ignoring duplicates and rules that map
any English phrase to itself):

X → 〈ē1, ē2〉
X → 〈ē1, ē3〉
X → 〈ē1, ē4〉
X → 〈ē2, ē1〉
X → 〈ē2, ē4〉

3.2 Feature values
Each rule production in a Hiero grammar is
weighted by several feature values defined on the
rule themselves. In order to perform accurate
backmapping, we must recompute these feature
functions for the newly created English-to-English
grammar. Rather than computing approximations
based on feature values already existing in the bilin-
gual Hiero grammar, we calculate these features
in a more principled manner, by computing max-
imum likelihood estimates directly from the frac-
tional counts that Hiero accumulates in the penul-
timate training step.

We use the following features in our induced
English-to-English grammar:3

3Hiero also uses lexical weights (Koehn et al., 2003) in both
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• The joint probability of the two English hierar-
chical paraphrases, conditioned on the nonter-
minal symbol, as defined by this formula:

p(ē1, ē2|x) =
c(X → 〈ē1, ē2〉)∑

ē1
′,ē2

′ c(X → 〈ē1
′, ē2

′〉)

=
c(X → 〈ē1, ē2〉)

c(X)
(4)

where the numerator is the fractional count of
the rule under consideration and the denomina-
tor represents the marginal count over all the
English hierarchical phrase pairs.

• The conditionals p(ē1, x|ē2) and p(ē2, x|ē1)
defined as follows:

p(ē1, x|ē2) =
c(X → 〈ē1, ē2〉)∑

ē1
′ c(X → 〈ē1

′, ē2〉)
(5)

p(ē2, x|ē1) =
c(X → 〈ē1, ē2〉)∑

ē2
′ c(X → 〈ē1, ē2

′〉)
(6)

Finally, for all induced rules, we calculate a word
penalty exp(−T (ē2)), where T (ē2) just counts the
number of terminal symbols in ē2. This feature al-
lows the model to learn whether it should produce
shorter or longer paraphrases.

In addition to the features above that are estimated
from the training data, we also use a trigram lan-
guage model. Since we are decoding to produce
English sentences, we can use the same language
model employed in a standard statistical MT setting.

Calculating the proposed features is complicated
by the fact that we don’t actually have the counts
for English-to-English rules because there is no
English-to-English parallel corpus. This is where
the counts provided by Hiero come into the picture.
We estimate the counts that we need as follows:

c(X → 〈ē1, ē2〉) =∑
f̄

c(X → 〈ē1, f̄〉)c(X → 〈ē2, f̄〉) (7)

An intuitive way to think about the formula above
is by using an example at the corpus level. As-
sume that, in the given bilingual parallel corpus,
there are m sentences in which the English phrase

directions as features but we don’t use them for our grammar.

ē1 co-occurs with the foreign phrase f̄ and n sen-
tences in which the same foreign phrase f̄ co-occurs
with the English phrase ē2. The problem can then
be thought of as defining a function g(m,n) which
computes the number of sentences in a hypotheti-
cal English-to-English parallel corpus wherein the
phrases ē1 and ē1 co-occur. For this paper, we de-
fine g(m,n) to be the upper bound mn.

Tables 1 and 2 show some examples of para-
phrases generated by our system across a range of
paraphrase quality for two different pivot languages.

3.3 Tuning Model Parameters

Although the goal of the paraphrasing approach
is to make it less data-intensive to tune log-linear
model parameters for translation, our paraphrasing
approach, since it is based on an English-to-English
log-linear model, also requires its own parameter
tuning. This, however, is straightforward: regard-
less of how the paraphrasing model will be used
in statistical MT, e.g., irrespective of source lan-
guage, it is possible to use any existing set of English
paraphrases as the tuning set for English-to-English
translation. We used the 2002 NIST MT evaluation
test set reference translations. For every item in the
set, we randomly chose one sentence as the source
sentence, and the remainder as the “reference trans-
lations” for purposes of minimum error rate training.

4 Evaluation

Having developed a paraphrasing approach based on
English-to-English translation, we evaluated its use
in improving minimum error rate training for trans-
lation from a second language into English.

Generating paraphrases via English-to-English
translation makes use of a parallel corpus, from
which a weighted synchronous grammar is automat-
ically acquired. Although nothing about our ap-
proach requires that the paraphrase system’s training
bitext be the same one used in the translation exper-
iments (see Section 6), doing so is not precluded, ei-
ther, and it is a particularly convenient choice when
the paraphrasing is being done in support of MT.4

The training bitext comprised of Chinese-English

4The choice of the foreign language used as the pivot should
not really matter but it is worth exploring this using other lan-
guage pairs as our bitext.
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O: we must bear in mind the community as a whole .
P: we must remember the wider community .
O: thirdly , the implications of enlargement for the union ’s regional policy cannot be overlooked .
P: finally , the impact of enlargement for eu regional policy cannot be ignored .
O: how this works in practice will become clear when the authority has to act .
P: how this operate in practice will emerge when the government has to play .
O: this is an ill-advised policy .
P: this is an unwelcome in europe .

Table 1: Example paraphrases with French as the pivot language. O = Original Sentence, P = Paraphrase.

O: alcatel added that the company’s whole year earnings would be announced on february 4 .
P: alcatel said that the company’s total annual revenues would be released on february 4 .
O: he was now preparing a speech concerning the us policy for the upcoming world economic forum .
P: he was now ready to talk with regard to the us policies for the forthcoming international economic forum .
O: tibet has entered an excellent phase of political stability, ethnic unity and people living in peace .
P: tibetans have come to cordial political stability, national unity and lived in harmony .
O: its ocean and blue-sky scenery and the mediterranean climate make it world’s famous scenic spot .
P: its harbour and blue-sky appearance and the border situation decided it world’s renowned tourist attraction .

Table 2: Example paraphrases with Chinese as the pivot language. O = Original Sentence, P = Paraphrase.

Corpus # Sentences # Words
HK News 542540 11171933

FBIS 240996 9121210
Xinhua 54022 1497562
News1 9916 314121

Treebank 3963 125848
Total 851437 22230674

Table 3: Chinese-English corpora used as training
bitext both for paraphrasing and for evaluation.

parallel corpora containing 850, 000 sentence pairs –
approx. 22 million words (details shown in Table 3).

As the source of development data for minimum
error rate training, we used the 919 source sen-
tences and human reference translations from the
2003 NIST Chinese-English MT evaluation exer-
cise. As raw material for experimentation, we gen-
erated a paraphrase for each reference sentence via
1-best decoding using the English-to-English trans-
lation approach of Section 3.

As our test data, we used the 1082 source sen-
tences and human reference translations from the
2005 NIST Chinese-English MT evaluation.

Our core experiment involved three conditions
where the only difference was the set of references
for the development set used for tuning feature
weights. For each condition, once the weights were
tuned, they were used to decode the test set. Note
that for all the conditions, the decoded test set was
always scored against the same four high-quality hu-
man reference translations included with the set.

The three experimental conditions were designed
around the constraint that our development set con-
tains a total of four human reference translations per
sentence, and therefore a maximum of four human
references with which to compute an upper bound:

• Baseline (2H): For each item in the devel-
opment set, we randomly chose two of the
four human-constructed reference translations
as references for minimum error rate training.

• Expanded (2H + 2P): For each of the two hu-
man references in the baseline tuning set, we
automatically generated a corresponding para-
phrase using (1-best) English-to-English trans-
lation, decoding using the model developed in
Section 3. This condition represents the critical
case in which you have a limited number of hu-
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man references (two, in this case) and augment
them with artificially generated reference trans-
lations. This yields a set of four references for
minimum error rate training (two human, two
paraphrased), which permits a direct compar-
ison against the upper bound of four human-
generated reference translations.

• Upper bound: 4H: We performed minimum
error rate training using the four human refer-
ences from the development set.

In addition to these core experimental conditions,
we added a fourth condition to assess the effect on
performance when all four human reference trans-
lations are used in expanding the reference set via
paraphrase:

• Expanded (4H + 4P): This is the same as Con-
dition 2, but using all four human references.

Note that since we have only four human references
per item, this fourth condition does not permit com-
parison with an upper bound of eight human refer-
ences.

Table 4 shows BLEU and TER scores on the test
set for all four conditions.5 If only two human ref-
erences were available (simulated by using only two
of the available four), expanding to four using para-
phrases would yield a clear improvement. Using
bootstrap resampling to compute confidence inter-
vals (Koehn, 2004), we find that the improvement in
BLEU score is statistically significant at p < .01.

Equally interesting, expanding the number of ref-
erence translations from two to four using para-
phrases yields performance that approaches the up-
per bound obtained by doing MERT using all four
human reference translations. The difference in
BLEU between conditions 2 and 3 is not significant.

Finally, our fourth condition asks whether it is
possible to improve MT performance given the
typical four human reference translations used for
MERT in most statistical MT systems, by adding a
paraphrase to each one for a total eight references
per translation. There is indeed further improve-
ment, although the difference in BLEU score does
not reach significance.

5We plan to include METEOR scores in future experiments.

Condition References used BLEU TER
1 2 H 30.43 59.82
2 2 H + 2 P 31.10 58.79
3 4 H 31.26 58.66
4 4 H + 4 P 31.68 58.24

Table 4: BLEU and TER scores showing utility of
paraphrased reference translations. H = human ref-
erences, P = paraphrased references.

We also evaluated our test set using TER (Snover
et al., 2006) and observed that the TER scores follow
the same trend as the BLEU scores. Specifically, the
TER scores demonstrate that using paraphrases to
artificially expand the reference set is better than us-
ing only 2 human reference translations and as good
as using 4 human reference translations.6

5 Related Work

The approach we have taken here arises from a typ-
ical situation in NLP systems: the lack of sufficient
data to accurately estimate a model based on super-
vised training data. In a structured prediction prob-
lem such as MT, we have an example input and a
single labeled, correct output. However, this output
is chosen from a space in which the number of pos-
sible outputs is exponential in the input size, and in
which there are many good outputs in this space (al-
though they are vastly outnumbered by the bad out-
puts). Various discriminative learning methods have
attempted to deal with the first of these issues, often
by restricting the space of examples. For instance,
some max-margin methods restrict their computa-
tions to a set of examples from a “feasible set,”
where they are expected to be maximally discrim-
inative (Tillmann and Zhang, 2006). The present
approach deals with the second issue: in a learning
problem where the use of a single positive example
is likely to be highly biased, how can we produce a
set of positive examples that is more representative
of the space of correct outcomes? Our method ex-
ploits alternative sources of information to produce
new positive examples that are, we hope, reasonably
likely to represent a consensus of good examples.

Quite a bit of work has been done on paraphrase,
6We anticipate doing significance tests for differences in

TER in future work.
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some clearly related to our technique, although in
general previous work has been focused on human
readability rather than high coverage, noisy para-
phrases for use downstream in an automatic process.

At the sentence level, (Barzilay and Lee, 2003)
employed an unsupervised learning approach to
cluster sentences and extract lattice pairs from
comparable monolingual corpora. Their technique
produces a paraphrase only if the input sentence
matches any of the extracted lattice pairs, leading to
a bias strongly favoring quality over coverage. They
were able to generate paraphrases for 59 sentences
(12%) out of a 484-sentence test set, generating no
paraphrases at all for the remainder.

Quirk et al. (2004) also generate sentential para-
phrases using a monolingual corpus. They use
IBM Model-1 scores as the only feature, and em-
ploy a monotone decoder (i.e., one that cannot pro-
duce phrase-level reordering). This approach em-
phasizes very simple “substitutions of words and
short phrases,” and, in fact, almost a third of their
best sentential “paraphrases” are identical to the in-
put sentence.

A number of other approaches rely on parallel
monolingual data and, additionally, require pars-
ing of the training sentences (Ibrahim et al., 2003;
Pang et al., 2003). Lin and Pantel (2001) use a
non-parallel corpus and employ a dependency parser
and computation of distributional similarity to learn
paraphrases.

There has also been recent work on using para-
phrases to improve statistical machine translation.
Callison-Burch et al. (2006) extract phrase-level
paraphrases by mapping input phrases into a phrase
table and then mapping back to the source language.
However, they do not generate paraphrases of entire
sentences, but instead employ paraphrases to add en-
tries to an existing phrase table solely for the pur-
pose of increasing source-language coverage.

Other work has incorporated paraphrases into MT
evaluation: Russo-Lassner et al. (2005) use a com-
bination of paraphrase-based features to evaluate
translation output; Zhou et al. (2006) propose a new
metric that extends n-gram matching to include syn-
onyms and paraphrases; and Lavie’s METEOR met-
ric (Banerjee and Lavie, 2005) can be used with ad-
ditional knowledge such as WordNet in order to sup-
port inexact lexical matches.

6 Conclusions and Future Work

We introduced an automatic paraphrasing technique
based on English-to-English translation of full sen-
tences using a statistical MT system, and demon-
strated that, using this technique, it is possible to
cut in half the usual number of reference transla-
tions used for minimum error rate training with no
significant loss in translation quality. Our method
enables the generation of paraphrases for thousands
of sentences in a very short amount of time (much
shorter than creating other low-cost human refer-
ences). This might prove beneficial for various dis-
criminative training methods (Tillmann and Zhang,
2006).

This has important implications for data acquisi-
tion strategies For example, it suggests that rather
than obtaining four reference translations per sen-
tence for development sets, it may be more worth-
while to obtain fewer translations for a wider range
of sentences, e.g., expanding into new topics and
genres. In addition, this approach can significantly
increase the utility of datasets which include only a
single reference translation.

A number of future research directions are pos-
sible. First, since we have already demonstrated
that noisy paraphrases can nonetheless add value,
it would be straightforward to explore the quan-
tity/quality tradeoff by expanding the MERT refer-
ence translations with n-best paraphrases for n > 1.

We also plan to conduct an intrinsic evaluation of
the quality of paraphrases that our technique gener-
ates. It is important to note that a different tradeoff
ratio may lead to even better results, e.g, using only
the paraphrased references when they pass some
goodness threshold, as used in Ueffing’s (2006) self-
training MT approach.

We have also observed that named entities are
usually paraphrased incorrectly if there is a genre
mismatch between the training and the test data. The
Hiero decoder allows spans of source text to be an-
notated with inline translations using XML. We plan
to identify and annotate named entities in the En-
glish source so that they are left unchanged.

Also, since the language F for English-F pivoting
is arbitrary, we plan to investigate using English-to-
English grammars created using multiple English-F
grammars based on different languages, both indi-
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vidually and in combination, in order to improve
paraphrase quality.

We also plan to explore a wider range of
paraphrase-creation techniques, ranging from sim-
ple word substitutions (e.g., based on WordNet) to
using the pivot technique with other translations sys-
tems.
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Abstract

We describe a mixture-model approach to
adapting a Statistical Machine Translation
System for new domains, using weights that
depend on text distances to mixture compo-
nents. We investigate a number of variants
on this approach, including cross-domain
versus dynamic adaptation; linear versus
loglinear mixtures; language and transla-
tion model adaptation; different methods of
assigning weights; and granularity of the
source unit being adapted to. The best
methods achieve gains of approximately one
BLEU percentage point over a state-of-the
art non-adapted baseline system.

1 Introduction

Language varies significantly across different gen-
res, topics, styles, etc. This affects empirical mod-
els: a model trained on a corpus of car-repair manu-
als, for instance, will not be well suited to an appli-
cation in the field of tourism. Ideally, models should
be trained on text that is representative of the area
in which they will be used, but such text is not al-
ways available. This is especially the case for bilin-
gual applications, because parallel training corpora
are relatively rare and tend to be drawn from spe-
cific domains such as parliamentary proceedings.

In this paper we address the problem of adapting
a statistical machine translation system by adjust-
ing its parameters based on some information about
a test domain. We assume two basic settings. In
cross-domainadaptation, a small sample of parallel

in-domain text is available, and it is used to optimize
for translating future texts drawn from the same do-
main. In dynamicadaptation, no domain informa-
tion is available ahead of time, and adaptation is
based on the current source text under translation.
Approaches developed for the two settings can be
complementary: an in-domain development corpus
can be used to make broad adjustments, which can
then be fine tuned for individual source texts.

Our method is based on the classical technique
of mixture modeling (Hastie et al., 2001). This
involves dividing the training corpus into different
components, training a model on each part, then
weighting each model appropriately for the current
context. Mixture modeling is a simple framework
that encompasses many different variants, as de-
scribed below. It is naturally fairly low dimensional,
because as the number of sub-models increases, the
amount of text available to train each, and therefore
its reliability, decreases. This makes it suitable for
discriminative SMT training, which is still a chal-
lenge for large parameter sets (Tillmann and Zhang,
2006; Liang et al., 2006).

Techniques for assigning mixture weights depend
on the setting. In cross-domain adaptation, knowl-
edge of both source and target texts in the in-domain
sample can be used to optimize weights directly. In
dynamic adaptation, training poses a problem be-
cause no reference text is available. Our solution
is to construct a multi-domain development sample
for learning parameter settings that are intended to
generalize to new domains (ones not represented in
the sample). We do not learn mixture weights di-
rectly with this method, because there is little hope
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that these would be well suited to new domains. In-
stead we attempt to learn how weights should be set
as a function of distance. To our knowledge, this ap-
proach to dynamic adaptation for SMT is novel, and
it is one of the main contributions of the paper.

A second contribution is a fairly broad investiga-
tion of the large space of alternatives defined by the
mixture-modeling framework, using a simple genre-
based corpus decomposition. We experimented with
the following choices: cross-domain versus dynamic
adaptation; linear versus loglinear mixtures; lan-
guage and translation model adaptation; various text
distance metrics; different ways of converting dis-
tance metrics into weights; and granularity of the
source unit being adapted to.

The remainder of the paper is structured follows:
section 2 briefly describes our phrase-based SMT
system; section 3 describes mixture-model adapta-
tion; section 4 gives experimental results; section 5
summarizes previous work; and section 6 concludes.

2 Phrase-based Statistical MT

Our baseline is a standard phrase-based SMT sys-
tem (Koehn et al., 2003). Given a source sentences,
this tries to find the target sentencet̂ that is the most
likely translation ofs, using the Viterbi approxima-
tion:

t̂ = argmax
t

p(t|s) ≈ argmax
t,a

p(t,a|s),

where alignmenta = (s̃1, t̃1, j1), ..., (s̃K , t̃K , jK);
t̃k are target phrases such thatt = t̃1 . . . t̃K ; s̃k are
source phrases such thats = s̃j1 . . . s̃jK ; and s̃k is
the translation of thekth target phrasẽtk.

To modelp(t,a|s), we use a standard loglinear
approach:

p(t,a|s) ∝ exp

[∑

i

αifi(s, t,a)

]
(1)

where eachfi(s, t,a) is a feature function, and
weights αi are set using Och’s algorithm (Och,
2003) to maximize the system’s BLEU score (Pa-
pineni et al., 2001) on a development corpus. The
features used in this study are: the length of
t; a single-parameter distortion penalty on phrase
reordering in a, as described in (Koehn et al.,
2003); phrase translation model probabilities; and

4-gram language model probabilitieslog p(t), us-
ing Kneser-Ney smoothing as implemented in the
SRILM toolkit.

Phrase translation model probabilities are features
of the form: log p(s|t,a) ≈ ∑K

k=1 log p(s̃k|t̃k).
We use two different estimates for the conditional
probabilitiesp(t̃|s̃) andp(s̃|t̃): relative frequencies
and “lexical” probabilities as described in (Zens and
Ney, 2004). In both cases, the “forward” phrase
probabilitiesp(t̃|s̃) are not used as features, but only
as a filter on the set of possible translations: for each
source phrasẽs that matches some ngram ins, only
the 30 top-ranked translations̃t according top(t̃|s̃)
are retained.

To derive the joint countsc(s̃, t̃) from which
p(s̃|t̃) andp(t̃|s̃) are estimated, we use the phrase in-
duction algorithm described in (Koehn et al., 2003),
with symmetrized word alignments generated using
IBM model 2 (Brown et al., 1993).

3 Mixture-Model Adaptation

Our approach to mixture-model adaptation can be
summarized by the following general algorithm:

1. Split the corpus into different components, ac-
cording to some criterion.

2. Train a model on each corpus component.

3. Weight each model according to its fit with the
test domain:

• For cross-domain adaptation, set param-
eters using a development corpus drawn
from the test domain, and use for all fu-
ture documents.

• For dynamic adaptation, set global param-
eters using a development corpus drawn
from several different domains. Set mix-
ture weights as a function of the distances
from corpus components to the current
source text.

4. Combine weighted component models into a
single global model, and use it to translate as
described in the previous section.

We now describe each aspect of this algorithm in
more detail.
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3.1 Corpus Decomposition

We partition the corpus into different genres, defined
as being roughly identical to corpus source. This is
the simplest way to exploit heterogeneous training
material for adaptation. An alternative, which we
have not explored, would be to cluster the corpus
automatically according to topic.

3.2 Component Models

We adapt both language and translation model fea-
tures within the overall loglinear combination (1).

To train translation models on each corpus com-
ponent, we used a global IBM2 model for word
alignment (in order to avoid degradation in align-
ment quality due to smaller training corpora), then
extracted component-specific relative frequencies
for phrase pairs. Lexical probabilities were also de-
rived from the global IBM2 model, and were not
adapted.

The procedure for training component-specific
language models on the target halves of each cor-
pus component is identical to the procedure for the
global model described in section 2. In addition to
the component models, we also used a large static
global model.

3.3 Combining Framework

The most commonly-used framework for mixture
models is a linear one:

p(x|h) =
∑
c

λcpc(x|h) (2)

where p(x|h) is either a language or translation
model;pc(x|h) is a model trained on componentc,
andλc is the corresponding weight. An alternative,
suggested by the form of the global model, is a log-
linear combination:

p(x|h) =
∏
c

pc(x|h)αc

where we writeαc to emphasize that in this case
the mixing parameters are global weights, like the
weights on the other features within the loglinear
model. This is in contrast to linear mixing, where the
combined modelp(x|h) receives a loglinear weight,
but the weights on the components do not partici-
pate in the global loglinear combination. One conse-
quence is that it is more difficult to set linear weights

using standard minimum-error training techniques,
which assume only a “flat” loglinear model.

3.4 Distance Metrics

We used four standard distance metrics to cap-
ture the relation between the current source or tar-
get text q and each corpus component.1 All are
monolingual—they are applied only to source text
or only to target text.

The tf/idf metric commonly used in information
retrieval is defined ascos(vc,vq), where vc and
vq are vectors derived from componentc and doc-
umentq, each consisting of elements of the form:
−p̃(w) log p̃doc(w), wherep̃(w) is the relative fre-
quency of wordw within the component or docu-
ment, andpdoc(w) is the proportion of components
it appears in.

Latent Semantic Analysis (LSA)(Deerwester et
al., 1990) is a technique for implicitly capturing the
semantic properties of texts, based on the use of
Singular Value Decomposition to produce a rank-
reduced approximation of an original matrix of word
and document frequencies. We applied this tech-
nique to all documents in the training corpus (as op-
posed to components), reduced the rank to 100, then
calculated the projections of the component and doc-
ument vectors described in the previous paragraph
into the reduced space.

Perplexity (Jelinek, 1997) is a standard way of
evaluating the quality of a language model on a test
text. We define a perplexity-based distance metric
pc(q)1/|q|, wherepc(q) is the probability assigned to
q by an ngram language model trained on compo-
nentc.

The final distance metric, which we callEM, is
based on expressing the probability ofq as a word-
level mixture model:p(q) =

∏|q|
i=1

∑
c dcpc(wi|hi),

whereq = w1 . . . w|q|, andpc(w|h) is the ngram
probability ofw following word sequenceh in com-
ponentc. It is straighforward to use the EM algo-
rithm to find the set of weightŝdc,∀c that maxi-
mizes the likelihood ofq. The weightd̂c is defined
as the distance to componentc. For all experiments
described below, we used a probability difference
threshold of 0.001 as the EM convergence criterion.

1Although we refer to these metrics as distances, most are
in fact proximities, and we use the convention throughout that
higher values mean closer.
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3.5 Learning Adaptive Parameters

Our focus in this paper is on adaptation via mixture
weights. However, we note that the usual loglinear
parameter tuning described in section 2 can also be
considered adaptation in the cross-domain setting,
because learned preferences for word penalty, rel-
ative LM/TM weighting, etc, will reflect the target
domain. This is not the case for dynamic adapta-
tion, where, in the absence of an in-domain devel-
opment corpus, the only information we can hope to
glean are the weights on adapted models compared
to other features of the system.

The method used for adapting mixture weights
depends on both the combining framework (loglin-
ear versus linear), and the adaptive setting (cross-
domain versus dynamic), as described below.

3.5.1 Setting Loglinear Mixture Weights

When using a loglinear combining framework as
described in section 3.3, mixture weights are set
in the same way as the other loglinear parameters
when performing cross-domain adaptation. Loglin-
ear mixture models were not used for dynamic adap-
tation.

3.5.2 Setting Linear Mixture Weights

For both adaptive settings, linear mixture weights
were set as a function of the distance metrics de-
scribed in section 3.4. Given a set of metrics
{D1, . . . , Dm}, letdi,c be the distance from the cur-
rent text to componentc according to metricDi. A
simple approach to weighting is to choose a single
metricDi, and set the weights in (2) to be propor-
tional to the corresponding distances:

λc = di,c/
∑

c′
di,c′ . (3)

Because different distance metrics may capture
complementary information, and because optimal
weights might be a non-linear function of distance,
we also experimented with a linear combination of
metrics transformed using a sigmoid function:

λc =
m∑

i=1

βi
1 + exp(ai(bi − di,c)) (4)

whereβi reflects the relative predictive power ofDi,
and the sigmoid parametesai and bi can be set to

selectively suppress contributions from components
that are far away. Here we assume thatβi absorbs
a normalization constant, so that theλc’s sum to 1.
In this approach, there are three parameters per dis-
tance metric to learn:βi, ai, andbi. In general, these
parameters are also specific to the particular model
being adapted, ie the LM or the TM.

To optimize these parameters, we fixed global
loglinear weights at values obtained with Och’s al-
gorithm using representative adapted models based
on a single distance metric in (3), then used the
Downhill Simplex algorithm (Press et al., 2002) to
maximize BLEU score on the development corpus.
For tractability, we followed standard practice with
this technique and considered only monotonic align-
ments when decoding (Zens and Ney, 2004).

The two approaches just described avoid condi-
tioning λc explicitly on c. This is necessary for
dynamic adaptation, since any genre preferences
learned from the development corpus cannot be ex-
pected to generalize. However, it is not necessary
for cross-domain adaptation, where the genre of the
development corpus is assumed to represent the test
domain. Therefore, we also experimented with us-
ing Downhill Simplex optimization todirectly learn
the set of linear weightsλc that yield maximum
BLEU score on the development corpus.

A final variant on setting linear mixture weights is
a hybrid between cross-domain and dynamic adap-
tation. In this approach, both the global loglinear
weights and, if they are being used, the mixture pa-
rametersβi, ai, bi are set to characterize the test do-
main as in cross-domain adaptation. When trans-
lating, however, distances to the current source text
are used in (3) or (4) instead of distances to the in-
domain development corpus. This obviously limits
the metrics used to ones that depend only on source
text.

4 Experiments

All experiments were run on the NIST MT evalua-
tion 2006 Chinese data set. Table 1 summarizes the
corpora used. The training corpus was divided into
seven components according to genre; in all cases
these were identical to LDC corpora, with the excep-
tion of theNewswirecomponent, which was amal-
gamated from several smaller corpora. The target
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genre for cross-domain adaptation was newswire,
for which high-quality training material is avail-
able. The cross-domain development setNIST04-
nw is the newswire subset of the NIST 2004 evalu-
ation set, and the dynamic adaptation development
setNIST04-mixis a balanced mixed-genre subset of
NIST 2004. The NIST 2005 evaluation set was used
for testing cross-domain adaptation, and the NIST
2006 evaluation set (both the “GALE” and “NIST”
parts) was used to test dynamic adaptation.

Because different development corpora are used
for cross-domain and dynamic adaptation, we
trained one static baseline model for each of these
adaptation settings, on the corresponding develop-
ment set.

All results given in this section are BLEU scores.

role corpus genres sent
train FBIS04 nw 182k

HK Hans proceedings 1,375k
HK Laws legal 475k
HK News press release 740k
Newswire nw 26k
Sinorama news mag 366k
UN proceedings 4,979k

dev NIST04-nw nw 901
NIST04-mix nw, sp, ed 889

test NIST05 nw 1,082
NIST06-GALE nw, ng, bn, bc 2,276
NIST06-NIST nw, ng, bn 1,664

Table 1: Corpora. In thegenrescolumn: nw =
newswire, sp = speeches, ed = editorial, ng = news-
group, bn = broadcast news, and bc = broadcast con-
versation.

4.1 Linear versus Loglinear Combination

Table 2 shows a comparison between linear and
loglinear mixing frameworks, with uniform weights
used in the linear mixture. Both types of mixture
model are better than the baseline, but the linear
mixture is slightly better than the loglinear mix-
ture. This is quite surprising, because these results
are on thedevelopmentset: the loglinear model
tunes its component weights on this set, whereas
the linear model only adjusts global LM and TM
weights. We speculated that this may have been due
to non-smooth component models, and tried various

smoothing schemes, including Kneser-Ney phrase
table smoothing similar to that described in (Foster
et al., 2006), and binary features to indicate phrase-
pair presence within different components. None
helped, however, and we conclude that the problem
is most likely that Och’s algorithm is unable to find
a good maximimum in this setting. Due to this re-
sult, all experiments we describe below involve lin-
ear mixtures only.

combination adapted model
LM TM LM+TM

baseline 30.2 30.2 30.2
loglinear mixture 30.9 31.2 31.4
uniform linear mixture 31.2 31.1 31.8

Table 2: Linear versus loglinear combinations on
NIST04-nw.

4.2 Distance Metrics for Weighting

Table 3 compares the performance of all distance
metrics described in section 3.4 when used on their
own as defined in (3). The difference between them
is fairly small, but appears to be consistent across
LM and TM adaptation and (for the LM metrics)
across source and target side matching. In general,
LM metrics seem to have a slight advantage over the
vector space metrics, with EM being the best overall.
We focus on this metric for most of the experiments
that follow.

metric source text target text
LM TM LM TM

tf/idf 31.3 31.3 31.1 31.1
LSA 31.5 31.6
perplexity 31.6 31.3 31.7 31.5
EM 31.7 31.6 32.1 31.3

Table 3: Distance metrics for linear combination on
the NIST04-nw development set. (Entries in the top
right corner are missing due to lack of time.)

Table 4 shows the performance of the parame-
terized weighting function described by (4), with
source-side EM and LSA metrics as inputs. This
is compared to direct weight optimization, as both
these techniques use Downhill Simplex for param-
eter tuning. Unfortunately, neither is able to beat
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the performance of the normalized source-side EM
metric on its own (reproduced on the first line from
table 3). In additional tests we verified that this also
holds for the test corpus. We speculate that this dis-
appointing result is due to compromises made in or-
der to run Downhill Simplex efficiently, including
holding global weights fixed, using only a single
starting point, and running with monotone decoding.

weighting LM TM
EM-src, direct 31.7 31.6
EM-src + LSA-src, parameterized31.0 30.0
direct optimization 31.7 30.2

Table 4: Weighting techniques for linear combina-
tion on the NIST04-nw development set.

4.3 Cross-Domain versus Dynamic Adaptation

Table 5 shows results for cross-domain adaptation,
using the source-side EM metric for linear weight-
ing. Both LM and TM adaptation are effective, with
test-set improvements of approximately 1 BLEU
point over the baseline for LM adaptation and some-
what less for TM adaptation. Performance also im-
proves on the NIST06 out-of-domain test set (al-
though this set includes a newswire portion as well).
However, combined LM and TM adaptation is not
better than LM adaptation on its own, indicating that
the individual adapted models may be capturing the
same information.

model dev test
nist04- nist05 nist06-

nw nist
baseline 30.2 30.3 26.5
EM-src LM 31.7 31.2 27.8
EM-src TM 31.6 30.9 27.3
EM-src LM+TM 32.5 31.2 27.7

Table 5: Cross-Domain adaptation results.

Table 6 contains results for dynamic adaptation,
using the source-side EM metric for linear weight-
ing. In this setting, TM adaptation is much less
effective, not significantly better than the baseline;
performance of combined LM and TM adaptation
is also lower. However, LM adaptation improves
over the baseline by up to a BLEU point. The per-

formance of cross domain adaptation (reproduced
from table 5 on the second line) is slightly better for
the in-domain test set (NIST05), but worse than dy-
namic adaptation on the two mixed-domain sets.

model dev test
nist04- nist05 nist06- nist06-

mix nist gale
baseline 31.9 30.4 27.6 12.9
cross LM n/a 31.2 27.8 12.5
LM 32.8 30.8 28.6 13.4
TM 32.4 30.7 27.6 12.8
LM+TM 33.4 30.8 28.5 13.0

Table 6: Dynamic adaptation results, using src-side
EM distances.

model NIST05
baseline 30.3
cross EM-src LM 31.2
cross EM-src TM 30.9
hybrid EM-src LM 30.9
hybrid EM-src TM 30.7

Table 7: Hybrid adaptation results.

Table 7 shows results for the hybrid approach de-
scribed at the end of section 3.5.2: global weights
are learned on NIST04-nw, but linear weights are
derived dynamically from the current test file. Per-
formance drops slightly compared to pure cross-
domain adaptation, indicating that it may be impor-
tant to have a good fit between global and mixture
weights.

4.4 Source Granularity

The results of the final experiment, to determine the
effects of source granularity on dynamic adaptation,
are shown in table 8. Source-side EM distances are
applied to the whole test set, to genres within the set,
and to each document individually. Global weights
were tuned specifically for each of these conditions.
There appears to be little difference among these ap-
proaches, although genre-based adaptation perhaps
has a slight advantage.
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granularity dev test
nist04- nist05 nist06- nist06-

mix nist gale
baseline 31.9 30.4 27.6 12.9
file 32.4 30.8 28.6 13.4
genre 32.5 31.1 28.9 13.2
document 32.9 30.9 28.6 13.4

Table 8: The effects of source granularity on dy-
namic adaptation.

5 Related Work

Mixture modeling is a standard technique in ma-
chine learning (Hastie et al., 2001). It has been
widely used to adapt language models for speech
recognition and other applications, for instance us-
ing cross-domain topic mixtures, (Iyer and Osten-
dorf, 1999), dynamic topic mixtures (Kneser and
Steinbiss, 1993), hierachical mixtures (Florian and
Yarowsky, 1999), and cache mixtures (Kuhn and De
Mori, 1990).

Most previous work on adaptive SMT focuses on
the use of IR techniques to identify a relevant sub-
set of the training corpus from which an adapted
model can be learned. Byrne et al (2003) use co-
sine distance from the current source document to
find relevant parallel texts for training an adapted
translation model, with background information for
smoothing alignments. Hildebrand et al (1995) de-
scribe a similar approach, but apply it at the sentence
level, and use it for language model as well as trans-
lation model adaptation. They rely on a perplexity
heuristic to determine an optimal size for the rele-
vant subset. Zhao et al (2004) apply a slightly differ-
ent sentence-level strategy to language model adap-
tation, first generating an nbest list with a baseline
system, then finding similar sentences in a monolin-
gual target-language corpus. This approach has the
advantage of not limiting LM adaptation to a parallel
corpus, but the disadvantage of requiring two trans-
lation passes (one to generate the nbest lists, and an-
other to translate with the adapted model).

Ueffing (2006) describes aself-trainingapproach
that also uses a two-pass algorithm. A baseline sys-
tem generates translations that, after confidence fil-
tering, are used to construct a parallel corpus based
on the test set. Standard phrase-extraction tech-

niques are then applied to extract an adapted phrase
table from the system’s own output.

Finally, Zhang et al (2006) cluster the parallel
training corpus using an algorithm that heuristically
minimizes the average entropy of source-side and
target-side language models over a fixed number of
clusters. Each source sentence is then decoded us-
ing the language model trained on the cluster that
assigns highest likelihood to that sentence.

The work we present here is complementary
to both the IR approaches and Ueffing’s method
because it provides a way of exploiting a pre-
established corpus division. This has the potential
to allow sentences having little surface similarity to
the current source text to contribute statistics that
may be relevant to its translation, for instance by
raising the probability of rare but pertinent words.
Our work can also be seen as extending all previous
approaches in that it assigns weights to components
depending on their degree of relevance, rather than
assuming a binary distinction between relevant and
non-relevant components.

6 Conclusion and Future Work

We have investigated a number of approaches to
mixture-based adaptation using genres for Chi-
nese to English translation. The most successful
is to weight component models in proportion to
maximum-likelihood (EM) weights for the current
text given an ngram language model mixture trained
on corpus components. This resulted in gains of
around one BLEU point. A more sophisticated ap-
proach that attempts to transform and combine mul-
tiple distance metrics did not yield positive results,
probably due to an unsucessful optmization proce-
dure.

Other conclusions are: linear mixtures are more
tractable than loglinear ones; LM-based metrics are
better than VS-based ones; LM adaptation works
well, and adding an adapted TM yields no improve-
ment; cross-domain adaptation is optimal, but dy-
namic adaptation is a good fallback strategy; and
source granularity at the genre level is better than
the document or test-set level.

In future work, we plan to improve the optimiza-
tion procedure for parameterized weight functions.
We will also look at bilingual metrics for cross-
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domain adaptation, and investigate better combina-
tions of cross-domain and dynamic adaptation.
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Abstract

This paper evaluates the translation quality
of machine translation systems for 8 lan-
guage pairs: translating French, German,
Spanish, and Czech to English and back.
We carried out an extensive human evalua-
tion which allowed us not only to rank the
different MT systems, but also to perform
higher-level analysis of the evaluation pro-
cess. We measured timing and intra- and
inter-annotator agreement for three types of
subjective evaluation. We measured the cor-
relation of automatic evaluation metrics with
human judgments. This meta-evaluation re-
veals surprising facts about the most com-
monly used methodologies.

1 Introduction

This paper presents the results for the shared trans-
lation task of the 2007 ACL Workshop on Statistical
Machine Translation. The goals of this paper are
twofold: First, we evaluate the shared task entries
in order to determine which systems produce trans-
lations with the highest quality. Second, we analyze
the evaluation measures themselves in order to try to
determine “best practices” when evaluating machine
translation research.

Previous ACL Workshops on Machine Transla-
tion were more limited in scope (Koehn and Monz,
2005; Koehn and Monz, 2006). The 2005 workshop
evaluated translation quality only in terms of Bleu
score. The 2006 workshop additionally included a
limited manual evaluation in the style of NIST ma-

chine translation evaluation workshop. Here we ap-
ply eleven different automatic evaluation metrics,
and conduct three different types of manual evalu-
ation.

Beyond examining the quality of translations pro-
duced by various systems, we were interested in ex-
amining the following questions about evaluation
methodologies: How consistent are people when
they judge translation quality? To what extent do
they agree with other annotators? Can we im-
prove human evaluation? Which automatic evalu-
ation metrics correlate most strongly with human
judgments of translation quality?

This paper is organized as follows:

• Section 2 gives an overview of the shared task.
It describes the training and test data, reviews
the baseline system, and lists the groups that
participated in the task.

• Section 3 describes the manual evaluation. We
performed three types of evaluation: scoring
with five point scales, relative ranking of trans-
lations of sentences, and ranking of translations
of phrases.

• Section 4 lists the eleven different automatic
evaluation metrics which were also used to
score the shared task submissions.

• Section 5 presents the results of the shared task,
giving scores for each of the systems in each of
the different conditions.

• Section 6 provides an evaluation of the dif-
ferent types of evaluation, giving intra- and
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inter-annotator agreement figures for the man-
ual evaluation, and correlation numbers for the
automatic metrics.

2 Shared task overview

This year’s shared task changed in some aspects
from last year’s:

• We gave preference to the manual evaluation of
system output in the ranking of systems. Man-
ual evaluation was done by the volunteers from
participating groups and others. Additionally,
there were three modalities of manual evalua-
tion.

• Automatic metrics were also used to rank the
systems. In total eleven metrics were applied,
and their correlation with the manual scores
was measured.

• As in 2006, translation was from English, and
into English. English was again paired with
German, French, and Spanish. We additionally
included Czech (which was fitting given the lo-
cation of the WS).

Similar to the IWSLT International Workshop on
Spoken Language Translation (Eck and Hori, 2005;
Paul, 2006), and the NIST Machine Translation
Evaluation Workshop (Lee, 2006) we provide the
shared task participants with a common set of train-
ing and test data for all language pairs. The major
part of data comes from current and upcoming full
releases of the Europarl data set (Koehn, 2005).

2.1 Description of the Data
The data used in this year’s shared task was similar
to the data used in last year’s shared task. This year’s
data included training and development sets for the
News Commentary data, which was the surprise out-
of-domain test set last year.

The majority of the training data for the Spanish,
French, and German tasks was drawn from a new
version of the Europarl multilingual corpus. Addi-
tional training data was taken from the News Com-
mentary corpus. Czech language resources were
drawn from the News Commentary data. Additional
resources for Czech came from the CzEng Paral-
lel Corpus (Bojar and Žabokrtský, 2006). Overall,

there are over 30 million words of training data per
language from the Europarl corpus and 1 million
words from the News Commentary corpus. Figure 1
provides some statistics about the corpora used this
year.

2.2 Baseline system

To lower the barrier of entrance to the competition,
we provided a complete baseline MT system, along
with data resources. To summarize, we provided:

• sentence-aligned training corpora
• development and dev-test sets
• language models trained for each language
• an open source decoder for phrase-based SMT

called Moses (Koehn et al., 2006), which re-
places the Pharaoh decoder (Koehn, 2004)

• a training script to build models for Moses

The performance of this baseline system is similar
to the best submissions in last year’s shared task.

2.3 Test Data

The test data was again drawn from a segment of
the Europarl corpus from the fourth quarter of 2000,
which is excluded from the training data. Partici-
pants were also provided with three sets of parallel
text to be used for system development and tuning.

In addition to the Europarl test set, we also col-
lected editorials from the Project Syndicate web-
site1, which are published in all the five languages
of the shared task. We aligned the texts at a sentence
level across all five languages, resulting in 2,007
sentences per language. For statistics on this test set,
refer to Figure 1.

The News Commentary test set differs from the
Europarl data in various ways. The text type are ed-
itorials instead of speech transcripts. The domain is
general politics, economics and science. However, it
is also mostly political content (even if not focused
on the internal workings of the European Union) and
opinion.

2.4 Participants

We received submissions from 15 groups from 14
institutions, as listed in Table 1. This is a slight

1http://www.project-syndicate.com/
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Europarl Training corpus

Spanish↔ English French↔ English German↔ English
Sentences 1,259,914 1,288,901 1,264,825

Foreign words 33,159,337 33,176,243 29,582,157
English words 31,813,692 32,615,285 31,929,435

Distinct foreign words 345,944 344,287 510,544
Distinct English words 266,976 268,718 250,295

News Commentary Training corpus

Spanish↔ English French↔ English German↔ English Czech↔ English
Sentences 51,613 43,194 59,975 57797

Foreign words 1,263,067 1,028,672 1,297,673 1,083,122
English words 1,076,273 906,593 1,238,274 1,188,006

Distinct foreign words 84,303 68,214 115,589 142,146
Distinct English words 70,755 63,568 76,419 74,042

Language model data

English Spanish French German
Sentence 1,407,285 1,431,614 1,435,027 1,478,428
Words 34,539,822 36,426,542 35,595,199 32,356,475

Distinct words 280,546 385,796 361,205 558,377

Europarl test set

English Spanish French German
Sentences 2,000

Words 53,531 55,380 53,981 49,259
Distinct words 8,558 10,451 10,186 11,106

News Commentary test set

English Spanish French German Czech
Sentences 2,007

Words 43,767 50,771 49,820 45,075 39,002
Distinct words 10,002 10,948 11,244 12,322 15,245

Figure 1: Properties of the training and test sets used in the shared task. The training data is drawn from the
Europarl corpus and from the Project Syndicate, a web site which collects political commentary in multiple
languages.
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ID Participant
cmu-uka Carnegie Mellon University, USA (Paulik et al., 2007)

cmu-syntax Carnegie Mellon University, USA (Zollmann et al., 2007)
cu Charles University, Czech Republic (Bojar, 2007)

limsi LIMSI-CNRS, France (Schwenk, 2007)
liu University of Linköping, Sweden(Holmqvist et al., 2007)
nrc National Research Council, Canada (Ueffing et al., 2007)
pct a commercial MT provider from the Czech Republic
saar Saarland University & DFKI, Germany (Chen et al., 2007)

systran SYSTRAN, France & U. Edinburgh, UK (Dugast et al., 2007)
systran-nrc National Research Council, Canada (Simard et al., 2007)

ucb University of California at Berkeley, USA (Nakov and Hearst, 2007)
uedin University of Edinburgh, UK (Koehn and Schroeder, 2007)
umd University of Maryland, USA (Dyer, 2007)
upc University of Catalonia, Spain (Costa-Jussà and Fonollosa, 2007)
upv University of Valencia, Spain (Civera and Juan, 2007)

Table 1: Participants in the shared task. Not all groups participated in all translation directions.

increase over last year’s shared task where submis-
sions were received from 14 groups from 11 insti-
tutions. Of the 11 groups that participated in last
year’s shared task, 6 groups returned this year.

This year, most of these groups follow a phrase-
based statistical approach to machine translation.
However, several groups submitted results from sys-
tems that followed a hybrid approach.

While building a machine translation system is a
serious undertaking we hope to attract more new-
comers to the field by keeping the barrier of entry
as low as possible. The creation of parallel corpora
such as the Europarl, the CzEng, and the News Com-
mentary corpora should help in this direction by pro-
viding freely available language resources for build-
ing systems. The creation of an open source baseline
system should also go a long way towards achieving
this goal.

For more on the participating systems, please re-
fer to the respective system description in the pro-
ceedings of the workshop.

3 Human evaluation

We evaluated the shared task submissions using both
manual evaluation and automatic metrics. While
automatic measures are an invaluable tool for the
day-to-day development of machine translation sys-

tems, they are an imperfect substitute for human
assessment of translation quality. Manual evalua-
tion is time consuming and expensive to perform,
so comprehensive comparisons of multiple systems
are rare. For our manual evaluation we distributed
the workload across a number of people, including
participants in the shared task, interested volunteers,
and a small number of paid annotators. More than
100 people participated in the manual evaluation,
with 75 of those people putting in at least an hour’s
worth of effort. A total of 330 hours of labor was in-
vested, nearly doubling last year’s all-volunteer ef-
fort which yielded 180 hours of effort.

Beyond simply ranking the shared task submis-
sions, we had a number of scientific goals for the
manual evaluation. Firstly, we wanted to collect
data which could be used to assess how well au-
tomatic metrics correlate with human judgments.
Secondly, we wanted to examine different types of
manual evaluation and assess which was the best.
A number of criteria could be adopted for choos-
ing among different types of manual evaluation: the
ease with which people are able to perform the task,
their agreement with other annotators, their reliabil-
ity when asked to repeat judgments, or the number
of judgments which can be collected in a fixed time
period.

There are a range of possibilities for how human
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evaluation of machine translation can be done. For
instance, it can be evaluated with reading compre-
hension tests (Jones et al., 2005), or by assigning
subjective scores to the translations of individual
sentences (LDC, 2005). We examined three differ-
ent ways of manually evaluating machine translation
quality:

• Assigning scores based on five point adequacy
and fluency scales

• Ranking translated sentences relative to each
other

• Ranking the translations of syntactic con-
stituents drawn from the source sentence

3.1 Fluency and adequacy
The most widely used methodology when manually
evaluating MT is to assign values from two five point
scales representing fluency and adequacy. These
scales were developed for the annual NIST Machine
Translation Evaluation Workshop by the Linguistics
Data Consortium (LDC, 2005).

The five point scale for adequacy indicates how
much of the meaning expressed in the reference
translation is also expressed in a hypothesis trans-
lation:

5 = All
4 = Most
3 = Much
2 = Little
1 = None

The second five point scale indicates how fluent
the translation is. When translating into English the
values correspond to:

5 = Flawless English
4 = Good English
3 = Non-native English
2 = Disfluent English
1 = Incomprehensible

Separate scales for fluency and adequacy were
developed under the assumption that a translation
might be disfluent but contain all the information
from the source. However, in principle it seems that
people have a hard time separating these two as-
pects of translation. The high correlation between
people’s fluency and adequacy scores (given in Ta-
bles 17 and 18) indicate that the distinction might be
false.
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Figure 2: In constituent-based evaluation, the source
sentence was parsed, and automatically aligned with
the reference translation and systems’ translations

Another problem with the scores is that there are
no clear guidelines on how to assign values to trans-
lations. No instructions are given to evaluators in
terms of how to quantify meaning, or how many
grammatical errors (or what sort) separates the dif-
ferent levels of fluency. Because of this many judges
either develop their own rules of thumb, or use the
scales as relative rather than absolute. These are
borne out in our analysis of inter-annotator agree-
ment in Section 6.

3.2 Ranking translations of sentences

Because fluency and adequacy were seemingly diffi-
cult things for judges to agree on, and because many
people from last year’s workshop seemed to be using
them as a way of ranking translations, we decided to
try a separate evaluation where people were simply
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asked to rank translations. The instructions for this
task were:

Rank each whole sentence translation
from Best to Worst relative to the other
choices (ties are allowed).

These instructions were just as minimal as for flu-
ency and adequacy, but the task was considerably
simplified. Rather than having to assign each trans-
lation a value along an arbitrary scale, people simply
had to compare different translations of a single sen-
tence and rank them.

3.3 Ranking translations of syntactic
constituents

In addition to having judges rank the translations
of whole sentences, we also conducted a pilot
study of a new type of evaluation methodology,
which we call constituent-based evaluation. In our
constituent-based evaluation we parsed the source
language sentence, selected constituents from the
tree, and had people judge the translations of those
syntactic phrases. In order to draw judges’ attention
to these regions, we highlighted the selected source
phrases and the corresponding phrases in the transla-
tions. The corresponding phrases in the translations
were located via automatic word alignments.

Figure 2 illustrates the constituent based evalu-
ation when applied to a German source sentence.
The German source sentence is parsed, and vari-
ous phrases are selected for evaluation. Word align-
ments are created between the source sentence and
the reference translation (shown), and the source
sentence and each of the system translations (not
shown). We parsed the test sentences for each of
the languages aside from Czech. We used Cowan
and Collins (2005)’s parser for Spanish, Arun and
Keller (2005)’s for French, Dubey (2005)’s for Ger-
man, and Bikel (2002)’s for English.

The word alignments were created with Giza++
(Och and Ney, 2003) applied to a parallel corpus
containing 200,000 sentence pairs of the training
data, plus sets of 4,007 sentence pairs created by
pairing the test sentences with the reference transla-
tions, and the test sentences paired with each of the
system translations. The phrases in the translations
were located using techniques from phrase-based
statistical machine translation which extract phrase

pairs from word alignments (Koehn et al., 2003; Och
and Ney, 2004). Because the word-alignments were
created automatically, and because the phrase ex-
traction is heuristic, the phrases that were selected
may not exactly correspond to the translations of the
selected source phrase. We noted this in the instruc-
tions to judges:

Rank each constituent translation from
Best to Worst relative to the other choices
(ties are allowed). Grade only the high-
lighted part of each translation.

Please note that segments are selected au-
tomatically, and they should be taken as
an approximate guide. They might in-
clude extra words that are not in the actual
alignment, or miss words on either end.

The criteria that we used to select which con-
stituents were to be evaluated were:

• The constituent could not be the whole source
sentence

• The constituent had to be longer three words,
and be no longer than 15 words

• The constituent had to have a corresponding
phrase with a consistent word alignment in
each of the translations

The final criterion helped reduce the number of
alignment errors.

3.4 Collecting judgments
We collected judgments using a web-based tool.
Shared task participants were each asked to judge
200 sets of sentences. The sets consisted of 5 sys-
tem outputs, as shown in Figure 3. The judges
were presented with batches of each type of eval-
uation. We presented them with five screens of ade-
quacy/fluency scores, five screens of sentence rank-
ings, and ten screens of constituent rankings. The
order of the types of evaluation were randomized.

In order to measure intra-annotator agreement
10% of the items were repeated and evaluated twice
by each judge. In order to measure inter-annotator
agreement 40% of the items were randomly drawn
from a common pool that was shared across all
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http://www.statmt.org/wmt07/shared-task/judge/do_task.php

WMT07 Manual Evaluation

Rank Segments

You have judged 25 sentences for WMT07 German-English News Corpus, 190 sentences total taking 64.9 seconds per sentence.

Source: Können die USA ihre Besetzung aufrechterhalten, wenn sie dem irakischen Volk nicht Nahrung, Gesundheitsfürsorge und andere 
grundlegende Dienstleistungen anbieten können?

Reference: Can the US sustain its occupation if it cannot provide food, health care, and other basic services to Iraq's people?

Translation Rank

The United States can maintain its employment when it the Iraqi people not food, health care and other 
basic services on offer?. 1

Worst
2 3 4 5

Best

The US can maintain its occupation, if they cannot offer the Iraqi people food, health care and other basic 
services? 1

Worst
2 3 4 5

Best

Can the US their occupation sustained if it to the Iraqi people not food, health care and other basic 
services can offer? 1

Worst
2 3 4 5

Best

Can the United States maintain their occupation, if the Iraqi people do not food, health care and other 
basic services can offer? 1

Worst
2 3 4 5

Best

The United States is maintained, if the Iraqi people, not food, health care and other basic services can 
offer? 1

Worst
2 3 4 5

Best
Annotator: ccb Task: WMT07 German-English News Corpus
Instructions: 
Rank each constituent translation from Best to Worst relative to the other choices (ties are allowed). Grade 
only the highlighted part of each translation.
Please note that segments are selected automatically, and they should be taken as an approximate guide. 
They might include extra words on either end that are not in the actual alignment, or miss words.

 

Figure 3: For each of the types of evaluation, judges were shown screens containing up to five different
system translations, along with the source sentence and reference translation.

annotators so that we would have items that were
judged by multiple annotators.

Judges were allowed to select whichever data set
they wanted, and to evaluate translations into what-
ever languages they were proficient in. Shared task
participants were excluded from judging their own
systems.

Table 2 gives a summary of the number of judg-
ments that we collected for translations of individ-
ual sentences. Since we had 14 translation tasks and
four different types of scores, there were 55 differ-
ent conditions.2 In total we collected over 81,000
judgments. Despite the large number of conditions
we managed to collect more than 1,000 judgments
for most of them. This provides a rich source of data
for analyzing the quality of translations produced by
different systems, the different types of human eval-
uation, and the correlation of automatic metrics with
human judgments.3

2We did not perform a constituent-based evaluation for
Czech to English because we did not have a syntactic parser
for Czech. We considered adapting our method to use Bojar
(2004)’s dependency parser for Czech, but did not have the time.

3The judgment data along with all system translations are
available at http://www.statmt.org/wmt07/

4 Automatic evaluation

The past two ACL workshops on machine trans-
lation used Bleu as the sole automatic measure of
translation quality. Bleu was used exclusively since
it is the most widely used metric in the field and
has been shown to correlate with human judgments
of translation quality in many instances (Dodding-
ton, 2002; Coughlin, 2003; Przybocki, 2004). How-
ever, recent work suggests that Bleu’s correlation
with human judgments may not be as strong as pre-
viously thought (Callison-Burch et al., 2006). The
results of last year’s workshop further suggested that
Bleu systematically underestimated the quality of
rule-based machine translation systems (Koehn and
Monz, 2006).

We used the manual evaluation data as a means of
testing the correlation of a range of automatic met-
rics in addition to Bleu. In total we used eleven
different automatic evaluation measures to rank the
shared task submissions. They are:

• Meteor (Banerjee and Lavie, 2005)—Meteor
measures precision and recall of unigrams
when comparing a hypothesis translation

142



Language Pair Test Set Adequacy Fluency Rank Constituent
English-German Europarl 1,416 1,418 1,419 2,626

News Commentary 1,412 1,413 1,412 2,755
German-English Europarl 1,525 1,521 1,514 2,999

News Commentary 1,626 1,620 1,601 3,084
English-Spanish Europarl 1,000 1,003 1,064 1,001

News Commentary 1,272 1,272 1,238 1,595
Spanish-English Europarl 1,174 1,175 1,224 1,898

News Commentary 947 949 922 1,339
English-French Europarl 773 772 769 1,456

News Commentary 729 735 728 1,313
French-English Europarl 834 833 830 1,641

News Commentary 1,041 1,045 1,035 2,036
English-Czech News Commentary 2,303 2,304 2,331 3,968
Czech-English News Commentary 1,711 1,711 1,733 0

Totals 17,763 17,771 17,820 27,711

Table 2: The number of items that were judged for each task during the manual evaluation

against a reference. It flexibly matches words
using stemming and WordNet synonyms. Its
flexible matching was extended to French,
Spanish, German and Czech for this workshop
(Lavie and Agarwal, 2007).

• Bleu (Papineni et al., 2002)—Bleu is currently
the de facto standard in machine translation
evaluation. It calculates n-gram precision and
a brevity penalty, and can make use of multi-
ple reference translations as a way of capturing
some of the allowable variation in translation.
We use a single reference translation in our ex-
periments.

• GTM (Melamed et al., 2003)—GTM general-
izes precision, recall, and F-measure to mea-
sure overlap between strings, rather than over-
lap between bags of items. An “exponent” pa-
rameter which controls the relative importance
of word order. A value of 1.0 reduces GTM to
ordinary unigram overlap, with higher values
emphasizing order.4

• Translation Error Rate (Snover et al., 2006)—
4The GTM scores presented here are an F-measure with a

weight of 0.1, which counts recall at 10x the level of precision.
The exponent is set at 1.2, which puts a mild preference towards
items with words in the correct order. These parameters could
be optimized empirically for better results.

TER calculates the number of edits required to
change a hypothesis translation into a reference
translation. The possible edits in TER include
insertion, deletion, and substitution of single
words, and an edit which moves sequences of
contiguous words.

• ParaEval precision and ParaEval recall (Zhou
et al., 2006)–ParaEval matches hypothesis and
reference translations using paraphrases that
are extracted from parallel corpora in an unsu-
pervised fashion (Bannard and Callison-Burch,
2005). It calculates precision and recall using a
unigram counting strategy.

• Dependency overlap (Amigó et al., 2006)—
This metric uses dependency trees for the hy-
pothesis and reference translations, by comput-
ing the average overlap between words in the
two trees which are dominated by grammatical
relationships of the same type.

• Semantic role overlap (Giménez and Màrquez,
2007)—This metric calculates the lexical over-
lap between semantic roles (i.e., semantic argu-
ments or adjuncts) of the same type in the the
hypothesis and reference translations. It uni-
formly averages lexical overlap over all seman-
tic role types.
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• Word Error Rate over verbs (Popovic and Ney,
2007)—WER’ creates a new reference and a
new hypothesis for each POS class by extract-
ing all words belonging to this class, and then
to calculate the standard WER. We show results
for this metric over verbs.

• Maximum correlation training on adequacy and
on fluency (Liu and Gildea, 2007)—a lin-
ear combination of different evaluation metrics
(Bleu, Meteor, Rouge, WER, and stochastic it-
erative alignment) with weights set to maxi-
mize Pearson’s correlation with adequacy and
fluency judgments. Weights were trained on
WMT-06 data.

The scores produced by these are given in the ta-
bles at the end of the paper, and described in Sec-
tion 5. We measured the correlation of the automatic
evaluation metrics with the different types of human
judgments on 12 data conditions, and report these in
Section 6.

5 Shared task results

The results of the human evaluation are given in Ta-
bles 9, 10, 11 and 12. Each of those tables present
four scores:

• FLUENCY and ADEQUACY are normalized ver-
sions of the five point scores described in Sec-
tion 3.1. The tables report an average of the
normalized scores.5

• RANK is the average number of times that a
system was judged to be better than any other
system in the sentence ranking evaluation de-
scribed in Section 3.2.

• CONSTITUENT is the average number of times
that a system was judged to be better than any
other system in the constituent-based evalua-
tion described in Section 3.3.

There was reasonably strong agreement between
these four measures at which of the entries was the
best in each data condition. There was complete

5Since different annotators can vary widely in how they as-
sign fluency and adequacy scores, we normalized these scores
on a per-judge basis using the method suggested by Blatz et al.
(2003) in Chapter 5, page 97.

SYSTRAN (systran) 32%
University of Edinburgh (uedin) 20%
University of Catalonia (upc) 15%
LIMSI-CNRS (limsi) 13%
University of Maryland (umd) 5%
National Research Council of Canada’s
joint entry with SYSTRAN (systran-nrc)

5%

Commercial Czech-English system (pct) 5%
University of Valencia (upv) 2%
Charles University (cu) 2%

Table 3: The proportion of time that participants’
entries were top-ranked in the human evaluation

University of Edinburgh (uedin) 41%
University of Catalonia (upc) 12%
LIMSI-CNRS (limsi) 12%
University of Maryland (umd) 9%
Charles University (cu) 4%
Carnegie Mellon University (cmu-syntax) 4%
Carnegie Mellon University (cmu-uka) 4%
University of California at Berkeley (ucb) 3%
National Research Council’s joint entry
with SYSTRAN (systran-nrc)

2%

SYSTRAN (systran) 2%
Saarland University (saar) 0.8%

Table 4: The proportion of time that participants’
entries were top-ranked by the automatic evaluation
metrics

agreement between them in 5 of the 14 conditions,
and agreement between at least three of them in 10
of the 14 cases.

Table 3 gives a summary of how often differ-
ent participants’ entries were ranked #1 by any of
the four human evaluation measures. SYSTRAN’s
entries were ranked the best most often, followed
by University of Edinburgh, University of Catalonia
and LIMSI-CNRS.

The following systems were the best perform-
ing for the different language pairs: SYSTRAN
was ranked the highest in German-English, Uni-
versity of Catalonia was ranked the highest in
Spanish-English, LIMSI-CNRS was ranked high-
est in French-English, and the University of Mary-
land and a commercial system were the highest for
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Evaluation type P (A) P (E) K

Fluency (absolute) .400 .2 .250
Adequacy (absolute) .380 .2 .226
Fluency (relative) .520 .333 .281
Adequacy (relative) .538 .333 .307
Sentence ranking .582 .333 .373
Constituent ranking .693 .333 .540
Constituent ranking .712 .333 .566
(w/identical constituents)

Table 5: Kappa coefficient values representing the
inter-annotator agreement for the different types of
manual evaluation

Czech-English.
While we consider the human evaluation to be

primary, it is also interesting to see how the en-
tries were ranked by the various automatic evalua-
tion metrics. The complete set of results for the auto-
matic evaluation are presented in Tables 13, 14, 15,
and 16. An aggregate summary is provided in Table
4. The automatic evaluation metrics strongly favor
the University of Edinburgh, which garners 41% of
the top-ranked entries (which is partially due to the
fact it was entered in every language pair). Signif-
icantly, the automatic metrics disprefer SYSTRAN,
which was strongly favored in the human evaluation.

6 Meta-evaluation

In addition to evaluating the translation quality of
the shared task entries, we also performed a “meta-
evaluation” of our evaluation methodologies.

6.1 Inter- and Intra-annotator agreement

We measured pairwise agreement among annotators
using the kappa coefficient (K) which is widely used
in computational linguistics for measuring agree-
ment in category judgments (Carletta, 1996). It is
defined as

K =
P (A)− P (E)

1− P (E)

where P (A) is the proportion of times that the an-
notators agree, and P (E) is the proportion of time
that they would agree by chance. We define chance
agreement for fluency and adequacy as 1

5 , since they
are based on five point scales, and for ranking as 1

3

Evaluation type P (A) P (E) K

Fluency (absolute) .630 .2 .537
Adequacy (absolute) .574 .2 .468
Fluency (relative) .690 .333 .535
Adequacy (relative) .696 .333 .544
Sentence ranking .749 .333 .623
Constituent ranking .825 .333 .738
Constituent ranking .842 .333 .762
(w/identical constituents)

Table 6: Kappa coefficient values for intra-annotator
agreement for the different types of manual evalua-
tion

since there are three possible out comes when rank-
ing the output of a pair of systems: A > B, A = B,
A < B.

For inter-annotator agreement we calculated
P (A) for fluency and adequacy by examining all
items that were annotated by two or more annota-
tors, and calculating the proportion of time they as-
signed identical scores to the same items. For the
ranking tasks we calculated P (A) by examining all
pairs of systems which had been judged by two or
more judges, and calculated the proportion of time
that they agreed that A > B, A = B, or A < B.
For intra-annotator agreement we did similarly, but
gathered items that were annotated on multiple oc-
casions by a single annotator.

Table 5 gives K values for inter-annotator agree-
ment, and Table 6 gives K values for intra-annoator
agreement. These give an indication of how often
different judges agree, and how often single judges
are consistent for repeated judgments, respectively.
The interpretation of Kappa varies, but according to
Landis and Koch (1977) 0−−.2 is slight, .21−−.4
is fair, .41−−.6 is moderate, .61−−.8 is substantial
and the rest almost perfect.

The K values for fluency and adequacy should
give us pause about using these metrics in the fu-
ture. When we analyzed them as they are intended to
be—scores classifying the translations of sentences
into different types—the inter-annotator agreement
was barely considered fair, and the intra-annotator
agreement was only moderate. Even when we re-
assessed fluency and adequacy as relative ranks the
agreements increased only minimally.
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Figure 4: Distributions of the amount of time it took
to judge single sentences for the three types of man-
ual evaluation

The agreement on the other two types of man-
ual evaluation that we introduced were considerably
better. The both the sentence and constituent ranking
had moderate inter-annotator agreement and sub-
stantial intra-annotator agreement. Because the con-
stituent ranking examined the translations of short
phrases, often times all systems produced the same
translations. Since these trivially increased agree-
ment (since they would always be equally ranked)
we also evaluated the inter- and intra-annotator
agreement when those items were excluded. The
agreement remained very high for constituent-based
evaluation.

6.2 Timing

We used the web interface to collect timing infor-
mation. The server recorded the time when a set of
sentences was given to a judge and the time when
the judge returned the sentences. We divided the
time that it took to do a set by the number of sen-
tences in the set. The average amount of time that it
took to assign fluency and adequacy to a single sen-
tence was 26 seconds.6 The average amount of time
it took to rank a sentence in a set was 20 seconds.
The average amount of time it took to rank a high-
lighted constituent was 11 seconds. Figure 4 shows
the distribution of times for these tasks.

6Sets which took longer than 5 minutes were excluded from
these calculations, because there was a strong chance that anno-
tators were interrupted while completing the task.

These timing figures are promising because they
indicate that the tasks which the annotators were the
most reliable on (constituent ranking and sentence
ranking) were also much quicker to complete than
the ones that they were unreliable on (assigning flu-
ency and adequacy scores). This suggests that flu-
ency and adequacy should be replaced with ranking
tasks in future evaluation exercises.

6.3 Correlation between automatic metrics and
human judgments

To measure the correlation of the automatic metrics
with the human judgments of translation quality we
used Spearman’s rank correlation coefficient ρ. We
opted for Spearman rather than Pearson because it
makes fewer assumptions about the data. Impor-
tantly, it can be applied to ordinal data (such as the
fluency and adequacy scales). Spearman’s rank cor-
relation coefficient is equivalent to Pearson correla-
tion on ranks.

After the raw scores that were assigned to systems
by an automatic metric and by one of our manual
evaluation techniques have been converted to ranks,
we can calculate ρ using the simplified equation:

ρ = 1− 6
∑

d2
i

n(n2 − 1)

where di is the difference between the rank for
systemi and n is the number of systems. The pos-
sible values of ρ range between 1 (where all systems
are ranked in the same order) and−1 (where the sys-
tems are ranked in the reverse order). Thus an auto-
matic evaluation metric with a higher value for ρ is
making predictions that are more similar to the hu-
man judgments than an automatic evaluation metric
with a lower ρ.

Table 17 reports ρ for the metrics which were
used to evaluate translations into English.7. Table
7 summarizes the results by averaging the correla-
tion numbers by equally weighting each of the data
conditions. The table ranks the automatic evalua-
tion metrics based on how well they correlated with
human judgments. While these are based on a rela-
tively few number of items, and while we have not
performed any tests to determine whether the dif-
ferences in ρ are statistically significant, the results

7The Czech-English conditions were excluded since there
were so few systems
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are nevertheless interesting, since three metrics have
higher correlation than Bleu:

• Semantic role overlap (Giménez and Màrquez,
2007), which makes its debut in the proceed-
ings of this workshop

• ParaEval measuring recall (Zhou et al., 2006),
which has a model of allowable variation in
translation that uses automatically generated
paraphrases (Callison-Burch, 2007)

• Meteor (Banerjee and Lavie, 2005) which also
allows variation by introducing synonyms and
by flexibly matches words using stemming.

Tables 18 and 8 report ρ for the six metrics which
were used to evaluate translations into the other lan-
guages. Here we find that Bleu and TER are the
closest to human judgments, but that overall the cor-
relations are much lower than for translations into
English.

7 Conclusions

Similar to last year’s workshop we carried out an ex-
tensive manual and automatic evaluation of machine
translation performance for translating from four
European languages into English, and vice versa.
This year we substantially increased the number of
automatic evaluation metrics and were also able to
nearly double the efforts of producing the human
judgments.

There were substantial differences in the results
results of the human and automatic evaluations. We
take the human judgments to be authoritative, and
used them to evaluate the automatic metrics. We
measured correlation using Spearman’s coefficient
and found that three less frequently used metrics
were stronger predictors of human judgments than
Bleu. They were: semantic role overlap (newly in-
troduced in this workshop) ParaEval-recall and Me-
teor.

Although we do not claim that our observations
are indisputably conclusive, they again indicate that
the choice of automatic metric can have a signifi-
cant impact on comparing systems. Understanding
the exact causes of those differences still remains an
important issue for future research.
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D
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Semantic
role overlap

.774 .839 .803 .741 .789

ParaEval-
Recall

.712 .742 .768 .798 .755

Meteor .701 .719 .745 .669 .709
Bleu .690 .722 .672 .602 .671
1-TER .607 .538 .520 .514 .644
Max adequ-
correlation

.651 .657 .659 .534 .626

Max fluency
correlation

.644 .653 .656 .512 .616

GTM .655 .674 .616 .495 .610
Dependency
overlap

.639 .644 .601 .512 .599

ParaEval-
Precision

.639 .654 .610 .491 .598

1-WER of
verbs

.378 .422 .431 .297 .382

Table 7: Average corrections for the different auto-
matic metrics when they are used to evaluate trans-
lations into English
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Bleu .657 .445 .352 .409 .466
1-TER .589 .419 .361 .380 .437
Max fluency
correlation

.534 .419 .368 .400 .430

Max adequ-
correlation

.498 .414 .385 .409 .426

Meteor .490 .356 .279 .304 .357
1-WER of
verbs

.371 .304 .359 .359 .348

Table 8: Average corrections for the different auto-
matic metrics when they are used to evaluate trans-
lations into the other languages
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This year’s evaluation also measured the agree-
ment between human assessors by computing the
Kappa coefficient. One striking observation is
that inter-annotator agreement for fluency and ad-
equacy can be called ‘fair’ at best. On the other
hand, comparing systems by ranking them manually
(constituents or entire sentences), resulted in much
higher inter-annotator agreement.
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German-English Europarl
cmu-uka 0.511 0.496 0.395 0.206
liu 0.541 0.55 0.415 0.234
nrc 0.474 0.459 0.354 0.214
saar 0.334 0.404 0.119 0.104
systran 0.562 0.594 0.530 0.302
uedin 0.53 0.554 0.43 0.187
upc 0.534 0.533 0.384 0.214

German-English News Corpus
nrc 0.459 0.429 0.325 0.245
saar 0.278 0.341 0.108 0.125
systran 0.552 0.56 0.563 0.344
uedin 0.508 0.536 0.485 0.332
upc 0.536 0.512 0.476 0.330

English-German Europarl
cmu-uka 0.557 0.508 0.416 0.333
nrc 0.534 0.511 0.328 0.321
saar 0.369 0.383 0.172 0.196
systran 0.543 0.525 0.511 0.295
uedin 0.569 0.576 0.389 0.350
upc 0.565 0.522 0.438 0.3

English-German News Corpus
nrc 0.453 0.4 0.437 0.340
saar 0.186 0.273 0.108 0.121
systran 0.542 0.556 0.582 0.351
ucb 0.415 0.403 0.332 0.289
uedin 0.472 0.445 0.455 0.303
upc 0.505 0.475 0.377 0.349

Table 9: Human evaluation for German-English sub-
missions
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Spanish-English Europarl
cmu-syntax 0.552 0.568 0.478 0.152
cmu-uka 0.557 0.564 0.392 0.139
nrc 0.477 0.489 0.382 0.143
saar 0.328 0.336 0.126 0.075
systran 0.525 0.566 0.453 0.156
uedin 0.593 0.610 0.419 0.14
upc 0.587 0.604 0.5 0.188
upv 0.562 0.573 0.326 0.154

Spanish-English News Corpus
cmu-uka 0.522 0.495 0.41 0.213
nrc 0.479 0.464 0.334 0.243
saar 0.446 0.46 0.246 0.198
systran 0.525 0.503 0.453 0.22
uedin 0.546 0.534 0.48 0.268
upc 0.566 0.543 0.537 0.312
upv 0.435 0.459 0.295 0.151

English-Spanish Europarl
cmu-uka 0.563 0.581 0.391 0.23
nrc 0.546 0.548 0.323 0.22
systran 0.495 0.482 0.329 0.224
uedin 0.586 0.638 0.468 0.225
upc 0.584 0.578 0.444 0.239
upv 0.573 0.587 0.406 0.246

English-Spanish News Corpus
cmu-uka 0.51 0.492 0.45 0.277
nrc 0.408 0.392 0.367 0.224
systran 0.501 0.507 0.481 0.352
ucb 0.449 0.414 0.390 0.307
uedin 0.429 0.419 0.389 0.266
upc 0.51 0.488 0.404 0.311
upv 0.405 0.418 0.250 0.217

Table 10: Human evaluation for Spanish-English
submissions

system A
D

E
Q

U
A

C
Y

FL
U

E
N

C
Y

R
A

N
K

C
O

N
S

T
IT

U
E

N
T

French-English Europarl
limsi 0.634 0.618 0.458 0.290
nrc 0.553 0.551 0.404 0.253
saar 0.384 0.447 0.176 0.157
systran 0.494 0.484 0.286 0.202
systran-nrc 0.604 0.6 0.503 0.267
uedin 0.616 0.635 0.514 0.283
upc 0.616 0.619 0.448 0.267

French-English News Corpus
limsi 0.575 0.596 0.494 0.312
nrc 0.472 0.442 0.306 0.241
saar 0.280 0.372 0.183 0.159
systran 0.553 0.534 0.469 0.288
systran-nrc 0.513 0.49 0.464 0.290
uedin 0.556 0.586 0.493 0.306
upc 0.576 0.587 0.493 0.291

English-French Europarl
limsi 0.635 0.627 0.505 0.259
nrc 0.517 0.518 0.359 0.206
saar 0.398 0.448 0.155 0.139
systran 0.574 0.526 0.353 0.179
systran-nrc 0.575 0.58 0.512 0.225
uedin 0.620 0.608 0.485 0.273
upc 0.599 0.566 0.45 0.256

English-French News Corpus
limsi 0.537 0.495 0.44 0.363
nrc 0.481 0.484 0.372 0.324
saar 0.243 0.276 0.086 0.121
systran 0.536 0.546 0.634 0.440
systran-nrc 0.557 0.572 0.485 0.287
ucb 0.401 0.391 0.316 0.245
uedin 0.466 0.447 0.485 0.375
upc 0.509 0.469 0.437 0.326

Table 11: Human evaluation for French-English
submissions
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Czech-English News Corpus
cu 0.468 0.478 0.362 —
pct 0.418 0.388 0.220 —
uedin 0.458 0.471 0.353 —
umd 0.550 0.592 0.627 —

English-Czech News Corpus
cu 0.523 0.510 0.405 0.440
pct 0.542 0.541 0.499 0.381
uedin 0.449 0.433 0.249 0.258

Table 12: Human evaluation for Czech-English sub-
missions
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German-English Europarl
cmu-uka 0.559 0.247 0.326 0.455 0.528 0.531 0.259 0.182 0.848 1.91 1.910
liu 0.559 0.263 0.329 0.460 0.537 0.535 0.276 0.197 0.846 1.91 1.910
nrc 0.551 0.253 0.324 0.454 0.528 0.532 0.263 0.185 0.848 1.88 1.88
saar 0.477 0.198 0.313 0.447 0.44 0.527 0.228 0.157 0.846 1.76 1.710
systran 0.560 0.268 0.342 0.463 0.543 0.541 0.261 0.21 0.849 1.91 1.91
systran-2 0.501 0.154 0.238 0.376 0.462 0.448 0.237 0.154 — 1.71 1.73
uedin 0.56 0.277 0.319 0.480 0.536 0.562 0.298 0.217 0.855 1.96 1.940
upc 0.541 0.250 0.343 0.470 0.506 0.551 0.27 0.193 0.846 1.89 1.88

German-English News Corpus
nrc 0.563 0.221 0.333 0.454 0.514 0.514 0.246 0.157 0.868 1.920 1.91
saar 0.454 0.159 0.288 0.413 0.405 0.467 0.193 0.120 0.86 1.700 1.64
systran 0.570 0.200 0.275 0.418 0.531 0.472 0.274 0.18 0.858 1.910 1.93
systran-2 0.556 0.169 0.238 0.397 0.511 0.446 0.258 0.163 — 1.86 1.88
uedin 0.577 0.242 0.339 0.459 0.534 0.524 0.287 0.181 0.871 1.98 1.970
upc 0.575 0.233 0.339 0.455 0.527 0.516 0.265 0.171 0.865 1.96 1.96

English-German Europarl
cmu-uka 0.268 0.189 0.251 — — — — — 0.884 1.66 1.63
nrc 0.272 0.185 0.221 — — — — — 0.882 1.660 1.630
saar 0.239 0.174 0.237 — — — — — 0.881 1.61 1.56
systran 0.198 0.123 0.178 — — — — — 0.866 1.46 1.42
uedin 0.277 0.201 0.273 — — — — — 0.889 1.690 1.66
upc 0.266 0.177 0.195 — — — — — 0.88 1.640 1.62

English-German News Corpus
nrc 0.257 0.157 0.25 — — — — — 0.891 1.590 1.560
saar 0.162 0.098 0.212 — — — — — 0.881 1.400 1.310
systran 0.223 0.143 0.266 — — — — — 0.887 1.55 1.500
ucb 0.256 0.156 0.249 — — — — — 0.889 1.59 1.56
ucb-2 0.252 0.152 0.229 — — — — — — 1.57 1.55
uedin 0.266 0.166 0.266 — — — — — 0.891 1.600 1.58
upc 0.256 0.167 0.266 — — — — — 0.89 1.590 1.56

Table 13: Automatic evaluation scores for German-English submissions
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Spanish-English Europarl
cmu-syntax 0.602 0.323 0.414 0.499 0.59 0.588 0.338 0.254 0.866 2.10 2.090
cmu-syntax-2 0.603 0.321 0.408 0.494 0.593 0.584 0.336 0.249 — 2.09 2.09
cmu-uka 0.597 0.32 0.42 0.501 0.581 0.595 0.336 0.247 0.867 2.09 2.080
nrc 0.596 0.313 0.402 0.484 0.581 0.581 0.321 0.227 0.867 2.04 2.04
saar 0.542 0.245 0.32 0.432 0.531 0.511 0.272 0.198 0.854 1.870 1.870
systran 0.593 0.290 0.364 0.469 0.586 0.550 0.321 0.238 0.858 2.02 2.03
systran-2 0.535 0.202 0.288 0.406 0.524 0.49 0.263 0.187 — 1.81 1.84
uedin 0.6 0.324 0.414 0.499 0.584 0.589 0.339 0.252 0.868 2.09 2.080
upc 0.600 0.322 0.407 0.492 0.593 0.583 0.334 0.253 0.865 2.08 2.08
upv 0.594 0.315 0.400 0.493 0.582 0.581 0.329 0.249 0.865 2.060 2.06

Spanish-English News Corpus
cmu-uka 0.64 0.299 0.428 0.497 0.617 0.575 0.339 0.246 0.89 2.17 2.17
cmu-uka-2 0.64 0.297 0.427 0.496 0.616 0.574 0.339 0.246 — 2.17 2.17
nrc 0.641 0.299 0.434 0.499 0.615 0.584 0.329 0.238 0.892 2.160 2.160
saar 0.607 0.244 0.338 0.447 0.587 0.512 0.303 0.208 0.879 2.04 2.05
systran 0.628 0.259 0.35 0.453 0.611 0.523 0.325 0.221 0.877 2.08 2.10
systran-2 0.61 0.233 0.321 0.438 0.602 0.506 0.311 0.209 — 2.020 2.050
uedin 0.661 0.327 0.457 0.512 0.634 0.595 0.363 0.264 0.893 2.25 2.24
upc 0.654 0.346 0.480 0.528 0.629 0.616 0.363 0.265 0.895 2.240 2.23
upv 0.638 0.283 0.403 0.485 0.614 0.562 0.334 0.234 0.887 2.15 2.140

English-Spanish Europarl
cmu-uka 0.333 0.311 0.389 — — — — — 0.889 1.98 2.00
nrc 0.322 0.299 0.376 — — — — — 0.886 1.92 1.940
systran 0.269 0.212 0.301 — — — — — 0.878 1.730 1.760
uedin 0.33 0.316 0.399 — — — — — 0.891 1.980 1.990
upc 0.327 0.312 0.393 — — — — — 0.89 1.960 1.98
upv 0.323 0.304 0.379 — — — — — 0.887 1.95 1.97

English-Spanish News Corpus
cmu-uka 0.368 0.327 0.469 — — — — — 0.903 2.070 2.090
cmu-uka-2 0.355 0.306 0.461 — — — — — — 2.04 2.060
nrc 0.362 0.311 0.448 — — — — — 0.904 2.04 2.060
systran 0.335 0.281 0.439 — — — — — 0.906 1.970 2.010
ucb 0.374 0.331 0.464 — — — — — — 2.09 2.11
ucb-2 0.375 0.325 0.456 — — — — — — 2.09 2.110
ucb-3 0.372 0.324 0.457 — — — — — — 2.08 2.10
uedin 0.361 0.322 0.479 — — — — — 0.907 2.08 2.09
upc 0.361 0.328 0.467 — — — — — 0.902 2.06 2.08
upv 0.337 0.285 0.432 — — — — — 0.900 1.98 2.000

Table 14: Automatic evaluation scores for Spanish-English submissions
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French-English Europarl
limsi 0.604 0.332 0.418 0.504 0.589 0.591 0.344 0.259 0.865 2.100 2.10
limsi-2 0.602 0.33 0.417 0.504 0.587 0.592 0.302 0.257 — 2.05 2.05
nrc 0.594 0.312 0.403 0.488 0.578 0.58 0.324 0.244 0.861 2.05 2.050
saar 0.534 0.249 0.354 0.459 0.512 0.546 0.279 0.202 0.856 1.880 1.88
systran 0.549 0.211 0.308 0.417 0.525 0.501 0.277 0.201 0.849 1.850 1.890
systran-nrc 0.594 0.313 0.404 0.492 0.578 0.580 0.330 0.248 0.862 2.06 2.060
uedin 0.595 0.318 0.424 0.505 0.574 0.599 0.338 0.254 0.865 2.08 2.08
upc 0.6 0.319 0.409 0.495 0.588 0.583 0.337 0.255 0.861 2.08 2.080

French-English News Corpus
limsi 0.595 0.279 0.405 0.478 0.563 0.555 0.289 0.235 0.875 2.030 2.020
nrc 0.587 0.257 0.389 0.470 0.557 0.546 0.301 0.22 0.876 2.020 2.020
saar 0.503 0.206 0.301 0.418 0.475 0.476 0.245 0.169 0.864 1.80 1.78
systran 0.568 0.202 0.28 0.415 0.554 0.472 0.292 0.198 0.866 1.930 1.96
systran-nrc 0.591 0.269 0.398 0.475 0.558 0.547 0.323 0.226 0.875 2.050 2.06
uedin 0.602 0.27 0.392 0.471 0.569 0.545 0.326 0.233 0.875 2.07 2.07
upc 0.596 0.275 0.400 0.476 0.567 0.552 0.322 0.233 0.876 2.06 2.06

English-French Europarl
limsi 0.226 0.306 0.366 — — — — — 0.891 1.940 1.96
nrc 0.218 0.294 0.354 — — — — — 0.888 1.930 1.96
saar 0.190 0.262 0.333 — — — — — 0.892 1.86 1.87
systran 0.179 0.233 0.313 — — — — — 0.885 1.79 1.83
systran-nrc 0.220 0.301 0.365 — — — — — 0.892 1.940 1.960
uedin 0.207 0.262 0.301 — — — — — 0.886 1.930 1.950
upc 0.22 0.299 0.379 — — — — — 0.892 1.940 1.960

English-French News Corpus
limsi 0.206 0.255 0.354 — — — — — 0.897 1.84 1.87
nrc 0.208 0.257 0.369 — — — — — 0.9 1.87 1.900
saar 0.151 0.188 0.308 — — — — — 0.896 1.65 1.65
systran 0.199 0.243 0.378 — — — — — 0.901 1.860 1.90
systran-nrc 0.23 0.290 0.408 — — — — — 0.903 1.940 1.98
ucb 0.201 0.237 0.366 — — — — — 0.897 1.830 1.860
uedin 0.197 0.234 0.340 — — — — — 0.899 1.87 1.890
upc 0.212 0.263 0.391 — — — — — 0.900 1.87 1.90

Table 15: Automatic evaluation scores for French-English submissions
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Czech-English News Corpus
cu 0.545 0.215 0.334 0.441 0.502 0.504 0.245 0.165 0.867 1.87 1.88
cu-2 0.558 0.223 0.344 0.447 0.510 0.514 0.254 0.17 — 1.90 1.910
uedin 0.54 0.217 0.340 0.445 0.497 0.51 0.243 0.160 0.865 1.860 1.870
umd 0.581 0.241 0.355 0.460 0.531 0.526 0.273 0.184 0.868 1.96 1.97

English-Czech News Corpus
cu 0.429 0.134 0.231 — — — — — — 1.580 1.53
cu-2 0.430 0.132 0.219 — — — — — — 1.58 1.520
uedin 0.42 0.119 0.211 — — — — — — 1.550 1.49

Table 16: Automatic evaluation scores for Czech-English submissions
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ADEQUACY

FLUENCY

RANK

CONSTITUENT

METEOR

BLEU

1-TER

GTM

PARAEVAL-REC

PARAEVAL-PREC

DEPENDENCY

SEMANTIC-ROLE

1-WER-OF-VS

MAX-CORR-FLU

MAX-CORR-ADEQ

G
erm

an-E
nglish

N
ew

sC
orpus

adequacy
1

0.900
0.900

0.900
0.600

0.300
-0.025

0.300
0.700

0.300
0.700

0.700
-0.300

0.300
0.600

fluency
—

1
1.000

1.000
0.700

0.400
-0.025

0.400
0.900

0.400
0.900

0.900
-0.100

0.400
0.700

rank
—

—
1

1.000
0.700

0.400
-0.025

0.400
0.900

0.400
0.900

0.900
-0.100

0.400
0.700

constituent
—

—
—

1
0.700

0.400
-0.025

0.400
0.900

0.400
0.900

0.900
-0.100

0.400
0.700

G
erm

an-E
nglish

E
uroparl

adequacy
1

0.893
0.821

0.750
0.599

0.643
0.787

0.68
0.750

0.643
0.464

0.750
0.206

0.608
0.447

fluency
—

1
0.964

0.537
0.778

0.858
0.500

0.821
0.821

0.787
0.571

0.93
0.562

0.821
0.661

rank
—

—
1

0.500
0.902

0.821
0.393

0.714
0.858

0.643
0.464

0.858
0.652

0.893
0.769

constituent
—

—
—

1
0.456

0.464
0.714

0.18
0.750

0.250
0.214

0.43
0.117

0.214
0.126

Spanish-E
nglish

N
ew

sC
orpus

adequacy
1

1.000
0.964

0.893
0.643

0.68
0.68

0.68
0.68

0.68
0.634

0.714
0.571

0.68
0.68

fluency
—

1
0.964

0.893
0.643

0.68
0.68

0.68
0.68

0.68
0.634

0.714
0.571

0.68
0.68

rank
—

—
1

0.858
0.714

0.750
0.750

0.750
0.750

0.750
0.741

0.787
0.608

0.750
0.750

constituent
—

—
—

1
0.787

0.821
0.821

0.821
0.714

0.821
0.599

0.750
0.750

0.714
0.714

Spanish-E
nglish

E
uroparl

adequacy
1

0.93
0.452

0.333
0.596

0.810
0.62

0.690
0.542

0.714
0.762

0.739
0.489

0.638
0.638

fluency
—

1
0.571

0.524
0.596

0.787
0.43

0.500
0.732

0.524
0.690

0.810
0.346

0.566
0.566

rank
—

—
1

0.643
0.739

0.596
0.43

0.262
0.923

0.406
0.500

0.739
0.168

0.542
0.542

constituent
—

—
—

1
0.262

0.143
-0.143

-0.143
0.816

-0.094
0.000

0.477
-0.226

0.042
0.042

French-E
nglish

N
ew

sC
orpus

adequacy
1

0.964
0.964

0.858
0.787

0.750
0.68

0.68
0.787

0.571
0.321

0.787
0.456

0.68
0.554

fluency
—

1
1.000

0.93
0.750

0.787
0.714

0.714
0.750

0.608
0.214

0.858
0.367

0.608
0.482

rank
—

—
1

0.93
0.750

0.787
0.714

0.714
0.750

0.608
0.214

0.858
0.367

0.608
0.482

constituent
—

—
—

1
0.858

0.858
0.787

0.787
0.858

0.643
0.393

0.964
0.349

0.750
0.661

French-E
nglish

E
uroparl

adequacy
1

0.884
0.778

0.991
0.982

0.956
0.902

0.902
0.812

0.902
0.956

0.956
0.849

0.964
0.991

fluency
—

1
0.858

0.893
0.849

0.821
0.93

0.93
0.571

0.93
0.858

0.821
0.787

0.849
0.858

rank
—

—
1

0.821
0.670

0.68
0.858

0.858
0.43

0.858
0.787

0.68
0.893

0.741
0.714

constituent
—

—
—

1
0.956

0.93
0.93

0.93
0.750

0.93
0.964

0.93
0.893

0.956
0.964

Table
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English-German News Corpus
adequacy 1 0.943 0.83 0.943 0.187 0.43 0.814 0.243 0.33 0.187
fluency — 1 0.714 0.83 0.100 0.371 0.758 0.100 0.243 0.100
rank — — 1 0.771 0.414 0.258 0.671 0.414 0.414 0.414
constituent — — — 1 0.13 0.371 0.671 0.243 0.243 0.13

English-German Europarl
adequacy 1 0.714 0.487 0.714 0.487 0.600 0.314 0.371 0.487 0.487
fluency — 1 0.543 0.43 0.258 0.200 -0.085 0.03 0.258 0.258
rank — — 1 0.03 -0.37 -0.256 -0.543 -0.485 -0.37 -0.37
constituent — — — 1 0.887 0.943 0.658 0.83 0.887 0.887

English-Spanish News Corpus
adequacy 1 0.714 0.771 0.83 0.314 0.658 0.487 0.03 0.314 0.600
fluency — 1 0.943 0.887 -0.200 0.03 0.143 0.200 -0.085 0.258
rank — — 1 0.943 -0.029 0.087 0.258 0.371 -0.029 0.371
constituent — — — 1 -0.143 0.143 0.200 0.314 -0.085 0.258

English-Spanish Europarl
adequacy 1 0.83 0.943 0.543 0.658 0.943 0.943 0.943 0.83 0.658
fluency — 1 0.771 0.543 0.714 0.771 0.771 0.771 0.83 0.714
rank — — 1 0.600 0.600 0.887 0.887 0.887 0.771 0.600
constituent — — — 1 0.43 0.43 0.43 0.43 0.371 0.43

English-French News Corpus
adequacy 1 0.952 0.762 0.452 0.690 0.787 0.690 0.709 0.596 0.686
fluency — 1 0.810 0.477 0.62 0.739 0.714 0.792 0.62 0.780
rank — — 1 0.762 0.239 0.381 0.500 0.757 0.596 0.601
constituent — — — 1 -0.048 0.096 0.143 0.411 0.333 0.304

English-French Europarl
adequacy 1 0.964 0.750 0.93 0.608 0.528 0.287 -0.07 0.652 0.376
fluency — 1 0.858 0.893 0.643 0.562 0.214 -0.07 0.652 0.376
rank — — 1 0.750 0.821 0.76 0.393 0.214 0.830 0.697
constituent — — — 1 0.571 0.473 0.18 -0.07 0.652 0.447

Table 18: Correlation of the automatic evaluation metrics with the human judgments when translating out
of English
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Abstract

In this work we revise the application
of discriminative learning to the problem
of phrase selection in Statistical Machine
Translation. Inspired by common tech-
niques used in Word Sense Disambiguation,
we train classifiers based on local context
to predict possible phrase translations. Our
work extends that of Vickrey et al. (2005) in
two main aspects. First, we move from word
translation to phrase translation. Second, we
move from the‘blank-filling’ task to the‘full
translation’ task. We report results on a set
of highly frequent source phrases, obtaining
a significant improvement, specially with re-
spect to adequacy, according to a rigorous
process of manual evaluation.

1 Introduction

Translations tables in Phrase-based Statistical Ma-
chine Translation (SMT) are often built on the ba-
sis of Maximum-likelihood Estimation (MLE), be-
ing one of the major limitations of this approach that
the source sentence context in which phrases occur
is completely ignored (Koehn et al., 2003).

In this work, inspired by state-of-the-art Word
Sense Disambiguation (WSD) techniques, we sug-
gest using Discriminative Phrase Translation (DPT)
models which take into account a wider feature
context. Following the approach by Vickrey et al.
(2005), we deal with the‘phrase translation’prob-
lem as a classification problem. We use Support
Vector Machines (SVMs) to predict phrase transla-
tions in the context of the whole source sentence.

We extend the work by Vickrey et al. (2005) in two
main aspects. First, we move from‘word transla-
tion’ to ‘phrase translation’. Second, we move from
the ‘blank-filling’ task to the‘full translation’ task.

Our approach is fully described in Section 2. We
apply it to the Spanish-to-English translation of Eu-
ropean Parliament Proceedings. In Section 3, prior
to considering the ‘full translation’ task, we ana-
lyze the impact of using DPT models for the iso-
lated ‘phrase translation’ task. In spite of working
on a very specific domain, a large room for improve-
ment, coherent with WSD performance, and results
by Vickrey et al. (2005), is predicted. Then, in Sec-
tion 4, we tackle the full translation task. DPT mod-
els are integrated in a ‘soft’ manner, by making them
available to the decoder so they can fully interact
with other models. Results using a reduced set of
highly frequent source phrases show a significant
improvement, according to several automatic eval-
uation metrics. Interestingly, theBLEU metric (Pap-
ineni et al., 2001) is not able to reflect this improve-
ment. Through a rigorous process of manual eval-
uation we have verified the gain. We have also ob-
served that it is mainly related to adequacy. These
results confirm that better phrase translation proba-
bilities may be helpful for the full translation task.
However, the fact that no gain in fluency is reported
indicates that the integration of these probabilities
into the statistical framework requires further study.

2 Discriminative Phrase Translation

In this section we describe the phrase-based SMT
baseline system and how DPT models are built and
integrated into this system in a ‘soft’ manner.
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2.1 Baseline System

The baseline system is a phrase-based SMT sys-
tem (Koehn et al., 2003), built almost entirely us-
ing freely available components. We use theSRI
Language Modeling Toolkit(Stolcke, 2002) for lan-
guage modeling. We build trigram language models
applying linear interpolation and Kneser-Ney dis-
counting for smoothing. Translation models are
built on top of word-aligned parallel corpora linguis-
tically annotated at the level of shallow syntax (i.e.,
lemma, part-of-speech, and base phrase chunks)
as described by Giménez and Màrquez (2005).
Text is automatically annotated, using theSVM-
Tool (Giménez and Màrquez, 2004),Freeling (Car-
reras et al., 2004), andPhreco(Carreras et al., 2005)
packages. We used theGIZA++ SMT Toolkit1 (Och
and Ney, 2003) to generate word alignments. We
apply the phrase-extract algorithm, as described by
Och (2002), on the Viterbi alignments output by
GIZA++ following the ‘global phrase extraction’
strategy described by Giménez and Màrquez (2005)
(i.e., a single phrase translation table is built on top
of the union of alignments corresponding to dif-
ferent linguistic data views). We work with the
union of source-to-target and target-to-source align-
ments, with no heuristic refinement. Phrases up to
length five are considered. Also, phrase pairs ap-
pearing only once are discarded, and phrase pairs
in which the source/target phrase is more than three
times longer than the target/source phrase are ig-
nored. Phrase pairs are scored on the basis of un-
smoothed relative frequency (i.e., MLE). Regard-
ing the argmax search, we used thePharaohbeam
search decoder (Koehn, 2004), which naturally fits
with the previous tools.

2.2 DPT for SMT

Instead of relying on MLE estimation to score the
phrase pairs(fi, ej) in the translation table, we
suggest considering the translation of every source
phrasefi as a multi-class classification problem,
where every possible translation offi is a class.

We uselocal linear SVMs2. Since SVMs are bi-
nary classifiers, the problem must be binarized. We

1http://www.fjoch.com/GIZA++.html
2We use the SVMlight package, which is freely available at

http://svmlight.joachims.org (Joachims, 1999).

have applied a simpleone-vs-allbinarization, i.e., a
SVM is trained for every possible translation candi-
dateej . Training examples are extracted from the
same training data as in the case of MLE models,
i.e., an aligned parallel corpus, obtained as described
in Section 2.1. We use each sentence pair in which
the source phrasefi occurs to generate a positive ex-
ample for the classifier corresponding to the actual
translation offi in that sentence, according to the
automatic alignment. This will be as well a negative
example for the classifiers corresponding to the rest
of possible translations offi.

2.2.1 Feature Set

We consider different kinds of information, al-
ways from the source sentence, based on standard
WSD methods (Yarowsky et al., 2001). As to the
local context, inside the source phrase to disam-
biguate, and 5 tokens to the left and to the right,
we usen-grams (n ∈ {1, 2, 3}) of: words, parts-
of-speech, lemmas and base phrase chunking IOB
labels. As to the global context, we collect topical
information by considering the source sentence as a
bag of lemmas.

2.2.2 Decoding. A Trick.

At translation time, we consider every instance of
fi as a separate case. In each case, for all possi-
ble translations offi, we collect the SVM score, ac-
cording to the SVM classification rule. We are in
fact modelingP (ej |fi). However, these scores are
not probabilities. We transform them into proba-
bilities by applying thesoftmax functiondescribed
by Bishop (1995). We do not constrain the decoder
to use the translationej with highest probability. In-
stead, we make all predictions available and let the
decoder choose. We have avoided implementing a
new decoder by pre-computing all the SVM pre-
dictions for all possible translations for all source
phrases appearing in the test set. We input this in-
formation onto the decoder by replicating the entries
in the translation table. In other words, each distinct
occurrence of every single source phrase has a dis-
tinct list of phrase translation candidates with their
corresponding scores. Accordingly, the source sen-
tence is transformed into a sequence of identifiers,
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in our case a sequence of(w, i) pairs3, which allow
us to uniquely identify every distinct instance of ev-
ery word in the test set during decoding, and to re-
trieve DPT predictions in the translation table. For
that purpose, source phrases in the translation table
must comply with the same format.

This imaginative trick4 saved us in the short run
a gigantic amount of work. However, it imposes a
severe limitation on the kind of features which the
DPT system may use. In particular, features from
the target sentence under construction and from
the correspondence between source and target (i.e.,
alignments) can not be used.

3 Phrase Translation

Analogously to the‘word translation’ definition by
Vickrey et al. (2005), rather than predicting the sense
of a word according to a given sense inventory, in
‘phrase translation’, the goal is to predict the correct
translation of aphrase, for a given target language,
in the context of a sentence. This task is simpler than
the ‘full translation’ task, but provides an insight to
the gain prospectives.

We used the data from theOpenlab 2006Initia-
tive5 promoted by the TC-STAR Consortium6. This
test suite is entirely based on European Parliament
Proceedings. We have focused on the Spanish-to-
English task. The training set consists of 1,281,427
parallel sentences. Performing phrase extraction
over the training data, as described in Section 2.1,
we obtained translation candidates for 1,729,191
source phrases. We built classifiers forall the source
phrases with more than one possible translation and
more than 10 occurrences. 241,234 source phrases
fulfilled this requirement. For each source phrase,
we used 80% of the instances for training, 10% for
development, and 10% for test.

Table 1 shows “phrase translation” results over
the test set. We compare the performance, in terms
of accuracy, of DPT models and the “most fre-
quent translation” baseline (‘MFT’). The MFT base-

3w is a word andi corresponds to the number of instances
of wordw seen in the test set before the current instance.

4We have checked that results following this type of decod-
ing when translation tables are estimated on the basis of MLE
are identical to regular decoding results.

5http://tc-star.itc.it/openlab2006/
6http://www.tc-star.org/

phrase set model macro micro
all MFT 0.66 0.70

DPT 0.68 0.76
frequent MFT 0.76 0.75

DPT 0.86 0.86

Table 1: “Phrase Translation” Accuracy (test set).

line is equivalent to selecting the translation candi-
date with highest probability according to MLE. The
‘macro’ column shows macro-averaged results over
all phrases, i.e., the accuracy for each phrase counts
equally towards the average. The ‘micro’ column
shows micro-averaged accuracy, where each test ex-
ample counts equally. The ‘all’ set includes results
for the 241,234 phrases, whereas the ‘frequent’ set
includes results for a selection of 41 very frequent
phrases ocurring more than 50,000 times.

A priori, DPT models seem to offer a significant
room for potential improvement. Although phrase
translation differs from WSD in a number of as-
pects, the increase with respect to the MFT baseline
is comparable. Results are also coherent with those
attained by Vickrey et al. (2005).
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Figure 1: Analysis of “Phrase Translation” Results
on the development set (Spanish-to-English).

Figure 1 shows the relationship between the accu-
racy7 gain and the number of training examples. In
general, with a sufficient number of examples (over
10,000), DPT outperforms the MFT baseline.

7We focus on micro-averaged accuracy.
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4 Full Translation

In the “phrase translation” task the predicted phrase
does not interact with the rest of the target sentence.
In this section we analyze the impact of DPT models
when the goal is to translate the whole sentence.

For evaluation purposes we count on a set of 1,008
sentences. Three human references per sentence are
available. We randomly split this set in two halves,
and use them for development and test, respectively.

4.1 Evaluation

Evaluating the effects of using DPT predictions, di-
rected towards a better word selection, in the full
translation task presents two serious difficulties.

In first place, the actual room for improvement
caused by a better translation modeling is smaller
than estimated in Section 3. This is mainly due to
the SMT architecture itself which relies on a search
over a probability space in which several models co-
operate. For instance, in many cases errors caused
by a poor translation modeling may be corrected by
the language model. In a recent study, Vilar et al.
(2006) found that only around 25% of the errors are
related to word selection. In half of these cases er-
rors are caused by a wrong word sense disambigua-
tion, and in the other half the word sense is correct
but the lexical choice is wrong.

In second place, most conventional automatic
evaluation metrics have not been designed for this
purpose. For instance, metrics such asBLEU (Pa-
pineni et al., 2001) tend to favour longern-gram
matchings, and are, thus, biased towards word or-
dering. We might find better suited metrics, such
as METEOR (Banerjee and Lavie, 2005), which is
oriented towards word selection8. However, a new
problem arises. Because different metrics are biased
towards different aspects of quality, scores conferred
by different metrics are often controversial.

In order to cope with evaluation difficulties we
have applied several complementary actions:

1. Based on the results from Section 3, we focus
on a reduced set of 41 very promising phrases
trained on more than 50,000 examples. This
set covers 25.8% of the words in the test set,

8METEOR works at the unigram level, may consider word
stemming and, for the case of English is also able to perform a
lookup for synonymy in WordNet (Fellbaum, 1998).

and exhibits a potential absolute accuracy gain
around 11% (See Table 1).

2. With the purpose of evaluating the changes re-
lated only to this small set of very promis-
ing phrases, we introduce a new measure,Apt,
which computes “phrase translation” accuracy
for a given list of source phrases. For every
test case,Apt counts the proportion of phrases
from the list appearing in the source sentence
which have a valid9 translation both in the tar-
get sentence and in any of the reference trans-
lations. In fact, because in general source-to-
target alignments are not known,Apt calculates
an approximate10 solution.

3. We evaluate overall MT quality on the basis
of ‘Human Likeness’. In particular, we use
the QUEEN11 meta-measure from the QARLA
Framework (Amigó et al., 2005).QUEEN op-
erates under the assumption that a good trans-
lation must be similar to all human references
according to all metrics. Given a set of auto-
matic translationsA, a set of similarity metrics
X, and a set of human referencesR, QUEEN is
defined as the probability, overR×R×R, that
for every metric inX the automatic translation
a is more similar to a referencer than two other
referencesr′ andr′′ to each other. Formally:

QUEENX,R(a) = Prob(∀x ∈ X : x(a, r) ≥ x(r′, r′′))

QUEEN captures the features that are common
to all human references, rewarding those auto-
matic translations which share them, and pe-
nalizing those which do not. Thus,QUEENpro-
vides a robust means of combining several met-
rics into a single measure of quality. Following
the methodology described by Giménez and
Amigó (2006), we compute theQUEEN mea-
sure over the metric combination with high-
est KING, i.e., discriminative power. We have
considered all the lexical metrics12 provided by

9Valid translations are provided by the translation table.
10Current Apt implementation searches phrases from left to

right in decreasing length order.
11QUEEN is available inside the IQMT package for MT

Evaluation based on ‘Human Likeness’ (Giménez and Amigó,
2006).http://www.lsi.upc.edu/˜nlp/IQMT

12Consult the IQMT Technical Manual v1.3 for a detailed de-
scription of the metric set.http://www.lsi.upc.edu/
˜nlp/IQMT/IQMT.v1.3.pdf
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QUEEN Apt BLEU METEOR ROUGE

P (e) + PMLE(f |e) 0.43 0.86 0.59 0.77 0.42
P (e) + PMLE(e|f) 0.45 0.87 0.62 0.77 0.43
P (e) + PDPT (e|f) 0.47 0.89 0.62 0.78 0.44

Table 2: Automatic evaluation of the ‘full translation’ results on the test set.

IQMT. The optimal set is:

{ METEORwnsyn, ROUGEw 1.2 }

which includes variants ofMETEOR, and
ROUGE(Lin and Och, 2004).

4.2 Adjustment of Parameters

Models are combined in a log-linear fashion:

logP (e|f) ∝ λlmlogP (e) + λglogPMLE(f |e)

+ λdlogPMLE(e|f) + λDPT logPDPT (e|f)

P (e) is the language model probability.
PMLE(f |e) corresponds to the MLE-based
generative translation model, whereasPMLE(e|f)
corresponds to the analogous discriminative model.
PDPT (e|f) corresponds to the DPT model which
uses SVM-based predictions in a wider feature
context. In order to perform fair comparisons,
model weights must be adjusted.

Because we have focused on a reduced set of fre-
quent phrases, in order to translate the whole test set
we must provide alternative translation probabilities
for all the source phrases in the vocabulary which
do not have a DPT prediction. We have used MLE
predictions to complete the model. However, inter-
action between DPT and MLE models is problem-
atic. Problems arise when, for a given source phrase,
fi, DPT predictions must compete with MLE pre-
dictions for larger phrasesfj overlapping with or
containingfi (See Section 4.3). We have alleviated
these problems by splitting DPT tables in 3 subta-
bles: (1) phrases with DPT prediction, (2) phrases
with DPT prediction only for subphrases of it, and
(3) phrases with no DPT prediction for any sub-
phrase; and separately adjusting their weights.

Counting on a reliable automatic measure of qual-
ity is a crucial issue for system development. Opti-
mal configurations may vary very significantly de-
pending on the metric governing the optimization
process. We optimize the system parameters over
the QUEEN measure, which has proved to lead to

more robust system configurations thanBLEU (Lam-
bert et al., 2006). We exhaustively try all possible
parameter configurations, at a resolution of 0.1, over
the development set and select the best one. In order
to keep the optimization process feasible, in terms of
time, the search space is pruned13 during decoding.

4.3 Results

We compare the systems using the generative and
discriminative MLE-based translation models to the
discriminative translation model which uses DPT
predictions for the set of 41 very ‘frequent’ source
phrases. Table 2 shows automatic evaluation re-
sults on the test set, according to several metrics.
Phrase translation accuracy (over the ‘frequent’ set
of phrases) and MT quality are evaluated by means
of the Apt and QUEEN measures, respectively. For
the sake of informativeness,BLEU, METEORwnsyn

andROUGEw 1.2 scores are provided as well.
Interestingly, discriminative models outperform

the (noisy-channel) default generative model. Im-
provement inApt measure also reveals that DPT pre-
dictions provide a better translation for the set of
‘frequent’ phrases than the MLE models. This im-
provement remains when measuring overall transla-
tion quality viaQUEEN. If we take into account that
DPT predictions are available for only 25% of the
words in the test set, we can say that the gain re-
ported by theQUEENandApt measures is consistent
with the accuracy prospectives predicted in Table 1.
METEORwnsyn and ROUGEw 1.2 reflect a slight im-
provement as well. However, according toBLEU

there is no difference between both systems. We
suspect thatBLEU is unable to accurately reflect the
possible gains attained by a better ‘phrase selection’
over a small set of phrases because of its tendency

13For each phrase only the 30 top-scoring translations are
used. At all times, only the 100 top-scoring solutions are kept.
We also disabled distortion and word penalty models. There-
fore, translations are monotonic, and source and target tend to
have the same number of words (that is not mandatory).
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to reward longn-gram matchings. In order to clar-
ify this scenario a rigorous process of manual evalu-
ation has been conducted. We have selected a subset
of sentences based on the following criteria:

• sentence length between 10 and 30 words.

• at least 5 words have a DPT prediction.

• DPT and MLE outputs differ.

A total of 114 sentences fulfill these require-
ments. In each translation case, assessors must judge
whether the output by the discriminative ‘MLE’ sys-
tem is better, equal to or worse than the output by
the ‘DPT’ system, with respect to adequacy, fluency,
and overall quality. In order to avoid any bias in the
evaluation, we have randomized the respective posi-
tion in the display of the sentences corresponding to
each system. Four judges participated in the evalua-
tion. Each judge evaluated only half of the cases.
Each case was evaluated by two different judges.
Therefore, we count on 228 human assessments.

Table 3 shows the results of the manual system
comparison. Statistical significance has been deter-
mined using the sign-test (Siegel, 1956). According
to human assessors, the ‘DPT’ system outperforms
the ‘MLE’ system very significantly with respect to
adequacy, whereas for fluency there is a slight ad-
vantage in favor of the ‘MLE’ system. Overall, there
is a slight but significant advantage in favor of the
‘DPT’ system. Manual evaluation confirms our sus-
picion that theBLEU metric is less sensitive than
QUEEN to improvements related to adequacy.

Error Analysis

Guided by theQUEENmeasure, we carefully inspect
particular cases. We start, in Table 4, by show-
ing a positive case. The three phrases highlighted
in the source sentence (‘tiene’, ‘señora’ and ‘una
cuestíon’) find a better translation with the help of
the DPT models:‘tiene’ translates into‘has’ instead
of ‘i give’ , ‘señora’ into ‘mrs’ instead of‘lady’ , and
‘una cuestíon’ into ‘a point’ instead of‘a ... motion’.

In contrast, Table 5 shows a negative case. The
translation of the Spanish word‘señora’ as ‘mrs’ is
acceptable. However, it influences very negatively
the translation of the following word‘diputada’,
whereas the ‘MLE’ system translates the phrase
‘señora diputada’, which does not have a DPT pre-
diction, as a whole. Similarly, the translation of

Adequacy Fluency Overall
MLE > DPT 39 84 83
MLE = DPT 100 76 46
MLE < DPT 89 68 99

Table 3: Manual evaluation of the ‘full translation’
results on the test set. Counts on the number of
translation cases for which the ‘MLE’ system is bet-
ter than (>), equal to (=), or worse than (<) the
‘DPT’ system, with respect to adequacy, fluency,
and overall MT quality, are presented.

‘cuestíon’ as‘matter’, although acceptable, is break-
ing the phrase‘cuestíon de orden’of high cohe-
sion, which is commonly translated as‘point of or-
der’. The cause underlying these problems is that
DPT predictions are available only for a subset of
phrases. Thus, during decoding, for these cases our
DPT models may be in disadvantage.

5 Related Work

Recently, there is a growing interest in the appli-
cation of WSD technology to MT. For instance,
Carpuat and Wu (2005b) suggested integrating
WSD predictions into a SMT system in a‘hard’
manner, either for decoding, by constraining the set
of acceptable translation candidates for each given
source word, or for post-processing the SMT sys-
tem output, by directly replacing the translation of
each selected word with the WSD system predic-
tion. They did not manage to improve MT quality.
They encountered several problems inherent to the
SMT architecture. In particular, they described what
they called the“language model effect”in SMT:
“The lexical choices are made in a way that heav-
ily prefers phrasal cohesion in the output target sen-
tence, as scored by the language model.”. This prob-
lem is a direct consequence of the ‘hard’ interaction
between their WSD and SMT systems. WSD pre-
dictions cannot adapt to the surrounding target con-
text. In a later work, Carpuat and Wu (2005a) ana-
lyzed the converse question, i.e. they measured the
WSD performance of SMT models. They showed
that dedicated WSD models significantly outper-
form current state-of-the-art SMT models. Conse-
quently, SMT should benefit from WSD predictions.

Simultaneously, Vickrey et al. (2005) studied the
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Source tienela palabra lasẽnora mussolini parauna cuestíon de orden .
Ref 1 mrs mussolinihasthe floor fora point of order .
Ref 2 you have the floor ,missusmussolini , fora questionof order .
Ref 3 msmussolinihasnow the floor fora point of order .
P (e) + PMLE(e|f) i give the floor to thelady mussolini fora procedural motion .
P (e) + PDPT (e|f) has the floor themrs mussolini ona point of order .

Table 4: Case of Analysis of sentence #422. DPT models help.

Source sẽnora diputada , éstano es una cuestíon de orden .
Ref 1 mrs mussolini, that isnot a point of order .
Ref 2 honourable member, this isnot a questionof order .
Ref 3 my honourable friend , this isnot a point of order .
P (e) + PMLE(e|f) honourable member, this isnot a point of order .
P (e) + PDPT (e|f) mrs karamanou , this isnot a matter of order .

Table 5: Case of Analysis of sentence #434. DPT models fail.

application of discriminative models based on WSD
technology to the“blank-filling” task, a simplified
version of the translation task, in which the target
context surrounding the word translation is avail-
able. They did not encounter the “language model
effect” because they approached the task in a‘soft’
way, i.e., allowing their WSD models to interact
with other models during decoding. Similarly, our
DPT models are, as described in Section 2.2,softly
integrated in the decoding step, and thus do not suf-
fer from the detrimental “language model effect” ei-
ther, in the context of the “full translation” task. Be-
sides, DPT models enforce phrasal cohesion by con-
sidering disambiguation at the level of phrases.

6 Conclusions and Further Work

Despite the fact that measuring improvements in
word selection is a very delicate issue, we have
showed that dedicated discriminative translation
models considering a wider feature context provide
a useful mechanism in order to improve the qual-
ity of current phrase-based SMT systems, specially
with regard to adequacy. However, the fact that no
gain in fluency is reported indicates that the integra-
tion of these probabilities into the statistical frame-
work requires further study.

Moreover, there are several open issues. First, for
practical reasons, we have limited to a reduced set of
‘frequent’ phrases, and we have disabled reordering
and word penalty models. We are currently studying

the impact of a larger set of phrases, covering over
99% of the words in the test set. Experiments with
enabled reordering and word penalty models should
be conducted as well. Second, automatic evalua-
tion of the results revealed a low agreement between
BLEU and other metrics. For system comparison, we
solved this through a process of manual evaluation.
However, this is impractical for the adjustment of
parameters, where hundreds of different configura-
tions are tried. In this work we have relied on auto-
matic evaluation based on ‘Human Likeness’ which
allows for metric combinations and provides a sta-
ble and robust criterion for the metric set selection.
Other alternatives could be tried. The crucial issue,
in our opinion, is that the metric guiding the opti-
mization is able to capture the changes.

Finally, we argue that, if DPT models considered
features from the target side, and from the corre-
spondence between source and target, results could
further improve. However, at the short term, the in-
corporation of these type of features will force us to
either build a new decoder or extend an existing one,
or to move to a new MT architecture, for instance,
in the fashion of the architectures suggested by Till-
mann and Zhang (2006) or Liang et al. (2006).
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Abstract
This paper describes the 2007 Ngram-based sta-
tistical machine translation system developed at
the TALP Research Center of the UPC (Uni-
versitat Politècnica de Catalunya) in Barcelona.
Emphasis is put on improvements and extensions
of the previous years system, being highlighted
and empirically compared. Mainly, these include
a novel word ordering strategy based on: (1) sta-
tistically monotonizing the training source cor-
pus and (2) a novel reordering approach based
on weighted reordering graphs. In addition, this
system introduces a target language model based
on statistical classes, a feature for out-of-domain
units and an improved optimization procedure.

The paper provides details of this system par-
ticipation in the ACL 2007 SECOND WORK-
SHOP ON STATISTICAL MACHINE TRANSLA-
TION. Results on three pairs of languages are
reported, namely from Spanish, French and Ger-
man into English (and the other way round) for
both the in-domain and out-of-domain tasks.

1 Introduction
Based on estimating a joint-probability model between
the source and the target languages, Ngram-based SMT
has proved to be a very competitive alternatively to
phrase-based and other state-of-the-art systems in previ-
ous evaluation campaigns, as shown in (Koehn and Monz,
2005; Koehn and Monz, 2006).

Given the challenge of domain adaptation, efforts have
been focused on improving strategies for Ngram-based
SMT which could generalize better. Specifically, a novel
reordering strategy is explored. It is based on extending
the search by using precomputed statistical information.
Results are promising while keeping computational ex-
penses at a similar level as monotonic search. Addition-
ally, a bonus for tuples from the out-of-domain corpus is

introduced, as well as a target language model based on
statistical classes. One of the advantages of working with
statistical classes is that they can easily be used for any
pair of languages.

This paper is organized as follows. Section 2 briefly
reviews last year’s system, including tuple definition and
extraction, translation model and feature functions, de-
coding tool and optimization criterion. Section 3 delves
into the word ordering problem, by contrasting last year
strategy with the novel weighted reordering input graph.
Section 4 focuses on new features: both tuple-domain
bonus and target language model based on classes. Later
on, Section 5 reports on all experiments carried out for
WMT 2007. Finally, Section 6 sums up the main conclu-
sions from the paper and discusses future research lines.

2 Baseline N-gram-based SMT System

The translation model is based on bilingual n-grams. It
actually constitutes a language model of bilingual units,
referred to as tuples, which approximates the joint proba-
bility between source and target languages by using bilin-
gual n-grams.

Tuples are extracted from a word-to-word aligned cor-
pus according to the following two constraints: first, tu-
ple extraction should produce a monotonic segmentation
of bilingual sentence pairs; and second, no smaller tuples
can be extracted without violating the previous constraint.

For all experiments presented here, the translation
model consisted of a 4-gram language model of tuples.
In addition to this bilingual n-gram translation model, the
baseline system implements a log linear combination of
four feature functions. These four additional models are:
a target language model (a 5-gram model of words);
a word bonus; a source-to-target lexicon model and a
target-to-source lexicon model, both features provide a
complementary probability for each tuple in the transla-
tion table.

The decoder (called MARIE) for this translation sys-
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tem is based on a beam search 1.
This baseline system is actually the same system used

for the first shared task “Exploiting Parallel Texts for Sta-
tistical Machine Translation” of the ACL 2005 Work-
shop on Building and Using Parallel Texts: Data-Driven
Machine Translation and Beyond. A more detailed de-
scription of the system can be found in (Mariño et al.,
2006).

3 Baseline System Enhanced with a
Weighted Reordering Input Graph

This section briefly describes the statistical machine re-
ordering (SMR) technique. Further details on the archi-
tecture of SMR system can be found on (Costa-jussà and
Fonollosa, 2006).

3.1 Concept
The SMR system can be seen as a SMT system which
translates from an original source language (S) to a re-
ordered source language (S’), given a target language
(T). The SMR technique works with statistical word
classes (Och, 1999) instead of words themselves (partic-
ularly, we have used 200 classes in all experiments).

Figure 1: SMR approach in the (A) training step (B) in
the test step (the weight of each arch is in brackets).

3.2 Using SMR technique to improve SMT training
The original source corpus S is translated into the re-
ordered source corpus S’ with the SMR system. Fig-
ure 1 (A) shows the corresponding block diagram. The
reordered training source corpus and the original training
target corpus are used to build the SMT system.

The main difference here is that the training is com-
puted with the S’2T task instead of the S2T original task.
Figure 2 (A) shows an example of the alignment com-
puted on the original training corpus. Figure 2 (B) shows
the same links but with the source training corpus in a
different order (this training corpus comes from the SMR
output). Although, the quality in alignment is the same,
the tuples that can be extracted change (notice that the
tuple extraction is monotonic). We are able to extract

1http://gps-tsc.upc.es/veu/soft/soft/marie/

smaller tuples which reduces the translation vocabulary
sparseness. These new tuples are used to build the SMT
system.

Figure 2: Alignment and tuple extraction (A) original
training source corpus (B) reordered training source cor-
pus.

3.3 Using SMR technique to generate multiple
weighted reordering hypotheses

The SMR system, having its own search, can generate ei-
ther an output 1-best or an output graph. In decoding, the
SMR technique generates an output graph which is used
as an input graph by the SMT system. Figure 1 (B) shows
the corresponding block diagram in decoding: the SMR
output graph is given as an input graph to the SMT sys-
tem. Hereinafter, this either SMR output graph or SMT
input graph will be referred to as (weighted) reordering
graph. The monotonic search in the SMT system is ex-
tended with reorderings following this reordering graph.
This reordering graph has multiple paths and each path
has its own weight. This weight is added as a feature
function in the log-linear framework. Figure 3 shows the
weighted reordering graph.

The main difference with the reordering technique for
WMT06 (Crego et al., 2006) lies in (1) the tuples are ex-
tracted from the word alignment between the reordered
source training corpus and the given target training cor-
pus and (2) the graph structure: the SMR graph provides
weights for each reordering path.

4 Other features and functionalities

In addition to the novel reordering strategy, we consider
two new features functions.

4.1 Target Language Model based on Statistical
Classes

This feature implements a 5-gram language model of tar-
get statistical classes (Och, 1999). This model is trained
by considering statistical classes, instead of words, for
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Figure 3: Weighted reordering input graph for SMT sys-
tem.

the target side of the training corpus. Accordingly, the tu-
ple translation unit is redefined in terms of a triplet which
includes: a source string containing the source side of
the tuple, a target string containing the target side of the
tuple, and a class string containing the statistical classes
corresponding to the words in the target strings.

4.2 Bonus for out-of-domain tuples

This feature adds a bonus to those tuples which comes
from the training of the out-of-domain task. This feature
is added when optimizing with the development of the
out-of-domain task.

4.3 Optimization

Finally, a n-best re-ranking strategy is implemented
which is used for optimization purposes just as pro-
posed in http://www.statmt.org/jhuws/. This procedure
allows for a faster and more efficient adjustment of model
weights by means of a double-loop optimization, which
provides significant reduction of the number of transla-
tions that should be carried out. The current optimization
procedure uses the Simplex algorithm.

5 Shared Task Framework

5.1 Data

The data provided for this shared task corresponds to a
subset of the official transcriptions of the European Par-
liament Plenary Sessions 2. Additionally, there was avail-
able a smaller corpus called News-Commentary. For all
tasks and domains, our training corpus was the catenation
of both.

2http://www.statmt.org/wmt07/shared-task/

5.2 Processing details

Word Alignment. The word alignment is automati-
cally computed by using GIZA++ 3 in both directions,
which are symmetrized by using the union operation. In-
stead of aligning words themselves, stems are used for
aligning. Afterwards case sensitive words are recovered.

Spanish Morphology Reduction. We implemented a
morphology reduction of the Spanish language as a pre-
processing step. As a consequence, training data sparse-
ness due to Spanish morphology was reduced improving
the performance of the overall translation system. In par-
ticular, the pronouns attached to the verb were separated
and contractions as del or al are splited into de el or a
el. As a post-processing, in the En2Es direction we used
a POS target language model as a feature (instead of the
target language model based on classes) that allowed to
recover the segmentations (de Gispert, 2006).

Language Model Interpolation. In other to better
adapt the system to the out-of-domain condition, the
target language model feature was built by combining
two 5-gram target language models (using SRILM 4).
One was trained from the EuroParl training data set, and
the other from the available, but much smaller, news-
commentary data set. The combination weights for the
EuroParl and news-commentary language models were
empirically adjusted by following a minimum perplexity
criterion. A relative perplexity reduction around 10-15%
respect to original EuroParl language model was achieved
in all the tasks.

5.3 Experiments and Results

The main difference between this year’s and last year’s
systems are: the amount of data provided; the word align-
ment; the Spanish morphology reduction; the reordering
technique; the extra target language model based on sta-
tistical classes (except for the En2Es); and the bonus for
the out-of-domain task (only for the En2Es task).

Among them, the most important is the reordering
technique. That is why we provide a fair comparison be-
tween the reordering patterns (Crego and Mariño, 2006)
technique and the SMR reordering technique. Table 1
shows the system described above using either reorder-
ing patterns or the SMR technique. The BLEU calcula-
tion was case insensitive and sensitive to tokenization.

Table 2 presents the BLEU score obtained for the 2006
test data set comparing last year’s and this year’s systems.
The computed BLEU scores are case insensitive, sensi-
tive to tokenization and uses one translation reference.
The improvement in BLEU results shown from UPC-jm

3http://www.fjoch.com/GIZA++.html
4http://www.speech.sri.com/projects/srilm/
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Task Reordering patterns SMR technique
es2en 31.21 33.34
en2es 31.67 32.33

Table 1: BLEU comparison: reordering patterns vs. SMR
technique.

Task UPC-jm 2006 UPC 2007
in-d out-d in-d out-d

es2en 31.01 27.92 33.34 32.85
en2es 30.44 25.59 32.33 33.07
fr2en 30.42 21.79 32.44 26.93
en2fr 31.75 23.30 32.30 27.03
de2en 24.43 17.57 26.54 21.63
en2de 17.73 10.96 19.74 15.06

Table 2: BLEU scores for each of the six translation di-
rections considered (computed over 2006 test set) com-
paring last year’s and this year’s system results (in-
domain and out-domain).

2006 Table 2 and reordering patterns Table 1 in the En-
glish/Spanish in-domain task comes from the combina-
tion of: the additional corpora, the word alignment, the
Spanish morphology reduction and the extra target lan-
guage model based on classes (only in the Es2En direc-
tion).

6 Conclusions and Further Work
This paper describes the UPC system for the WMT07
Evaluation. In the framework of Ngram-based system, a
novel reordering strategy which can be used for any pair
of languages has been presented and it has been showed
to significantly improve translation performance. Ad-
ditionally two features has been added to the log-lineal
scheme: the target language model based on classes and
the bonus for out-of-domain translation units.
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Abstract

One main challenge of statistical machine trans-
lation (SMT) is dealing with word order. The
main idea of the statistical machine reordering
(SMR) approach is to use the powerful tech-
niques of SMT systems to generate a weighted
reordering graph for SMT systems. This tech-
nique supplies reordering constraints to an SMT
system, using statistical criteria.

In this paper, we experiment with different graph
pruning which guarantees the translation quality
improvement due to reordering at a very low in-
crease of computational cost.

The SMR approach is capable of generalizing re-
orderings, which have been learned during train-
ing, by using word classes instead of words
themselves. We experiment with statistical and
morphological classes in order to choose those
which capture the most probable reorderings.

Satisfactory results are reported in the WMT07
Es/En task. Our system outperforms in terms of
BLEU the WMT07 Official baseline system.

1 Introduction

Nowadays, statistical machine translation is mainly based
on phrases (Koehn et al., 2003). In parallel to this phrase-
based approach, the use of bilingual n-grams gives com-
parable results, as shown by Crego et al. (2005). Two
basic issues differentiate the n-gram-based system from
the phrase-based: training data is monotonically seg-
mented into bilingual units; and, the model considers n-
gram probabilities rather than relative frequencies. The
n-gram-based system follows a maximum entropy ap-
proach, in which a log-linear combination of multiple
models is implemented (Mariño et al., 2006), as an al-
ternative to the source-channel approach.

Introducing reordering capabilities is important in both
systems. Recently, new reordering strategies have been
proposed such as the reordering of each source sentence
to match the word order in the corresponding target sen-
tence, see Kanthak et al. (2005) and Mariño et al. (2006).
These approaches are applied in the training set and they
lack of reordering generalization.

Applied both in the training and decoding step, Collins
et al. (2005) describe a method for introducing syntac-
tic information for reordering in SMT. This approach is
applied as a pre-processing step.

Differently, Crego et al. (2006) presents a reordering
approach based on reordering patterns which is coupled
with decoding. The reordering patterns are learned di-
rectly from word alignment and all reorderings have the
same probability.

In our previous work (Costa-jussà and Fonollosa,
2006) we presented the SMR approach which is based
on using the powerful SMT techniques to generate a re-
ordered source input for an SMT system both in train-
ing and decoding steps. One step further, (Costa-jussà
et al., 2007) shows how the SMR system can generate a
weighted reordering graph, allowing the SMT system to
make the final reordering decision.

In this paper, the SMR approach is used to train the
SMT system and to generate a weighted reordering graph
for the decoding step. The SMR system uses word classes
instead of words themselves and we analyze both statisti-
cal and morphological classes. Moreover, we present ex-
periments regarding the reordering graph efficiency: we
analyze different graph pruning and we show the very low
increase in computational cost (compared to a monotonic
translation). Finally, we compare the performance our
system in terms of BLEU with the WMT07 baseline sys-
tem.

This paper is organized as follows. The first two sec-
tions explain the SMT and the SMR baseline systems,
respectively. Section 4 reports the study of statistical and
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morphological classes. Section 5 describes the experi-
mental framework and discusses the results. Finally, Sec-
tion 6 presents the conclusions and some further work.

2 Ngram-based SMT System
This section briefly describes the Ngram-based SMT (for
further details see (Mariño et al., 2006)). The Ngram-
based SMT system uses a translation model based on
bilingual n-grams. It is actually a language model of
bilingual units, referred to as tuples, which approxi-
mates the joint probability between source and target lan-
guages by using bilingual n-grams. Tuples are extracted
from any word alignment according to the following con-
straints:

1. a monotonic segmentation of each bilingual sen-
tence pairs is produced,

2. no word inside the tuple is aligned to words outside
the tuple, and

3. no smaller tuples can be extracted without violating
the previous constraints.

As a result of these constraints, only one segmentation
is possible for a given sentence pair.

In addition to the bilingual n-gram translation model,
the baseline system implements a log-linear combination
of feature functions, which are described as follows:

• A target language model. This feature consists of
a 4-gram model of words, which is trained from the
target side of the bilingual corpus.

• A class target language model. This feature con-
sists of a 5-gram model of words classes, which is
trained from the target side of the bilingual corpus
using the statistical classes from (Och, 1999).

• A word bonus function. This feature introduces
a bonus based on the number of target words con-
tained in the partial-translation hypothesis. It is used
to compensate for the system’s preference for short
output sentences.

• A source-to-target lexicon model. This feature,
which is based on the lexical parameters of the IBM
Model 1 (Brown et al., 1993), provides a comple-
mentary probability for each tuple in the translation
table. These lexicon parameters are obtained from
the source-to-target alignments.

• A target-to-source lexicon model. Similarly to the
previous feature, this feature is based on the lexical
parameters of the IBM Model 1 but, in this case,
these parameters are obtained from target-to-source
alignments.

Figure 1: SMR block diagram.

3 SMR Baseline System
As mentioned in the introduction, SMR and SMT are
based on the same principles.

3.1 Concept
The aim of SMR consists in using an SMT system to deal
with reordering problems. Therefore, the SMR system
can be seen as an SMT system which translates from an
original source language (S) to a reordered source lan-
guage (S’), given a target language (T).

3.2 Description
Figure 1 shows the SMR block diagram and an exam-
ple of the input and output of each block inside the
SMR system. The input is the initial source sentence
(S) and the output is the reordered source sentence (S’).
There are three blocks inside SMR: (1) the class replac-
ing block; (2) the decoder, which requires an Ngram
model containing the reordering information; and, (3) the
post-processing block which either reorders the source
sentence given the indexes of the decoder output 1-best
(training step) or transforms the decoder output graph to
an input graph for the SMT system (decoding step).

The decoder in Figure 1 requires a translation model
which is an Ngram model. Given a training parallel cor-
pus this model has been built following the next steps:

1. Select source and target word classes.

2. Align parallel training sentences at the word level in
both translation directions. Compute the union of
the two alignments to obtain a symmetrized many-
to-many word alignment.

3. Use the IBM1 Model to obtain a many-to-one word
alignment from the many-to-many word alignment.

4. Extract translation units from the computed many-
to-one alignment. Replace source words by their
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Figure 2: SMR approach in the (A) training step (B) in
the test step (the weight of each arch is in brackets).

classes and target words by the index of the linked
source word. An example of a translation unit here
is: C61 C28 C63#2 0 1, where # divides source
(word classes) and target (positions).

5. Compute the sequence of the above units and learn
the language model

For further information about the SMR training proce-
dure see (Costa-jussà and Fonollosa, 2006).

3.3 Improving SMT training
Figure 2 (A) shows the corresponding block diagram
for the training corpus: first, the given training corpus
S is translated into the reordered training source corpus
S’ with the SMR system. Then, this reordered training
source corpus S’ and the given training target corpus T
are used to build the SMT system

The main difference here is that the training is com-
puted with the S’2T task instead of the S2T given task.
Figure 3 (A) shows an example of the word alignment
computed on the given training parallel corpus S2T. Fig-
ure 3 (B) shows the same links but with the reordered
source training corpus S’. Although the quality in align-
ment is the same, the tuples that can be extracted change
(notice that tuple extraction is monotonic). We now are
able to extract smaller tuples which reduce the transla-
tion vocabulary sparseness. These new tuples are used to
build the SMT system.

3.4 Generation of multiple weighted reordering
hypotheses

The SMR system, having its own search, can generate ei-
ther an output 1-best or an output graph. In decoding, the
SMR technique generates an output graph which is used
as an input graph by the SMT system. Figure 2 (B) shows
the corresponding block diagram in decoding: the SMR
output graph is given as an input graph to the SMT sys-
tem. Hereinafter, this either SMR output graph or SMT
input graph will be referred to as (weighted) reordering
graph. The monotonic search in the SMT system is ex-
tended with reorderings following this reordering graph.

Figure 3: Alignment and tuple extraction (A) original
training source corpus (B) reordered training source cor-
pus.

This reordering graph has multiple paths and each path
has its own weight. This weight is added as a feature
function in the log-linear model.

4 Morphological vs Statistical Classes

Previous SMR studies (Costa-jussà and Fonollosa,
2006) (Costa-jussà et al., 2007) considered only statisti-
cal classes. On the one hand, these statistical classes per-
formed fairly well and had the advantage of being suit-
able for any language. On the other hand, it should be
taken into account the fact of training them in the train-
ing set allows for unknown words in the development or
in the test set. Additionally, they do not have any reorder-
ing information because they are trained on a monolin-
gual set.

The first problem, unknown words which appear in
the development or in the test set, may be solved by us-
ing a disambiguation technique. Unknown words can be
assigned to one class by taking into account their own
context. The second problem, incorporating information
about order, might be solved by training classes in the
reordered training source corpus. In other words, we
monotonized the training corpus with the alignment in-
formation (i.e. reorder the source corpus in the way that
matches the target corpus under the alignment links cri-
terion). After that, we train the statistical classes, here-
inafter, called statistical reordered classes.

In some pair of languages, as for example En-
glish/Spanish, the reordering that may be performed is
related to word’s morphology (i.e. TAGS). Some TAGS
rules (with some lexical exceptions) can be extracted as
in (Popovic and Ney, 2006) where they were applied
with reordering purposes as a preprocessing step. An-
other approach that has related TAGS and reordering was
presented in (Crego and Mariño, 2006) where instead of
rules, they learned reordering patterns based on TAGS as
named in this paper’s introduction. Hence, the SMR tech-
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Spanish English
Train Sentences 1,3M

Words 37,9M 35,5M
Vocabulary 138,9k 133k

Dev Sentences 2 000 2 000
Words 60.5k 58.7k

Vocabulary 8.1k 6.5k
Test Sentences 2 000 2 000

Words 60,2k 58k
Vocabulary 8,2k 6,5k

Table 1: Corpus Statistics.

nique may take advantage of the morphological informa-
tion. Notice that an advantage is that there is a TAG for
each word, hence there are not unknown words.

5 Evaluation Framework

5.1 Corpus Statistics

Experiments were carried out using the data in the second
evaluation campaign of the WMT07 1.

This corpus consists in the official version of the
speeches held in the European Parliament Plenary Ses-
sions (EPPS), as available on the web page of the Eu-
ropean Parliament. Additionally, there was available a
smaller corpus (News-Commentary). Our training cor-
pus was the catenation of both. Table 1 shows the corpus
statistics.

5.2 Tools and preprocessing

The system was built similarly to (Costa-jussà et al.,
2007). The SMT baseline system uses the Ngram-
based approach, which has been explained in Section 2.
Tools used are defined as follows: word alignments were
computed using GIZA++ 2; language model was esti-
mated using SRILM 3; decoding was carried out with
MARIE4; an n-best re-ranking strategy is implemented
which is used for optimization purposes just as pro-
posed in http://www.statmt.org/jhuws/ using the simplex
method (Nelder and Mead, 1965) and BLEU as a loss
function.

The SMT system we use a 4gram translation language
model, a 5gram target language model and a 5gram class
target language model.

Spanish data have been processed so that the pronouns
which are attached to verbs are split up. Additionally,
several article and prepositions words are separated (i.e.

1http://www.statmt.org/wmt07/
2http://www.fjoch.com/GIZA++.html
3http://www.speech.sri.com/projects/srilm/
4http://gps-tsc.upc.es/veu/soft/soft/marie/

Figure 5: Perplexity over the manually aligned test set
given the SMR Ngram length.

del goes into de el). This preprocessing was performed
using Freeling software (Atserias et al., 2006). Training
and evaluation were both true-case.

5.3 Classes and Ngram length Study for the
SMR-Graph generation

This section evaluates several types of classes and n-gram
lengths in the SMR model in order to choose the SMR
configuration which provides the best results in trans-
lation in terms of quality. To accomplish this evalua-
tion, we have designed the following experiment. Given
500 manually aligned parallel sentences of the EPPS cor-
pora (Lambert et al., 2006), we order the source test in
the way that better matches the target set. This ordered
source set is considered our reference as it is based on
manual alignments. On the other hand, the 500 sen-
tences set is translated using the SMR configurations to
be tested. Finally, the Word Error Rate (WER) is used as
quality measure.

Figure 4 shows the WER behavior given different types
of classes. As statistical classes (cl50,cl100,cl200) we
used the Och monolingual classes (Och, 1999), which
can be performed using ’mkcls’ (a tool available with
GIZA). Also we used the statistical reordered classes
(cl100mono) which were explained in Section 4. Both
statistical and statistical reordered classes used the dis-
amb tool of SRILM in order to classify unknown words.
As morphological classes we used the TAGS provided by
Freeling. Clearly, statistical classes perform better than
TAGS and best results can be achieved with 100 and 200
classes and an n-gram length of 5.

For the sake of completeness, we have evaluated the
perplexity of the SMR Ngram model over the aligned test
set above and choosing 200 classes. Figure 5 is coherent
with the WER results above and it shows that perplexity
is not reduced for an n-gram length greater than 5.
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Figure 4: WER over the reference given various sets of classes and Ngram lengths.

5.4 Graph pruning

The more complex is the reordering graph, the less effi-
cient is the decoding. That is why, in this section, we ex-
periment with several ways of graph pruning. Addition-
ally, for each pruning we see the influence of considering
the graph weights (i.e. reordering feature importance).

Given that the reordering graph is the output of a beam
search decoder, we can consider pruning the reordering
graph by limiting the SMR beam, i.e. limiting the size of
hypothesis stacks.

Given a reordering graph, another option is to prune
states and arches only used in paths s times worse than
the best path.

Table 2 gives the results of the proposed pruning. Note
that computational time is given in terms of the mono-
tonic translation time (and it is the same for both direc-
tions). It is shown that graph pruning guarantees the effi-
ciency of the system and even increases the translation’s
quality. Similar results are obtained in terms of BLEU for
both types of pruning. In this task and for both translation
directions, it seems more appropriate to limit directly the
beam search in the SMR step to 5.

As expected, the influence of the reordering feature,
which takes into account the graph weights, tends to be
more important as pruning decreases (i.e. when the graph
has more paths).

Pruning Wr BLEUEn2Es BLEUEs2En TIME
b5 yes 31.32 32.64 2.4Tm

b5 no 31.25 31.82 2.5Tm

b50 yes 30.95 32.28 5.3Tm

b50 no 30.90 27.44 4.8Tm

b50 s10 yes 31.19 32.20 1.5Tm

b50 s10 no 31.07 32.41 1.4Tm

Table 2: Performance in BLEU in the test set of different
graph pruning (b stands for beam and s for states); the
use of reordering feature function (Wr indicates its use);
and the time increase related to Tm (monotonic transla-
tion time).

5.5 Results and discussion

Table 3 shows the performance of our Ngram-
based system using the SMR technique. First
row is the WMT07 baseline system which can
be reproduced following the instructions in
http://www.statmt.org/wmt07/baseline.html. This
baseline system uses a non-monotonic search. Second
row shows the results of the Ngram-based system
presented in section 2 using the weighted reordering
graph trained with the best configuration found in the
above section (200 statistical classes and an Ngram of
length 5).
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System BLEUes2en BLEUen2es

WMT07 Of. Baseline 31.21 30.74
Ngram-based 32.64 31.32

Table 3: BLEU Results.

6 Conclusions and further work
The proposed SMR technique can be used both in training
and test steps in a SMT system. Applying the SMR tech-
nique in the training step reduces the sparseness in the
translation vocabulary. Applying SMR technique in the
test step allows to generate a weighted reordering graph
for SMT system.

The use of classes plays an important role in the SMR
technique, and experiments have shown that statistical
classes are better than morphological ones.

Moreover, we have experimented with different graph
pruning showing that best translation results can be
achieved at a very low increase of computational cost
when comparing to the monotonic translation computa-
tional cost.

Finally, we have shown that our translation system us-
ing the SMR technique outperforms the WMT07 Official
baseline system (which uses a non-monotonic search) in
terms of BLEU.

As further work, we want to introduce the SMR tech-
nique in a state-of-the-art phrase-based system.
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Fonollosa. 2005. Ngram-based versus phrase-
based statistical machine translation. In Proc. of
the Int. Workshop on Spoken Language Translation,
IWSLT’05, pages 177–184, Pittsburgh, October.

S. Kanthak, D. Vilar, E. Matusov, R. Zens, and H. Ney.
2005. Novel reordering approaches in phrase-based
statistical machine translation. In Proceedings of the
ACL Workshop on Building and Using Parallel Texts:
Data-Driven Machine Translation and Beyond, pages
167–174, Ann Arbor, MI, June.

P. Koehn, F.J. Och, and D. Marcu. 2003. Statisti-
cal phrase-based translation. In Proc. of the Human
Language Technology Conference, HLT-NAACL’2003,
pages 48 – 54, Edmonton, Canada, May.

P. Lambert, A. de Gispert, R. Banchs, and J. Mariño.
2006. Guidelines for word alignment and man-
ual alignment. Language Resources and Evaluation,
39(4):267–285.

J.B. Mariño, R.E. Banchs, J.M. Crego, A. de Gispert,
P. Lambert, J.A.R. Fonollosa, and M.R. Costa-jussà.
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Abstract

Mixture modelling is a standard technique
for density estimation, but its use in sta-
tistical machine translation (SMT) has just
started to be explored. One of the main
advantages of this technique is its capabil-
ity to learn specific probability distributions
that better fit subsets of the training dataset.
This feature is even more important in SMT
given the difficulties to translate polysemic
terms whose semantic depends on the con-
text in which that term appears. In this pa-
per, we describe a mixture extension of the
HMM alignment model and the derivation of
Viterbi alignments to feed a state-of-the-art
phrase-based system. Experiments carried
out on the Europarl and News Commentary
corpora show the potential interest and limi-
tations of mixture modelling.

1 Introduction

Mixture modelling is a popular approach for density
estimation in many scientific areas (G. J. McLach-
lan and D. Peel, 2000). One of the most interest-
ing properties of mixture modelling is its capability
to model multimodal datasets by defining soft parti-
tions on these datasets, and learning specific proba-
bility distributions for each partition, that better ex-
plains the general data generation process.

∗Work supported by the EC (FEDER) and the Spanish
MEC under grant TIN2006-15694-CO2-01, theConselleŕıa
d’Empresa, Universitat i Ciència - Generalitat Valencianaun-
der contract GV06/252, theUniversidad Polit́ecnica de Valen-
cia with ILETA project and Ministerio de Educación y Ciencia.

In Machine Translation (MT), it is common to
encounter large parallel corpora devoted to hetero-
geneous topics. These topics usually define sets
of topic-specific lexicons that need to be translated
taking into the semantic context in which they are
found. This semantic dependency problem could
be overcome by learning topic-dependent translation
models that capture together the semantic context
and the translation process.

However, there have not been until very recently
that the application of mixture modelling in SMT
has received increasing attention. In (Zhao and
Xing, 2006), three fairly sophisticated bayesian top-
ical translation models, taking IBM Model 1 as a
baseline model, were presented under the bilingual
topic admixture model formalism. These models
capture latent topics at the document level in order to
reduce semantic ambiguity and improve translation
coherence. The models proposed provide in some
cases better word alignment and translation quality
than HMM and IBM models on an English-Chinese
task. In (Civera and Juan, 2006), a mixture exten-
sion of IBM model 2 along with a specific dynamic-
programming decoding algorithm were proposed.
This IBM-2 mixture model offers a significant gain
in translation quality over the conventional IBM
model 2 on a semi-synthetic task.

In this work, we present a mixture extension of the
well-known HMM alignment model first proposed
in (Vogel and others, 1996) and refined in (Och and
Ney, 2003). This model possesses appealing proper-
ties among which are worth mentioning, the simplic-
ity of the first-order word alignment distribution that
can be made independent of absolute positions while
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taking advantage of the localization phenomenon
of word alignment in European languages, and the
efficient and exact computation of the E-step and
Viterbi alignment by using a dynamic-programming
approach. These properties have made this model
suitable for extensions (Toutanova et al., 2002)
and integration in a phrase-based model (Deng and
Byrne, 2005) in the past.

2 HMM alignment model

Given a bilingual pair(x, y), wherex andy are mu-
tual translation, we incorporate the hidden variable
a = a1a2 · · · a|x| to reveal, for each source word po-
sitionj, the target word positionaj ∈ {0, 1, . . . , |y|}
to which it is connected. Thus,

p(x | y) =
∑

a∈A(x,y)

p(x, a | y) (1)

whereA(x, y) denotes the set of all possible align-
ments betweenx andy. The alignment-completed
probabilityP (x, a | y) can be decomposed in terms
of source position-dependent probabilities as:

p(x, a | y)=
|x|∏
j=1

p(aj | aj−1
1 , xj−1

1 , y) p(xj | aj
1, x

j−1
1 , y)

(2)
The original formulation of the HMM alignment
model assumes that each source word isconnected
to exactly onetarget word. This connection depends
on the target position to which was aligned the pre-
vious source word and the length of the target sen-
tence. Here, we drop both dependencies in order to
simplify to a jump width alignment probability dis-
tribution:

p(aj | aj−1
1 , xj−1

1 , y) ≈
{

p(aj) j = 1
p(aj−aj−1) j > 1

(3)

p(xj | aj
1, x

j−1
1 , y) ≈ p(xj | yaj ) (4)

Furthermore, the treatment of the NULL word is
the same as that presented in (Och and Ney, 2003).

Finally, the HMM alignment model is defined as:

p(x | y) =
∑

a∈A(x,y)

p(a1)
|x|∏
j=2

p(aj−aj−1)
|x|∏
j=1

p(xj |yaj )

(5)

3 Mixture of HMM alignment models

Let us suppose thatp(x | y) has been generated using
a T-component mixture of HMM alignment models:

p(x | y) =
T∑

t=1

p(t | y) p(x | y, t)

=
T∑

t=1

p(t | y)
∑

a∈A(x,y)

p(x, a | y, t) (6)

In Eq. 6, we introduce mixture coefficientsp(t | y)
to weight the contribution of each HMM alignment
model in the mixture. While the termp(x, a | y, t) is
decomposed as in the original HMM model.

The assumptions of the constituent HMM mod-
els are the same than those of the previous section,
but we obtain topic-dependent statistical dictionaries
and word alignments. Apropos of the mixture coef-
ficients, we simplify these terms dropping its depen-
dency ony, leaving as future work its inclusion in
the model. Formally, the assumptions are:

p(t | y) ≈ p(t) (7)

p(aj | aj−1
1 , xj−1

1 , y, t)≈
{

p(aj | t) j =1
p(aj−aj−1 | t)j >1

(8)

p(xj | aj
1, x

j−1
1 , y, t) ≈ p(xj | yaj , t) (9)

Replacing the assumptions in Eq. 6, we obtain the
(incomplete) HMM mixture model as follows:

p(x | y) =
T∑

t=1

p(t)
∑

a∈A(x,y)

p(a1 | t)×

×
|x|∏
j=2

p(aj−aj−1 | t)
|x|∏
j=1

p(xj |yaj , t) (10)

and the set of unknown parameters comprises:

~Θ =


p(t) t = 1 . . . T
p(i | t) j = 1
p(i− i′ | t) j > 1
p(u | v, t) ∀u ∈ X andv ∈ Y

(11)

X andY, being the source and target vocabular-
ies.

The estimation of the unknown parameters in
Eq. 10 is troublesome, since topic and alignment
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data are missing. Here, we revert to the EM opti-
misation algoritm to compute these parameters.

In order to do that, we define the complete version
of Eq. 10 incorporating the indicator variableszt and
za, uncovering, the until now hidden variables. The
variablezt is a T -dimensional bit vector with1 in
the position corresponding to the component gener-
ating (x, y) and zeros elsewhere, while the variable
za = za1 . . . za|x| wherezaj is a |y|-dimensional bit
vector with1 in the position corresponding to the tar-
get position to which positionj is aligned and zeros
elsewhere. Then, the complete model is:

p(x, zt, za | y) ≈
T∏

t=1

p(t)zt

|y|∏
i=1

p(i | t)za1izt×

×
|x|∏
j=1

|y|∏
i=1

p(xj | yi, t)
zajizt

|y|∏
i′=1

p(i− i′ | t)zaj−1i′ zajizt

(12)

Given the complete model, the EM algorithm
works in two basic steps in each iteration: the
E(xpectation) step and the M(aximisation) step. At
iterationk, the E step computes the expected value
of the hidden variables given the observed data
(x, y) and the estimate of the parameters~Θ(k).

The E step reduces to the computation of the ex-
pected value ofzt, zajizt andzaj−1i′zajizt for each
samplen:

zt ∝ p(t)
|y|∑
i=1

α|x|it (13)

zajizt = zajit zt (14)

zaj−1i′zajizt = (zaj−1i′zaji)t zt (15)

where

zajit∝
|y|∑

k=1

αjktβjkt

(zaj−1i′zaji)t∝αj−1it p(i− i′ | t) p(xj |yi, t) βjit

and the recursive functionsα andβ defined as:

αjit =


p(i | t) p(xj | yi, t) j = 1

|y|∑
k=1

αj−1kt p(i− k | t) p(xj | yi, t) j > 1

βjit =


1 j = |x|

|y|∑
k=1

p(k − i | t) p(xj+1 | yk, t)βj+1kt j < |x|

The M step finds a new estimate of~Θ, by max-
imising Eq. 12, using the expected value of the miss-
ing data from Eqs. 13,14 and 15 over all samplen:

p(t) =
1
N

N∑
n=1

znt

p(i | t) ∝
N∑

n=1

zna1it

p(i− i′ | t) ∝
N∑

n=1

|xn|∑
j=1

(znaj−1i′znaji)t

p(u | v, t) ∝
N∑

n=1

|xn|∑
j=1

|yn|∑
i=1

znajit δ(xnj , u)δ(yni, v)

3.1 Word alignment extraction

The HMM mixture model described in the previous
section was used to generate Viterbi alignments on
the training dataset. These optimal alignments are
the basis for phrase-based systems.

In the original HMM model, the Viterbi align-
ment can be efficiently computed by a dynamic-
programming algorithm with a complexityO(|x| ·
|y|2). In the mixture HMM model, we approximate
the Viterbi alignment by maximising over the com-
ponents of the mixture:

â ≈ arg max
a

max
t

p(t) p(x, a | y, t)

So we have that the complexity of the compu-
tation of the Viterbi alignment in a T-component
HMM mixture model isO(T · |x| · |y|2).

4 Experimental results

The data that was employed in the experiments to
train the HMM mixture model corresponds to the
concatenation of the Spanish-English partitions of
the Europarl and the News Commentary corpora.
The idea behind this decision was to let the mixture
model distinguish which bilingual pairs should con-
tribute to learn a given HMM component in the mix-
ture. Both corpora were preprocessed as suggested
for the baseline system by tokenizing, filtering sen-
tences longer than 40 words and lowercasing.

Regarding the components of the translation sys-
tem, 5-gram language models were trained on the
monolingual version of the corpora for English(En)

179



and Spanish(Es), while phrase-based models with
lexicalized reordering model were trained using the
Moses toolkit (P. Koehn and others, 2007), but re-
placing the Viterbi alignments, usually provided by
GIZA++ (Och and Ney, 2003), by those of the HMM
mixture model with training schememix 15H5.
This configuration was used to translate both test de-
velopment sets, Europarl and News Commentary.

Concerning the weights of the different models,
we tuned those weights by minimum error rate train-
ing and we employed the same weighting scheme
for all the experiments in the same language pair.
Therefore, the same weighting scheme was used
over different number of components.

BLEU scores are reported in Tables 1 and 2 as a
function of the number of components in the HMM
mixture model on the preprocessed development test
sets of the Europarl and News Commentary corpora.

Table 1: BLEU scores on the Europarl development
test data

T 1 2 3 4
En-Es 31.27 31.08 31.12 31.11
Es-En 31.74 31.70 31.80 31.71

Table 2: BLEU scores on the News-Commentary
development test data

T 1 2 3 4
En-Es 29.62 30.01 30.17 29.95
Es-En 29.15 29.22 29.11 29.02

As observed in Table 1, if we compare the BLEU
scores of the conventional single-component HMM
model to those of the HMM mixture model, it seems
that there is little or no gain from incorporating
more topics into the mixture for the Europarl cor-
pus. However, in Table 2, the BLEU scores on
the English-Spanish pair significantly increase as the
number of components is incremented. We believe
that this is due to the fact that the News Commen-
tary corpus seems to have greater influence on the
mixture model than on the single-component model,
specializing Viterbi alignments to favour this corpus.

5 Conclusions and future work

In this work, a novel mixture version of the HMM
alignment model was introduced. This model was
employed to generate topic-dependent Viterbi align-

ments that were input into a state-of-the-art phrase-
based system. The preliminary results reported on
the English-Spanish partitions of the Europarl and
News-Commentary corpora may raise some doubts
about the applicability of mixture modelling to SMT,
nonetheless in the advent of larger open-domain cor-
pora, the idea behind topic-specific translation mod-
els seem to be more than appropriate, necessary. On
the other hand, we are fully aware that indirectly
assessing the quality of a model through a phrase-
based system is a difficult task because of the differ-
ent factors involved (Ayan and Dorr, 2006).

Finally, the main problem in mixture modelling is
the linear growth of the set of parameters as the num-
ber of components increases. In the HMM, and also
in IBM models, this problem is aggravated because
of the use of statistical dictionary entailing a large
number of parameters. A possible solution is the im-
plementation of interpolation techniques to smooth
sharp distributions estimated on few events (Och and
Ney, 2003; Zhao and Xing, 2006).
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Abstract 

We present results and experiences from 
our experiments with phrase-based statisti-
cal machine translation using Moses. The 
paper is based on the idea of using an off-
the-shelf parser to supply linguistic infor-
mation to a factored translation model and 
compare the results of German–English 
translation to the shared task baseline sys-
tem based on word form. We report partial 
results for this model and results for two 
simplified setups. Our best setup takes ad-
vantage of the parser’s lemmatization and 
decompounding. A qualitative analysis of 
compound translation shows that decom-
pounding improves translation quality. 

1 Introduction  

One of the stated goals for the shared task of this 
workshop is “to offer newcomers a smooth start 
with hands-on experience in state-of-the-art statis-
tical machine translation methods”. As our previ-
ous research in machine translation has been 
mainly concerned with rule-based methods, we 
jumped at this offer. 

We chose to work on German-to-English trans-
lation for two reasons. Our primary practical inter-
est lies with translation between Swedish and Eng-
lish, and of the languages offered for the shared 
task, German is the one closest in structure to 
Swedish. While there are differences in word order 
and morphology between Swedish and German, 
there are also similarities, e.g., that both languages 
represent nominal compounds as single ortho-
graphic words. We chose the direction from Ger-

man to English because our knowledge of English 
is better than our knowledge of German, making it 
easier to judge the quality of translation output. 
Experiments were performed on the Europarl data. 

With factored statistical machine translation, 
different levels of linguistic information can be 
taken into account during training of a statistical 
translation system and decoding. In our experi-
ments we combined syntactic and morphological 
factors from an off-the-shelf parser with the fac-
tored translation framework in Moses (Moses, 
2007). We wanted to test the following hypotheses: 
• Translation models based on lemmas will im-

prove translation quality (Popovič and Ney, 
2004) 

• Decompounding German nominal compounds 
will improve translation quality (Koehn and 
Knight, 2003) 

• Re-ordering models based on word forms and 
parts-of-speech will improve translation qual-
ity (Zens and Ney, 2006). 

2 The parser 

The parser, Machinese Syntax, is a commercially 
available dependency parser from Connexor Oy 1. 
It provides each word with lemma, part-of-speech, 
morphological features and dependency relations 
(see Figure 1). In addition, the lemmas of com-
pounds are marked by a ‘#’ separating the two 
parts of the compound. For the shared task we only 
used shallow linguistic information: lemma, part-
of-speech and morphology. The compound bound-
ary identification was used to split noun com-

                                                 
1 Connexor Oy, http://www.connexor.com. 
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pounds to make the German input more similar to 
English text. 
 
1 Mit   mit   pm>2    @PREMARK PREP 
2 Blick blick advl>10 @NH N MSC SG DAT 
3 auf   auf   pm>5    @PREMARK PREP 

 
Figure 1. Example of parser output 

 
We used the parser’s tokenization as given. Some 
common multiword units, such as ‘at all’ and ‘von 
heute’, are treated as single words by the parser 
(cf. Niessen and Ney, 2004). The German parser 
also splits contracted prepositions and determiners 
like ‘zum’ – ‘zu dem’ (“to the”). 

3 System description 

For our experiments with Moses we basically fol-
lowed the shared task baseline system setup to 
train our factored translation models. After training 
a statistical model, minimum error-rate tuning was 
performed to tune the model parameters. All ex-
periments were performed on an AMD 64 Athlon 
4000+ processor with 4 Gb of RAM and 32 bit 
Linux (Ubuntu).  

Since time as well as computer resources were 
limited we designed a model that we hoped would 
make the best use of all available factors. This 
model turned out to be too complex for our ma-
chine and in later experiments we abandoned it for 
a simpler model.  

3.1 Pre-processing 

In the pre-processing step we used the standard 
pre-processing of the shared task baseline system, 
parsed the German and English texts and processed 
the output to obtain four factors: word form, 
lemma, part-of-speech and morphology. Missing 
values for lemma, part-of-speech and morphology 
were replaced with default values. 

Noun compounds are very frequent in German, 
2.9% of all tokens in the tuning corpus were identi-
fied by the parser as noun compounds. Compounds 
tend to lead to sparse data problems and splitting 
them has been shown to improve German-English 
translation (Koehn and Knight, 2003). Thus we 
decided to decompund German noun compounds 
identified as such by our parser.  

We used a simple strategy to remove fillers and 
to correct some obvious mistakes. We removed the 
filler ‘-s’ that appear before a marked split unless it 

was one of ‘-ss’, ‘-urs’, ‘-eis’ or ‘-us’. This applied 
to 35% of the noun compounds in the tuning cor-
pus. The fillers were removed both in the word 
form and the lemma (see Figure 2). 

There were some mistakes made by the parser, 
for instance on compounds containing the word 
‘nahmen’ which was incorrectly split as ‘stel-
lungn#ahmen’ instead of ‘stellung#nahmen’ 
(“statement”). These splits were corrected by mov-
ing the ‘n’ to the right side of the split. 

We then split noun-lemmas on hyphens unless 
there were numbers on either side of it and on the 
places marked by ‘#’. Word forms were split in the 
corresponding places as the lemmas. 

The part-of-speech and morphology of the last 
word in the compound is the same as for the whole 
compound. For the other parts we hypothesized 
that part-of-speech is Noun and the morphology is 
unknown, marked by the tag UNK. 

 
Parser output: 
unionsländer unions#land N NEU PL ACC 
 
Factored output: 
union|union|N|UNK 
länder|land|N|NEU_PL_ACC 

 
Figure 2. Compound splitting for ‘unionsländer’ 
(“countries in the union”) 

 
These strategies are quite crude and could be fur-
ther refined by studying the parser output thor-
oughly to pinpoint more problems.  

3.2 Training translation models with linguis-
tic factors 

After pre-processing, the German–English Eu-
roparl training data contains four factors: 0: word 
form, 1: lemma, 2: part-of-speech, 3: morphology. 
As a first step in training our translation models we 
performed word alignment on lemmas as this could 
potentially improve word alignment. 

3.2.1 First setup 

Factored translation requires a number of decoding 
steps, which are either mapping steps mapping a 
source factor to a target factor or generation steps 
generating a target factor from other target factors. 
Our first setup contained three mapping steps, T0–
T2, and one generation step, G0.  

 
 

182



T0: 0-0 (word – word) 
T1: 1-1 (lemma – lemma) 
T2: 2,3-2,3  (pos+morph – pos+morph) 
G0:  1,2,3-0  (lemma+pos+morph – word)  
 

With the generation step, word forms that did not 
appear in the training data may still get translated 
if the lemma, part-of-speech and morphology can 
be translated separately and the target word form 
can be generated from these factors. 

Word order varies a great deal between German 
and English. This is especially true for the place-
ment of verbs. To model word order changes we 
included part-of-speech information and created 
two reordering models, one based on word form 
(0), the other on part-of-speech (2): 
 

0-0.msd-bidirectional-fe 
2-2.msd-bidirectional-fe 
 

The decoding times for this setup turned out to be 
unmanageable. In the first iteration of parameter 
tuning, decoding times were approx. 6 
min/sentence. In the second iteration decoding 
time increased to approx. 30 min/sentence.  Re-
moving one of the reordering models did not result 
in a significant change in decoding time. Just trans-
lating the 2000 sentences of test data with untuned 
parameters would take several days. We inter-
rupted the tuning and abandoned this setup. 

3.2.2 Second setup 

Because of the excessive decoding times of the 
first factored setup we resorted to a simpler system 
that only used the word form factor for the transla-
tion and reordering models. This setup differs from 
the shared task baseline in the following ways: 
First, it uses the tokenization provided by the 
parser. Second, alignment was performed on the 
lemma factor. Third, German compounds were 
split using the method described above. To speed 
up tuning and decoding, we only used the first 200 
sentences of development data (dev2006) for tun-
ing and reduced stack size to 50.  

 
T0: 0-0 (word – word) 
R:  0-0.msd-bidirectional-fe 

3.2.3 Third setup 

To test our hypothesis that word reordering would 
benefit from part-of-speech information we created 

another simpler model. This setup has two map-
ping steps, T0 and T1, and a reordering model 
based on part-of-speech.  

 
T0: 0-0 (word – word) 
T1: 2,3-2,3 (pos+morph – pos+morph) 
R: 2-2.msd-bidirectional-fe 

4 Results  

We compared our systems to a baseline system 
with the same setup as the WMT2007 shared task 
baseline system but tuned with our system’s sim-
plified tuning settings (200 instead of 2000 tuning 
sentences, stack size 50). Table 1 shows the Bleu 
improvement on the 200 sentences development 
data from the first and last iteration of tuning. 

 
Dev2006 (200) System 

1st iteration Last iteration 
Baseline 19.56 27.07 
First 21.68 - 
Second 20.43 27.16 
Third 20.72 24.72 

 Table 1. Bleu scores on 200 sentences of tuning 
data before and after tuning 
 
The final test of our systems was performed on the 
development test corpus (devtest2006) using stack 
size 50. The results are shown in Table 2. The low 
Bleu score for the third setup implies that reorder-
ing on part-of-speech is not enough on its own. 
The second setup performed best with a slightly 
higher Bleu score than the baseline. We used the 
second setup to translate test data for our submis-
sion to the shared task.  
 
System Devtest2006 (NIST/Bleu) 
Baseline 6.7415 / 25.94  
First - 
Second  6.8036 / 26.04 
Third 6.5504 / 24.57 

Table 2. NIST and Bleu scores on development 
test data 

4.1 Decompounding 

We have evaluated the decompounding strategy by 
analyzing how the first 75 identified noun com-
pounds of the devtest corpus were translated by our 
second setup compared to the baseline. The sample 
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excluded doubles and compounds that had no clear 
translation in the reference corpus.  

Out of these 75 compounds 74 were nouns that 
were correctly split and 1 was an adjective that was 
split incorrectly: ‘allumfass#ende’. Despite that it 
was incorrectly identified and split it was trans-
lated satisfyingly to ‘comprehensive’. 

The translations were grouped into the catego-
ries shown in Table 3. The 75 compounds were 
classified into these categories for our second sys-
tem and the baseline system, as shown in Table 4. 
As can be seen the compounds were handled better 
by our system, which had 62 acceptable transla-
tions (C or V) compared to 48 for the baseline and 
did not leave any noun compounds untranslated.  

 

Table 3. Classification scheme with examples for 
compound translations 

 

Table 4. Classification of 75 compounds from our 
second system and the baseline system 

Decompounding of nouns reduced the number 
of untranslated words, but there were still some 
left. Among these were cases that can be handled 
such as separable prefix verbs like ‘aufzeigten’ 
(“pointed out”) (Niessen and Ney, 2000) or adjec-
tive compounds such as ‘multidimensionale’ 
(“multi dimensional”). There were also some noun 
compounds left which indicates that we might need 
a better decompounding strategy than the one used 
by the parser (see e.g. Koehn and Knight, 2003). 

4.2 Experiences and future plans  

With the computer equipment at our disposal, 
training of the models and tuning of the parameters 
turned out to be a very time-consuming task. For 
this reason, the number of system setups we could 
test was small, and much fewer than we had hoped 
for. Thus it is too early to draw any conclusions as 
regards our hypotheses, but we plan to perform 
more tests in the future, also on Swedish–English 
data. The parser's ability to identify compounds 
that can be split before training seems to give a 
definite improvement, however, and is a feature 
that can likely be exploited also for Swedish-to-
English translation with Moses. 
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Category Example 
C-correct Regelungsentwurf 

Draft regulation  
Ref: Draft regulation 

V-variant Schlachthöfen 
Abattoirs  
Ref: Slaughter houses  

P-partly correct Anpassungsdruck 
Pressure 
Ref: Pressure for adaption 

F-wrong form Länderberichte 
Country report  
Ref: Country reports 

W-wrong Erbonkel 
Uncle dna  
Ref: Sugar daddy 

U-untranslated Schlussentwurf 
Schlussentwurf  
Ref: Final draft  

Baseline system 
 C V P W U F Tot 
C 36 1 3  3 1 44 
V 1 9 2 1 5  18 
P   3  2  5 
W    1 2  3 
U       0 
F 1     4 5 Se

co
nd

 sy
st

em
 

Tot 38 10 8 2 12 5 75 
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Abstract

We present the PORTAGE statistical
machine translation system which par-
ticipated in the shared task of the ACL
2007 Second Workshop on Statistical
Machine Translation. The focus of this
description is on improvements which
were incorporated into the system over
the last year. These include adapted lan-
guage models, phrase table pruning, an
IBM1-based decoder feature, and rescor-
ing with posterior probabilities.

1 Introduction

The statistical machine translation (SMT) sys-
tem PORTAGE was developed at the National
Research Council Canada and has recently been
made available to Canadian universities and
research institutions. It is a state-of-the-art
phrase-based SMT system. We will shortly de-
scribe its basics in this paper and then high-
light the new methods which we incorporated
since our participation in the WMT 2006 shared
task. These include new scoring methods for
phrase pairs, pruning of phrase tables based
on significance, a higher-order language model,
adapted language models, and several new de-
coder and rescoring models. PORTAGE was
also used in a joint system developed in coop-
eration with Systran. The interested reader is
referred to (Simard et al., 2007).

Throughout this paper, let sJ1 := s1 . . . sJ de-
note a source sentence of length J , tI1 := t1 . . . tI
a target sentence of length I, and s̃ and t̃ phrases
in source and target language, respectively.

2 Baseline

As baseline for our experiments, we used a ver-
sion of PORTAGE corresponding to its state at
the time of the WMT 2006 shared task. We pro-
vide a basic description of this system here; for
more details see (Johnson et al., 2006).

PORTAGE implements a two-stage transla-
tion process: First, the decoder generates N -
best lists, using a basic set of models which are
then rescored with additional models in a sec-
ond step. In the baseline system, the decoder
uses the following models (or feature functions):

• one or several phrase table(s), which model
the translation direction p(s̃ | t̃). They are
generated from the training corpus via the
“diag-and” method (Koehn et al., 2003)
and smoothed using Kneser-Ney smooth-
ing (Foster et al., 2006),

• one or several n-gram language model(s)
trained with the SRILM toolkit (Stolcke,
2002); in the baseline experiments reported
here, we used a trigram model,

• a distortion model which assigns a penalty
based on the number of source words which
are skipped when generating a new target
phrase,

• a word penalty.

These different models are combined log-
linearly. Their weights are optimized
w.r.t. BLEU score using the algorithm de-
scribed in (Och, 2003). This is done on the
provided development corpus. The search
algorithm implemented in the decoder is a
dynamic-programming beam-search algorithm.

185



After the decoding step, rescoring with addi-
tional models is performed. The baseline system
generates a 1,000-best list of alternative trans-
lations for each source sentence. These lists
are rescored with the different models described
above, a character penalty, and three different
features based on IBM Models 1 and 2 (Brown
et al., 1993) calculated in both translation di-
rections. The weights of these additional models
and of the decoder models are again optimized
to maximize BLEU score.

Note that we did not use the decision-tree-
based distortion models described in (Johnson
et al., 2006) here because they did not improve
translation quality.

In the following subsections, we will describe
the new models added to the system for our
WMT 2007 submissions.

3 Improvements in PORTAGE

3.1 Phrase translation models

Whereas the phrase tables used in the baseline
system contain only one score for each phrase
pair, namely conditional probabilities calculated
using Kneser-Ney smoothing, our current sys-
tem combines seven different phrase scores.

First, we used several types of phrase table
smoothing in the WMT 2007 system because
this proved helpful on other translation tasks:
relative frequency estimates, Kneser-Ney- and
Zens-Ney-smoothed probabilities (Foster et al.,
2006). Furthermore, we added normalized joint
probability estimates to the phrase translation
model. The other three scores will be explained
at the end of this subsection.

We pruned the generated phrase tables fol-
lowing the method introduced in (Johnson et
al., 2007). This approach considers all phrase
pairs (s̃, t̃) in the phrase table. The count C(s̃, t̃)
of all sentence pairs containing (s̃, t̃) is deter-
mined, as well as the count of all source/target
sentences containing s̃/t̃. Using these counts,
Fisher’s exact test is carried out to calculate
the significance of the phrase pair. The phrase
tables are then pruned based on the p-value.
Phrase pairs with low significance, i.e. which are
only weakly supported by the training data, are

pruned. This reduces the size of the phrase ta-
bles to 8-16% on the different language pairs.
See (Johnson et al., 2007) for details.

Three additional phrase scores were derived
from information on which this pruning is based:

• the significance level (or p-value),

• the number C(s̃, t̃) of sentence pairs con-
taining the phrase pair, normalized by the
number of source sentences containing s̃,

• C(s̃, t̃), normalized by the number of target
sentences containing t̃.

For our submissions, we used the last three
phrase scores only when translating the Eu-
roParl data. Initial experiments showed that
they do not improve translation quality on the
News Commentary data. Apart from this, the
systems for both domains are identical.

3.2 Adapted language models

Concerning the language models, we made two
changes to our system since WMT 2006. First,
we replaced the trigram language model by a 4-
gram model trained on the WMT 2007 data. We
also investigated the use of a 5-gram, but that
did not improve translation quality. Second,
we included adapted language models which
are specific to the development and test cor-
pora. For each development or test corpus, we
built this language model using information re-
trieval1 to find relevant sentences in the train-
ing data. To this end, we merged the train-
ing corpora for EuroParl and News Commen-
tary. The source sentences from the develop-
ment or test corpus served as individual queries
to find relevant training sentence pairs. For
each source sentence, we retrieved 10 sentence
pairs from the training data and used their tar-
get sides as language model training data. On
this small corpus, we trained a trigram lan-
guage model, again using the SRILM toolkit.
The feature function weights in the decoder and
the rescoring model were optimized using the
adapted language model for the development
corpus. When translating the test corpus, we
kept these weights, but replaced the adapted

1We used the lemur toolkit for querying, see
http://www.lemurproject.org/
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language model by that specific to the test cor-
pus.

3.3 New decoder and rescoring features

We integrated several new decoder and rescoring
features into PORTAGE. During decoding, the
system now makes use of a feature based on IBM
Model 1. This feature calculates the probability
of the (partial) translation over the source sen-
tence, using an IBM1 translation model in the
direction p(tI1 | sJ1 ).

In the rescoring process, we additionally in-
cluded several types of posterior probabilities.
One is the posterior probability of the sentence
length over the N -best list for this source sen-
tence. The others are determined on the level
of words, phrases, and n-grams, and then com-
bined into a value for the whole sentence. All
posterior probabilities are calculated over theN -
best list, using the sentence probabilities which
the baseline system assigns to the translation
hypotheses. For details on the posterior prob-
abilities, see (Ueffing and Ney, 2007; Zens and
Ney, 2006). This year, we increased the length
of the N -best lists from 1,000 to 5,000.

3.4 Post-processing

For truecasing the translation output, we used
the model described in (Agbago et al., 2005).
This model uses a combination of statisti-
cal components, including an n-gram language
model, a case mapping model, and a special-
ized language model for unknown words. The
language model is a 5-gram model trained on
the WMT 2007 data. The detokenizer which we
used is the one provided for WMT 2007.

4 Experimental results

We submitted results for six of the translation
directions of the shared task: French↔ English,
German ↔ English, and Spanish ↔ English.

Table 1 shows the improvements result-
ing from incorporating new techniques into
PORTAGE on the Spanish→ English EuroParl
task. The baseline system is the one described
in section 2. Trained on the 2007 training cor-
pora, this yields a BLEU score of 30.48. Adding
the new phrase scores introduced in section 3.1

yields a slight improvement in translation qual-
ity. This improvement by itself is not signifi-
cant, but we observed it consistently across all
evaluation metrics and across the different devel-
opment and test corpora. Increasing the order
of the language model and adding an adapted
language model specific to the translation input
(see section 3.2) improves the BLEU score by
0.6 points. This is the biggest gain we observe
from introducing a new method. The incorpora-
tion of the IBM1-based decoder feature causes
a slight drop in translation quality. This sur-
prised us because we found this feature to be
very helpful on the NIST Chinese → English
translation task. Adding the posterior proba-
bilities presented in section 3.3 in rescoring and
increasing the length of the N -best lists yielded
a small, but consistent gain in translation qual-
ity. The overall improvement compared to last
year’s system is around 1 BLEU point. The gain
achieved from introducing the new methods by
themselves are relatively small, but they add up.

Table 2 shows results on all six language pairs
we translated for the shared task. The trans-
lation quality achieved on the 2007 test set is
similar to that on the 2006 test set. The system
clearly performs better on the EuroParl domain
than on News Commentary.

Table 2: Translation quality in terms of
BLEU[%] and NIST score on all tasks. True-
cased and detokenized translation output.

test2006 test2007
task BLEU NIST BLEU NIST
Eu D→E 25.27 6.82 26.02 6.91

E→D 19.36 5.86 18.94 5.71
S→E 31.54 7.55 32.09 7.67
E→S 30.94 7.39 30.92 7.41
F→E 30.90 7.51 31.90 7.68
E→F 30.08 7.26 30.06 7.26

NC D→E 20.23 6.19 23.17 7.10
E→D 13.84 5.38 16.30 5.95
S→E 31.07 7.68 31.08 8.11
E→S 30.79 7.73 32.56 8.25
F→E 24.97 6.78 26.84 7.47
E→F 24.91 6.79 26.60 7.24
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Table 1: Effect of integrating new models and methods into the PORTAGE system. Translation
quality in terms of BLEU and NIST score, WER and PER on the EuroParl Spanish–English 2006
test set. True-cased and detokenized translation output. Best results printed in boldface.

system BLEU[%] NIST WER[%] PER[%]
baseline 30.48 7.44 58.62 42.74
+ new phrase table features 30.66 7.48 58.25 42.46
+ 4-gram LM + adapted LM 31.26 7.53 57.93 42.26
+ IBM1-based decoder feature 31.18 7.51 58.13 42.53
+ refined rescoring 31.54 7.55 57.81 42.24

5 Conclusion

We presented the PORTAGE system with which
we translated six language pairs in the WMT
2007 shared task. Starting from the state of
the system during the WMT 2006 evaluation,
we analyzed the contribution of new methods
which were incorporated over the last year in
detail. Our experiments showed that most of
these changes result in (small) improvements in
translation quality. In total, we gain about 1
BLEU point compared to last year’s system.
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Abstract

This paper describes the development of a
statistical machine translation system based
on the Moses decoder for the 2007 WMT
shared tasks. Several different translation
strategies were explored. We also use a sta-
tistical language model that is based on a
continuous representation of the words in
the vocabulary. By these means we expect to
take better advantage of the limited amount
of training data. Finally, we have investi-
gated the usefulness of a second reference
translation of the development data.

1 Introduction

This paper describes the development of a statistical
machine translation system based on the Moses de-
coder (Koehn et al., 2007) for the 2007 WMT shared
tasks. Due to time constraints, we only considered
the translation between French and English. A sys-
tem with a similar architecture was successfully ap-
plied to the translation between Spanish and En-
glish in the framework of the 2007 TC-STAR eval-
uation.1 For the 2007 WMT shared task a recipe is
provided to build a baseline translation system using
the Moses decoder. Our system differs in several as-
pects from this base-line: 1) the training data is not
lower-cased; 2) Giza alignments are calculated on
sentences of up to 90 words; 3) a two pass-decoding
was used; and 4) a so called continuous space lan-
guage model is used in order to take better advantage
of the limited amount of training data.

1A paper on this work is submitted to MT Sumit 2007.

This architecture is motivated and detailed in the
following sections.

2 Architecture of the system

The goal of statistical machine translation (SMT) is
to produce a target sentencee from a source sen-
tencef . It is today common practice to use phrases
as translation units (Koehn et al., 2003; Och and
Ney, 2003) and a log linear framework in order to
introduce several models explaining the translation
process:

e
∗ = arg max p(e|f)

= arg max
e

{exp(
∑

i

λihi(e, f))} (1)

The feature functionshi are the system models and
theλi weights are typically optimized to maximize
a scoring function on a development set (Och and
Ney, 2002). In our system fourteen features func-
tions were used, namely phrase and lexical transla-
tion probabilities in both directions, seven features
for the lexicalized distortion model, a word and a
phrase penalty and a target language model (LM).

The system is constructed as follows. First,
Giza++ is used to perform word alignments in both
directions. Second, phrases and lexical reorderings
are extracted using the default settings of the Moses
SMT toolkit. A target LM is then constructed as
detailed in section 2.1. The translation itself is per-
formed in two passes: first, Moses in run and a 1000-
best list is generated for each sentence. When gen-
eratingn-best lists it may happen that the same tar-
get sentence is generated multiple times, for instance
using different segmentations of the source sentence
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or a different set of phrases. We enforced all the
hypothesis in ann-best list to be lexically different
since our purpose was to rescore them with a LM.
The parameters of Moses are tuned on devtest2006
for the Europarl task and nc-dev2007 for the news
commentary task, using the cmert tool.

These 1000-best lists are then rescored with dif-
ferent language models, either using a longer con-
text or performing the probability estimation in the
continuous space. After rescoring, the weights of the
feature functions are optimized again using the nu-
merical optimization toolkit Condor (Berghen and
Bersini, 2005). Note that this step operates only on
the 1000-best lists, no re-decoding is performed. In
general, this results in an increased weight for the
LM. Comparative results are provided in the result
section whether it seems to be better to use higher
order language models already during decoding, or
to generate first richn-best lists and to use the im-
proved LMs during rescoring.

2.1 Language modeling

The monolingual part of the Europarl (38.3M En-
glish and 43.1 French words) and the news commen-
tary corpus (1.8M/1.2M words) were used. Separate
LMs were build on each data source and then lin-
early interpolated, optimizing the coefficients with
an EM procedure. This usually gives better re-
sults than building an LM on the pooled data. Note
that we build two sets of LMs: a first set tuned on
devtest2006, and a second one on nc-dev2007. It
is not surprising to see that the interpolation coeffi-
cients differ significantly: 0.97/0.03 for devtest2006
and 0.42/0.58 for nc-dev2007. The perplexities of
the interpolated LMs are given in Table 1.

2.2 Continuous space language model

Overall, there are roughly 40 million words of texts
available to train the target language models. This
is a quite limited amount in comparison to tasks like
the NIST machine translation evaluations for which
several billion words of newspaper texts are avail-
able. Therefore, new techniques must be deployed
to take the best advantage of the limited resources.

Here, we propose to use the so-called continu-
ous space LM. The basic idea of this approach is to
project the word indices onto a continuous space and
to use a probability estimator operating on this space

French English
Eparl News Eparl News

Back-off LM:
3-gram 47.0 91.6 57.2 160.1
4-gram 41.5 85.2 51.6 152.4
Continuous space LM:
4-gram 35.8 73.9 44.5 133.4
5-gram 33.9 71.2 - -
6-gram 33.1 70.1 41.2 127.0

Table 1: Perplexities on devtest2006 (Europarl) and
nc-dev2007 (news commentary) for various LMs.

(Bengio et al., 2003). Since the resulting probability
functions are smooth functions of the word repre-
sentation, better generalization to unknownn-grams
can be expected. A neural network can be used to si-
multaneously learn the projection of the words onto
the continuous space and to estimate then-gram
probabilities. This is still an-gram approach, but
the LM probabilities are ”interpolated” for any pos-
sible context of lengthn-1 instead of backing-off to
shorter contexts.

This approach was successfully used in large vo-
cabulary continuous speech recognition (Schwenk,
2007) and in a phrase-based system for a small task
(Schwenk et al., 2006). Here, it is the first time
applied in conjunction with a lexicalized reordering
model. A 4-gram continuous space LM achieves a
perplexity reduction of about 13% relative with re-
spect to a 4-gram back-off LM (see Table 1). Ad-
ditional improvements can be obtained by using a
longer context. Note that this is difficult for back-
off LMs due to insufficient training data.

3 Experimental Evaluation

The system was trained on the Europarl parallel texts
only (approx. 1.3M words). The news commentary
parallel texts were not used. We applied the tok-
enization proposed by the Moses SMT toolkit and
the case was preserved. While case sensitivity may
hurt the alignment process, we believe that true case
is beneficial for language modeling, in particular in
future versions of our system in which we plan to
use POS information. Experiences with alternative
tokenizations are undergoing.

The parameters of the system were tuned on
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DevTest2006 Test2006
Decode: 3-gram 4-gram 3-gram 4-gram

Back-off LM:
decode 30.88 - 30.82 -
4-gram 31.65 31.43 31.35 30.86

Continuous space LM:
4-gram 31.96 31.75 32.03 31.59
5-gram 31.97 31.86 31.90 31.50
6-gram 32.00 31.93 31.89 31.64

Lex. diff. 904.2 797.6 900.6 795.8
Oracle 37.82 37.64 - -

Table 2: Comparison of different translation strate-
gies (BLEU scores for English to French): 3- or 4-
gram decoding (columns) andn-best list rescoring
with various language models (lines).

devtest2006 and nc-dev2007 respectively. The
generalization performance was estimated on the
test2006 and nc-devtest2007 corpora respectively.

3.1 Comparison of decoding strategies

Two different decoding strategies were compared in
order to find out whether it is necessary to already
use higher-order LMs during decoding or whether
the incorporation of this knowledge can be post-
poned to then-best list rescoring. Tri- or 4-gram
back-off language models were used during decod-
ing. In both cases the generatedn-best lists were
rescored with higher order back-off or the continu-
ous space language model. A beam of 0.6 was used
in all our experiments.

The oracle BLEU scores of the generatedn-best
lists were estimated by rescoring then-best lists with
a cheating LM trained on the development data. We
also provide the average number of lexically differ-
ent hypothesis in then-best lists. The results are
summarized in Table 2 and 3. The numbers in bold
indicate the systems that were used in the evaluation.

These results are somehow contradictory : while
running Moses with a trigram LM seems to be better
when translating from English to French, a 4-gram
LM achieves better results when translating to En-
glish. An analysis after the evaluation seems to indi-
cate that the pruning was too aggressive for a 4-gram
LM, at least for a morphologically rich language like
French. Using a beam of 0.4 and a faster implemen-

DevTest2006 Test2006
Decode: 3-gram 4-gram 3-gram 4-gram

Back-off LM:
decode 32.21 - 31.50 -
4-gram 32.46 32.34 32.07 32.12

Continuous space LM:
4-gram 32.87 32.90 30.51 32.47
6-gram 32.85 32.98 32.46 32.50

Lex. diff. 791.3 822.7 802.5 827.8
Oracle 38.80 39.69 - -

Table 3: Comparison of different translation strate-
gies (BLEU scores for French to English).

tation of lexical reordering in the Moses decoder, it
is apparently better to use a 4-gram LM during de-
coding. The oracle scores of then-best lists and
the average number of lexically different hypothe-
sis seem to correlate well with the BLEU scores: in
all cases it is better to use the system that produced
n-best lists with more variety and a higher oracle
BLEU score.

The continuous space language model achieved
improvements in the BLEU by about 0.4 on the de-
velopment data. It is interesting to note that this ap-
proach showed a very good generalization behavior:
the improvements obtained on the test data are as
good or even exceed those observed on the Dev data.

3.2 Multiple reference translations

Only one reference translation is provided for all
tasks in the WMT’07 evaluation. This may be prob-
lematic since systems that do not use the official jar-
gon or different word order may get “incorrectly” a
low BLEU score. We have also noticed that the ref-
erence translations are not always real translations
of the input, but they rely on document wide context
information. Therefore, we have produced a second
set of sentence based reference translations.2

The improvements brought by the continuous
space LM are much higher using the new reference
translations. Using both reference translations to-
gether leads to an important increase of the BLEU
score and confirms the improvements obtained by
the continuous space LM. These results are in line

2The second reference translations can be downloaded from
http://instar.limsi.fr/en/data.html
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Ref. transl.: official addtl. both retuned

Back-off 31.64 32.91 47.62 47.95
CSLM 32.00 33.81 48.66 49.02

Table 4: Impact of additional human reference trans-
lations (devtest2006, English to French)

with our experiences when translating from English
to Spanish in the framework of the TC-STAR project
(gain of about 1 point BLEU). The BLEU scores can
be further improved by rerunning the whole tuning
process using two reference translations (last col-
umn of Table 4).

Second reference translations for the test data are
not yet available. Therefore the devtest data was
split into two parts: the back-off and the CSLM
achieve BLEU scores of 47.98 and 48.66 respec-
tively on the first half used for tuning, and of 47.95
and 49.02 on the second half used for testing.

3.3 Adaptation to the news commentary task

We only performed a limited domain adaptation: the
LMs and the coefficients of the log-linear combi-
nation of the feature functions were optimized on
nc-dev2007. We had no time to add the news com-
mentary parallel texts which may result in miss-
ing translations for some news specific words. The
BLEU scores on the development and development
test data are summarized in Table 5. A trigram
was used to generate 1000-best lists that were then
rescored with various language models.

Language modeling seems to be difficult when
translating from English to French: the use of a 4-
gram has only a minor impact. The continuous space
LM achieves an improvement of 0.3 on nc-dev and
0.5 BLEU on nc-devtest. There is no benefit for us-

English/French French/English
dev devtest dev devtest

Back-off LM:
decode 27.11 25.31 27.57 26.21
4-gram 27.35 25.53 27.56 26.55
Continuous space LM:
4-gram 27.63 26.01 28.25 26.87
6-gram 27.60 25.64 28.38 27.26

Table 5: BLEU scores for news commentary task.

ing longer span LMs. The BLEU score is even 0.5
worse on nc-devtest due to a brevity penalty of 0.95.
The continuous space LM also achieves interesting
improvements in the BLEU score when translating
from French to English.
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Abstract

We describe an architecture that allows
to combine statistical machine translation
(SMT) with rule-based machine translation
(RBMT) in a multi-engine setup. We use a
variant of standard SMT technology to align
translations from one or more RBMT sys-
tems with the source text. We incorporate
phrases extracted from these alignments into
the phrase table of the SMT system and use
the open-source decoder Moses to find good
combinations of phrases from SMT training
data with the phrases derived from RBMT.
First experiments based on this hybrid archi-
tecture achieve promising results.

1 Introduction

Recent work on statistical machine translation has
led to significant progress in coverage and quality of
translation technology, but so far, most of this work
focuses on translation into English, where relatively
simple morphological structure and abundance of
monolingual training data helped to compensate for
the relative lack of linguistic sophistication of the
underlying models. As SMT systems are trained on
massive amounts of data, they are typically quite
good at capturing implicit knowledge contained in
co-occurrence statistics, which can serve as a shal-
low replacement for the world knowledge that would
be required for the resolution of ambiguities and the
insertion of information that happens to be missing
in the source text but is required to generate well-
formed text in the target language.

Already before, decades of work went into the im-
plementation of MT systems (typically rule-based)
for frequently used language pairs1, and these sys-
tems quite often contain a wealth of linguistic
knowledge about the languages involved, such as
fairly complete mechanisms for morphological and
syntactic analysis and generation, as well as a large
number of bilingual lexical entries spanning many
application domains.

It is an interesting challenge to combine the differ-
ent types of knowledge into integrated systems that
could then exploit both explicit linguistic knowledge
contained in the rules of one or several conventional
MT system(s) and implicit knowledge that can be
extracted from large amounts of text.

The recently started EuroMatrix2 project will ex-
plore this integration of rule-based and statistical
knowledge sources, and one of the approaches to
be investigated is the combination of existing rule-
based MT systems into a multi-engine architecture.
The work described in this paper is one of the
first incarnations of such a multi-engine architec-
ture within the project, and a careful analysis of the
results will guide us in the choice of further steps
within the project.

2 Architectures for multi-engine MT

Combinations of MT systems into multi-engine ar-
chitectures have a long tradition, starting perhaps
with (Frederking and Nirenburg, 1994). Multi-
engine systems can be roughly divided into simple

1See (Hutchins et al., 2006) for a list of commercial MT
systems

2See http://www.euromatrix.net
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Figure 1: Architecture for multi-engine MT driven
by a SMT decoder

architectures that try to select the best output from a
number of systems, but leave the individual hypothe-
ses as is (Tidhar and K̈ussner, 2000; Akiba et al.,
2001; Callison-Burch and Flournoy, 2001; Akiba et
al., 2002; Nomoto, 2004; Eisele, 2005) and more so-
phisticated setups that try to recombine the best parts
from multiple hypotheses into a new utterance that
can be better than the best of the given candidates,
as described in (Rayner and Carter, 1997; Hogan and
Frederking, 1998; Bangalore et al., 2001; Jayaraman
and Lavie, 2005; Matusov et al., 2006; Rosti et al.,
2007).

Recombining multiple MT results requires find-
ing the correspondences between alternative render-
ings of a source-language expression proposed by
different MT systems. This is generally not straight-
forward, as different word order and errors in the
output can make it hard to identify the alignment.
Still, we assume that a good way to combine the var-
ious MT outcomes will need to involve word align-
ment between the MT output and the given source
text, and hence a specialized module for word align-
ment is a central component of our setup.

Additionally, a recombination system needs a way
to pick the best combination of alternative building
blocks; and when judging the quality of a particu-
lar configuration, both the plausibility of the build-
ing blocks as such and their relation to the context
need to be taken into account. The required opti-
mization process is very similar to the search in a
SMT decoder that looks for naturally sounding com-
binations of highly probable partial translations. In-

stead of implementing a special-purpose search pro-
cedure from scratch, we transform the information
contained in the MT output into a form that is suit-
able as input for an existing SMT decoder. This has
the additional advantage that resources used in stan-
dard phrase-based SMT can be flexibly combined
with the material extracted from the rule-based MT
results; the optimal combination can essentially be
reduced to the task of finding good relative weights
for the various phrase table entries.

A sketch of the overall architecture is given in
Fig. 1, where the blue (light) parts represent the
modules and data sets used in purely statistical MT,
and the red (dark) parts are the additional modules
and data sets derived from the rule-based engines. It
should be noted that this is by far not the only way
to combine systems. In particular, as this proposed
setup gives the last word to the SMT decoder, we
risk that linguistically well-formed constructs from
one of the rule-based engines will be deteriorated in
the final decoding step. Alternative architectures are
under exploration and will be described elsewhere.

3 MT systems and other knowledge
sources

For the experiments, we used a set of six rule-based
MT engines that are partly available via web inter-
faces and partly installed locally. The web based
systems are provided by Google (based on Systran
for the relevant language pairs), SDL, and ProMT
which all deliver significantly different output. Lo-
cally installed systems are OpenLogos, Lucy (a re-
cent offspring of METAL), and translate pro by lin-
genio (only for German↔ English). In addition to
these engines, we also used the scripts included in
the Moses toolkit (Koehn et al., 2006)3 to generate
phrase tables from the training data. We enhanced
the phrase tables with information on whether a
given pair of phrases can also be derived via a third,
intermediate language. We assume that this can be
useful to distinguish different degrees of reliability,
but due to lack of time for fine-tuning we could not
yet show that it indeed helps in increasing the overall
quality of the output.

3see http://www.statmt.org/moses/
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4 Implementation Details

4.1 Alignment of MT output

The input text and the output text of the MT systems
was aligned by means of GIZA++ (Och and Ney,
2003), a tool with which statistical models for align-
ment of parallel texts can be trained. Since training
new models on merely short texts does not yield very
accurate results, we applied a method where text can
be aligned based on existing models that have been
trained on the Europarl Corpus (Koehn, 2005) be-
forehand. This was achieved by using a modified
version of GIZA++ that is able to load given mod-
els.

The modified version of GIZA++ is embedded
into a client-server setup. The user can send two
corresponding files to the server, and specify two
models for both translation directions from which
alignments should be generated. After generating
alignments in both directions (by running GIZA++
twice), the system also delivers a combination of
these alignments which then serves as input to the
following steps described below.

4.2 Phrase tables from MT output

We then concatenated the phrase tables from the
SMT baseline system and the phrase tables obtained
from the rule-based MT systems and augmented
them by additional columns, one for each system
used. With this additional information it is clear
which of the MT systems a phrase pair stems from,
enabling us to assign relative weights to the con-
tributions of the different systems. The optimal
weights for the different columns can then be as-
signed with the help of minimum error rate training
(Och, 2003).

5 Results

We compared the hybrid system to a purely statis-
tical baseline system as well as two rule-based sys-
tems. The only differences between the baseline sys-
tem and our hybrid system are the phrase table – the
hybrid system includes more lexical entries than the
baseline – and the weights obtained from minimum
error rate training.

For a statistical system, lexical coverage becomes
an obstacle – especially when the bilingual lexical

entries are trained on documents from different do-
mains. However, due to the distinct mechanisms
used to generate these entries, rule-based systems
and statistical systems usually differ in coverage.
Our system managed to utilize lexical entries from
various sources by integrating the phrase tables de-
rived from rule-based systems into the phrase table
trained on a large parallel corpus. Table 1 shows

Systems Token #
Ref. 2091 (4.21%)
R-I 3886 (7.02%)
R-II 3508 (6.30%)
SMT 3976 (7.91%)

Hybrid 2425 (5.59%)

Table 1: Untranslated tokens (excl. numbers and
punctuations) in output for news commentary task
(de-en) from different systems

a rough estimation of the number of untranslated
words in the respective output of different systems.
The estimation was done by counting “words” (i.e.
tokens excluding numbers and punctuations) that ap-
pear in both the source document and the outputs.
Note that, as we are investigating translations from
German to English, where the languages share a lot
of vocabulary, e.g. named entities such as “USA”,
there are around4.21% of words that should stay the
same throughout the translation process. In the hy-
brid system,5.59% of the words remain unchanged,
which is is the lowest percentage among all systems.
Our baseline system (SMT in Table 1), not compris-
ing additional phrase tables, was the one to produce
the highest number of such untranslated words.

Baseline Hybrid
test 18.07 21.39

nc-test 21.17 22.86

Table 2: Performance comparison (BLEU scores)
between baseline and hybrid systems, on in-domain
(test) and out-of-domain (nc-test) test data

Higher lexical coverage leads to better perfor-
mance as can be seen in Table 2, which compares
BLEU scores of the baseline and hybrid systems,
both measured on in-domain and out-of-domain test
data. Due to time constraints these numbers reflect
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results from using a single RBMT system (Lucy);
using more systems would potentially further im-
prove results.

6 Outlook

Due to lack of time for fine-tuning the parameters
and technical difficulties in the last days before de-
livery, the results submitted for the shared task do
not yet show the full potential of our architecture.

The architecture described here places a strong
emphasis on the statistical models and can be seen
as a variant of SMT where lexical information from
rule-based engines is used to increase lexical cover-
age. We are currently also exploring setups where
statistical alignments are fed into a rule-based sys-
tem, which has the advantage that well-formed syn-
tactic structures generated via linguistic rules can-
not be broken apart by the SMT components. But
as rule-based systems typically lack mechanisms for
ruling out implausible results, they cannot easily
cope with errors that creep into the lexicon due to
misalignments and similar problems.
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Abstract

In this paper we describe the Interactive Sys-
tems Laboratories (ISL) phrase-based ma-
chine translation system used in the shared
task ”Machine Translation for European
Languages” of the ACL 2007 Workshop on
Statistical Machine Translation. We present
results for a system combination of the
ISL syntax-augmented MT system and the
ISL phrase-based system by combining and
rescoring the n-best lists of the two systems.
We also investigate the combination of two
of our phrase-based systems translating from
different source languages, namely Spanish
and German, into their common target lan-
guage, English.

1 Introduction

The shared task of the ACL 2007 Workshop on Sta-
tistical Machine Translation focuses on the auto-
matic translation of European language pairs. The
workshop provides common training sets for trans-
lation model training and language model training
to allow for easy comparison of results between the
participants.
Interactive Systems Laboratories participated in the
English ↔ Spanish Europarl and News Commen-
tary task as well as in the English ↔ German Eu-
roparl task. This paper describes the phrase-based
machine translation (MT) system that was applied
to these tasks. We also investigate the feasibility
of combining the ISL syntax-augmented MT system
(Zollmann et al., 2007) with our phrase-based sys-

tem by combining and rescoring the n-best lists pro-
duced by both systems for the Spanish → English
Europarl task. Furthermore, we apply the same com-
bination technique to combine two of our phrase-
based systems that operate on different source lan-
guages (Spanish and German), but share the same
target language (English).
The paper is organized as follows. In section 2 we
give a general description of our phrase-based sta-
tistical machine translation system. Section 3 gives
an overview of the data and of the final systems
used for the English ↔ Spanish Europarl and News
Commentary tasks, along with corresponding per-
formance numbers. Section 4 shows the data, final
systems and results for the English ↔ German Eu-
roparl task. In Section 5, we present our experiments
involving a combination of the syntax-augmented
MT system with the phrase-based MT system and a
combination of the Spanish → English and German
→ English phrase-based systems.

2 The ISL Phrase-Based MT System

2.1 Word and Phrase Alignment

Phrase-to-phrase translation pairs are extracted by
training IBM Model-4 word alignments in both di-
rections, using the GIZA++ toolkit (Och and Ney,
2000), and then extracting phrase pair candidates
which are consistent with these alignments, start-
ing from the intersection of both alignments. This
is done with the help of phrase model training
code provided by University of Edinburgh during
the NAACL 2006 Workshop on Statistical Machine
Translation (Koehn and Monz, 2006). The raw rel-
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ative frequency estimates found in the phrase trans-
lation tables are then smoothed by applying modi-
fied Kneser-Ney discounting as explained in (Foster
et al., 2006). The resulting phrase translation tables
are pruned by using the combined translation model
score as determined by Minimum Error Rate (MER)
optimization on the development set.

2.2 Word Reordering
We apply a part-of-speech (POS) based reordering
scheme (J. M. Crego et al., 2006) to the POS-tagged
source sentences before decoding. For this, we use
the GIZA++ alignments and the POS-tagged source
side of the training corpus to learn reordering rules
that achieve a (locally) monotone alignment. Fig-
ure 1 shows an example in which three reordering
rules are extracted from the POS tags of an En-
glish source sentence and its corresponding Span-
ish GIZA++ alignment. Before translation, we con-
struct lattices for every source sentence. The lattices
include the original source sentence along with all
the reorderings that are consistent with the learned
rules. All incoming edges of the lattice are anno-
tated with distortion model scores. Figure 2 gives an
example of such a lattice. In the subsequent lattice
decoding step, we apply either monotone decoding
or decoding with a reduced local reordering window,
typically of size 2.

2.3 Decoder and MER Training
The ISL beam search decoder (Vogel, 2003) com-
bines all the different model scores to find the best
translation. Here, the following models were used:

• The translation model, i.e. the phrase-to-
phrase translations extracted from the bilingual
corpus, annoted with four translation model
scores. These four scores are the smoothed for-
ward and backward phrase translation proba-
bilities and the forward and backward lexical
weights.

• A 4-gram language model. The SRI language
model toolkit was used to train the language
model and we applied modified Kneser-Ney
smoothing.

• An internal word reordering model in addition
to the already described POS-based reordering.

  

We all agree on that
PRP DT VB IN DT
En {4} esto {5} estamos {1} todos {2} de {} acuerdo {3}

⇒ PRP DT VB IN DT :   4 – 5 – 1 – 2 – 3
⇒ PRP DT VB:   2 – 3 – 1 
⇒ PRP DT VB IN:   3 – 4 – 1 – 2

Figure 1: Rule extraction for the POS-based reorder-
ing scheme.

This internal reordering model assigns higher
costs to longer distance reordering.

• Simple word and phrase count models. The
former is essentially used to compensate for
the tendency of the language model to prefer
shorter translations, while the latter can give
preference to longer phrases, potentially im-
proving fluency.

The ISL SMT decoder is capable of loading
several language models (LMs) at the same time,
namely n-gram SRI language models with n up to
4 and suffix array language models (Zhang and Vo-
gel, 2006) of arbitrary length. While we typically
see gains in performance for using suffix array LMs
with longer histories, we restricted ourselves here to
one 4-gram SRI LM only, due to a limited amount
of available LM training data. The decoding process
itself is organized in two stages. First, all available
word and phrase translations are found and inserted
into a so-called translation lattice. Then the best
combination of these partial translations is found
by doing a best path search through the translation
lattice, where we also allow for word reorderings
within a predefined local reordering window.
To optimize the system towards a maximal BLEU
or NIST score, we use Minimum Error Rate (MER)
Training as described in (Och, 2003). For each
model weight, MER applies a multi-linear search
on the development set n-best list produced by the
system. Due to the limited numbers of translations
in the n-best list, these new model weights are sub-
optimal. To compensate for this, a new full trans-
lation is done. The resulting new n-best list is then
merged with the old n-best list and the optimization
process is repeated. Typically, the translation quality
converges after three iterations.
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“Honourable Members, we have a challenging agenda”

Figure 2: Example for a source sentence lattice from
the POS-based reordering scheme.

English Spanish
sentence pairs 1259914
unique sent. pairs 1240151
sentence length 25.3 26.3
words 31.84 M 33.16 M
vocabulary 266.9 K 346.3 K

Table 1: Corpus statistics for the English/Spanish
Europarl corpus.

3 Spanish ↔ English Europarl and News
Commentary Task

3.1 Data and Translation Tasks

The systems for the English ↔ Spanish translation
tasks were trained on the sentence-aligned Europarl
corpus (Koehn, 2005). Detailed corpus statistics can
be found in Table 1. The available parallel News
Commentary training data of approximately 1 mil-
lion running words for both languages was only
used as additional language model training data, to
adapt our in-domain (Europarl) system to the out-of-
domain (News Commentary) task.
The development sets consist of 2000 Europarl
sentences (dev-EU) and 1057 News Commentary
sentences (dev-NC). The available development-
test data consists of 2 x 2000 Europarl sentences
(devtest-EU and test06-EU) and 1064 News Com-
mentary sentences (test06-NC). All development
and development-test sets have only one reference
translation per sentence.

3.2 Data Normalization

The ACL shared task is very close in form and con-
tent to the Final Text Editions (FTE) task of the TC-
STAR (TC-STAR, 2004) evaluation. For this rea-
son, we decided to apply a similar normalization
scheme to the training data as was applied in our TC-
STAR verbatim SMT system. Although trained on

”verbatimized” data that did not contain any num-
bers, but rather had all numbers and dates spelled
out, it yielded consistently better results than our
TC-STAR FTE SMT system. When translating FTE
content, the verbatim system treated all numbers as
unknown words, i.e. they were left unchanged dur-
ing translation. To compensate for this, we applied
extended postprocessing to the translations that con-
ducts the necessary conversions between Spanish
and English numbers, e.g. the conversion of deci-
mal comma in Spanish to decimal point in English.
Other key points which we adopted from this nor-
malization scheme were the tokenization of punc-
tuation marks, the true-casing of the first word of
each sentence, as well as extended cleaning of the
training data. The latter mainly consisted of the re-
moval of sections with a highly unbalanced source
to target words ratio and the removal of unusual
string combinations and document references, like
for example ”B5-0918/2000”, ”(COM(2000) 335 -
C5-0386/2000 - 2000/0143(CNS))”, etc.
Based on this normalization scheme, we trained and
optimized a baseline in-domain system on accord-
ingly normalized source and reference sentences.
For optimization, we combined the available de-
velopment sets for the Europarl task and the News
Commentary task. In order to further improve
the applied normalization scheme, we experimented
with replacing all numbers with the string ”NMBR”,
rather than spelling them out and by replacing all
document identifiers with the string ”DCMNT”,
rather than deleting them. This was first done for
the language model training data only, and then for
all data, i.e. for the bilingual training data and for
the development set source and reference sentences.
In the latter case, the respective tags were again re-
placed by the correct numbers and document identi-
fiers during postprocessing. Table 2 shows the case
sensitive BLEU scores for the three normalization
approaches on the English ↔ Spanish Europarl and
News Commentary development sets. These scores
were computed with the official NIST scoring script
against the original (not normalized) references.

3.3 In-domain System

As mentioned above, we combined the Europarl and
News Commentary development sets when optimiz-
ing the in-domain system. This resulted in only one

199



Task baseline LM only all data
Europarl 30.94 31.20 31.26
News Com. 31.28 31.39 31.73

Table 2: Case sensitive BLEU scores on the in-
domain and out-of-domain development sets for the
three different normalization schemes.

Task Eng → Spa Spa → Eng
dev-EU 31.29 31.77
dev-NC 31.81 31.12
devtest-EU 31.01 31.40
test06-EU 31.87 31.76
test06-NC 30.23 29.22

Table 3: Case sensitive BLEU scores for the final
English ↔ Spanish in-domain systems.

set of scaling factors, i.e. the in-domain system
applies the same scaling factors for translating in-
domain data as for translating out-of-domain data.
Our baseline system applied only monotone lattice
decoding. For our final in-domain system, we used a
local reordering window of length 2, which accounts
for the slightly higher scores when compared to the
baseline system. The BLEU scores for both trans-
lation directions on the different development and
development-test sets can be found in Table 3.

3.4 Out-of-domain System
In order to adapt our in-domain system towards the
out-of-domain News Commentary task, we consid-
ered two approaches based on language model adap-
tation. First, we interpolated the in-domain LM
with an out-of-domain LM computed on the avail-
able News Commentary training data. The inter-
polation weights were chosen such as to achieve a
minimal LM perplexity on the out-of-domain de-
velopment set. For both languages, the interpo-
lation weights were approximately 0.5. Our sec-
ond approach was to simply load the out-of-domain
LM as an additional LM into our decoder. In both
cases, we optimized the translation system on the
out-of-domain development data only. For the sec-
ond approach, MER optimization assigned three to
four times higher scaling factors to the consider-
ably smaller out-domain LM than to the original in-
domain LM. Table 4 shows the results in BLEU on
the out-of-domain development and development-
test sets for both translation directions. While load-

Eng → Spa Spa → Eng
Task interp 2 LMs interp 2 LMs
dev-NC 33.31 33.28 32.61 32.70
test06-NC 32.55 32.15 30.73 30.55

Table 4: Case sensitive BLEU scores for the final
English ↔ Spanish out-of-domain systems.

ing a second LM gives similar or slightly better re-
sults on the development set during MER optimiza-
tion, we see consistently worse results on the unseen
development-test set. This, in the context of the rela-
tively small amount of development data, can be ex-
plained by stronger overfitting during optimization.

4 English ↔ German Europarl Task

The systems for the English ↔ German translation
tasks were trained on the sentence-aligned Europarl
corpus only. The complete corpus consists of ap-
proximately 32 million English and 30 million Ger-
man words.
We applied a similar normalization scheme to the
training data as for the English ↔ Spanish system.
The main difference was that we did not replace
numbers and that we removed all document refer-
ences. In the translation process, the document ref-
erences were treated as unknown words and there-
fore left unchanged. As above, we trained and op-
timized a first baseline system on the normalized
source and reference sentences. However, we used
only the Europarl task development set during opti-
mization. To achieve further improvements on the
German → English task, we applied a compound
splitting technique. The compound splitting was
based on (Koehn and Knight, 2003) and was applied
on the lowercased source sentences. The words gen-
erated by the compound splitting were afterwards
true-cased. Instead of replacing a compound by
its separate parts, we added a parallel path into the
source sentence lattices used for translation. The
source sentence lattices were augmented with scores
on their edges indicating whether each edge repre-
sents a word of the original text or if it was gener-
ated during compound splitting.
Table 5 shows the case-sensitive BLEU scores for
the final German ↔ English systems. In contrast
to the English ↔ Spanish systems, we used only
monotonous decoding on the lattices containing the
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task Eng → Ger Ger → Eng
dev-EU 18.58 23.85
devtest-EU 18.50 23.87
test06-EU 18.39 23.88

Table 5: Case sensitive BLEU scores for the final
English ↔ German in-domain systems.

syntactical reorderings.

5 System Combination via n-best List
Combination and Rescoring

5.1 N-best List Rescoring
For n-best list rescoring we used unique 500-best
lists, which may have less than 500 entries for
some sentences. In this evaluation, we used sev-
eral features computed from different information
sources such as features from the translation sys-
tem, additional language models, IBM-1 word lex-
ica and the n-best list itself. We calculated 4 fea-
tures from the IBM-1 word lexica: the word proba-
bility sum as well as the maximum word probabil-
ity in both language directions. From the n-best list
itself, we calculated three different sets of scores.
A position-dependent word agreement score as de-
scribed in (Ueffing and Ney, 2005) with a position
window instead of the Levenshtein alignment, the
n-best list n-gram probability as described in (Zens
and Ney, 2006) and a position-independent n-gram
agreement, which is a variation on the first two. To
tune the feature combination weights, we used MER
optimization.
Rescoring the n-best lists from our individual sys-
tems did not give significant improvements on the
available unseen development-test data. For this rea-
son, we did not apply n-best list rescoring to the indi-
vidual systems. However, we investigated the feasi-
bility of combining two different systems by rescor-
ing the joint n-best lists of both systems. The corre-
sponding results are described in the following sec-
tions.

5.2 Combining Syntax-Augmented MT and
Phrase-Based MT

On the Spanish → English in-domain task, we par-
ticipated not only with the ISL phrase-based SMT
system as described in this paper, but also with
the ISL syntax-augmented system. The syntax-

task PHRA SYNT COMB
dev-EU 31.77 32.48 32.77
test06-EU 31.76 32.15 32.27

Table 6: Results for combining the syntax-
augmented system (SYNT) with the phrase-based
system (PHRA).

augmented system was trained on the same normal-
ized data as the phrase-based system. However, it
was optimized on the in-domain development set
only. More details on the syntax-augmented system
can be found in (Zollmann et al., 2007). Table 6
lists the respective BLEU scores of both systems as
well as the BLEU score achieved by combining and
rescoring the individual 500-best lists.

5.3 Combining MT Systems with Different
Source Languages

(Och and Ney, 2001) describes methods for trans-
lating text given in multiple source languages into a
single target language. The ultimate goal is to im-
prove the translation quality when translating from
one source language, for example English into mul-
tiple target languages, such as Spanish and German.
This can be done by first translating the English doc-
ument into German and then using the translation as
an additional source, when translating to Spanish.
Another scenario where a multi-source translation
becomes desirable was described in (Paulik et al.,
2005). The goal was to improve the quality of au-
tomatic speech recognition (ASR) systems by em-
ploying human-provided simultaneous translations.
By using automatic speech translation systems to
translate the speech of the human interpreters back
into the source language, it is possible to bias the
source language ASR system with the additional
knowledge. Having these two frameworks in mind,
we investigated the possibility of combining our in-
domain German → English and Spanish → English
translation systems using n-best list rescoring. Ta-
ble 7 shows the corresponding results. Even though
the German → English translation performance was
approximately 8 BLEU below the translation perfor-
mance of the Spanish → English system, we were
able to improve the final translation performance by
up to 1 BLEU.
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task Spa → Eng Ger → Eng Comb.
dev-EU 31.77 23.85 32.76
devtest-EU 31.40 23.87 32.41
test06-EU 31.76 23.88 32.51

Table 7: Results for combining the Spanish → En-
glish and German → English phrase-based systems
on the in-domain tasks.

6 Conclusion

We described the ISL phrase-based statistical ma-
chine translation systems that were used for the 2007
ACL Workshop on Statistical Machine Translation.
Using the available out-of-domain News Commen-
tary task training data for language model adapta-
tion, we were able to significantly increase the per-
formance on the out-of-domain task by 2.3 BLEU
for English → Spanish and by 1.3 BLEU for Span-
ish → English. We also showed the feasibility of
combining different MT systems by combining and
rescoring their resprective n-best lists. In particular,
we focused on the combination of our phrase-based
and syntax-augmented systems and the combination
of two phrase-based systems operating on different
source languages. While we saw only a minimal im-
provement of 0.1 BLEU for the phrase-based and
syntax-augmented combination, we gained up to 1
BLEU, in case of the multi-source translation.
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Abstract
This article describes a machine translation
system based on an automatic post-editing
strategy: initially translate the input text into
the target-language using a rule-based MT
system, then automatically post-edit the out-
put using a statistical phrase-based system.
An implementation of this approach based
on the SYSTRAN and PORTAGE MT sys-
tems was used in the shared task of the Sec-
ond Workshop on Statistical Machine Trans-
lation. Experimental results on the test data
of the previous campaign are presented.

1 Introduction
Simard et al. (2007) have recently shown how a sta-
tistical phrase-based machine translation system can
be used as an automatic post-editing (APE) layer,
on top of a rule-based machine translation system.
The motivation for their work is the repetitive nature
of the errors typically made by rule-based systems.
Given appropriate training material, a statistical MT
system can be trained to correct these systematic er-
rors, therefore reducing the post-editing effort. The
statistical system views the output of the rule-based
system as the source language, and reference hu-
man translations as the target language. Because the
training material for the APE layer will typically be
domain-specific, this process can be viewed as a way
of automatically adapting a rule-based system to a
specific application domain.

This approach has been shown experimentally
to produce large improvements in performance not
only over the baseline rule-based system that it cor-
rects, but also over a similar statistical phrase-based
MT system used in standalone mode, i.e. translating
the “real” source text directly: Simard et al. report a

reduction in post-editing effort of up to a third when
compared to the input rule-based translation, and as
much as 5 BLEU points improvement over the direct
SMT approach.

These impressive results, however, were obtained
in a very specific and somewhat unusual context:
the training and test corpora were extracted from
a collection of manually post-edited machine trans-
lations. The two corpora (one English-to-French,
one French-to-English) each contained three paral-
lel “views” of the same data: 1) the source language
text, 2) a machine translation of that text into the
target language, as produced by a commercial rule-
based MT system, and 3) the final target-language
version of the text, produced by manually post-
editing the machine translation. Furthermore, the
corpus was very small, at least by SMT standards:
500K words of source-language data in the French-
to-English direction, 350K words in the English-to-
French. Because of this, the authors were left with
two important questions: 1) how would the results
scale up to much larger quantities of training data?
and 2) are the results related to the dependent nature
of the translations, i.e. is the automatic post-editing
approach still effective when the machine and hu-
man translations are produced independently of one
another?

With these two questions in mind, we partici-
pated in the shared task of the Second Workshop
on Statistical Machine Translation with an auto-
matic post-editing strategy: initially translate the in-
put text into the target-language using a rule-based
system, namely SYSTRAN, and automatically post-
edit the output using a statistical phrase-based sys-
tem, namely PORTAGE. We describe our system in
more detail in Section 2, and present some experi-
mental results in Section 3.
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2 System description
Our system is composed of two main components:
a rule-based MT system, which handles the initial
translation into the target language, and a statistical
phrase-based post-editing system, which performs
domain-specific corrections and adaptations to the
output. We describe each component separately be-
low.

2.1 Rule-based Translation
The initial source-to-target language translation is
performed using the SYSTRAN machine translation
system, version 6. A detailed overview of SYS-
TRAN systems can be found in Dugast et al. (2007).
For this shared task, we used the French-to-English
and English-to-French configurations of the system.
Although it is possible to provide the system with
specialized lexica, we did not rely on this feature,
and used the system in its basic “out-of-the-box”
configuration.

2.2 Statistical Phrase-based Post-Editing
The output of the rule-based MT system described
above is fed into a post-editing layer that performs
domain-specific corrections and adaptation. This
operation is conceptually not very different from a
“target-to-target” translation; for this task, we used
the PORTAGE system, a state-of-the-art statistical
phrase-based machine translation system developed
at the National Research Council of Canada (NRC).1

A general description of PORTAGE can be found in
(Sadat et al., 2005).

For our participation in this shared task, we de-
cided to configure and train the PORTAGE system
for post-editing in a manner as much as possible
similar to the corresponding translation system, the
details of which can be found in (Ueffing et al.,
2007). The main features of this configuration are:

• The use of two distinct phrase tables, contain-
ing phrase pairs extracted from the Europarl
and the News Commentary training corpora re-
spectively.

• Multiple phrase-probability feature functions
in the log-linear models, including a joint prob-

1A version of PORTAGE is made available by the NRC to
Canadian universities for research and education purposes.

ability estimate, a standard frequency-based
conditional probability estimate, and variants
thereof based on different smoothing methods
(Foster et al., 2006).

• A 4-gram language model trained on the com-
bined Europarl and News Commentary target-
language corpora.

• A 3-gram adapted language model: this is
trained on a mini-corpus of test-relevant target-
language sentences, extracted from the training
material using standard information retrieval
techniques.

• A 5-gram truecasing model, trained on the
combined Europarl and News Commentary
target-language corpora.

2.3 Training data
Ideally, the training material for the post-editing
layer of our system should consist in a corpus of
text in two parallel versions: on the one hand, raw
machine translation output, and on the other hand,
manually post-edited versions of these translations.
This is the type of data that was used in the initial
study of Simard et al. (2007).

Unfortunately, this sort of training data is seldom
available. Instead, we propose using training ma-
terial derived directly from standard, source-target
parallel corpora. The idea is to translate the source
portion of the parallel corpus into the target lan-
guage, using the rule-based MT component. The
post-editing component can then be trained using
this translation as “source” training material, and the
existing target portion of the parallel corpus as “tar-
get” training material. Note how this sort of data
is subtly different from the data used by Simard et
al.: there, the “target” text was dependent on the
“source”, in the sense that it was produced by manu-
ally post-editing the machine translation; here, the
two can be said to be independent, in the sense
that both “source” and “target” were produced inde-
pendently by man and machine (but from the same
“real” source, of course). It was one of the initial
motivations of the current work to verify to what ex-
tent the performance of the APE approach is affected
by using two different translations (human and ma-
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en → fr fr → en
Europarl (>32M words/language)

SYSTRAN 23.06 20.11
PORTAGE 31.01 30.90
SYSTRAN+PORTAGE 31.11 30.61

News Commentary (1M words/language)
SYSTRAN 24.41 18.09
PORTAGE 25.98 25.17
SYSTRAN+PORTAGE 28.80 26.79

Table 1: System performances on WMT-06 test. All
figures are single-reference BLEU scores, computed
on truecased, detokenized translations.

chine) instead of two versions of the same transla-
tion (raw MT versus post-edited MT).

We concentrated our efforts on the English-
French language pair. For each translation direc-
tion, we prepared two systems: one for the Eu-
roparl domain, and one for the News Commentary
domain. The two systems have almost identical
configurations (phrase tables, log-linear model fea-
tures, etc.); the only differences between the two
are the adapted language model, which is computed
based on the specific text to be translated and the
parameters of the log-linear models, which are opti-
mized using domain-specific development sets. For
the Europarl domain system, we used the dev2006
and devtest2006 data sets, while for the News Com-
mentary, we used the nc-dev2007. Typically, the
optimization procedure will give higher weights to
Europarl-trained phrase tables for the Europarl do-
main systems, and inversely for the News Commen-
tary domain systems.

3 Experimental Results

We computed BLEU scores for all four systems on
the 2006 test data (test2006 for the Europarl do-
main and nc-devtest2007 for the News Commen-
tary). The results are presented in Table 1. As points
of comparison, we also give the scores obtained by
the SYSTRAN systems on their own (i.e. without a
post-editing layer), and by the PORTAGE MT sys-
tems on their own (i.e. translating directly source
into target).

The first observation is that, as was the case
in the Simard et al. study, post-editing (SYS-

TRAN+PORTAGE lines) very significantly in-
creases the BLEU scores of the rule-based system
(SYSTRAN lines). This increase is more spectacu-
lar in the Europarl domain and when translating into
English, but it is visible for all four systems.

For the News Commentary domain, the APE
strategy (SYSTRAN+PORTAGE lines) clearly out-
performs the direct SMT strategy (PORTAGE lines):
translating into English, the gain exceeds 1.5 BLEU
points, while for French, it is close to 3 BLEU
points. In contrast, for the Europarl domain, both ap-
proaches display similar performances. Let us recall
that the News Commentary corpus contains less than
50K sentence pairs, totalling a little over one mil-
lion words in each language. With close to 1.3 mil-
lion sentence pairs, the Europarl corpus is almost 30
times larger. Our results therefore appear to confirm
one of the conjectures of the Simard et al. study:
that APE is better suited for domains with limited
quantities of available training data. To better un-
derstand this behavior, we trained series of APE and
SMT systems on the Europarl data, using increas-
ing amounts of training data. The resulting learning
curves are presented in Figure 1.2

As observed in the Simard et al. study, while both
the SMT and APE systems improve quite steadily
with more data (note the logarithmic scale), SMT
appears to improve more rapidly than APE. How-
ever, there doesn’t seem to be a clear “crossover”
point, as initially conjectured by Simard et al. In-
stead, SMT eventually catches up with APE (any-
where between 100K and 1M sentence pairs), be-
yond which point both approaches appear to be more
or less equivalent. Again, one impressive feature
of the APE strategy is how little data is actually re-
quired to improve upon the rule-based system upon
which it is built: around 5000 sentence pairs for
English-to-French, and 2000 for French-to-English.

4 Conclusions
We have presented a combination MT system based
on a post-editing strategy, in which a statistical
phrase-based system corrects the output of a rule-
based translation system. Experiments confirm the

2The systems used for this experiment are simplified ver-
sions of those described in Section 2, using only one phrase
table, a trigram language model and no rescoring; furthermore,
they were optimized and tested on short sentences only.
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Figure 1: BLEU scores on Europarl data under increasing amounts of training data for PORTAGE SMT
alone and SYSTRAN MT with PORTAGE APE.

conclusions of earlier studies: not only can phrase-
based post-editing significantly improve the out-
put of a rule-based MT system (in terms of BLEU
score), but when training data is scarce, it also out-
performs a direct phrase-based MT strategy. Fur-
thermore, our results indicate that the training data
for the post-editing component does not need to be
manually post-edited translations, it can be gener-
ated from standard parallel corpora. Finally, our ex-
periments show that while post-editing is most effec-
tive when little training data is available, it remains
competitive with phrase-based translation even with
much larger amounts of data.

This work opens the door to a number of lines of
investigation. For example, it was mentioned earlier
that phrase-based APE could be seen as a form of au-
tomatic domain-adaptation for rule-based methods.
One thing we would like to verify is how this ap-
proach compares to the standard “lexical customiza-
tion” method proposed by most rule-based MT ven-
dors. Also, in the experiments reported here, we
have used identical configurations for the APE and
direct SMT systems. However, it might be possible
to modify the phrase-based system so as to better
adapt it to the APE task. For example, it could be
useful for the APE layer to “look” at the real source-
language text, in addition to the MT output it is post-
editing. Finally, we have so far considered the front-
end rule-based system as a “black box”. But in the
end, the real question is: Which part of the rule-
based processing is really making things easier for
the phrase-based post-editing layer? Answering this
question will likely require diving into the internals

of the rule-based component. These are all direc-
tions that we are currently pursuing.
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Abstract

This paper presents a new paradigm for
translation from inflectionally rich lan-
guages that was used in the University
of Maryland statistical machine transla-
tion system for the WMT07 Shared Task.
The system is based on a hierarchical
phrase-based decoder that has been aug-
mented to translate ambiguous input given
in the form of a confusion network (CN),
a weighted finite state representation of a
set of strings. By treating morphologi-
cally derived forms of the input sequence
as possible, albeit more “costly” paths that
the decoder may select, we find that sig-
nificant gains (10% BLEU relative) can
be attained when translating from Czech,
a language with considerable inflectional
complexity, into English.

1 Introduction

Morphological analysis occupies a tenuous position
statistical machine translation systems. Conven-
tional translation models are constructed with no
consideration of the relationships between lexical
items and instead treat different inflected (observed)
forms of identical underlying lemmas as completely
independent of one another. While the variously
inflected forms of one lemma may express differ-
ences in meaning that are crucial to correct transla-
tion, the strict independence assumptions normally
made exacerbate data sparseness and lead to poorly

estimated models and suboptimal translations. A va-
riety of solutions have been proposed: Niessen and
Ney (2001) use of morphological information to im-
prove word reordering before training and after de-
coding. Goldwater and McClosky (2005) show im-
provements in a Czech to English word-based trans-
lation system when inflectional endings are simpli-
fied or removed entirely. Their method can, how-
ever, actually harm performance since the discarded
morphemes carry some information that may have
bearing on the translation (cf. Section 3.3). To avoid
this pitfall, Talbot and Osborne (2006) use a data-
driven approach to cluster source-language morpho-
logical variants that are meaningless in the target
language, and Yang and Kirchhoff (2006) propose
the use of a backoff model that uses morphologically
reduced forms only when the translation of the sur-
face form is unavailable. All of these approaches
have in common that the decisions about whether to
use morphological information are made in either a
pre- or post-processing step.

Recent work in spoken language translation sug-
gests that allowing decisions about the use of mor-
phological information to be made along side other
translation decisions (i.e., inside the decoder), will
yield better results. At least as early as Ney (1999),
it has been shown that when translating the out-
put from automatic speech regonition (ASR) sys-
tems, the quality can be improved by considering
multiple (rather than only a single best) transcrip-
tion hypothesis. Although state-of-the-art statistical
machine translation systems have conventionally as-
sumed unambiguous input; recent work has demon-
strated the possibility of efficient decoding of am-
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biguous input (represented as confusion networks or
word lattices) within standard phrase-based models
(Bertoldi et al., to appear 2007) as well as hierarchi-
cal phrase-based models (Dyer and Resnik, 2007).
These hybrid decoders search for the target language
sentence ê that maximizes the following probability,
where G(o) represents the set of weighted transcrip-
tion hypotheses produced by an ASR decoder:

ê = arg max
e

max
f ′∈G(o)

P (e, f ′|o) (1)

The conditional probability p(e, f |o) that is maxi-
mized is modeled directly using a log-linear model
(Och and Ney, 2002), whose parameters can be
tuned to optimize either the probability of a devel-
opment set or some other objective (such as max-
imizing BLEU). In addition to the standard trans-
lation model features, the ASR system’s posterior
probability is another feature. The decoder thus
finds a translation hypothesis ê that maximizes the
joint translation/transcription probability, which is
not necessarily the one that corresponds to the best
single transcription hypothesis.

2 Noisier channel translation

We extend the concept of translating from an am-
biguous set of source hypotheses to the domain of
text translation by redefining G(·) to be a set of
weighted sentences derived by applying morpholog-
ical transformations (such as stemming, compound
splitting, clitic splitting, etc.) to a given source sen-
tence f . This model for translation extends the usual
noisy channel metaphor by suggesting that an “En-
glish” source signal is first distorted into a morpho-
logically neutral “French” and then morphological
processes represent a further distortion of the signal,
which can be modeled independently. Whereas in
the context of an ASR transcription hypothesis, G(·)
assigns a posterior probability to each sentence, we
redefine of this value to be a backoff penalty. This
can be intuitively thought of as a measure of the
“distance” that a given morphological alternative is
from the observed input sentence.

The remainder of the paper is structured as fol-
lows. In Section 2, we describe the basic hierarchi-
cal translation model. In Section 3, we describe the
data and tools used and present experimental results
for Czech-English. Section 4 concludes.

3 Hierarchical phrase-based decoding

Chiang (2005; to appear 2007) introduced hierar-
chical phrase-based translation models, which are
formally based on synchronous context-free gram-
mars. These generalize phrase-based translation
models by allowing phrase pairs to contain vari-
ables. Like phrase correspondences, the correspond-
ing synchronous grammar rules can be learned auto-
matically from aligned, but otherwise unannotated,
training bitext. For details about the extraction algo-
rithm, refer to Chiang (to appear 2007).

The rules of the induced grammar consist of pairs
of strings of terminals and non-terminals in the
source and target languages, as well one-to-one cor-
respondences between non-terminals on the source
and target side of each pair (shown as indexes in
the examples below). Thus they encapsulate not
only meaning translation (of possibly discontinuous
spans), but also typical reordering patterns. For ex-
ample, the following two rules were extracted from
the Spanish ↔ English segment of the Europarl cor-
pus (Koehn, 2003):

X → 〈la X
1

de X
2
, X

2
’s X

1
〉 (2)

X → 〈el X
1

verde, the green X
1
〉 (3)

Rule (2) expresses the fact that possessors can
be expressed prior to the possessed object in En-
glish but must follow in Spanish. Rule (3) shows
that the adjective verde follows the modified expres-
sion in Spanish whereas the corresponding English
lexical item green precedes what it modifies. Al-
though the rules given here correspond to syntactic
constituents, this is accidental. The grammars ex-
tracted make use of only a single non-terminal cate-
gory and variables are posited that may or may not
correspond to linguistically meaningful spans.

Given a synchronous grammar G, the translation
process is equivalent to parsing an input sentence
with the source side of G and thereby inducing a
target sentence. The decoder we used is based on
the CKY+ algorithm, which permits the parsing of
rules that are not in Chomsky normal form (Chep-
palier and Rajman, 1998) and that has been adapted
to admit input that is in the form of a confusion net-
work (Dyer and Resnik, 2007). To incorporate target
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Language Tokens Types Singletons
Czech surface 1.2M 88037 42341
Czech lemmas 1.2M 34227 13129
Czech truncated 1.2M 37263 13093
English 1.4M 31221 10508
Spanish 1.4M 47852 20740
French 1.2M 38241 15264
German 1.4M 75885 39222

Table 1: Corpus statistics, by language, for the
WMT07 training subset of the News Commentary
corpus.

language model probabilities into the model, which
is important for translation quality, the grammar is
intersected during decoding with an m-gram lan-
guage model. This process significantly increases
the effective size of the grammar, and so a beam-
search heuristic called cube pruning is used, which
has been experimentally determined to be nearly as
effective as an exhaustive search but far more effi-
cient.

4 Experiments

We carried out a series of experiments using differ-
ent strategies for making use of morphological in-
formation on the News Commentary Czech-English
data set provided for the WMT07 Shared Task.
Czech was selected because it exhibits a rich inflec-
tional morphology, but its other morphological pro-
cesses (such as compounding and cliticization) that
affect multiple lemmas are relatively limited. This
has the advantage that a morphologically simpli-
fied (i.e., lemmatized) form of a Czech sentence has
the same number of tokens as the surface form has
words, which makes representing G(f) as a confu-
sion network relatively straightforward. The relative
morphological complexity of Czech, as well as the
potential benefits that can be realized by stemming,
can be inferred from the corpus statistics given in
Table 1.

4.1 Technical details

A trigram English language model with modified
Kneser-Ney smoothing (Kneser and Ney, 1995) was
trained using the SRI Language Modeling Toolkit
(Stolcke, 2002) on the English side of the News
Commentary corpus as well as portions of the
GigaWord v2 English Corpus and was used for

all experiments. Recasing was carried out using
SRI’s disambig tool using a trigram language
model. The feature set used included bidirectional
translation probabilities for rules, lexical transla-
tion probabilities, a target language model proba-
bility, and count features for target words, num-
ber of non-terminal symbols used, and finally the
number of morphologically simplified forms se-
lected in the CN. Feature weight tuning was carried
out using minimum error rate training, maximizing
BLEU scores on a held-out development set (Och,
2003). Translation scores are reported using case-
insensitive BLEU (Papineni et al., 2002) with a sin-
gle reference translation. Significance testing was
done using bootstrap resampling (Koehn, 2004).

4.2 Data preparation and training

We used a Czech morphological analyzer by Hajič
and Hladká (1998) to extract the lemmas from the
Czech portions of the training, development, and
test data (the Czech-English portion of the News
Commentary corpus distributed as as part of the
WMT07 Shared Task). Data sets consisting of trun-
cated forms were also generated; using a length limit
of 6, which Goldwater and McClosky (2005) exper-
imentally determined to be optimal for translation
performance. We refer to the three data sets and the
models derived from them as SURFACE, LEMMA,
and TRUNC. Czech→English grammars were ex-
tracted from the three training sets using the meth-
ods described in Chiang (to appear 2007). Two ad-
ditional grammars were created by combining the
rules from the SURFACE grammar and the LEMMA

or TRUNC grammar and renormalizing the condi-
tional probabilities, yielding the combined models
SURFACE+LEMMA and SURFACE+TRUNC.

Confusion networks for the development and test
sets were constructed by providing a single back-
off form at each position in the sentence where the
lemmatizer or truncation process yielded a different
word form. The backoff form was assigned a cost of
1 and the surface form a cost of 0. Numbers and
punctuation were not truncated. A “backoff” set,
corresponding approximately to the method of Yang
and Kirchhoff (2006) was generated by lemmatiz-
ing only unknown words. Figure 1 shows a sample
surface+lemma CN from the test set.
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1 2 3 4 5 6 7 8 9 10 11 12
z amerického břehu atlantiku se veskerá taková odůvodněnı́ jevı́ jako naprosto bizarnı́

americký břeh atlantik s takový jevit

Figure 1: Example confusion network generated by lemmatizing the source sentence to generate alternates at
each position in the sentence. The upper element in each column is the surface form and the lower element,
when present, is the lemma.

Input BLEU Sample translation
SURFACE 22.74 From the US side of the Atlantic all such odůvodněnı́ appears to be a totally bizarre.
LEMMA 22.50 From the side of the Atlantic with any such justification seem completely bizarre.
TRUNC (l=6) 22.07 From the bank of the Atlantic, all such justification appears to be totally bizarre.
backoff (SURFACE+LEMMA) 23.94 From the US bank of the Atlantic, all such justification appears to be totally bizarre.
CN (SURFACE+LEMMA) 25.01 From the US side of the Atlantic all such justification appears to be a totally bizarre.
CN (SURFACE+TRUNC) 23.57 From the US Atlantic any such justification appears to be a totally bizarre.

Table 2: Czech-English results on WMT07 Shared Task DEVTEST set. The sample translations are transla-
tions of the sentence shown in Figure 1.

4.3 Experimental results
Table 2 summarizes the performance of the six
Czech→English models on the WMT07 Shared
Task development set. The basic SURFACE model
tends to outperform both the LEMMA and TRUNC

models, although the difference is only marginally
significant. This suggests that the Goldwater and
McClosky (2005) results are highly dependent on
the kind of translation model and quantity of data.
The backoff model, a slightly modified version
of the method proposed by Yang and Kirchhoff
(2006),1 does significantly better than the baseline
(p < .05). However, the joint (SURFACE+LEMMA)
model outperforms both surface and backoff base-
lines (p < .01 and p < .05, respectively). The SUR-
FACE+TRUNC model is an improvement over the
SURFACE model, but it performances significantly
worse than the SURFACE+LEMMA model.

5 Conclusion

We presented a novel model-driven method for us-
ing morphologically reduced forms when translat-
ing from a language with complex inflectional mor-

1Our backoff model has two primary differences from model
described by Y&K. The first is that our model effectively cre-
ates backoff forms for every surface string, whereas Y&K do
this only for forms that are not found in the surface string. This
means that in our model, the probabilities of a larger number
of surface rules have been altered by backoff discounting than
would be the case in the more conservative model. Second, the
joint model we used has the benefit of using morphologically
simpler forms to improve alignment.

phology. By allowing the decoder to select among
the surface form of a word or phrase and variants
of morphological alternatives on the source side,
we outperform baselines where hard decisions about
what form to use are made in advance of decod-
ing, as has typically been done in systems that make
use of morphological information. This “decoder-
guided” incorporation of morphology was enabled
by adopting techniques for translating from ambigu-
ous sources that were developed to address problems
specific to spoken language translation. Although
the results presented here were obtained using a hi-
erarchical phrase-based system, the model general-
izes to any system where the decoder can accept a
weighted word graph as its input.
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Abstract

For the WMT 2007 shared task, the UC
Berkeley team employed three techniques of
interest. First, we used monolingual syntac-
tic paraphrases to provide syntactic variety
to the source training set sentences. Sec-
ond, we trained two language models: a
small in-domain model and a large out-of-
domain model. Finally, we made use of re-
sults from prior research that shows that cog-
nate pairs can improve word alignments. We
contributed runs translating English to Span-
ish, French, and German using various com-
binations of these techniques.

1 Introduction

Modern Statistical Machine Translation (SMT) sys-
tems are trained on aligned sentences of bilingual
corpora, typically from one domain. When tested on
text from that same domain, such systems demon-
strate state-of-the art performance; however, on
out-of-domain text the results can get significantly
worse. For example, on the WMT 2006 Shared
Task evaluation, the French to English translation
BLEU scores dropped from about 30 to about 20 for
nearly all systems, when tested on News Commen-
tary rather than Europarl (Koehn and Monz, 2006).

Therefore, this year the shared task organizers
have provided 1M words of bilingual News Com-
mentary training data in addition to the Europarl
data (about 30M words), thus challenging the par-
ticipants to experiment with domain adaptation.

Below we describe our domain adaptation exper-
iments, trying to achieve better results on the News

Commentary data. In addition to training on both
data sets, we make use of monolingual syntactic
paraphrases of the English side of the data.

2 Monolingual Syntactic Paraphrasing

In many cases, the testing text contains “phrases”
that are equivalent, but syntactically different from
the phrases learned on training, and the potential for
a high-quality translation is missed. We address this
problem by using nearly equivalent syntactic para-
phrases of the original sentences. Each paraphrased
sentence is paired with the foreign translation that is
associated with the original sentence in the training
data. This augmented training corpus can then be
used to train an SMT system. Alternatively, we can
paraphrase the test sentences making them closer to
the target language syntax.

Given an English sentence, we parse it with the
Stanford parser (Klein and Manning, 2003) and then
generate paraphrases using the following syntactic
transformations:

1. [NP NP1 P NP2]⇒ [NP NP2 NP1].
inequality in income⇒ income inequality.

2. [NP NP1 of NP2]⇒ [NP NP2 poss NP1].
inequality of income⇒ income’s inequality.

3. NPposs ⇒ NP.
income’s inequality⇒ income inequality.

4. NPposs ⇒ NPPPof
.

income’s inequality⇒ inequality of income.
5. NPNC ⇒ NPposs.

income inequality⇒ income’s inequality.
6. NPNC ⇒ NPPP .

income inequality⇒ inequality in incomes.
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Sharply rising income inequality has raised the stakes of the economic game .
Sharply rising income inequality has raised the economic game ’s stakes .
Sharply rising income inequality has raised the economic game stakes .
Sharply rising inequality of income has raised the stakes of the economic game .
Sharply rising inequality of income has raised the economic game ’s stakes .
Sharply rising inequality of income has raised the economic game stakes .
Sharply rising inequality of incomes has raised the stakes of the economic game .
Sharply rising inequality of incomes has raised the economic game ’s stakes .
Sharply rising inequality of incomes has raised the economic game stakes .
Sharply rising inequality in income has raised the stakes of the economic game .
Sharply rising inequality in income has raised the economic game ’s stakes .
Sharply rising inequality in income has raised the economic game stakes .
Sharply rising inequality in incomes has raised the stakes of the economic game .
Sharply rising inequality in incomes has raised the economic game ’s stakes .
Sharply rising inequality in incomes has raised the economic game stakes .

Table 1: Sample sentence and automatically generated paraphrases. Paraphrased NCs are in italics.

7. remove that where optional
I think that he is right⇒ I think he is right.

8. add that where optional
I think he is right⇒ I think that he is right.

where:

poss possessive marker: ’ or ’s;
P preposition;
NPPP NP with internal PP-attachment;
NPPPof

NP with internal PP headed by of;
NPposs NP with internal possessive marker;
NPNC NP that is a Noun Compound.

While the first four and the last two transfor-
mations are purely syntactic, (5) and (6) are not.
The algorithm must determine whether a possessive
marker is feasible for (5) and must choose the cor-
rect preposition for (6). In either case, for noun com-
pounds (NCs) of length 3 or more, it also needs to
choose the position to modify, e.g., inquiry’s com-
mittee chairman vs. inquiry committee’s chairman.

In order to ensure accuracy of the paraphrases,
we use statistics gathered from the Web, using a
variation of the approaches presented in Lapata and
Keller (2004) and Nakov and Hearst (2005). We use
patterns to generate possible prepositional or copula
paraphrases in the context of the preceding and the
following word in the sentence, First we split the
NC into two parts N1 and N2 in all possible ways,
e.g., beef import ban lifting would be split as: (a)

N1=“beef”, N2=“import ban lifting”, (b) N1=“beef
import”, N2=“ban lifting”, and (c) N1=“beef import
ban”, N2=“lifting”. For every split, we issue exact
phrase queries to the Google search engine using
the following patterns:

"lt N1 poss N2 rt"

"lt N2 prep det N ′
1 rt"

"lt N2 that be det N ′
1 rt"

"lt N2 that be prep det N ′
1 rt"

where: lt is the word preceding N1 in the original
sentence or empty if none, rt is the word following
N2 in the original sentence or empty if none, poss
is a possessive marker (’s or ’), that is that, which
or who, be is is or are, det is a determiner (the, a,
an, or none), prep is one of the 8 prepositions used
by Lauer (1995) for semantic interpretation of NCs:
about, at, for, from, in, of, on, and with, and N ′

1 can
be either N1, or N1 with the number of its last word
changed from singular/plural to plural/singular.

For all splits, we collect the number of page hits
for each instantiation of each pattern, filtering out
the paraphrases whose page hit count is less than 10.
We then calculate the total number of page hits H for
all paraphrases (for all splits and all patterns), and
retain those ones whose page hits count is at least
10% of H . Note that this allows for multiple para-
phrases of an NC. If no paraphrases are retained, we
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repeat the above procedure with lt set to the empty
string. If there are still no good paraphrases, we set
the rt to the empty string. If this does not help ei-
ther, we make a final attempt, by setting both lt and
rt to the empty string.

Table 1 shows the paraphrases for a sample sen-
tence. We can see that income inequality is para-
phrased as inequality of income, inequality of in-
comes, inequality in income and inequality in in-
comes; also economic game’s stakes becomes eco-
nomic game stakes and stakes of the economic game.

3 Experiments

Table 2 shows a summary of our submissions: the
official runs are marked with a ?. For our experi-
ments, we used the baseline system, provided by the
organizers, which we modified in different ways, as
described below.

3.1 Domain Adaptation

All our systems were trained on both corpora.

• Language models. We used two language
models (LM) – a small in-domain one (trained
on News Commentary) and a big out-of-domain
one (trained on Europarl). For example, for EN
→ ES (from English to Spanish), on the low-
ercased tuning data set, using in-domain LM
only achieved a BLEU of 0.332910, while us-
ing both LMs yielded 0.354927, a significant
effect.

• Cognates. Previous research has found that
using cognates can help get better word align-
ments (and ultimately better MT results), espe-
cially in case of a small training set. We used
the method described in (Kondrak et al., 2003)
in order to extract cognates from the two data
sets. We then added them as sentence pairs to
the News Commentary corpus before training
the word alignment models1 for ucb3, ucb4 and
ucb5.

1Following (Kondrak et al., 2003), we considered words of
length 4 or more, we required the length ratio to be between
7
10

and 10
7

, and we accepted as potential cognates all pairs for
which the longest common subsequence ratio (LCSR) was 0.58
or more. We repeated 3 times the cognate pairs extracted from
the Europarl, and 4 times the ones from News Commentary.

• Phrases. The ucb5 system uses the Europarl
data in order to learn an additional phrase ta-
ble and an additional lexicalized re-ordering
model.

3.2 Paraphrasing the Training Set
In two of our experiments (ucb3, ucb4 and ucb5),
we used a paraphrased version of the training News
Commentary data, using all rules (1)-(8). We trained
two separate MT systems: one on the original cor-
pus, and another one on the paraphrased version.
We then used both resulting lexicalized re-ordering
models and a merged phrase table with extra para-
meters: if a phrase appeared in both phrase tables,
it now had 9 instead of 5 parameters (4 from each
table, plus a phrase penalty), and if it was in one
of the phrase tables only, the 4 missing parameters
were filled with 1e-40.

The ucb5 system is also trained on Europarl,
yielding a third lexicalized re-ordering model and
adding 4 new parameters to the phrase table entries.

Unfortunately, longer sentences (up to 100 to-
kens, rather than 40), longer phrases (up to 10 to-
kens, rather than 7), two LMs (rather than just
one), higher-order LMs (order 7, rather than 3),
multiple higher-order lexicalized re-ordering mod-
els (up to 3), etc. all contributed to increased sys-
tem’s complexity, and, as a result, time limitations
prevented us from performing minimum-error-rate
training (MERT) (Och, 2003) for ucb3, ucb4 and
ucb5. Therefore, we used the MERT parameter val-
ues from ucb1 instead, e.g. the first 4 phrase weights
of ucb1 were divided by two, copied twice and used
in ucb3 as the first 8 phrase-table parameters. The
extra 4 parameters of ucb5 came from training a sep-
arate MT system on the Europarl data (scaled ac-
cordingly).

3.3 Paraphrasing the Test Set
In some of our experiments (ucb2 and ucb4), given
a test sentence, we generated the single most-likely
paraphrase, which makes it syntactically closer to
Spanish and French. Unlike English, which makes
extensive use of noun compounds, these languages
strongly prefer connecting the nouns with a preposi-
tion (and less often turning a noun into an adjective).
Therefore, we paraphrased all NCs using preposi-
tions, by applying rules (4) and (6). In addition, we
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Languages System LM size Paraphrasing Cognates? Extra phrases MERT
News Europarl train? test? Europarl finished?

EN→ ES ucb1? 3 5 +
ucb2 3 5 + +
ucb3 5 7 + +
ucb4 5 7 + + +
ucb5 5 7 + + +

EN→ FR ucb3 5 7 + +
ucb4? 5 7 + + +

EN→ DE ucb1? 5 7 + +
ucb2 5 7 + + +

Table 2: Summary of our submissions. All runs are for the News Commentary test data. The official
submissions are marked with a star.

applied rule (8), since its Spanish/French equivalent
que (as well as the German daß) is always obliga-
tory. These transformations affected 927 out of the
2007 test sentences. We also used this transformed
data set when translating to German (however, Ger-
man uses NCs as much as English does).

3.4 Other Non-standard Settings
Below we discuss some non-standard settings that
differ from the ones suggested by the organizers in
their baseline system. First, following Birch et al.
(2006), who found that higher-order LMs give bet-
ter results2, we used a 5-gram LM for News Com-
mentary, and 7-gram LM for Europarl (as opposed
to 3-gram, as done normally). Second, for all runs
we trained our systems on all sentences of length up
to 100 (rather than 40, as suggested in the baseline
system). Third, we used a maximum phrase length
limit of 10 (rather than 7, as typically done). Fourth,
we used both a lexicalized and distance-based re-
ordering models (as opposed to lexicalized only, as
in the baseline system). Finally, while we did not
use any resources other than the ones provided by
the shared task organizers, we made use of Web fre-
quencies when paraphrasing the training corpus, as
explained above.

4 Conclusions and Future Work

We have presented various approaches to domain
adaptation and their combinations. Unfortunately,

2They used a 5-gram LM trained on Europarl, but we
pushed the idea further, using a 7-gram LM with a Kneser-Ney
smoothing.

computational complexity and time limitations pre-
vented us from doing proper MERT for the interest-
ing more complex systems. We plan to do a proper
MERT training and to study the impact of the indi-
vidual components in isolation.
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Abstract

We describe the CMU-UKA Syntax Augmented
Machine Translation system ‘SAMT’ used for the
shared task “Machine Translation for European Lan-
guages” at the ACL 2007 Workshop on Statistical
Machine Translation. Following an overview of syn-
tax augmented machine translation, we describe pa-
rameters for components in our open-source SAMT
toolkit that were used to generate translation results
for the Spanish to English in-domain track of the
shared task and discuss relative performance against
our phrase-based submission.

1 Introduction
As Chiang (2005) and Koehn et al. (2003) note,
purely lexical “phrase-based” translation models
suffer from sparse data effects when translating con-
ceptual elements that span or skip across several
source language words. Phrase-based models also
rely on distance and lexical distortion models to rep-
resent the reordering effects across language pairs.
However, such models are typically applied over
limited source sentence ranges to prevent errors in-
troduced by these models and to maintain efficient
decoding (Och and Ney, 2004).

To address these concerns, hierarchically struc-
tured models as in Chiang (2005) define weighted
transduction rules, interpretable as components of
a probabilistic synchronous grammar (Aho and Ull-
man, 1969) that represent translation and reordering
operations. In this work, we describe results from
the open-source Syntax Augmented Machine Trans-
lation (SAMT) toolkit (Zollmann and Venugopal,
2006) applied to the Spanish-to-English in-domain
translation task of the ACL’07 workshop on statisti-
cal machine translation.

We begin by describing the probabilistic model of
translation applied by the SAMT toolkit. We then
present settings for the pipeline of SAMT tools that

we used in our shared task submission. Finally, we
compare our translation results to the CMU-UKA
phrase-based SMT system and discuss relative per-
formance.

2 Synchronous Grammars for SMT
Probabilistic synchronous context-free grammars
(PSCFGs) are defined by a source terminal set
(source vocabulary) TS , a target terminal set (target
vocabulary) TT , a shared nonterminal setN and pro-
duction rules of the form

X → 〈γ, α,∼, w〉

where following (Chiang, 2005)

• X ∈ N is a nonterminal
• γ ∈ (N ∪TS)∗ : sequence of source nonterminals

and terminals
• α ∈ (N ∪ TT )∗ : sequence of target nonterminals

and terminals
• the count #NT(γ) of nonterminal tokens in γ is

equal to the count #NT(α) of nonterminal tokens
in α,

• ∼: {1, . . . ,#NT(γ)} → {1, . . . ,#NT(α)} one-
to-one mapping from nonterminal tokens in γ to
nonterminal tokens in α

• w ∈ [0,∞) : nonnegative real-valued weight

Chiang (2005) uses a single nonterminal cate-
gory, Galley et al. (2004) use syntactic constituents
for the PSCFG nonterminal set, and Zollmann and
Venugopal (2006) take advantage of CCG (Combi-
natorial Categorical Grammar) (Steedman, 1999) in-
spired “slash” and “plus” categories, focusing on tar-
get (rather than source side) categories to generate
well formed translations.

We now describe the identification and estima-
tion of PSCFG rules from parallel sentence aligned
corpora under the framework proposed by Zollmann
and Venugopal (2006).
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2.1 Grammar Induction
Zollmann and Venugopal (2006) describe a process
to generate a PSCFG given parallel sentence pairs
〈f, e〉, a parse tree π for each e, the maximum a
posteriori word alignment a over 〈f, e〉, and phrase
pairs Phrases(a) identified by any alignment-driven
phrase induction technique such as e.g. (Och and
Ney, 2004).

Each phrase in Phrases(a) (phrases identifiable
from a) is first annotated with a syntactic category
to produce initial rules. If the target span of the
phrase does not match a constituent in π, heuristics
are used to assign categories that correspond to par-
tial rewriting of the tree. These heuristics first con-
sider concatenation operations, forming categories
like “NP+VP”, and then resort to CCG style “slash”
categories like “NP/NN” giving preference to cate-
gories found closer to the leaves of the tree.

To illustrate this process, consider the following
French-English sentence pair and selected phrase
pairs obtained by phrase induction on an automat-
ically produced alignment a, and matching target
spans with π.

f = il ne va pas
e = he does not go

PRP → il, he
VB → va, go

RB+VB → ne va pas, not go
S → il ne va pas, he does not go

The alignment a with the associated target side
parse tree is shown in Fig. 1 in the alignment visual-
ization style defined by Galley et al. (2004).

Following the Data-Oriented Parsing inspired
rule generalization technique proposed by Chiang
(2005), one can now generalize each identified
rule (initial or already partially generalized) N →
f1 . . . fm/e1 . . . en for which there is an initial rule
M → fi . . . fu/ej . . . ev where 1 ≤ i < u ≤ m and
1 ≤ j < v ≤ n, to obtain a new rule

N → f1 . . . fi−1Mkfu+1 . . . fm/e1 . . . ej−1Mkev+1 . . . en

where k is an index for the nonterminal M that in-
dicates the one-to-one correspondence between the
new M tokens on the two sides (it is not in the space
of word indices like i, j, u, v, m, n). The initial rules
listed above can be generalized to additionally ex-
tract the following rules from f, e.

S → PRP1 ne va pas , PRP1 does not go
S → il ne VB1 pas , he does not VB1

S → il RB+VB1, he does RB+VB1

S → PRP1 RB+VB2, PRP1 does RB+VB2

RB+VB → ne VB1 pas , not VB1

Fig. 2 uses regions to identify the labeled, source
and target side span for all initial rules extracted on

our example sentence pair and parse. Under this rep-
resentation, generalization can be viewed as a pro-
cess that selects a region, and proceeds to subtract
out any sub-region to form a generalized rule.

S

qqqqqqq
MMMMMMM

NP VP

qqqqqqq
MMMMMMM

PRN AUX RB VB

he does not

qqqqqqq
MMMMMMM go

qqqqqqq

il ne va pas

Figure 1: Alignment graph (word alignment and target parse
tree) for a French-English sentence pair.

il 1 ne 2 va 3 pas 4

he 1

does 2

not 3

go 4

�

�i

�
�

9

S

RB+VB

VB
VP

NP+AUX

NP

Figure 2: Spans of initial lexical phrases w.r.t. f, e. Each phrase
is labeled with a category derived from the tree in Fig. 1.

2.2 Decoding
Given a source sentence f , the translation task under
a PSCFG grammar can be expressed analogously to
monolingual parsing with a CFG. We find the most
likely derivation D with source-side f and read off
the English translation from this derivation:

ê = tgt

(
arg max

D:src(D)=f
p(D)

)
(1)

where tgt(D) refers to the target terminals and
src(D) to the source terminals generated by deriva-
tion D.

Our distribution p over derivations is defined by a
log-linear model. The probability of a derivation D
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is defined in terms of the rules r that are used in D:

p(D) =
pLM (tgt(D))λLM

∏
r∈D

∏
i φi(r)λi

Z(λ)
(2)

where φi refers to features defined on each rule,
pLM is a language model (LM) probability applied to
the target terminal symbols generated by the deriva-
tion D, and Z(λ) is a normalization constant cho-
sen such that the probabilities sum up to one. The
computational challenges of this search task (com-
pounded by the integration of the LM) are addressed
in (Chiang, 2007; Venugopal et al., 2007). The
feature weights λi are trained in concert with the
LM weight via minimum error rate (MER) training
(Och, 2003).

We now describe the parameters for the SAMT
implementation of the model described above.

3 SAMT Components
SAMT provides tools to perform grammar induc-
tion ( “extractrules”, “filterrules”), from bilingual
phrase pairs and target language parse trees, as well
as translation (“FastTranslateChart”) of source sen-
tences given an induced grammar.

3.1 extractrules
extractrules is the first step of the grammar induc-
tion pipeline, where rules are identified based on the
process described in section 2.1. This tool works on
a per sentence basis, considering phrases extracted
for the training sentence pair 〈si, ti〉 and the corre-
sponding target parse tree πi. extractrules outputs
identified rules for each input sentence pair, along
with associated statistics that play a role in the esti-
mation of the rule features φ. These statistics take
the form of real-valued feature vectors for each rule
as well as summary information collected over the
corpus, such as the frequency of each nonterminal
symbol, or unique rule source sides encountered.

For the shared task evaluation, we ran extrac-
trules with the following extraction parameter
settings to limit the scope and number of rules
extracted. These settings produce the same initial
phrase table as the CMU-UKA phrase based sys-
tem. We limit the source-side length of the phrase
pairs considered as initial rules to 8 (parameter
MaxSourceLength). Further we set the max-
imum number of source and target terminals per
rule (MaxSource/MaxTargetWordCount)
to 5 and 8 respectively with 2 of nonter-
minal pairs (i.e., substitution sites) per rule
(MaxSubstititionCount). We limit the
total number of symbols in each rule to 8
(MaxSource/TargetSymbolCount) and
require all rules to contain at least one source-side

terminal symbol (noAllowAbstractRules,
noAllowRulesWithOnlyTargetTerminals)
since this reduces decoding time considerably. Ad-
ditionally, we discard all rules that contain source
word sequences that do not exist in the development
and test sets provided for the shared task (parameter
-r).

3.2 filterrules
This tool takes as input the rules identified by ex-
tractrules, and associates each rule with a feature
vector φ, representing multiple criteria by which the
decoding process can judge the quality of each rule
and, by extension, each derivation. filterrules is also
in charge of pruning the resulting PSCFG to ensure
tractable decoding.

φ contains both real and Boolean valued features
for each rule. The following probabilistic features
are generated by filterrules:

• p̂(r| lhs(X)) : Probability of a rule given its left-
hand-side (“result”) nonterminal

• p̂(r| src(r)) : Prob. of a rule given its source side
• p̂(ul(src(r)),ul(tgt(r))|ul(src(r)) : Probability

of the unlabeled source and target side of the rule
given its unlabeled source side.

Here, the function ul removes all syntactic la-
bels from its arguments, but retains ordering nota-
tion, producing relative frequencies similar to those
used in purely hierarchical systems. As in phrase-
based translation model estimation, φ also contains
two lexical weights (Koehn et al., 2003), counters
for number of target terminals generated. φ also
boolean features that describe rule types (i.e. purely
terminal vs purely nonterminal).

For the shared task submission, we pruned away
rules that share the same source side based on
p̂(r| src(r)) (the source conditioned relative fre-
quency). We prune away a rule if this value is
less that 0.5 times the one of the best performing
rule (parameters BeamFactorLexicalRules,
BeamFactorNonlexicalRules).

3.3 FastTranslateChart
The FastTranslateChart decoder is a chart parser
based on the CYK+(Chappelier and Rajman, 1998)
algorithm. Translation experiments in this paper
are performed with a 4-gram SRI language model
trained on the target side of the corpus. Fast-
TranslateChart implements both methods of han-
dling the LM intersection described in (Venugopal
et al., 2007). For this submission, we use the Cube-
Pruning (Chiang, 2007) approach (the default set-
ting). LM and rule feature parameters λ are trained
with the included MER training tool. Our prun-
ing settings allow up to 200 chart items per cell
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with left-hand side nonterminal ‘ S’ (the reserved
sentence spanning nonterminal), and 100 items per
cell for each other nonterminal. Beam pruning
based on an (LM-scaled) additive beam of neg-
lob probability 5 is used to prune the search fur-
ther. These pruning settings correspond to setting
’PruningMap=0-100-5-@_S-200-5’.

4 Empirical Results
We trained our system on the Spanish-English in-
domain training data provided for the workshop. Ini-
tial data processing and normalizing is described
in the workshop paper for the CMU-UKA ISL
phrase-based system. NIST-BLEU scores are re-
ported on the 2K sentence development ‘dev06’ and
test ‘test06’ corpora as per the workshop guide-
lines (case sensitive, de-tokenized). We compare
our scores against the CMU-UKA ISL phrase-based
submission, a state-of-the art phrase-based SMT
system with part-of-speech (POS) based word re-
ordering (Paulik et al., 2007).

4.1 Translation Results
The SAMT system achieves a BLEU score of
32.48% on the ‘dev06’ development corpus and
32.15% on the unseen ’test06’ corpus. This is
slightly better than the score of the CMU-UKA
phrase-based system, which achieves 32.20% and
31.85% when trained and tuned under the same in-
domain conditions. 1

To understand why the syntax augmented ap-
proach has limited additional impact on the Spanish-
to-English task, we consider the impact of reorder-
ing within our phrase-based system. Table 1 shows
the impact of increasing reordering window length
(Koehn et al., 2003) on translation quality for the
‘dev06’ data.2 Increasing the reordering window
past 2 has minimal impact on translation quality,
implying that most of the reordering effects across
Spanish and English are well modeled at the local or
phrase level. The benefit of syntax-based systems to
capture long-distance reordering phenomena based
on syntactic structure seems to be of limited value
for the Spanish to English translation task.

5 Conclusions
In this work, we briefly summarized the Syntax-
augmented MT model, described how we trained
and ran our implementation of that model on

1The CMU-UKA phrase-based workshop submission was
tuned on out-of-domain data as well.

2Variant of the CMU-UKA ISL phrase-based system with-
out POS based reordering. With POS-based reordering turned
on, additional window-based reordering even for window length
1 had no improvement in NIST-BLEU.

ReOrder 1 2 3 4 POS SAMT
BLEU 31.98 32.24 32.30 32.26 32.20 32.48

Table 1: Impact of phrase based reordering model settings com-
pared to SAMT on the ‘dev06’ corpus measured by NIST-
BLEU

the MT’07 Spanish-to-English translation task.
We compared SAMT translation results to
a strong phrase-based system trained under
the same conditions. Our system is available
open-source under the GNU General Pub-
lic License (GPL) and can be downloaded at
www.cs.cmu.edu/˜zollmann/samt
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Abstract 

This article describes the combination of a 

SYSTRAN system with a “statistical post-

editing” (SPE) system. We document 

qualitative analysis on two experiments 

performed in the shared task of the ACL 

2007 Workshop on Statistical Machine 

Translation. Comparative results and more 

integrated “hybrid” techniques are dis-

cussed. 

1 Introduction 

The evolution of SYSTRAN’s architecture over 

the last years has been to « open » the system to 

enable interaction between the internal system’s 

rules and the external input – see Senellart (2003), 

Attnas et al. (2005). Based on this architecture, 

several directions are explored to introduce the use 

of « corpus-based » approaches at several levels of 

the process: 

- use of corpus-based tools to validate and enrich 

linguistic resources (detection of forbidden se-

quences, bilingual terminology extraction), - auto-

matic recognition of the text domain, - use of a 

corpus-based decision mechanism within « word 

boundary » (Chinese word identification), disam-

biguation… - use of word sense disambiguation 

techniques – and the use of a  language model in 

the generation phase to select alternative transla-

tions, prepositions, and local reordering (adjective 

positioning). 

These tools have been presented in Senellart 

(2006) and most of them will be integrated in 

SYSTRAN version 7 systems. 

Independently, two experiments were carried 

out for the shared task of the ACL 2007 Workshop 

on Statistical Machine Translation to combine a 

raw SYSTRAN system with a statistical post-

editing (SPE) system. One experiment was run by 

NRC using the language pair English<>French in 

the context of « Automatic Post-Edition » systems 

using the PORTAGE system as described in Si-

mard et al. (2007). The second experiment based 

on the same principle was run on the Ger-

man>English and Spanish>English
1
 language pairs 

using the Moses system (Koehn et al. 2007). The 

objective was to train a SMT system on a parallel 

corpus composed of SYSTRAN translations with 

the referenced source aligned with its referenced 

translation. 

Beyond both (a) the huge (and expected) im-

provement of the BLEU score for the combined 

system compared to raw translation output (for 

German-English, around 10 BLEU points for the 

Europarl test set of WMT2007) and (b) the (ex-

pected) corresponding improvement of the transla-

tion fluency, we provide qualitative analysis on the 

contributions (positive and negative) of the SPE 

layer imposed on the SYSTRAN translation output 

in this paper. For this analysis we classifiy the dif-

ferent types of “post-editing” changes and point 

out the alternative isolated statistical components 

that could achieve the same results. 

 We conclude with two possible approaches: 

breaking down the “statistical layer” into different 

components/tools each specialized in a narrow and 

accurate area, or refining this global SPE approach 

in order to introduce linguistic constraints. 

                                                 
1
 The Moses model was trained following the recom-

mendations for the baseline system of WMT 2007. 
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2 The SYSTRAN System 

Covering 80 language pairs for 22 different source 

languages, SYSTRAN powers almost all major 

portals (Google, Yahoo!, BabelFish, Apple, 

Worldlingo, …) with machine translation services 

through URL translations or translation “boxes” 

(estimated traffic: over 40 million sentence transla-

tions and over 10 million web page translations per 

day). 

Customized systems are used by corporate custom-

ers either within a post-editing workflow, or with-

out post-editing for the translation of technical 

Knowledge Bases. 

SYSTRAN engines are also available as desktop 

applications through “plugins” or within post-

editing tools.  The same engines are also available 

on ultra-light architectures such as for PDA de-

vices. 

The SYSTRAN system is traditionally classi-

fied as a “rule-based” system and its design – 

which has been in constant evolution - has, over 

the years, always been driven by pragmatic consid-

erations – progressively integrating most of the 

available productive techniques. As such, it is dif-

ficult to classify SYSTRAN and simply describe 

its architecture. However, the evolution of the 

SYSTRAN system is governed by the following 

principles: 

• provide a deterministic output : it is possi-

ble to easily explain the translation results 

for a specific sentence and change the rule 

• incremental translation quality: the more 

important evaluation criterion for mature 

systems is to perform a comparative evalua-

tion of translation output between two con-

secutive versions. Since it is impossible to 

guarantee 0 regressions in linguistic devel-

opment, 8 improvements for 1 degradation 

defines the acceptance criterion for a lin-

guistic patch. 

Crucial components of the SYSTRAN system 

are the linguistic resources for each lan-

guage/language pair ranging from 100k to 800k 

entries. Such “entries” should be understood as 

both simple or multiword “lexical entries” but also 

as customized  disambiguation rules. 

 

In this context (continuous integration of new 

techniques in SYSTRAN engines, adhering to de-

terminism and incrementability), over the last three 

years one major evolution within SYSTRAN has 

been to make use of available corpora - statically 

through extraction/learning/validation tools such as: 

• Dictionary improvement using a monolin-

gual corpus: new terms/entities/terminology 

extraction (n-grams based on linguistic pat-

terns); 

and dynamically through corpus-based decision 

algorithms such as: 

• Word sense disambiguation 

• Use of a language model to select alterna-

tive translations, determiner choice, and lo-

cal controlled reordering – like multiple ad-

jective sequences. 

 

In the following section, we present a qualitative 

review of the SYSTRAN+SPE output and analyze 

how the different contributions relate to each spe-

cific effort. 

3 Experimental Results & Linguistic 

Evaluation 

Based on the data from these two experiments: 

SYSTRAN+PORTAGE (En<>Fr), and 

SYSTRAN+Moses (De>En, Es>En), we 

performed linguistic evaluations on the differences 

between raw SYSTRAN output and 

SYSTRAN+SPE output. The evaluation for 

En<>Fr was performed on the News Commentary 

test 2006 corpus, while the evaluations for De>En, 

and Es>En were performed on the Europarl test 

2007 corpus. 

3.1 Impact 

The first observation is the impact of the SPE on 

the SYSTRAN output. Table 1 displays the WCR 

(Word Change Rate
2
) and the ratio of sentences 

impacted by the statistical post-editing. It is inter-

esting to note that the impact is quite high since 

almost all sentences were post-edited. On the other 

hand, the WCR of SYSTRAN+SPE is relatively 

small – as this clearly relates to post-editing and 

not a complete reshuffling of the translation. The 

same insight is reinforced when reviewing a com-

parator (see Table 2) – the SYSTRAN+SPE output 

                                                 
2
 Word Change Rate is computed similarly to the Word 

Error Rate, with regard to the SYSTRAN output. 
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is “reasonably” close to the raw SYSTRAN output, 

and the SPE output structure is completely based 

on the SYSTRAN output.  

 
 Word 

Change 

Rate 

Impact (ratio of 

sentences impacted) 

SYSTRAN+PORTAGE 

En>Fr (nc devtest 2006) 

0.33 98% 

SYSTRAN+PORTAGE 

Fr>En (nc devtest 2006) 

0.23 95% 

SYSTRAN+Moses 

De>En (nc test 2007) 

0.35 100% 

SYSTRAN+Moses Es>En (nc 

test 2007) 

0.31 99% 

Table 1 - Impact of SPE on raw translation output 

 
Source 

:En>Fr,De>En,Es>en 

SYSTRAN SYSTRAN +SPE 

Monetary policy 
can be used to 
stimulate an econ-
omy just as much 
as fiscal policy, if 
not more, in elec-
tion years, which 
politicians will 
always want to do. 

La politique monétaire 
peut être eeeemmmmployéeployéeployéeployée 
pour stimuler une une une une 
économie justeéconomie justeéconomie justeéconomie juste 
comme beaucoup quebeaucoup quebeaucoup quebeaucoup que 
la politique fiscale, 
sinonsinonsinonsinon plus, enenenen années 
d'élection, que les 
politicienspoliticienspoliticienspoliticiens voudront 
toujours faire. 

La politique monétaire 
peut être utilutilutilutiliiiiséeséeséesée pour 
stimuler l'écl'écl'écl'écoooonomie, nomie, nomie, nomie, 
touttouttouttout comme la politique 
fiscale, pour ne pas pour ne pas pour ne pas pour ne pas 
diredirediredire plus, dans lesdans lesdans lesdans les 
années d'élection, que 
les hommes polithommes polithommes polithommes politiiiiquesquesquesques 
voudront toujours faire. 

Fortschritte der 12 
Bewerberländer 
auf dem Weg zum 
Beitritt 

Progress of the 12 
applapplapplappliiiicantcantcantcant countries onononon 
the waywaywayway to the entrythe entrythe entrythe entry 

Progress of the 12 
candidatecandidatecandidatecandidate countries 
alongalongalongalong the roadroadroadroad to aaaac-c-c-c-
cessioncessioncessioncession 

En una perspectiva 
a más largo plazo, 
habrá una moneda 
única en todo el 
continente. 

In a perspeperspeperspeperspecccctive totive totive totive to 
more longlonglonglong termtermtermterm, there 
will be a uniqueuniqueuniqueunique cur-
rency inininin allallallall the conti-
nent. 

In a more longongongong----termtermtermterm 
perspective, there will 
be a singlesinglesinglesingle currency for 
the wholewholewholewhole continent. 
 

Table 2 - Comparison of source, SYSTRAN, and 

SYSTRAN+SPE: the output is “reasonably close” – 

and clearly preserves SYSTRAN’s translation struc-

ture 

3.2 Linguistic Categorization of Different 

Post-Editing Changes 

To classify the types of “post-editing” changes 

brought by the SPE system, we define the follow-

ing criteria: 
• termchg – changes related to lexical changes.  

o termchg_nfw – word not translated by SYSTRAN 

generating a translation with SPE. 

o termchg_term – slight terminology change pre-

serves part of speech and meaning. Most of the time 

changes improve fluency by selecting the appropriate 

terminology. (e.g. politicians→politiciens vs. the more 

commonly used “hommes politiques”). 

o termchg_loc – multiword expression/locution 

change (the same is true→Le même est vrai vs. C’est 

également vrai) 

o termchg_mean – lexical modification altering the 

meaning of the sentences, by changing the part of 

speech of the word, or by selecting a completely differ-

ent meaning for a given word. (Despite occasional 

grumbles→En dépit des grognements occasionnels vs. 

En dépit des maux économiser) 

• gram – changes related to grammar 

o gram_det – change in determiner (on political com-

mitments→sur des engagements politiques vs. sur les 

engagements politiques) 

o gram_prep – change in preposition (across the 

Atlantic→à travers l’atlantique vs. de l’autre côté de 

l’atlantique) 

o gram_pron – change in pronoun 

o gram_tense – change in tense (should not be hid-

den→ne devraient… vs. ne doivent…) 

o gram_number/gram_gender – change in num-

ber/gender – often reflecting lack of agreement 

o gram_other – other grammatical changes 

• punct/digit/case – change in punctuation, case, or 

numbers 

• wordorder_local – change in local word order 

• wordorder_long – change in word order (long distance) 

• style – change in “style” (justifying→justifiant vs. ce qui 

justifie) 

A detailed count of the number of improvements 

(#improv), degradations (#degrad) and equivalents 

(#equiv) related to each category performed for a 

sample corpus (100 sentences each) for En>Fr, 

De>En and Es>En systems, and related results are 

reported in the following tables
3
: 

 
 SYSTRAN  

PORTAGE 

En>Fr  

SYSTRAN  

Moses 

De>En 

SYSTRAN  

Moses  

Es>En 
termchg all +22% +46% +46% 

termchg_nfw 0% +3% +1% 
termchg_term +19% 
termchg_loc +8% 

termchg_mean -6% 

+42% +45% 

gram all +2% +4% +12% 

gram_det 14% +2% +4% 
gram_prep 2% +1% +5% 
gram_pron -1% +1% +4% 

gram_tense -4% +1% -0% 

gram_number 0% None None 
gram_gender -4% n/a n/a 
gram_other -1% None None 

punct/digit/case 1% -1% -1% 
wordorder_short -1% +1% +1% 
wordorder_long 0% None +1% 
style 1% +3% +2% 

Table 3 - Relative improvements brought by the SPE 
system: (#improv-#degrad)/∑#modif 

 
 #improv #de-

grad 

#improv / 

#degrad 

#equiv 

termchg all 90 32 3 33 

termchg_nfw 1 0  0 
termchg_term 59 7 8 29 
termchg_loc 15 1 15 1 

termchg_mean 15 24 1 3 

gram all 44 38 1 8 
gram_det 20 3 7 4 

gram_prep 12 9 1 1 
gram_pron 0 1 0 2 

gram_tense 2 8 0 0 
gram_number 4 4 1 0 
gram_gender 2 8 0 0 

                                                 
3
 Manual evaluations for De>En and Es>En should not 

be compared with the results for En>Fr, as both corpus 

and evaluation criteria differ. 
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gram_other 4 5 1 1 
punct/digit/case 8 7 1 1 
wordorder_short 0 1 0 0 

wordorder_long 0 0  0 
style 3 1 3 1 

Table 4 - Details on #improv, #degrad, #equiv for each 

category for SYSTRAN  PORTAGE En>Fr 

3.3 Analysis of Results 

The figures from the previous section provide very 

useful information that requires deeper analysis, 

the most obvious of which follow: 

• As is, this basic integration does not meet 

the acceptance criterion “8 improv. for 1 de-

grad.”  

• The most improved category is the 

“termchg” which corresponds to a local 

choice of word sense or alternative 

translation of words and locutions. In this 

category, the main source degradation stems 

from the “termchg_mean” category. This 

category covers changes of lexical unit parts 

of speech. 

• In grammatical categories, productive 

categories are “gram_det” and “gram_prep” 

but the improvement/degradation ratio for 

this last category is very low (it shows 

global improvements but there are many 

unacceptable degradations). 

• As expected, no “long-distance” restruc-

turing is observed and local reordering is 

negative for En>Fr and relatively negligible 

for other language pairs. 

• For the French target, morphology is a ma-

jor issue (accounts for 25% of degradations). 

This was also expected since no mechanism 

in the SPE provides any control over the 

morphology. 

4 Conclusions 

The SYSTRAN+SPE experiments demonstrate 

very good results – both on automatic scoring and 

on linguistic analysis. Detailed comparative analy-

sis provides directions on how to further improve 

these results by adding “linguistic control” mecha-

nisms. For SPE, we would, for instance, add lin-

guistic constraints in the decoding process, know-

ing that the structure/linguistic information could 

be made available in the translation output.  

Beyond the scope of these experiments, our re-

sults set a baseline to compare with other more 

sophisticated/integrated “rules and statistics” com-

bination models.  

In particular, the most improved categories ob-

served in these experiments confirm that our cur-

rent development direction for integrating data-

driven mechanisms within translation engines (es-

pecially for word sense disambiguation, for the 

selection of alternative translations or for specific 

local phenomena like determination) should con-

verge on the same results while preventing associ-

ated degradations. Also, the high score reached by 

the “termchg_loc” category substantiates the need 

to continue exploiting phrase tables built on 

parallel corpora to learn new terminology. 
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Abstract

The special challenge of the WMT 2007
shared task was domain adaptation. We
took this opportunity to experiment with
various ways of adapting a statistical ma-
chine translation systems to a special do-
main (here: news commentary), when
most of the training data is from a dif-
ferent domain (here: European Parliament
speeches). This paper also gives a descrip-
tion of the submission of the University of
Edinburgh to the shared task.

1 Our framework: the Moses MT system

The open source Moses (Koehn et al., 2007) MT
system was originally developed at the University
of Edinburgh and received a major boost through a
2007 Johns Hopkins workshop. It is now used at
several academic institutions as the basic infrastruc-
ture for statistical machine translation research.

The Moses system is an implementation of the
phrase-based machine translation approach (Koehn
et al., 2003). In this approach, an input sentence is
first split into text chunks (so-called phrases), which
are then mapped one-to-one to target phrases using
a large phrase translation table. Phrases may be re-
ordered, but typically a reordering limit (in our ex-
periments a maximum movement over 6 words) is
used. See Figure 1 for an illustration.

Phrase translation probabilities, reordering prob-
abilities and language model probabilities are com-
bined to give each possible sentence translation a
score. The best-scoring translation is searched for by
the decoding algorithm and outputted by the system
as the best translation. The different system compo-
nents hi (phrase translation probabilities, language

Figure 1: Phrase-based statistical machine transla-
tion model: Input is split into text chunks (phrases)
which are mapped using a large phrase translation
table. Phrases are mapped one-to-one, and may be
reordered.

model, etc.) are combined in a log-linear model to
obtain the score for the translation e for an input sen-
tence f:

score(e, f) = exp
∑

i

λi hi(e, f) (1)

The weights of the components λi are set by a
discriminative training method on held-out develop-
ment data (Och, 2003). The basic components used
in our experiments are: (a) two phrase translation
probabilities (both p(e|f) and p(f |e)), (b) two word
translation probabilities (both p(e|f) and p(f |e)),
(c) phrase count, (d) output word count, (e) language
model, (f) distance-based reordering model, and (g)
lexicalized reordering model.

For a more detailed description of this model,
please refer to (Koehn et al., 2005).

2 Domain adaption

Since training data for statistical machine translation
is typically collected opportunistically from wher-
ever it is available, the application domain for a ma-
chine translation system may be very different from
the domain of the system’s training data.

For the WMT 2007 shared task, the challenge was
to use a large amount of out-of-domain training data
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(about 40 million words) combined with a much
smaller amount of in-domain training data (about 1
million words) to optimize translation performance
on that particular domain. We carried out these ex-
periments on French–English.

2.1 Only out-of-domain training data

The first baseline system is trained only on the out-
of-domain Europarl corpus, which has the following
corpus statistics:

French English
Sentences 1,257,419
Words 37,489,556 33,787,890

2.2 Only in-domain training data

The second baseline system is trained only on the
in-domain NewsCommentary corpus. This corpus
is much smaller:

French English
Sentences 42,884
Words 1,198,041 1,018,503

2.3 Combined training data

To make use of all the training data, the straight-
forward way is to simply concatenate the two train-
ing corpora and use the combined data for both
translation model and language model training. In
our situation, however, the out-of-domain training
data overwhelms the in-domain training data due to
the sheer relative size. Hence, we do not expect the
best performance from this simplistic approach.

2.4 In-domain language model

One way to force a drift to the jargon of the target
domain is the use of the language model. In our next
setup, we used only in-domain data for training the
language model. This enables the system to use all
the translation knowledge from the combined cor-
pus, but it gives a preference to word choices that
are dominant in the in-domain training data.

2.5 Interpolated language model

Essentially, the goal of our subsequent approaches is
to make use of all the training data, but to include a
preference for the in-domain jargon by giving more
weight to the in-domain training data. This and the
next approach explore methods to bias the language
model, while the final approach biases the transla-
tion model.

0.60.2 0.3 0.4 0.5 0.7 0.8
157
158
159
160161162
163
164

weight

perplexity

Figure 2: Interpolating in-domain and out-of-
domain language models: effect of interpolation
weight on perplexity of LM on development set.

We trained two language models, one for each the
out-of-domain and the in-domain training data. Lan-
guage modeling software such as the SRILM toolkit
we used (Stolke, 2002) allows the interpolation of
these language models. When interpolating, we give
the out-of-domain language model a weight in re-
spect to the in-domain language model.

Since we want to obtain a language model that
gives us the best performance on the target domain,
we set this weight so that the perplexity of the de-
velopment set from that target domain is optimized.
We searched for the optimal weight setting by sim-
ply testing a set of weights and focusing on the most
promising range of weights.

Figure 2 displays all the weights we explored dur-
ing this process and the corresponding perplexity of
the resulting language model on the development set
(nc-dev2007). The optimal weight can be picked out
easily from this very smooth curve.

2.6 Two language models
The log-linear modeling approach of statistical ma-
chine translation enables a straight-forward combi-
nation of the in-domain and out-of-domain language
models. We included them as two separate fea-
tures, whose weights are set with minimum error
rate training. The relative weight for each model is
set directly by optimizing translation performance.

2.7 Two translation models
Finally, besides biasing the language model to a spe-
cific target domain, we may also bias the translation
model. Here, we take advantage of a feature of the
Moses decoder’s factored translation model frame-
work. In factored translation models, the representa-
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Method %BLEU
Large out-of-domain training data 25.11
Small in-domain training data 25.88
Combined training data 26.69
In-domain language model 27.46
Interpolated language model 27.12
Two language models 27.30
Two translation models 27.64

Table 1: Results of domain adaptation experiments

tion of words is extended to a vector of factors (e.g.,
surface form, lemma, POS, morphology).

The mapping of an input phrase to an output
phrase is decomposed into several translation and
generation steps, each using a different translation
or generation table, respectively. Such a decomposi-
tion is called a decoding path.

A more recent feature of the factored translation
model framework is the possible use of multiple al-
ternative decoding paths. This alternate decoding
path model was developed by Birch et al. (2007).
For our purposes, we use two decoding paths, each
consisting of only one translation step. One decod-
ing path is the in-domain translation table, and the
other decoding path is the out-of-domain translation
table. Again, respective weights are set with mini-
mum error rate training.

3 Domain adaptation results

Table 1 shows results of our domain adaptation ex-
periments on the development test set (nc-devtest-
2007). The results suggest that the language model
is a useful tool for domain adaptation. While train-
ing on all the data is essential for good performance,
using an in-domain language model alone already
gives fairly high performance (27.46). The perfor-
mance with the interpolated language model (27.12)
and two language models (27.30) are similar. All
perform better than the three baseline approaches.

The results also suggest that higher performance
can be obtained by using two translation models
through the Moses decoder’s alternative decoding
path framework. We saw our best results under this
condition (27.64).

4 WMT 2007 shared task submissions

We participated in all categories. Given the four lan-
guage pairs, with two translation directions and (ex-

cept for Czech) two test domains, this required us to
build 14 translation systems.

We had access to a fairly large computer cluster to
carry out our experiments over the course of a few
weeks. However, speed issues with the decoder and
load issues on the crowded cluster caused us to take
a few shortcuts. Also, a bug crept in to our English–
French experiments where we used the wrong deto-
kenizer, resulting drop of 2–3 points in %BLEU.

4.1 Tuning

Minimum error rate training is the most time-
consuming aspects of the training process. Due to
time constraints, we did not carry out this step for all
but the Czech systems (a new language for us). For
the other systems, we re-used weight settings from
our last year’s submission.

One of the most crucial outcomes of tuning is a
proper weight setting for output length, which is es-
pecially important for the BLEU score. Since the
training corpus and tokenization changed, our re-
used weights are not always optimal in this respect.
But only in one case we felt compelled to manually
adjust the weight for the word count feature, since
the original setup led to a output/reference length ra-
tio of 0.88 on the development test set.

4.2 Domain adaptation

For the Europarl test sets, we did not use any do-
main adaptation techniques, but simply used either
just the Europarl training data or the combined data
— whatever gave the higher score on the develop-
ment test set, although scores differed by only about
0.1–0.2 %BLEU.

In order to be able to re-use the old weights, we
were limited to domain adaptation methods that did
not change the number of components. We decided
to use the interpolated language model method de-
scribed in Section 2.5. For the different language
pairs, optimal interpolation weights differed:

Language pair Weight for Europarl LM
French–English 0.43
Spanish–English 0.41
German–English 0.40
English–French 0.51
English–Spanish 0.42
English–German 0.45
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Language pair Europarl NewsCommentary
%BLEU Length NIST %BLEU Length NIST

French–English 32.66 0.96 7.94 28.27 1.03 7.50
Spanish–English 33.26 1.00 7.82 34.17 1.06 8.35
German–English 28.49 0.94 7.32 25.45 1.01 7.19
Czech–English – – – 22.68 0.98 6.96
English–French 26.76 1.08 6.66 24.38 1.02 6.73
English–Spanish 32.55 0.98 7.66 33.59 0.94 8.46
English–German 20.59 0.97 6.18 17.06 1.00 6.04
English–Czech – – – 12.34 1.02 4.85

Table 2: Test set performance of our systems: BLEU and NIST scores, and output/reference length ratio.

4.3 Training and decoding parameters
We tried to improve performance by increasing
some of the limits imposed on the training and de-
coding setup. During training, long sentences are
removed from the training data to speed up the
GIZA++ word alignment process. Traditionally, we
worked with a sentence length limit of 40. We found
that increasing this limit to about 80 gave better re-
sults without causing undue problems with running
the word alignment (GIZA++ increasingly fails and
runs much slower with long sentences).

We also tried to increase beam sizes and the
limit on the number of translation options per cov-
erage span (ttable-limit). This has shown to be suc-
cessful in our experiments with Arabic–English and
Chinese–English systems. Surprisingly, increasing
the maximum stack size to 1000 (from 200) and
ttable-limit to 100 (from 20) has barely any ef-
fect on translation performance. The %BLEU score
changed only by less than 0.05, and often worsened.

4.4 German–English system
The German–English language pair is especially
challenging due to the large differences in word or-
der. Collins et al. (2005) suggest a method to reorder
the German input before translating using a set of
manually crafted rules. In our German–English sub-
missions, this is done both to the training data and
the input to the machine translation system.

5 Conclusions

Our submission to the WMT 2007 shared task is a
fairly straight-forward use of the Moses MT system
using default parameters. In a sense, we submitted
a baseline performance of this system. BLEU and
NIST scores for all our systems on the test sets are
displayed in Table 2. Compared to other submitted

systems, these are very good scores, often the best
or second highest scores for these tasks.

We made a special effort in two areas: We ex-
plored domain adaptation methods for the News-
Commentary test sets and we used reordering rules
for the German–English language pair.
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Abstract

Meteor is an automatic metric for Ma-
chine Translation evaluation which has been
demonstrated to have high levels of corre-
lation with human judgments of translation
quality, significantly outperforming the more
commonly used Bleu metric. It is one of
several automatic metrics used in this year’s
shared task within the ACL WMT-07 work-
shop. This paper recaps the technical de-
tails underlying the metric and describes re-
cent improvements in the metric. The latest
release includes improved metric parameters
and extends the metric to support evalua-
tion of MT output in Spanish, French and
German, in addition to English.

1 Introduction

Automatic Metrics for MT evaluation have been re-
ceiving significant attention in recent years. Evalu-
ating an MT system using such automatic metrics is
much faster, easier and cheaper compared to human
evaluations, which require trained bilingual evalua-
tors. Automatic metrics are useful for comparing
the performance of different systems on a common
translation task, and can be applied on a frequent
and ongoing basis during MT system development.
The most commonly used MT evaluation metric in
recent years has been IBM’s Bleu metric (Papineni
et al., 2002). Bleu is fast and easy to run, and it
can be used as a target function in parameter op-
timization training procedures that are commonly
used in state-of-the-art statistical MT systems (Och,
2003). Various researchers have noted, however, var-
ious weaknesses in the metric. Most notably, Bleu
does not produce very reliable sentence-level scores.
Meteor , as well as several other proposed metrics
such as GTM (Melamed et al., 2003), TER (Snover
et al., 2006) and CDER (Leusch et al., 2006) aim to
address some of these weaknesses.

Meteor , initially proposed and released in 2004
(Lavie et al., 2004) was explicitly designed to im-
prove correlation with human judgments of MT qual-
ity at the segment level. Previous publications on
Meteor (Lavie et al., 2004; Banerjee and Lavie,
2005) have described the details underlying the met-
ric and have extensively compared its performance
with Bleu and several other MT evaluation met-
rics. This paper recaps the technical details underly-
ing Meteor and describes recent improvements in
the metric. The latest release extends Meteor to
support evaluation of MT output in Spanish, French
and German, in addition to English. Furthermore,
several parameters within the metric have been opti-
mized on language-specific training data. We present
experimental results that demonstrate the improve-
ments in correlations with human judgments that re-
sult from these parameter tunings.

2 The Meteor Metric

Meteor evaluates a translation by computing a
score based on explicit word-to-word matches be-
tween the translation and a given reference trans-
lation. If more than one reference translation is
available, the translation is scored against each refer-
ence independently, and the best scoring pair is used.
Given a pair of strings to be compared, Meteor cre-
ates a word alignment between the two strings. An
alignment is mapping between words, such that ev-
ery word in each string maps to at most one word
in the other string. This alignment is incrementally
produced by a sequence of word-mapping modules.
The “exact” module maps two words if they are ex-
actly the same. The “porter stem” module maps two
words if they are the same after they are stemmed us-
ing the Porter stemmer. The “WN synonymy” mod-
ule maps two words if they are considered synonyms,
based on the fact that they both belong to the same
“synset” in WordNet.

The word-mapping modules initially identify all
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possible word matches between the pair of strings.
We then identify the largest subset of these word
mappings such that the resulting set constitutes an
alignment as defined above. If more than one maxi-
mal cardinality alignment is found, Meteor selects
the alignment for which the word order in the two
strings is most similar (the mapping that has the
least number of “crossing” unigram mappings). The
order in which the modules are run reflects word-
matching preferences. The default ordering is to
first apply the “exact” mapping module, followed by
“porter stemming” and then “WN synonymy”.

Once a final alignment has been produced between
the system translation and the reference translation,
the Meteor score for this pairing is computed as
follows. Based on the number of mapped unigrams
found between the two strings (m), the total num-
ber of unigrams in the translation (t) and the total
number of unigrams in the reference (r), we calcu-
late unigram precision P = m/t and unigram recall
R = m/r. We then compute a parameterized har-
monic mean of P and R (van Rijsbergen, 1979):

Fmean =
P ·R

α · P + (1− α) ·R
Precision, recall and Fmean are based on single-

word matches. To take into account the extent to
which the matched unigrams in the two strings are
in the same word order, Meteor computes a penalty
for a given alignment as follows. First, the sequence
of matched unigrams between the two strings is di-
vided into the fewest possible number of “chunks”
such that the matched unigrams in each chunk are
adjacent (in both strings) and in identical word or-
der. The number of chunks (ch) and the number of
matches (m) is then used to calculate a fragmenta-
tion fraction: frag = ch/m. The penalty is then
computed as:

Pen = γ · fragβ

The value of γ determines the maximum penalty
(0 ≤ γ ≤ 1). The value of β determines the
functional relation between fragmentation and the
penalty. Finally, the Meteor score for the align-
ment between the two strings is calculated as:

score = (1− Pen) · Fmean

In all previous versions of Meteor , the values of
the three parameters mentioned above were set to be:
α = 0.9, β = 3.0 and γ = 0.5, based on experimen-
tation performed in early 2004. In the latest release,
we tuned these parameters to optimize correlation
with human judgments based on more extensive ex-
perimentation, as reported in section 4.

3 Meteor Implementations for
Spanish, French and German

We have recently expanded the implementation of
Meteor to support evaluation of translations in
Spanish, French and German, in addition to English.
Two main language-specific issues required adapta-
tion within the metric: (1) language-specific word-
matching modules; and (2) language-specific param-
eter tuning. The word-matching component within
the English version of Meteor uses stemming and
synonymy modules in constructing a word-to-word
alignment between translation and reference. The re-
sources used for stemming and synonymy detection
for English are the Porter Stemmer (Porter, 2001)
and English WordNet (Miller and Fellbaum, 2007).
In order to construct instances of Meteor for Span-
ish, French and German, we created new language-
specific “stemming” modules. We use the freely
available Perl implementation packages for Porter
stemmers for the three languages (Humphrey, 2007).
Unfortunately, we have so far been unable to obtain
freely available WordNet resources for these three
languages. Meteor versions for Spanish, French
and German therefore currently include only “exact”
and “stemming” matching modules. We are investi-
gating the possibility of developing new synonymy
modules for the various languages based on alterna-
tive methods, which could then be used in place of
WordNet. The second main language-specific issue
which required adaptation is the tuning of the three
parameters within Meteor , described in section 4.

4 Optimizing Metric Parameters

The original version of Meteor (Banerjee and
Lavie, 2005) has instantiated values for three pa-
rameters in the metric: one for controlling the rela-
tive weight of precision and recall in computing the
Fmean score (α); one governing the shape of the
penalty as a function of fragmentation (β) and one
for the relative weight assigned to the fragmenta-
tion penalty (γ). In all versions of Meteor to date,
these parameters were instantiated with the values
α = 0.9, β = 3.0 and γ = 0.5, based on early data ex-
perimentation. We recently conducted a more thor-
ough investigation aimed at tuning these parameters
based on several available data sets, with the goal of
finding parameter settings that maximize correlation
with human judgments. Human judgments come in
the form of “adequacy” and “fluency” quantitative
scores. In our experiments, we looked at optimizing
parameters for each of these human judgment types
separately, as well as optimizing parameters for the
sum of adequacy and fluency. Parameter adapta-
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Corpus Judgments Systems
NIST 2003 Ara-to-Eng 3978 6
NIST 2004 Ara-to-Eng 347 5
WMT-06 Eng-to-Fre 729 4
WMT-06 Eng-to-Ger 756 5
WMT-06 Eng-to-Spa 1201 7

Table 1: Corpus Statistics for Various Languages

tion is also an issue in the newly created Meteor
instances for other languages. We suspected that
parameters that were optimized to maximize corre-
lation with human judgments for English would not
necessarily be optimal for other languages.

4.1 Data

For English, we used the NIST 2003 Arabic-to-
English MT evaluation data for training and the
NIST 2004 Arabic-to-English evaluation data for
testing. For Spanish, German and French we used
the evaluation data provided by the shared task at
last year’s WMT workshop. Sizes of various corpora
are shown in Table 1. Some, but not all, of these data
sets have multiple human judgments per translation
hypothesis. To partially address human bias issues,
we normalize the human judgments, which trans-
forms the raw judgment scores so that they have sim-
ilar distributions. We use the normalization method
described in (Blatz et al., 2003). Multiple judgments
are combined into a single number by taking their
average.

4.2 Methodology

We performed a “hill climbing” search to find the
parameters that achieve maximum correlation with
human judgments on the training set. We use Pear-
son’s correlation coefficient as our measure of corre-
lation. We followed a “leave one out” training proce-
dure in order to avoid over-fitting. When n systems
were available for a particular language, we train the
parameters n times, leaving one system out in each
training, and pooling the segments from all other
systems. The final parameter values are calculated
as the mean of the n sets of trained parameters that
were obtained. When evaluating a set of parameters
on test data, we compute segment-level correlation
with human judgments for each of the systems in the
test set and then report the mean over all systems.

4.3 Results

4.3.1 Optimizing for Adequacy and Fluency
We trained parameters to obtain maximum cor-

relation with normalized adequacy and fluency judg-

Adequacy Fluency Sum
α 0.82 0.78 0.81
β 1.0 0.75 0.83
γ 0.21 0.38 0.28

Table 2: Optimal Values of Tuned Parameters for
Different Criteria for English

Adequacy Fluency Sum
Original 0.6123 0.4355 0.5704
Adequacy 0.6171 0.4354 0.5729
Fluency 0.6191 0.4502 0.5818
Sum 0.6191 0.4425 0.5778

Table 3: Pearson Correlation with Human Judg-
ments on Test Data for English

ments separately and also trained for maximal corre-
lation with the sum of the two. The resulting optimal
parameter values on the training corpus are shown in
Table 2. Pearson correlations with human judgments
on the test set are shown in Table 3.

The optimal parameter values found are somewhat
different than our previous metric parameters (lower
values for all three parameters). The new parame-
ters result in moderate but noticeable improvements
in correlation with human judgments on both train-
ing and testing data. Tests for statistical significance
using bootstrap sampling indicate that the differ-
ences in correlation levels are all significant at the
95% level. Another interesting observation is that
precision receives slightly more “weight” when op-
timizing correlation with fluency judgments (versus
when optimizing correlation with adequacy). Recall,
however, is still given more weight than precision.
Another interesting observation is that the value of
γ is higher for fluency optimization. Since the frag-
mentation penalty reflects word-ordering, which is
closely related to fluency, these results are consistent
with our expectations. When optimizing correlation
with the sum of adequacy and fluency, optimal val-
ues fall in between the values found for adequacy and
fluency.

4.3.2 Parameters for Other Languages
Similar to English, we trained parameters for

Spanish, French and German on the available WMT-
06 training data. We optimized for maximum corre-
lation with human judgments of adequacy, fluency
and for the sum of the two. Resulting parameters
are shown in Table 4.3.2. For all three languages, the
parameters that were found to be optimal were quite
different than those that were found for English, and
using the language-specific optimal parameters re-
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Adequacy Fluency Sum
French:α 0.86 0.74 0.76

β 0.5 0.5 0.5
γ 1.0 1.0 1.0

German:α 0.95 0.95 0.95
β 0.5 0.5 0.5
γ 0.6 0.8 0.75

Spanish:α 0.95 0.62 0.95
β 1.0 1.0 1.0
γ 0.9 1.0 0.98

Table 4: Tuned Parameters for Different Languages

sults in significant gains in Pearson correlation levels
with human judgments on the training data (com-
pared with those obtained using the English opti-
mal parameters)1. Note that the training sets used
for these optimizations are comparatively very small,
and that we currently do not have unseen test data
to evaluate the parameters for these three languages.
Further validation will need to be performed once ad-
ditional data becomes available.

5 Conclusions

In this paper we described newly developed
language-specific instances of the Meteor metric
and the process of optimizing metric parameters for
different human measures of translation quality and
for different languages. Our evaluations demonstrate
that parameter tuning improves correlation with hu-
man judgments. The stability of the optimized pa-
rameters on different data sets remains to be inves-
tigated for languages other than English. We are
currently exploring broadening the set of features
used in Meteor to include syntax-based features
and alternative notions of synonymy. The latest re-
lease of Meteor is freely available on our website
at: http://www.cs.cmu.edu/~alavie/METEOR/
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Abstract

This paper describes experiments with
English-to-Czech phrase-based machine
translation. Additional annotation of input
and output tokens (multiple factors) is used
to explicitly model morphology. We vary
the translation scenario (the setup of multi-
ple factors) and the amount of information
in the morphological tags. Experimental
results demonstrate significant improvement
of translation quality in terms of BLEU.

1 Introduction

Statistical phrase-based machine translation (SMT)
systems currently achieve top performing results.1

Known limitations of phrase-based SMT include
worse quality when translating to morphologically
rich languages as opposed to translating from them
(Koehn, 2005). One of the teams at the 2006 sum-
mer engineering workshop at Johns Hopkins Uni-
versity2 attempted to tackle these problems by in-
troducing separateFACTORS in SMT input and/or
output to allow explicit modelling of the underlying
language structure. The support for factored transla-
tion models was incorporated into the Moses open-
source SMT system3.

In this paper, we report on experiments with
English-to-Czech multi-factor translation. After a
brief overview of factored SMT and our data (Sec-
tions 2 and 3), we summarize some possible trans-
lating scenarios in Section 4. Section 5 studies the

1http://www.nist.gov/speech/tests/mt/
2http://www.clsp.jhu.edu/ws2006/
3http://www.statmt.org/moses/

level of detail useful for morphological representa-
tion and Section 6 compares the results to a setting
with more data available, albeit out of domain. The
second part (Section 7) is devoted to a brief analysis
of MT output errors.

1.1 Motivation for Improving Morphology

Czech is a Slavic language with very rich morphol-
ogy and relatively free word order. The Czech mor-
phological system (Hajič, 2004) defines 4,000 tags
in theory and 2,000 were actually seen in a big
tagged corpus. (For comparison, the English Penn
Treebank tagset contains just about 50 tags.) In our
parallel corpus (see Section 3 below), the English
vocabulary size is 35k distinct token types but more
than twice as big in Czech, 83k distinct token types.

To further emphasize the importance of morphol-
ogy in MT to Czech, we compare the standard
BLEU (Papineni et al., 2002) of a baseline phrase-
based translation with BLEU which disregards word
forms (lemmatized MT output is compared to lem-
matized reference translation). The theoretical mar-
gin for improving MT quality is about 9 BLEU
points: the same MT output scores 12 points in stan-
dard BLEU and 21 points in lemmatized BLEU.

2 Overview of Factored SMT

In statistical MT, the goal is to translate a source
(foreign) language sentencefJ

1 = f1 . . . fj . . . fJ

into a target language (Czech) sentencecI
1 =

c1 . . . cj . . . cI . In phrase-based SMT, the assump-
tion is made that the target sentence can be con-
structed by segmenting source sentence into phrases,
translating each phrase and finally composing the
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target sentence from phrase translations,sK
1 de-

notes the segmentation of the input sentence into
K phrases. Among all possible target language
sentences, we choose the sentence with the highest
probability,

êÎ
1 = argmax

I,cI

1
,K,sK

1

{Pr(cI
1|f

J
1 , sK

1 )} (1)

In a log-linear model, the conditional probability
of cI

1 being the translation offJ
1 under the segmenta-

tion sK
1 is modelled as a combination of independent

feature functionsh1(·, ·, ·) . . . hM (·, ·, ·) describing
the relation of the source and target sentences:

Pr(cI
1|f

J
1 , sK

1 ) =

exp(
∑M

m=1 λmhm(cI
1, f

J
1 , sK

1 ))
∑

c′I
′

1

exp(
∑M

m=1 λmhm(c′I
′

1 , fJ
1 , sK

1 ))
(2)

The denominator in 2 is used as a normalization
factor that depends on the source sentencefJ

1 and
segmentationsK

1 only and is omitted during maxi-
mization. The model scaling factorsλM

1 are trained
either to the maximum entropy principle or opti-
mized with respect to the final translation quality
measure.

Most of our features are phrase-based and we re-
quire all such features to operate synchronously on
the segmentationsK

1 and independently of neigh-
bouring segments. In other words, we restrict the
form of phrase-based features to:

hm(cI
1, f

J
1 , sK

1 ) =

K∑

k=1

h̃m(c̃k, f̃k) (3)

wheref̃k represents the source phrase andc̃ repre-
sents the target phrasek given the segmentationsK

1 .

2.1 Decoding Steps

In factored SMT, source and target wordsf andc are
represented as tuples ofF andC FACTORS, resp.,
each describing a different aspect of the word, e.g.
its word form, lemma, morphological tag, role in a
verbal frame. The process of translation consists of
DECODING steps of two types:MAPPING steps and
GENERATION steps. If more steps contribute to the
same output factor, they have to agree on the out-
come, i.e. partial hypotheses where two decoding

steps produce conflicting values in an output factor
are discarded.

A MAPPING step from a subset of source fac-
tors S ⊆ {1 . . . F} to a subset of target factors
T ⊆ {1 . . . C} is the standard phrase-based model
(see e.g. (Koehn, 2004a)) and introduces a feature
in the following form:

h̃map:S→T
m (c̃k, f̃k) = log p(f̃S

k |c̃
T
k ) (4)

The conditional probability of̃fS
k , i.e. the phrase

f̃k restricted to factorsS, given c̃T
k , i.e. the phrase

c̃k restricted to factorsT is estimated from relative
frequencies:p(f̃S

k |c̃
T
k ) = N(f̃S, c̃T )/N(c̃T ) where

N(f̃S, c̃T ) denotes the number of co-occurrences of
a phrase pair(f̃S, c̃T ) that are consistent with the
word alignment. The marginal countN(c̃T ) is the
number of occurrences of the target phrasec̃T in the
training corpus.

For each mapping step, the model is included in
the log-linear combination in source-to-target and
target-to-source directions:p(f̃T |c̃S) andp(c̃S |f̃T ).
In addition, statistical single word based lexica are
used in both directions. They are included to smooth
the relative frequencies used as estimates of the
phrase probabilities.

A GENERATION step maps a subset of target fac-
tors T1 to a disjoint subset of target factorsT2,
T1,2 ⊂ {1 . . . C}. In the current implementation
of Moses, generation steps are restricted to word-
to-word correspondences:

h̃gen:T1→T2

m (c̃k, f̃k) = log

length(c̃k)∏

i=1

p(c̃T1

k,i|c̃
T2

k,i) (5)

wherec̃T
k,i is thei-th words in thek-th target phrase

restricted to factorsT . We estimate the conditional
probabilityp(c̃T2

k,i|c̃
T1

k,i) by counting over words in the
target-side corpus. Again, the conditional probabil-
ity is included in the log-linear combination in both
directions.

In addition to features for decoding steps, we in-
clude arbitrary number of target language models
over subsets of target factors,T ⊆ {1 . . . C}. Typi-
cally, we use the standardn-gram language model:
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hT
LMn

(fJ
1 , cI

1) = log
I∏

i=1

p(cT
i |c

T
i−1 . . . cT

i−n+1) (6)

While generation steps are used to enforce “verti-
cal” coherence between “hidden properties” of out-
put words, language models are used to enforce se-
quential coherence of the output.

Operationally, Moses performs a stack-based
beam search very similar to Pharaoh (Koehn,
2004a). Thanks to the synchronous-phrases assump-
tion, all the decoding steps can be performed during
a preparatory phase. For each span in the input sen-
tence, all possible translation options are constructed
using the mapping and generation steps in a user-
specified order. Low-scoring options are pruned al-
ready during this phase. Once all translation options
are constructed, Moses picks source phrases (all out-
put factors already filled in) in arbitrary order, sub-
ject to a reordering limit, producing output in left-to-
right fashion and scoring it using the specified lan-
guage models exactly as Pharaoh does.

3 Data Used

The experiments reported in this paper were car-
ried out with the News Commentary (NC) corpus as
made available for the SMT workshop4 of the ACL
2007 conference.5

The Czech part of the corpus was tagged and lem-
matized using the tool by Hajič and Hladká (1998),
the English part was tagged MXPOST (Ratnaparkhi,
1996) and lemmatized using the Morpha tool (Min-
nen et al., 2001). After some final cleanup, the
corpus consists of 55,676 pairs of sentences (1.1M
Czech tokens and 1.2M English tokens). We use the
designated additional tuning and evaluation sections
consisting of 1023, resp. 964 sentences.

In all experiments, word alignment was obtained
using the grow-diag-final heuristic for symmetriz-
ing GIZA++ (Och and Ney, 2003) alignments. To
reduce data sparseness, the English text was lower-
cased and Czech was lemmatized for alignment es-
timation. Language models are based on the target

4http://www.statmt.org/wmt07/
5Our preliminary experiments with the Prague Czech-

English Dependency Treebank, PCEDT v.1.0 (Čmejrek et al.,
2004), 20k sentences, gave similar results, although with a
lower level of significance due to a smaller evaluation set.

side of the parallel corpus only, unless stated other-
wise.

3.1 Evaluation Measure and MERT

We evaluate our experiments using the (lowercase,
tokenized) BLEU metric and estimate the empiri-
cal confidence using the bootstrapping method de-
scribed in Koehn (2004b).6 We report the scores
obtained on the test section with model parameters
tuned using the tuning section for minimum error
rate training (MERT, (Och, 2003)).

4 Scenarios of Factored Translation
English→Czech

We experimented with the following factored trans-
lation scenarios.

The baseline scenario (labelled T for translation)
is single-factored: input (English) lowercase word
forms are directly translated to target (Czech) low-
ercase forms. A 3-gram language model (or more
models based on various corpora) checks the stream
of output word forms. The baseline scenario thus
corresponds to a plain phrase-based SMT system:

English Czech
lowercase lowercase +LM

lemma lemma
morphology morphology

In order to check the output not only for word-
level coherence but also for morphological coher-
ence, we add a single generation step: input word
forms are first translated to output word forms and
each output word form then generates its morpho-
logical tag.

Two types of language models can be used simul-
taneously: a (3-gram) LM over word forms and a
(7-gram) LM over morphological tags.

We used tags with various levels of detail, see sec-
tion 5. We call this the “T+C” (translate and check)
scenario:

6Given a test set of sentences, we perform 1,000 random se-
lections with repetitions to estimate 1,000 BLEU scores on test
sets of the same size. The empirical 90%-confidence upper and
lower bounds are obtained after removing top and bottom 5% of
scores. For conciseness, we report the average of the distance
between to standard BLEU value and the empirical upper and
lower bound after the “±” symbol.
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English Czech
lowercase lowercase +LM

lemma lemma
morphology morphology +LM

As a refinement of T+C, we also used T+T+C
scenario, where the morphological output stream is
constructed based on both output word forms and in-
put morphology. This setting should reinforce cor-
rect translation of morphological features such as
number of source noun phrases. To reduce the risk
of early pruning, the generation step operationally
precedes the morphology mapping step. Again,
two types of language models can be used in this
“T+T+C” scenario:

English Czech
lowercase lowercase +LM

lemma lemma
morphology morphology +LM

The most complex scenario we used is linguis-
tically appealing: output lemmas (base forms) and
morphological tags are generated from input in two
independent translation steps and combined in a sin-
gle generation step to produce output word forms.
The input English text was not lemmatized so we
used English word forms as the source for produc-
ing Czech lemmas.

The “T+T+G” setting allows us to use three types
of language models. Trigram models are used for
word forms and lemmas and 7-gram language mod-
els are used over tags:

English Czech
lowercase lowercase +LM

lemma lemma +LM
morphology morphology +LM

4.1 Experimental Results: Improved over T

Table 1 summarizes estimated translation quality of
the various scenarios. In all cases, a 3-gram LM is
used for word forms or lemmas and a 7-gram LM
for morphological tags.

The good news is that multi-factored models al-
ways outperform the baseline T.

Unfortunately, the more complex multi-factored
scenarios do not bring any significant improvement
over T+C. Our belief is that this effect is caused by
search errors: with multi-factored models, more hy-
potheses get similar scores and future costs of partial

BLEU
T+T+G 13.9±0.7
T+T+C 13.9±0.6
T+C 13.6±0.6
Baseline: T 12.9±0.6

Table 1: BLEU scores of various translation scenar-
ios.

hypotheses might be estimated less reliably. With
the limited stack size (not more than 200 hypothe-
ses of the same number of covered input words), the
decoder may more often find sub-optimal solutions.
Moreover, the more steps are used, the more model
weights have to be tuned in the minimum error rate
training. Considerably more tuning data might be
necessary to tune the weights reliably.

5 Granularity of Czech Part-of-Speech

As stated above, the Czech morphological tag sys-
tem is very complex: in theory up to 4,000 different
tags are possible. In our T+T+C scenario, we exper-
iment with various simplifications of the system to
find the best balance between richness and robust-
ness of the statistics available in our corpus. (The
more information is retained in the tags, the more
severe data sparseness is.)

Full tags (1200 unique seen in the 56k corpus):
Full Czech positional tags are used. A tag
consists of 15 positions, each holding the value
of a morphological property (e.g. number, case
or gender).7

POS+case (184 unique seen):We simplify the tag
to include only part and subpart of speech (dis-
tinguishes also partially e.g. verb tenses). For
nouns, pronouns, adjectives and prepositions8,
also the case is included.

CNG01 (621 unique seen):CNG01 refines POS.
For nouns, pronouns and adjectives we include
not only the case but also number and gender.

7In principle, each of the 15 positions could be used as a
separate factor. The set of necessary generation steps to encode
relevant dependencies would have to be carefully determined.

8Some Czech prepositions select for a particular case, some
are ambiguous. Although the case is never shown on surface of
the preposition, the tagset includes this information and Czech
taggers are able to infer the case.
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CNG02 (791 unique seen):Tag for punctuation is
refined: the lemma of the punctuation symbol
is taken into account; previous models disre-
garded e.g. the distributional differences be-
tween a comma and a question mark. Case,
number and gender added to nouns, pronouns,
adjectives, prepositions, but also to verbs and
numerals (where applicable).

CNG03 (1017 unique seen):Optimized tagset:

• Tags for nouns, adjectives, pronouns and
numerals describe the case, number and
gender; the Czech reflexive pronounseor
si is highlighted by a special flag.

• Tag for verbs describes subpart of speech,
number, gender, tense and aspect; the tag
includes a special flag if the verb was the
auxiliary verb být (to be) in any of its
forms.

• Tag for prepositions includes the case and
also the lemma of the preposition.

• Lemma included for punctuation, parti-
cles and interjections.

• Tag for numbers describes the “shape” of
the number (all digits are replaced by the
digit 5 but number-internal punctuation is
kept intact). The tag thus distinguishes be-
tween 4- or 5-digit numbers or the preci-
sion of floating point numbers.

• Part of speech and subpart of speech for
all other words.

5.1 Experimental Results: CNG03 Best

Table 2 summarizes the results of T+T+C scenario
with varying detail in morphological tag.

BLEU
Baseline: T (single-factor) 12.9±0.6
T+T+C, POS+case 13.2±0.6
T+T+C, CNG01 13.4±0.6
T+T+C, CNG02 13.5±0.7
T+T+C, full tags 13.9±0.6
T+T+C, CNG03 14.2±0.7

Table 2: BLEU scores of various granularities of
morphological tags in T+T+C scenario.

NC NC CzEng
mix

weighted = αNC + βmix

Scenario Phrases from LMs BLEU
T NC NC 12.9±0.6
T mix mix 11.8±0.6
T mix weighted 11.8±0.6
T+C CNG03 NC NC 13.7±0.7
T+C CNG03 mix mix 13.1±0.7
T+C CNG03 mix weighted 13.7±0.7
T+C full tags NC NC 13.6±0.6
T+C full tags mix mix 13.1±0.7
T+C full tags mix weighted 13.8±0.7

Figure 1: The effect of additional data in T and T+C
scenarios.

Our results confirm improvement over the single-
factored baseline. Detailed knowledge of the mor-
phological system also proves its utility: by choos-
ing the most relevant features of tags and lemmas
but avoiding sparseness, we can improve on BLEU
score by about 0.3 absolute over T+T+C with full
tags.

6 More Out-of-Domain Data in T and T+C
Scenarios

In order to check if the method scales up with
more parallel data available, we extend our train-
ing data using the CzEng parallel corpus (Bojar
and Žabokrtský, 2006). CzEng contains sentence-
aligned texts from the European Parliament (about
75%), e-books and stories (15%) and open source
documentation. By “Baseline” corpus we denote
NC corpus only, by “Large” we denote the combi-
nation of training sentences from NC and CzEng
(1070k sentences, 13.9M Czech and 15.5 English
tokens) where in-domain NC data amounts only to
5.2% sentences.

Figure 1 gives full details of our experiments with
the additional data. We varied the scenario (T or
T+C), the level of detail in the T+C scenario (full
tags vs. CNG03) and the size of the training corpus.
We extract phrases from either the in-domain corpus
only (NC) or the mixed corpus (mix). We use either
one LM per output factor, varying the corpus size
(NC or mix), or two LMs per output factors with
weights trained independently in the MERT proce-
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dure (weighted). Independent weights allow us to
take domain difference into account, but we exploit
this in the target LM only, not the phrases.

The only significant difference is caused by the
scenario: T+C outperforms the baseline T, regard-
less of corpus size. Other results (insignificantly)
indicate the following observations:

• Ignoring the domain difference and using only
the mixed domain LM in general performs
worse than allowing MERT to optimize LM
weights for in-domain and generic data sepa-
rately.9

• CNG03 outperforms full tags only in small data
setting, with large data (treating the domain dif-
ference properly), full tags perform better.

7 Untreated Morphological Errors

The previous sections described improvements
gained on small data sets when checking morpho-
logical agreement using T+T+C scenario (BLEU
raised from 12.9% to 13.9% or up to 14.2% with
manually tuned tagset, CNG03). However, the best
result achieved is still far below the margin of lem-
matized BLEU (21%), as mentioned in Section 1.1.

When we searched for the unexploited morpho-
logical errors, visual inspection of MT output sug-
gested that local agreement (within 3-word span) is
relatively correct but Verb-Modifier relations are of-
ten malformed causing e.g. a bad case for the Mod-
ifier. To quantify this observation we performed a
micro-study of our best MT output using an intu-
itive metric. We checked whether Verb-Modifier re-
lations are properly preserved during the translation
of 15 sample sentences.

Thesourcetext of the sample sentences contained
77 Verb-Modifier pairs. Table 3 lists our observa-
tions on the two members in each Verb-Modifier
pair. We see that only 56% of verbs are translated
correctly and 79% of nouns are translated correctly.
The system tends to skip verbs quite often (27% of
cases).

9In our previous experiments with PCEDT as the domain-
specific data, the difference was more apparent because the cor-
pus domains were more distant. In the T scenario reported here,
the weighted LMs did not bring any improvement over “mix”
and even performed worse than the baseline NC. We attribute
this effect to some randomness in the MERT procedure.

Translation of Verb Modifier
. . . preserves meaning 56% 79%
. . . is disrupted 14% 12%
. . . is missing 27% 1%
. . . is unknown (not translated) 0% 5%

Table 3: Analysis of 77 Verb-Modifier pairs in 15
sample sentences.

More importantly, our analysis has shown that
even in cases where both the Verb and the Modi-
fier are lexically correct, the relation between them
in Czech is either non-grammatical or meaning-
disrupted in 56% of these cases. Commented sam-
ples of such errors are given in Figure 2 below. The
first sample shows that a strong language model can
lead to the choice of a grammatical relation that nev-
ertheless does not convey the original meaning. The
second sample illustrates a situation where two cor-
rect options are available but the system chooses
an inappropriate relation, most probably because of
backing off to a generic pattern verb-nounaccusative

plural .
This pattern is quite common for expressing the ob-
ject role of many verbs (such asvydat, see Cor-
rect option 2 in Figure 2), but does not fit well
with the verb vyb̌ehnout. While the target-side
data may be rich enough to learn the generalization
vyběhnout–s–instr, no such generalization is possi-
ble with language models over word forms or mor-
phological tags only. The target side data will be
hardly ever rich enough to learn this particular struc-
ture in all correct morphological and lexical variants:
vyb̌ehl–s–reklamou, vyběhla–s–reklamami, vyběhl–
s–prohĺašeńım, vyb̌ehli–s–ozńameńım, . . .. We
would need a mixed model that combines verb lem-
mas, prepositions and case information to properly
capture the relations.

Unfortunately, our preliminary experiments that
made use of automatic Czech dependency parse
trees to construct a factor explicitly highlighting the
Verb (lexicalized) its Modifiers (case and the lemma
of the preposition, if present) and boundary sym-
bols such as punctuation or conjunctions and using
a dummy token for all other words did not bring any
improvement over the baseline. A possible reason is
that we employed only a standard 7-gram language
model to this factor. A more appropriate treatment
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is to disregard the dummy tokens in the language
model at all and use an n-gram language model that
looks at lastn− 1 non-dummy items.

8 Related Research

Class-based LMs (Brown et al., 1992) or factored
LMs (Bilmes and Kirchhoff, 2003) are very similar
to our T+C scenario. Given the small differences
in all T+. . . scenarios’ performance, class-based LM
might bring equivalent improvement. Yang and
Kirchhoff (2006) have recently documented minor
BLEU improvement using factored LMs in single-
factored SMT to English. The multi-factored ap-
proach to SMT of Moses is however more general.

Many researchers have tried to employ mor-
phology in improving word alignment techniques
(e.g. (Popović and Ney, 2004)) or machine trans-
lation quality (Nießen and Ney (2001), Koehn and
Knight (2003), Zollmann et al. (2006), among oth-
ers, for various languages; Goldwater and McClosky
(2005), Bojar et al. (2006) and Talbot and Osborne
(2006) for Czech), however, they focus on translat-
ing from the highly inflectional language.

Durgar El-Kahlout and Oflazer (2006) report pre-
liminary experiments in English to Turkish single-
factored phrase-based translation, gaining signifi-
cant improvements by splitting root words and their
morphemes into a sequence of tokens. In might be
interesting to explore multi-factored scenarios for
different Turkish morphology representation sug-
gested the paper.

de Gispert et al. (2005) generalize over verb forms
and generate phrase translations even for unseen tar-
get verb forms. The T+T+G scenario allows a sim-
ilar extension if the described generation step is re-
placed by a (probabilistic) morphological generator.

Nguyen and Shimazu (2006) translate from En-
glish to Vietnamese but the morphological richness
of Vietnamese is comparable to English. In fact the
Vietnamese vocabulary size is even smaller than En-
glish vocabulary size in one of their corpora. The
observed improvement due to explicit modelling of
morphology might not scale up beyond small-data
setting.

As an alternative option to our verb-modifier
experiments, structured language models (Chelba
and Jelinek, 1998) might be considered to improve

clause coherence, until full-featured syntax-based
MT models (Yamada and Knight (2002), Eisner
(2003), Chiang (2005) among many others) are
tested when translating to morphologically rich lan-
guages.

9 Conclusion

We experimented with multi-factored phrase-based
translation aimed at improving morphological co-
herence in MT output. We varied the setup of ad-
ditional factors (translation scenario) and the level
of detail in morphological tags. Our results on
English-to-Czech translation demonstrate signifi-
cant improvement in BLEU scores by explicit mod-
elling of morphology and using a separate morpho-
logical language model to ensure the coherence. To
our knowledge, this is one of the first experiments
showing the advantages of using multiple factors in
MT.

Verb-modifier errors have been studied and a fac-
tor capturing verb-modifier dependencies has been
proposed. Unfortunately, this factor has yet to bring
any improvement.
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English Parallel Corpus, Release version 0.5.Prague Bul-
letin of Mathematical Linguistics, 86:59–62.
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Gloss: brokerage firmspl.fem ransg.masc adspl.voc,sg.gen

pl.nom,pl.acc
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Abstract

The paper proposes formulating MT evalu-
ation as a ranking problem, as is often done
in the practice of assessment by human. Un-
der the ranking scenario, the study also in-
vestigates the relative utility of several fea-
tures. The results show greater correlation
with human assessment at the sentence level,
even when using an n-gram match score as
a baseline feature. The feature contributing
the most to the rank order correlation be-
tween automatic ranking and human assess-
ment was the dependency structure relation
rather than BLEU score and reference lan-
guage model feature.

1 Introduction

In recent decades, alongside the growing research
on Machine Translation (MT), automatic MT evalu-
ation has become a critical problem for MT system
developers, who are interested in quick turnaround
development cycles. The state-of-the-art automatic
MT evaluation is an n-gram based metric repre-
sented by BLEU (Papineni et al., 2001) and its vari-
ants. Ever since its creation, the BLEU score has
been the gauge of Machine Translation system eval-
uation. Nevertheless, the research community has
been largely aware of the deficiency of the BLEU
metric. BLEU captures only a single dimension
of the vitality of natural languages: a candidate
translation gets acknowledged only if it uses ex-
actly the same lexicon as the reference translation.
Natural languages, however, are characterized by

their extremely rich mechanisms for reproduction
via a large number of syntactic, lexical and semantic
rewriting rules. Although BLEU has been shown
to correlate positively with human assessments at
the document level (Papineni et al., 2001), efforts to
improve state-of-the-art MT require that human as-
sessment be approximated at sentence level as well.
Researchers report the BLEU score at document
level in order to combat the sparseness of n-grams
in BLEU scoring. But, ultimately, document-level
MT evaluation has to be pinned down to the gran-
ularity of the sentence. Unfortunately, the corre-
lation between human assessment and BLEU score
at sentence level is extremely low (Liu et al., 2005,
2006). While acknowledging the appealing simplic-
ity of BLEU as a way to access one perspective of an
MT candidate translation’s quality, we observe the
following facts of n-gram based MT metrics. First,
they may not reflect the mechanism of how human
beings evaluate sentence translation quality. More
specifically, optimizing BLEU does not guarantee
the optimization of sentence quality approved by hu-
man assessors. Therefore, BLEU is likely to have
a low correlation with human assessment at sen-
tence level for most candidate translations. Second,
it is conceivable that human beings are more reli-
able ranking the quality of multiple candidate trans-
lations than assigning a numeric value to index the
quality of the candidate translation even with signif-
icant deliberation. Consequently, a more intuitive
approach for automatic MT evaluation is to repli-
cate the quality ranking ability of human assessors.
Thirdly, the BLEU score is elusive and hard to in-
terpret; for example, what can be concluded for a
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candidate translation’s quality if the BLEU score is
0.0168, particularly when we are aware that even
a human translation can receive an embarrassingly
low BLEU score? In light of the discussion above,
we propose an alternative scenario for MT evalua-
tion, where, instead of assigning a numeric score to
a candidate translation under evaluation, we predict
its rank with regard to its peer candidate translations.
This formulation of the MT evaluation task fills the
gap between an automatic scoring function and hu-
man MT evaluation practice. The results from the
current study will not only interest MT system eval-
uation moderators but will also inform the research
community about which features are useful in im-
proving the correlation between human rankings and
automatic rankings.

2 Problem Formulation

2.1 Data and Human Annotation Reliability

We use two data sets for the experiments:
the test data set from the LDC MTC corpus
(LDC2003T171) and the data set from the MT eval-
uation workshop at ACL052. Both data sets are for
Chinese-English language pairs and each has four
reference translations and seven MT system transla-
tions as well as human assessments for fluency and
adequacy on a scale of 1 to 5, with 5 indicating the
best quality. For the LDC2003T17 data, human as-
sessments exist for only three MT systems; for the
ACL05 workshop data, there are human assessments
for all seven MT systems. Table 1 summarizes the
information from these two data sets.

The Kappa scores (Cohen, 1960) for the human
assessment scores are negative, both for fluency and
adequacy, indicating that human beings are not con-
sistent when assigning quality scores to the candi-
date translations. We have much sympathy with a
concern expressed in (Turian, 2003) that “Automatic
MT evaluation cannot be faulted for poor correlation
with the human judges, when the judges do not cor-
relate well each other.”To determine whether human
assessor might be more consistent when ranking
pairs of sentences, we examined the “ranking con-
sistency score”of the human assessment data for the
LDC2003T17 data. For this consistency score, we

1http://www.ldc.upenn.edu/Catalog/
2http://www.isi.edu/˜ cyl/MTSE2005/

are only concerned with whether multiple judges are
consistent in terms of which sentence of the two sen-
tences is better: we are not concerned with the quan-
titative difference between judges. Since some sen-
tences are judged by three judges while others are
judged by only two judges, we calculated the consis-
tency scores under both circumstances, referred to as
“Consistent 2”and “Consistent 3”in the following ta-
ble. For “Consistent 2”, for every pair of sentences,
where sentence 1 is scored higher (or lower or equal)
than sentence 2 by both judges, then the two judges
are deemed consistent. For “Consistent 3”, the pro-
portion of sentences that achieved the above consis-
tency from triple judges is reported. Additionally,
we also considered a consistency rate that excludes
pairs for which only one judge says sentence 1 is bet-
ter and the other judge(s) say(s) sentence 2 is better.
We call these “Consistent 2 with tie”and “Consistent
3 with tie”. From the rank consistency scores in Ta-
ble 2, we observe that two annotators are more con-
sistent with the relative rankings for sentence pairs
than with the absolute quality scores. This finding
further supports the task of ranking MT candidate
sentences as more reliable than the one of classify-
ing the quality labels.

2.2 Ranking Over Classification and
Regression

As discussed in the previous section, it is difficult for
human assessors to perform MT candidate transla-
tion evaluation with fine granularity (e.g., using real-
valued numeric score). But humans’ assessments
are relatively reliable for judgments of quality rank-
ing using a coarser ordinal scale, as we have seen
above. Several approaches for automatically assign-
ing quality scores to candidate sentences are avail-
able, including classification, regression or ranking,
of which ranking is deemed to be a more appropri-
ate approach. Nominalize the quality scores and for-
mulating the task as a classification problem would
result in a loss of the ordinal information encoded
in the different scores. Additionally, the low Kappa
scores in the human annotation reliability analysis
reported above also confirms our previous specula-
tion that a classification approach is less appropriate.
Regression would be more reasonable than classifi-
cation because it preserves the ordinal information
in the quality labels, but it also inappropriately im-
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Data Index MT Systems References Documents Sentences
LDC2003T17 7 4 100 878

ACL05 Workshop 7 4 100 919

Table 1: Data Sets Information

Inter-Judge Score Consistent
2

Consistent
3

Consistent
2 with Tie

Consistent
3 with Tie

Ranking Consistency Score 45.3% 23.4% 92.6% 87.0%

Table 2: Ranking Consisteny Scores for LDC2003T17 Data

poses interval scaling onto the quality labels. In
contrast, ranking considers only the relative rank-
ing information from human labels and does not im-
pose any extra information onto the quality labels
assigned by human beings.

The specific research question addressed in this
paper is three-fold: First, in addition to investigating
the correlation between automatic numeric scoring
and human assessments, is ranking of peer candidate
translations an alternative way of examining correla-
tion that better suits the state of affairs of human an-
notation? Second, if the answer to the above ques-
tion is yes, can better correlation be achieved with
human assessment under the new task scenario? Fi-
nally, in addition to n-gram matching, which other
knowledge sources can combat and even improve
the rank order correlation? The process of rank-
ing is a crucial technique in Information Retrieval
(IR) where search engines rank web pages depend-
ing on their relevance to a query. In this work, sen-
tence level MT evaluation is considered as a ranking
problem. For all candidate translations of the same
source Chinese sentence, we predict their transla-
tion quality ranks. We evaluate the ranker by Spear-
man’s rank order correlation coefficient between hu-
man ranks and predicted ranks described by the fol-
lowing formula (Siegel,1956):

r = 1− (
6

∑
D2

N(N2 − 1)
) (1)

where D is the difference between each pair of ranks
and N is the number of candidates for ranking.

3 Related Works

Papineni et al.(2001) pioneered the automatic MT
evaluation study, which scores translation quality via

n-gram matching between the candidate and refer-
ence translations. Following the growing awareness
of the deficiency of n-gram based automatic MT
evaluation, many studies attempted to improve upon
n-gram based metrics (Zhou et al., 2006; Liu, et
al., 2005,2006) as well as propose ways to evaluate
MT evaluation metrics (Lin, et al. 2004). Previous
studies, however, have focused on MT evaluation at
the document level in order to fight n-gram sparse-
ness problem. While document level correlation
provides us with a general impression of the qual-
ity of an MT system, researchers desire to get more
informative diagnostic evaluation at sentence level
to improve the MT system instead of just an over-
all score that does not provide details. Recent years
have seen several studies investigating MT evalu-
ation at the sentence level (Liu et al., 2005,2006;
Quirk, 2004). The state-of-the-art sentence level
correlations reported in previous work between hu-
man assessments and automatic scoring are around
0.20. Kulesza et al.(2004) applied Support Vec-
tor Machine classification learning to sentence level
MT evaluation and reported improved correlation
with human judgment over BLEU. However, the
classification taxonomy in their work is binary, be-
ing either machine translation or human translation.
Additionally, as discussed above, the inconsistency
from the human annotators weakens the legitimacy
of the classification approach. Gamon et al.(2005)
reported a study of English to French sentence-level
MT evaluation without reference translations. In or-
der to improve on the correlation between human as-
sessments and the perplexity score alone, they com-
bined a perplexity score with a classification score
obtained from an SVM binary classifier distinguish-
ing machine-translated sentences from human trans-
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lations. The results showed that even the combi-
nation of the above two scores cannot outperform
BLEU.

To sum up, very little consideration has been
taken in previous research as to which learning ap-
proach is better motivated and justified by the state
of affairs of human annotation reliability. Presum-
ably, research that endeavors to emulate human per-
formance on tasks that demontrate good inter-judge
reliability is most useful.

a learning approach that is better supported by
human annotation reliability can alleviate the noise
from human assessments and therefore achieve more
reliable correlations.

4 Experiments and Evaluation

4.1 Ranking SVM Learning Algorithm
Ranking peer candidate sentence translations is a
task in which the translation instances are classi-
fied into a number of ranks. This is a canonical or-
dinal regression scenario, which differs from stan-
dard classification and metric regression. For imple-
mentation, we use the Ranking SVM of SVMlight
(Joachims, 2004), which was originally developed
to rank the web pages returned upon a certain query
in search engines. Given an instance of a candidate
translation, Ranking SVM assigns it a score based
on:

U(x) = W Tx (2)

where W represents a vector of weights (Xu et al.,
2005). The higher the value of U(x), the better x is as
a candidate translation. In an ordinal regression, the
values of U(x) are mapped into intervals correspond-
ing to the ordinal categories. An instance falling
into one interval is classified into the corresponding
translation quality. In ranking experiments, we use
the Ranking SVM scores to rank the candidate sen-
tences under evaluation.

4.2 Features

We experiment with three different knowledge
sources in our ranking experiments:

1. N-gram matching between the candidate trans-
lation and the reference translation, for which
we use BLEU scores calculated by the NIST

script with smoothing3 to avoid undefined log
probabilities for zero n-gram probabilities.

2. Dependency relation matching between the
candidate translation and the reference transla-
tion.

3. The log of the perplexity score of the candidate
translation, where the perplexity score is ob-
tained from a local language model trained on
all sentences in the four reference translations
using CMU SLM toolkit. The n-gram order is
the default trigram.

4.2.1 N-gram matching feature
N-gram matching is certainly an important cri-

terion in some cases for evaluating the translation
quality of a candidate translation. We use the BLEU
score calculated by the BLEU score script from
NIST for this feature.

As has been observed by many researchers,
BLEU fails to capture any non n-gram based match-
ing between the reference and candidate transla-
tions. We carried out a pair-wise experiment on
four reference translations from the LDC2003T17
test data, where we took one reference sentence as
the reference and the other three references as can-
didate translations. Presumably, since the candidate
sentences are near-optimal translations, the BLEU
scores obtained in such a way should be close to
1. But our analysis shows a mean BLEU of only
0.1456398, with a standard deviation of 0.1522381,
which means that BLEU is not very predictive of
sentence level evaluation. The BLEU score is, how-
ever, still informative in judging the average MT
system’s translation.

4.2.2 Dependency Structure Matching
Dependency relation information has been widely

used in Machine Translation in recent years. Fox
(2002) reported that dependency trees correspond
better across translation pairs than constituent trees.
The information summarization community has also
seen successful implementation of ideas similar to
the depedency structure. Zhou et al.(2005) and Hovy
et al.(2005) reported using Basic Elements (BE) in
text summarization and its evaluation. In the current

3We added an extremely small number to both matched n-
grams and total number of n-grams.
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paper, we match a candidate translation with a ref-
erence translation on the following five dependency
structure (DS) types:

• Agent - Verb
• Verb - Patient
• Modified Noun - Modifier
• Modified Verb - Modifier
• Preposition - Object

Besides the consideration of the presence of cer-
tain lexical items, DS captures information as to
how the lexical items are assembled into a good sen-
tence. By using their dependency relation match for
ranking the quality of peer translations, we assume
that the dependency structure in the source language
should be well preserved in the target language and
that multiple translations of the same source sen-
tence should significantly share dependency struc-
tures. Liu et al.(2005) make use of dependency
structure in sentence level machine translation eval-
uation in the form of headword chains, which are
lexicalized dependency relations. We propose that
unlexicalized dependency relations can also be in-
formative. Previous research has shown that key de-
pendency relations tend to have a strong correspon-
dence between Chinese and English (Zhou et al.,
2001). More than 80 % of subject-verb, adjective-
noun and adverb-verb dependency relations were
able to be mapped, although verb-object DS map-
ping is weaker at a rate of 64.8%. In our paper, we
considered three levels of matching for dependency
relation triplets, where a triplet consists of the DS
type and the two lexical items as the arguments.

We used an in-house dependency parser to extract
the dependency relations from the sentences. Figure
1 illustrates how dependency relation matching can
go beyond n-gram matching. We calculated 15 DS
scores for each sentence correponding to the counts
of match for the 5 DS types at the 3 different levels.

4.2.3 Reference language model (RLM) feature
Statistical Language Modeling (SLM) is a key

component in Statistical Machine Translation. The
most dominant technology in SLM is n-gram mod-
els, which are typically trained on a large corpus
for applications such as SMT and speech recogni-
tion. Depending on the size of the corpora used
to train the language model, a language model can

Figure 1: Dependency Relation Matching Scheme

Figure 2: An Example - A Sentence Gets Credits for
Dependency Relation Matching
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be tuned to reflect n-gram probabilities for both a
narrowed scope as well as a general scope covering
the distribution of n-gram probabilities of the whole
language. In the BLEU calculation, the candidate
sentence is evaluated against an extremely local lan-
guage model of merely the reference sentence. We
speculate that a language model that stands in be-
tween such an immediate local language model and
the large general English language model could help
capture the variation of lexical and even structural
selections in the translations by using information
beyond the scope of the local sentence. Addition-
ally, this language model could represent the style
of a certain group of translators in a certain domain
on the genre of news articles. To pursue such a lan-
guage model, we explore a language model that is
trained on all sentences in the four references. We
obtain the perplexity score of each candidate sen-
tence based on the reference language model. The
perplexity score obtained this way reflects the de-
gree to which a candidate translation can be gen-
erated from the n-gram probability distribution of
the whole collection of sentences in the four refer-
ences. It adds new information to BLEU because it
not only compares the candidate sentence to its cor-
responding reference sentence but also reaches out
to other sentences in the current document and other
documents on the same topics. We choose perplex-
ity over the language model score because the per-
plexity score is normalized with regard to the length
of the sentence; that is, it does not favor sentences of
relatively shorter length.

In our ranking experiments, for training, both the
seven MT translations and the four reference trans-
lations of the same source sentence are evaluated
as “candidate” translations, and then each of these
eleven sentences is evaluated against the four ref-
erence sentences in turn. The BLEU score of each
of these sentences is calculated with multiple refer-
ences. Each dependency score is the average score
of the four references. For the reference language
model feature, the perplexity score is used for each
sentence.

Conceptually, the reference language model and
dependency structure features are more relevant to
the fluency of the sentence than to the adequacy.
Because the candidate sentences’ adequacy scores
are based on arbitrary reference sentences out of the

Feature Set Mean Corr Corr Var
BLEU 0.3590644 0.0076498

DS 0.4002753 0.0061299
PERP 0.4273000 0.0014043

BLEU+DS 0.4128991 0.0027576
BLEU+PERP 0.4288112 0.0013783

PERP+DS 0.4313611 0.0014594
All 0.4310457 0.0014494

Table 3: Training and Testing on Within-year Data
(Test on 7 MT and 4 Human)

four references in the human assessment data, we
decided to focus on fluency ranking for this paper.
The ranking scenario and features can easily be gen-
eralized to adequacy evaluation: the full and partial
match dependency structure features are relevant to
adeqaucy too. The high correlation between ade-
quacy and fluency scores from human assessments
(both pearson and spearman correlations are 0.67)
also indicates that the same features will achieve im-
provements for adequacy evaluation.

4.3 Sentence Ranking on Within-year Data

In the first experiment, we performed the ranking
experiment on the ACL05 workshop data and test on
the same data set. We did three-fold cross-validation
on two different test scenarios. On the first sce-
nario, we tested the ranking models on the seven MT
system output sentences and the four human refer-
ence sentences. It is widely agreed upon among re-
searchers that a good evalutation metric should rank
reference translation as higher than machine trans-
lation (Lin et al., 2004). We include the four hu-
man reference sentences into the ranking to test the
ranker’s ability to discriminate optimal translations
from poor ones. For the second scenario, we test
the ranking models on only the seven MT system
output sentences. Because the quality differences
across the seven system translations are more subtle,
we are particularly interested in the ranking quality
on those sentences. Tables 3 and 4 summarize the
results from both scenarios.

The experimental results in the above tables con-
veyed several important messages: in the ranking
setup, for both the MT and human mixed output and
MT only output scenarios, we have a significantly
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Feature Set Mean Corr Corr Var
BLEU 0.2913541 0.0324386

DS 0.3058766 0.0226442
PERP 0.2921684 0.0210605

BLEU+DS 0.315106 0.0206144
BLEU+PERP 0.2954833 0.0211094

PERP+DS 0.3067157 0.0217037
All 0.305248 0.0218777

Table 4: Training and Testing on Within-year Data
(Test on MT only)

improved correlation between human scoring and
automatic ranking at sentence level compared to the
state-of-the-art sentence level correlation for fluency
score of approximately 0.202 found previously (Liu
et al., 2006). When the ranking task is performed on
a mixture of MT sentences and human translations,
dependency structure and reference language model
perplexity scores sequentially improve on BLEU in
increasing the correlation. When the ranking task
is performed only on MT system output sentences,
dependency structure still significantly outperforms
BLEU in increasing the correlation, and the refer-
ence language model, even trained on a small num-
ber of sentences, demonstrates utility equal to that
of BLEU. The dependency structure feature proves
to have robust utility in informing fluency quality
in both scenarios, even with noise from the depen-
dency parser, likely because a dependency triplet
with inaccurate arguments is still rewarded as a type
match or partial match. Additionally, the feature is
reward-based and not penalty-based. We only re-
ward matches and do not penalize mismatches, such
that the impact of the noise from the MT system and
the dependency parser is weakened.

4.4 Sentence Ranking on Across-year Data

It is trivial to retrain the ranking model and test on
a new year’s data. But we speculate that a model
trained from a different data set can have almost the
same ranking power as a model trained on the same
data set. Therefore, we conducted an experiment
where we trained the ranking model on the ACL
2005 workshop data and test on the LDC2003T17
data. We do not need to retrain the ranking SVM
model; we only need to retrain the reference lan-

Feature Set Mean Corr Corr Var
BLEU 0.3133257 0.1957059

DS 0.4896355 0.0727430
PERP 0.4582005 0.0542485

BLEU+DS 0.4907745 0.0678395
BLEU+PERP 0.4577449 0.0563994

PERP+DS 0.4709567 0.0549708
All 0.4707289 0.0565538

Table 5: Training and Testing on Across-year Data
(test on 3 MT plus 1 human)

guage model on the multiple references from the
new year’s data to obtain the perplexity scores.
Because LDC2003T17 has human assessments for
only three MT systems, we test on the three system
outputs plus a human translation chosen randomly
from the four reference translations. The results in
Table 5 show an encouraging rank order correlation
with human assessments. Similar to training and
testing on within-year data, both dependency struc-
ture and perplexity scores achieve higher correlation
than the BLEU score. Combining BLEU and depen-
dency structure achieves the best correlation.

4.5 Document Level Ranking Testing

Previously, most researchers working on MT evalu-
ation studied the correlation between automatic met-
ric and human assessment on the granularity of the
document to mitigate n-gram sparseness. Presum-
ably, good correlation at sentence level should lead
to good correlation at document level but not vice
versa. Table 6 reports the correlations using the
model trained on the 2005 workshop data and tested
on the 100 documents of the LDC 2003 data. Com-
paring these correlations with the correlations re-
ported in the previous section, we see that using the
same model, the document level rank order corre-
lation is substantially higher than the sentence level
correlation, with the dependency structure showing
the highest utility.

5 Conclusion and Future Work

The current study proposes to formulate MT evalu-
ation as a ranking problem. We believe that a reli-
able ranker can inform the improvement of BLEU
for a better automatic scoring function. Ranking in-
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Feature Set Mean Corr Corr Var
BLEU 0.543 0.0853

DS 0.685 0.0723
PERP 0.575 0.0778

BLEU+DS 0.639 0.0773
BLEU+PERP 0.567 0.0785

PERP+DS 0.597 0.0861
All 0.599 0.0849

Table 6: Document Level Ranking Testing Results

formation could also be integrated into tuning pro-
cess to better inform the optimization of weights of
the different factors for SMT models. Our ranking
experiments show a better correlation with human
assessments at sentence level for fluency score com-
pared to the previous non-ranking scenario, even
with BLEU as the baseline feature. On top of BLEU,
both the dependency structure and reference lan-
guage model have shown encouraging utility for dif-
ferent testing scenarios. Looking toward the fu-
ture work, more features could be explored, e.g., a
parsing-based score of each candidate sentence and
better engineering for dependency triplet extraction.
Additionally, the entire research community on MT
evaluation would benefit from a systematic and de-
tailed analysis of real data that can provide a quanti-
tative breakdown of the proportions of different “op-
erations” needed to rewrite one sentence to another.
Such an effort will guide MT evaluation researchers
to decide which features to focus on.
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Abstract 

This paper studies the impact that difficult-to-
translate source-language phrases might have 
on the machine translation process. We formu-
late the notion of difficulty as a measurable 
quantity; we show that a classifier can be 
trained to predict whether a phrase might be 
difficult to translate; and we develop a frame-
work that makes use of the classifier and ex-
ternal resources (such as human translators) to 
improve the overall translation quality. 
Through experimental work, we verify that by 
isolating difficult-to-translate phrases and 
processing them as special cases, their nega-
tive impact on the translation of the rest of the 
sentences can be reduced. 

1 Introduction 

For translators, not all source sentences are created 
equal. Some are straight-forward enough to be 
automatically translated by a machine, while others 
may stump even professional human translators. 
Similarly, within a single sentence there may be 
some phrases that are more difficult to translate 
than others. The focus of this paper is on identify-
ing Difficult-to-Translate Phrases (DTPs) within a 
source sentence and determining their impact on 
the translation process. We investigate three ques-
tions: (1) how should we formalize the notion of 
difficulty as a measurable quantity over an appro-
priately defined phrasal unit? (2) To what level of 
accuracy can we automatically identify DTPs? (3) 
To what extent do DTPs affect an MT system's 
performance on other (not-as-difficult) parts of the 

sentence? Conversely, would knowing the correct 
translation for the DTPs improve the system’s 
translation for the rest of the sentence?  

In this work, we model difficulty as a meas-
urement with respect to a particular MT system.  
We further assume that the degree of difficulty of a 
phrase is directly correlated with the quality of the 
translation produced by the MT system, which can 
be approximated using an automatic evaluation 
metric, such as BLEU (Papineni et al., 2002).  Us-
ing this formulation of difficulty, we build a 
framework that augments an off-the-shelf phrase-
based MT system with a DTP classifier that we 
developed.  We explore the three questions in a set 
of experiments, using the framework as a testbed.  

In the first experiment, we verify that our pro-
posed difficulty measurement is sensible.  The sec-
ond experiment evaluates the classifier's accuracy 
in predicting whether a source phrase is a DTP.  
For that, we train a binary SVM classifier via a 
series of lexical and system dependent features. 
The third is an oracle study in which the DTPs are 
perfectly identified and human translations are ob-
tained. These human-translated phrases are then 
used to constrain the MT system as it translates the 
rest of the sentence. We evaluate the translation 
quality of the entire sentence and also the parts that 
are not translated by humans.  Finally, the frame-
work is evaluated as a whole. Results from our 
experiments suggest that improved handling of 
DTPs will have a positive impact the overall MT 
output quality.  Moreover, we find the SVM-
trained DTP classifier to have a promising rate of 
accuracy, and that the incorporation of DTP infor-
mation can improve the outputs of the underlying 
MT system. Specifically, we achieve an improve-
ment of translation quality for non-difficult seg-
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ments of a sentence when the DTPs are translated 
by humans. 

2 Motivation 

There are several reasons for investigating ways to 
identify DTPs.  For instance, it can help to find 
better training examples in an active learning 
framework; it can be used to coordinate outputs of 
multiple translation systems; or it can be used as 
means of error analysis for MT system 
development.  It can also be used as a pre-
processing step, an alternative to post-editing.  For 
many languages, MT output requires post-
translation editing that can be cumbersome task for 
low quality outputs, long sentences, complicated 
structures and idioms.  Pre-translation might be 
viewed as a kind of preventive medicine; that is, a 
system might produce an overall better output if it 
were not thwarted by some small portion of the 
input. By identifying DTPs and passing those cases 
off to an expensive translation resource (e.g. 
humans) first, we might avoid problems further 
down the MT pipeline. Moreover, pre-translation 
might not always have to be performed by humans.  
What is considered difficult for one system might 
not be difficult for another system; thus, pre-
translation might also be conducted using multiple 
MT systems. 

3 Our Approach 

Figure 1 presents the overall dataflow of our 
system.  The input is a source sentence (a1 ... an), 
from which DTP candidates are proposed. Because 
the DTPs will have to be translated by humans as 
independent units, we limit the set of possible 
phrases to be syntactically meaningful units. 
Therefore, the framework requires a source-
language syntactic parser or chunker. In this paper, 
we parse the source sentence with an off-the-shelf 
syntactic parser (Bikel, 2002). From the parse tree 
produced for the source sentence, every constituent 
whose string span is between 25% and 75% of the 
full sentence length is considered a DTP candidate.  
Additionally we have a tree node depth constraint 
that requires the constituent to be at least two 
levels above the tree’s yield and two levels below 
the root.  These two constraints ensure that the 
extracted phrases have balanced lengths. 

We apply the classifier on each candidate and 
select the one labeled as difficult with the highest 
classification score.  Depending on the underlying 

classifier, the score can be in various formats such 
as class probablity, confidence measure, etc.  In 
our SVM based classifier, the score is the distance 
from the margin. 
 

 
Figure 1: An overview of our translation frame-

work.  
 

The chosen phrase (aj ... ak) is translated by a 
human (ei ... em). We constrain the underlying 
phrase-based MT system (Koehn, 2003) so that its 
decoding of the source sentence must contain the 
human translation for the DTP. In the following 
subsections, we describe how we develop the DTP 
classifier with machine learning techniques and 
how we constrain the underlying MT system with 
human translated DTPs. 

3.1 Training the DTP Classifier 

Given a phrase in the source language, the DTP 
classifier extracts a set of features from it and pre-
dicts whether it is difficult or not based on its fea-
ture values. We use an SVM classifier in this work.  
We train the SVM-Light implementation of the 
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algorithm (Joachims 1999).  To train the classifier, 
we need to tackle two challenges.  First, we need to 
develop some appropriate training data because 
there is no corpus with annotated DTPs. Second, 
we need to determine a set of predictive features 
for the classifier. 

Development of the Gold Standard 

Unlike the typical SVM training scenario, labeled 
training examples of DTPs do not exist. Manual 
creation of such data requires deep understanding 
of the linguistics differences of source and target 
languages and also deep knowledge about the MT 
system and its training data.  Such resources are 
not accessible to us.  Instead, we construct the gold 
standard automatically.  We make the strong as-
sumption that difficulty is directly correlated to 
translation quality and that translation quality can 
be approximately measured by automatic metrics 
such as BLEU.  We have two resource require-
ments – a sentence-aligned parallel corpus (differ-
ent from the data used to train the underlying MT 
system), and a syntactic parser for the source lan-
guage. The procedure for creating the gold stan-
dard data is as follows:  
1. Each source sentence is parsed. 
2. Phrase translations are extracted from the par-

allel corpus. Specifically, we generate word-
alignments using GIZA++ (Och 2001) in both 
directions and combine them using the refined 
methodology (Och and Ney 2003), and then 
we applied Koehn’s toolkit (2004) to extract 
parallel phrases. We have relaxed the length 
constraints of the toolkit to ensure the extrac-
tion of long phrases (as long as 16 words).  

3. Parallel phrases whose source parts are not 
well-formed constituents are filtered out.   

4. The source phrases are translated by the under-
lying MT system, and a baseline BLEU score 
is computed over this set of MT outputs. 

5. To label each source phrase, we remove that 
phrase and its translation from the MT output 
and calculate the set’s new BLEU score. If 
new-score is greater than the baseline score by 
some threshold value (a tunable parameter), we 
label the phrase as difficult, otherwise we label 
it as not difficult.   

Rather than directly calculating the BLEU score 
for each phrase, we performed the round-robin 
procedure described in steps 4 and 5 because 
BLEU is not reliable for short phrases. BLEU is 
calculated as a geometric mean over n-gram 

matches with references, assigning a score of zero 
to an entire phrase if no higher-ordered n-gram 
matches were found against the references. How-
ever, some phrases with a score of 0 might have 
more matches in the lower-ordered n-grams than 
other phrases (and thus ought to be considered 
“easier”). A comparison of the relative changes in 
BLEU scores while holding out a phrase from the 
corpus gives us a more sensitive measurement than 
directly computing BLEU for each phrase. 

Features 

By analyzing the training corpus, we have found 
18 features that are indicative of DTPs. Some 
phrase-level feature values are computed as an av-
erage of the feature values of the individual words.  
The following first four features use some prob-
abilities that are collected from a parallel data and 
word alignments.  Such a resource does not exist at 
the time of testing.  Instead we use the history of 
the source words (estimated from the large parallel 
corpus) to predict the feature value. 
  (I) Average probability of word alignment 
crossings: word alignment crossings are indicative 
of word order differences and generally structural 
difference across two languages.  We collect word 
alignment crossing statistics from the training cor-
pus to estimate the crossing probability for each 
word in a new source phrase.  For example the 
Arabic word rhl has 67% probability of alignment 
crossing (word movement across English).  These 
probabilities are then averaged into one value for 
the entire phrase.  

(II) Average probability of translation ambi-
guity: words that have multiple equally-likely 
translations contribute to translation ambiguity.  
For example a word that has 4 different transla-
tions with similar frequencies tends to be more 
ambiguous than a word that has one dominant 
translation. We collect statistics about the lexical 
translational ambiguities from the training corpus 
and lexical translation tables and use them to pre-
dict the ambiguity of each word in a new source 
phrase. The score for the phrase is the average of 
the scores for the individual words. 

(III) Average probability of POS tag changes:  
Change of a word’s POS tagging is an indication 
of deep structural differences between the source 
phrase and the target phrase.  Using the POS tag-
ging information for both sides of the training cor-
pus, we learn the probability that each source 
word’s POS gets changed after the translation.  To 
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overcome data sparseness, we only look at the col-
lapsed version of POS tags on both sides of the 
corpus.  The phrase’s score is the average the indi-
vidual word probabilities.  

(IV) Average probability of null alignments: 
In many cases null alignments of the source words 
are indicative of the weakness of information about 
the word.  This feature is similar to average ambi-
guity probability.  The difference is that we use the 
probability of null alignments instead of lexical 
probabilities. 

(V-IX) Normalized number of unknown 
words, content words, numbers, punctuations: 
For each of these features we normalize the count 
(e.g.: unknown words) with the length of the 
phrase.  The normalization of the features helps the 
classifier to not have length preference for the 
phrases.  

(X) Number of proper nouns: Named entities 
tend to create translation difficulty, due to their 
diversity of spellings and also domain differences.  
We use the number of proper nouns to estimate the 
occurrence of the named entities in the phrase. 

(XI Depth of the subtree: The feature is used as 
a measure of syntactic complexity of the phrase.  
For example continuous right branching of the 
parse tree which adds to the depth of the subtree 
can be indicative of a complex or ambiguous struc-
ture that might be difficult to translate. 

(XII) Constituency type of the phrase:  We 
observe that the different types of constituents 
have varied effects on the translations of the 
phrase.  For example prepositional phrases tend to 
belong to difficult phrases.  

(XIII) Constituency type of the parent phrase 
(XIV)  Constituency types of the children 

nodes of the phrase: We form a set from the chil-
dren nodes of the phrase (on the parse tree).   

(XV) Length of the phrase: The feature is 
based on the number of the words in the phrase. 

(XVI)  Proportional length of the phrase: The 
proportion of the length of the phrase to the length 
of the sentence.  As this proportion gets larger, the 
contextual effect on the translation of the phrase 
becomes less. 
    (XVII) Distance from the start of the sentence 
and: Phrases that are further away from the start of 
the sentence tend to not be translated as well due to 
compounding translational errors.   

(XVIII)  Distance from a learned translation 
phrase: The feature measure the number of words 
before reaching a learned phrase.  In other words it 

s an indication of the level of error that is intro-
duced in the early parts of the phrase translation. 

3.2 Constraining the MT System 

Once human translations have been obtained for 
the DTPs, we want the MT system to only consider 
output candidates that contain the human transla-
tions. The additional knowledge can be used by the 
phrase-based system without any code modifica-
tion. Figure 2 shows the data-flow for this process. 
First, we append the pre-trained phrase-translation 
table with the DTPs and their human translations 
with a probability of 1.0. We also include the hu-
man translations for the DTPs as training data for 
the language model to ensure that the phrase vo-
cabulary is familiar to the decoder and relax the 
phrase distortion parameter that the decoder can 
include all phrase translations with any length in 
the decoding.  Thus, candidates that contain the 
human translations for the DTPs will score higher 
and be chosen by the decoder. 

 

 
Figure 2: Human translations for the DTPs can be 
incorporated into the MT system’s phrase table and 
language model. 

4 Experiments 

The goal of these four experiments is to gain a bet-
ter understanding of the DTPs and their impact on 
the translation process. All our studies are con-
ducted for Arabic-to-English MT.  We formed a 
one-million word parallel text out of two corpora 
released by the Linguistic Data Consortium: Ara-

251



bic News Translation Text Part 1 and Arabic Eng-
lish Parallel News Part 1.  The majority of the data 
was used to train the underlying phrase-based MT 
system. We reserve 2000 sentences for develop-
ment and experimentation.  Half of these are used 
for the training and evaluation of the DTP classi-
fier (Sections 4.1 and 4.2); the other half is used 
for translation experiments on the rest of the 
framework (Sections 4.3 and 4.4).  

In both cases, translation phrases are extracted 
from the sentences and assigned “gold standard” 
labels according to the procedure described in Sec-
tion 3.1. It is necessary to keep two separate data-
sets because the later experiments make use of the 
trained DTP classifier.   

For the two translation experiments, we also face 
a practical obstacle: we do not have an army of 
human translators at our disposal to translate the 
identified phrases. To make the studies possible, 
we rely on a pre-translated parallel corpus to simu-
late the process of asking a human to translate a 
phrase. That is, we use the phrase extraction toolkit 
to find translation phrases corresponding to each 
DTP candidate (note that the data used for this ex-
periment is separate from the main parallel corpus 
used to train the MT system, so the system has no 
knowledge about these translations).  

4.1 Automatic Labeling of DTP  

In this first experiment, we verify whether our 
method for creating positive and negative labeled 
examples of DTPs (as described in Section 3.1) is 
sound. Out of 2013 extracted phrases, we found  
949 positive instances (DTPs) and 1064 negative 
instances. The difficult phrases have an average 
length of 8.8 words while the other phrases have an 
average length of 7.8 words1.  We measured the 
BLEU scores for the MT outputs for both groups 
of phrases (Table 1).  
 

Experiment BLEU Score 
DTPs 14.34 

Non-DTPs 61.22 
Table 1: Isolated Translation of the selected training 
phrases 
 

The large gap between the translation qualities 
of the two phrase groups suggests that the DTPs 
are indeed much more “difficult” than the other 
phrases. 
                                                           
1 Arabic words are tokenized and lemmatized by Diab’s Ara-
bic Toolset (Diab 2004). 

4.2 Evaluation of the DTP Classifier 

We now perform a local evaluation of the trained 
DTP classifier for its classification accuracy.  The 
classifier is trained as an SVM using a linear ker-
nel.  The “gold standard” phrases from the section 
4.1 are split into three groups: 2013 instances are 
used as training data for the classifier; 100 in-
stances are used for development (e.g., parameter 
tuning and feature engineering); and 200 instances 
are used as test instances.  The test set has an equal 
number of difficult and non-difficult phrases (50% 
baseline accuracy).  

In order to optimize the accuracy of classifica-
tion, we used a development set for feature engi-
neering and trying various SVM kernels and asso-
ciated parameters.  For the feature engineering 
part, we used the all-but-one heuristic to test the 
contribution of each individual feature.  Table 2 
presents the most and least contributing four fea-
tures that we used in our classification.  Among 
various features, we observed that the syntactic 
features are the most contributing sources of in-
formation for our classification. 
 
Least Useful Features Most Useful Features 
Ft1: Align Crossing Ft 2: Lexical Ambiguity 
Ft 8: Count of Nums Ft 11: Depth of subtree 
Ft:9: Count of Puncs Ft 12: Const type of Phr 
Ft 10: Count of NNPs Ft 13: Const type of Par 
Table 2: The most and least useful features 
 

The DTP classifier achieves an average accu-
racy of 71.5%, using 10 fold cross validation on 
the test set. 

4.3 Study on the effect of DTPs 

This experiment concentrates on the second half of 
the framework: that of constraining the MT system 
to use human-translations for the DTPs. Our objec-
tive is to assess to what degree do the DTPs nega-
tively impact the MT process. We compare the MT 
outputs of two groups of sentences.  Group I is 
made up of 242 sentences that contain the most 
difficult to translate phrases in the 1000 sentences 
we reserved for this study. Group II is a control 
group made up of 242 sentences with the least dif-
ficult to translate phrases.  The DTPs make up 
about 9% of word counts in the above 484 sen-
tences.  We follow the procedure described in Sec-
tion 3.1 to identify and score all the phrases; thus, 
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this experiment can be considered an oracle study. 
We compare four scenarios: 
1. Adding phrase translations for Group I: MT 

system is constrained using the method de-
scribed in Section 3.2 to incorporate human 
translations of the pre-identified DTPs in 
Group I.2 

2. Adding phrase translations for Group II: 
MT system is constrained to use human trans-
lations for the identified (non-difficult) phrases 
in Group II.  

3. Adding translations for random phrases: 
randomly replace 242 phrases from either 
Group I or Group II. 

4. Adding translations for classifier labeled  
DTPs: human translations for phrases that our 
trained classifier has identified as DTPs from 
both Group I and Group II. 

 
  All of the above scenarios are evaluated on a 

combined set of 484 sentences (group 1 + group 2).  
This set up normalizes the relative difficulty of 
each grouping. 

If the DTPs negatively impact the MT process, 
we would expect to see a greater improvement 
when Group I phrases are translated by humans 
than when Group II phrases are translated by 
humans.  

The baseline for the comparisons is to evaluate 
the outputs of the MT system without using any 
human translations. This results in a BLEU score 
of 24.0. When human translations are used, the 
BLEU score of the dataset increases, as shown in 
Table 3. 
 

Experiment BLEU  
Baseline (no human trans) 24.0 
w/ translated DTPs (Group I) 39.6 
w/ translated non-DTPs (Group II) 33.7 
w/ translated phrases (random) 35.1 
w/ translated phrases (classifier) 37.0 

Table 3: A comparison of BLEU scores for the entire set 
of sentences under the constraints of using human trans-
lations for different types of phrases. 

 
While it is unsurprising that the inclusion of 

human translations increases the overall BLEU 
score, this comparison shows that the boost is 
sharper when more DTPs are translated. This is 

                                                           
2 In this study, because the sentences are from the training 
parallel corpus, we can extract human translations directly 
from the corpus. 

consistent with our conjecture that pre-translating 
difficult phrases may be helpful. 

A more interesting question is whether the hu-
man translations still provide any benefit once we 
factor out their direct contributions to the increase 
in BLEU scores. To answer this question, we com-
pute the BLEU scores for the outputs again, this 
time filtering out all 484 identified phrases from 
the evaluation.  In other words in this experiment 
we focus on the part of the sentence that is not la-
beled and does include any human translations.  
Table 4 presents the results.   
 

Experiment BLEU 
Baseline (no human trans) 23.0 
w/ translated DTPs (Group I) 25.4 
w/ translated non-DTPs (Group II) 23.9 
w/ translated phrases (random) 24.5 
w/ translated phrases (classifier) 25.1 

Table 4: BLEU scores for the translation outputs ex-
cluding the 484 (DTP and non-DTP) phrases. 
 

The largest gain (2.4 BLEU increment from 
baseline) occurs when all and only the DTPs were 
translated. In contrast, replacing phrases from 
Group II did not improve the BLEU score very 
much. These results suggest that better handling of 
DTPs will have a positive effect on the overall MT 
process. We also note that using our SVM-trained 
classifier to identify the DTPs, the constrained MT 
system’s outputs obtained a BLEU score that is 
nearly as high as if a perfect classifier was used.  

4.4 Full evaluation of the framework       

This final experiment evaluates the complete 
framework as described in Section 3. The setup of 
this study is similar to that of the previous section.   
The main difference is that now, we rely on the 
classifier to predict which phrase would be the 
most difficult to translate and use human transla-
tions for those phrases. 

Out of 1000 sentences, 356 have been identified 
to contain DTPs (that are in the phrase extraction 
list). In other words, only 356 sentences hold DTPs 
that we can find their human translations through 
phrase projection.  For the remaining sentences, we 
do not use any human translation. 
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Table 5 presents the increase in BLEU scores 
when human translations for the 356 DTPs are 
used. As expected the BLEU score increases, but 
the improvement is less dramatic than in the previ-
ous experiment because most sentences are un-
changed. 
 

Experiment BLEU  
Baseline (no human trans) 24.9 
w/ human translations  29.0 

Table 5: Entire Corpus level evaluation (1000 sen-
tences) when replacing DTPs in the hit list 

 
Table 6 summarizes the experimental results on 

the subset of the 356 sentences.  The first two rows 
compare the translation quality at the sentence 
level (similar to Table 3); the next two rows com-
pare the translation quality of the non-DTP parts 
(similar to Table 4).  Rows 1 and 3 are conditions 
when we do not use human translation; and rows 2 
and 4 are conditions when we replace DTPs with 
their associated human translations.  The im-
provements of the BLEU score for the hit list are 
similar to the results we have previously seen. 
 

Experiment on 356 sentences BLEU 
Baseline: full sent. 25.1 
w/ human translation: full sent.  37.6 
Baseline: discount DTPs 26.0 
w/ human translation: discount 
DTPs 

27.8 

Table 6: Evaluation of the subset of 356 sentences: both 
for the full sentence and for non-DTP parts, with and 
without human translation replacement of DTPs.  

5 Related Work 

Our work is related to the problem of confidence 
estimation for MT (Blatz et. al. 2004; Zen and Ney 
2006).  The confidence measure is a score for n-
grams generated by a decoder3. The measure is 
based on the features like lexical probabilities 
(word posterior), phrase translation probabilities, 
N-best translation hypothesis, etc.  Our DTP classi-
fication differs from the confidence measuring in 
several aspects: one of the main purposes of our 
classification of DTPs is to optimize the usage of 
outside resources.  To do so, we focus on classifi-
cation of phrases which are syntactically meaning-
ful, because those syntactic constituent units have 

                                                           
3 Most of the confidence estimation measures are for unigrams 
(word level measures). 

less dependency to the whole sentence structure 
and can be translated independently.  Our classifi-
cation relies on syntactic features that are impor-
tant source of information about the MT difficulty 
and also are useful for further error tracking (rea-
sons behind the difficulty).  Our classification is 
performed as a pre-translation step, so it does not 
rely on the output of the MT system for a test sen-
tence; instead, it uses a parallel training corpus and 
the characteristics of the underlying MT system 
(e.g.: phrase translations, lexical probabilities).   

Confidence measures have been used for error 
correction and interactive MT systems. Ueffing 
and Ney (2005) employed confidence measures 
within a trans-type-style interactive MT system.  In 
their system, the MT system iteratively generates 
the translation and the human translator accepts a 
part of the proposed translation by typing one or 
more prefix characters.  The system regenerates a 
new translation based on the human prefix input 
and word level confidence measures.  In contrast, 
our proposed usage of human knowledge is for 
translation at the phrase level.  We use syntactic 
restrictions to make the extracted phrases meaning-
ful and easy to translate in isolation.  In other 
words, by the usage of our framework trans-type 
systems can use human knowledge at the phrase 
level for the most difficult segments of a sentence.  
Additionally by the usage of our framework, the 
MT system performs the decoding task only once.   

The idea of isolated phrase translation has been 
explored successfully in MT community.  Koehn 
and Knight (2003) used isolated translation of NP 
and PP phrases and merge them with the phrase 
based MT system to translate the complete sen-
tence.  In our work, instead of focusing on specific 
type of phrases (NP or PP), we focus on isolated 
translation of difficult phrases with an aim to im-
prove the translation quality of non-difficult seg-
ments too. 

6 Conclusion and Future Work  

We have presented an MT framework that makes 
use of additional information about difficult-to-
translate source phrases.  Our framework includes 
an SVM-based phrase classifier that finds the seg-
ment of a sentence that is most difficult to trans-
late.  Our classifier achieves a promising 71.5% 
accuracy. By asking external sources (such as hu-
man translators) to pre-translate these DTPs and 
using them to constrain the MT process, we im-
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prove the system outputs for the other parts of the 
sentences.  

We plan to extend this work in several direc-
tions.  First, our framework can be augmented to 
include multiple MT systems. We expect different 
systems will have difficulties with different con-
structs, and thus they may support each other, and 
thus reducing the need to ask human translators for 
help with the difficult phrases. Second, our current 
metric for phrasal difficulty depends on BLEU.  
Considering the recent debates about the shortcom-
ings of the BLEU score (Callison-Burch et. al. 
2006), we are interested in applying alternative 
metrics such a Meteor (Banerjee and Lavie 2005).  
Third, we believe that there is more room for im-
provement and extension of our classification fea-
tures.  Specifically, we believe that our syntactic 
analysis of source sentences can be improved by 
including richer parsing features.  Finally, the 
framework can also be used to diagnose recurring 
problems in the MT system.  We are currently de-
veloping methods for improving the translation of 
the difficult phrases for the phrase-based MT sys-
tem used in our experiments. 
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Abstract

Evaluation results recently reported by
Callison-Burch et al. (2006) and Koehn and
Monz (2006), revealed that, in certain cases,
the BLEU metric may not be a reliable MT
quality indicator. This happens, for in-
stance, when the systems under evaluation
are based on different paradigms, and there-
fore, do not share the same lexicon. The
reason is that, while MT quality aspects are
diverse, BLEU limits its scope to the lex-
ical dimension. In this work, we suggest
using metrics which take into account lin-
guistic features at more abstract levels. We
provide experimental results showing that
metrics based on deeper linguistic informa-
tion (syntactic/shallow-semantic) are able to
produce more reliable system rankings than
metrics based on lexical matching alone,
specially when the systems under evaluation
are of a different nature.

1 Introduction

Most metrics used in the context of Automatic Ma-
chine Translation (MT) Evaluation are based on
the assumption that‘acceptable’translations tend to
share the lexicon (i.e., word forms) in a predefined
set of manual reference translations. This assump-
tion works well in many cases. However, several
results in recent MT evaluation campaigns have cast
some doubts on its general validity. For instance,
Callison-Burch et al. (2006) and Koehn and Monz
(2006) reported and analyzed several cases of strong

disagreement between system rankings provided by
human assessors and those produced by theBLEU

metric (Papineni et al., 2001). In particular, they
noted that when the systems under evaluation are
of a different nature (e.g., rule-based vs. statistical,
human-aided vs. fully automatical, etc.)BLEU may
not be a reliable MT quality indicator. The reason is
that BLEU favours MT systems which share the ex-
pected reference lexicon (e.g., statistical systems),
and penalizes those which use a different one.

Indeed, the underlying cause is much simpler. In
general, lexical similarity is nor a sufficient neither
a necessary condition so that two sentences convey
the same meaning. On the contrary, natural lan-
guages are expressive and ambiguous at different
levels. Consequently, the similarity between two
sentences may involve different dimensions. In this
work, we hypothesize that, in order to ‘fairly’ evalu-
ate MT systems based on different paradigms, simi-
larities at more abstract linguistic levels must be an-
alyzed. For that purpose, we have compiled a rich
set of metrics operating at the lexical, syntactic and
shallow-semantic levels (see Section 2). We present
a comparative study on the behavior of several met-
ric representatives from each linguistic level in the
context of some of the cases reported by Koehn and
Monz (2006) and Callison-Burch et al. (2006) (see
Section 3). We show that metrics based on deeper
linguistic information (syntactic/shallow-semantic)
are able to produce more reliable system rankings
than those produced by metrics which limit their
scope to the lexical dimension, specially when the
systems under evaluation are of a different nature.
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2 A Heterogeneous Metric Set

For our experiments, we have compiled a represen-
tative set of metrics1 at different linguistic levels.
We have resorted to several existing metrics, and
we have also developed new ones. Below, we group
them according to the level at which they operate.

2.1 Lexical Similarity

Most of the current metrics operate at the lexical
level. We have selected 7 representatives from dif-
ferent families which have been shown to obtain
high levels of correlation with human assessments:

BLEU We use the default accumulated score up to
the level of 4-grams (Papineni et al., 2001).

NIST We use the default accumulated score up to
the level of 5-grams (Doddington, 2002).

GTM We set to 1 the value of thee parame-
ter (Melamed et al., 2003).

METEOR We run all modules: ‘exact’, ‘porter-
stem’, ‘wn stem’ and ‘wnsynonymy’, in that

order (Banerjee and Lavie, 2005).

ROUGE We used the ROUGE-S* variant (skip bi-
grams with no max-gap-length). Stemming is
enabled (Lin and Och, 2004a).

mWER We use1 − mWER (Nießen et al., 2000).

mPER We use1 − mPER (Tillmann et al., 1997).

Let us note thatROUGE and METEOR may con-
sider stemming (i.e., morphological variations). Ad-
ditionally, METEOR may perform a lookup for syn-
onyms in WordNet (Fellbaum, 1998).

2.2 Beyond Lexical Similarity

Modeling linguistic features at levels further than
the lexical level requires the usage of more complex
linguistic structures. We have defined what we call
‘linguistic elements’(LEs).

2.2.1 Linguistic Elements

LEs are linguistic units, structures, or relation-
ships, such that a sentence may be partially seen as a
‘bag’ of LEs. Possible kinds of LEs are: word forms,
parts-of-speech, dependency relationships, syntactic
phrases, named entities, semantic roles, etc. Each

1All metrics used in this work are publicly available inside
the IQMT Framework (Giménez and Amigó, 2006).http://
www.lsi.upc.edu/˜nlp/IQMT

LE may consist, in its turn, of one or more LEs,
which we call ‘items’ inside the LE. For instance, a
‘phrase’ LE may consist of ‘phrase’ items, ‘part-of-
speech’ (PoS) items, ‘word form’ items, etc. Items
may be also combinations of LEs. For instance, a
‘phrase’ LE may be seen as a sequence of ‘word-
form:PoS’ items.

2.2.2 Similarity Measures

We are interested in comparing linguistic struc-
tures, and linguistic units. LEs allow for compar-
isons at different granularity levels, and from dif-
ferent viewpoints. For instance, we might compare
the semantic structure of two sentences (i.e., which
actions, semantic arguments and adjuncts exist) or
we might compare lexical units according to the se-
mantic role they play inside the sentence. For that
purpose, we use two very simple kinds of similarity
measures over LEs:‘Overlapping’ and ‘Matching’.
We provide a general definition:

Overlapping between items inside LEs, according
to their type. Formally:

Overlapping(t) =

X

i∈itemst(hyp)

count
′

hyp(i, t)

X

i∈itemst(ref)

countref (i, t)

wheret is the LE type2, itemst(s) refers to the
set of items occurring inside LEs of typet in
sentences, countref(i, t) denotes the number
of times itemi appears in the reference trans-
lation inside a LE of typet, andcount′hyp(i, t)
denotes the number of timesi appears in the
candidate translation inside a LE of typet, lim-
ited by the number of timesi appears in the ref-
erence translation inside a LE of typet. Thus,
‘Overlapping’ provides a rough measure of the
proportion of items inside elements of a cer-
tain type which have been ‘successfully’ trans-
lated. We also introduce a coarser metric,‘Over-

lapping(*)’ , which considers the uniformly aver-
aged ‘overlapping’ over all types:

Overlapping(?) =
1

|T |

X

t∈T

Overlapping(t)

whereT is the set of types.
2LE types vary according to the specific LE class. For in-

stance, in the case of Named Entities types may be ‘PER’ (i.e.,
person), ‘LOC’ (i.e., location), ‘ORG’ (i.e., organization), etc.
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Matching between items inside LEs, according to
their type. Its definition is analogous to the
‘Overlapping’ definition, but in this case the
relative order of the items is important. All
items inside the same element are considered as
a single unit (i.e., a sequence in left-to-right or-
der). In other words, we are computing the pro-
portion of ‘fully’ translated elements, accord-
ing to their type. We also introduce a coarser
metric, ‘Matching(*)’ , which considers the uni-
formly averaged ‘Matching’ over all types.

notes:

• ‘Overlapping’ and ‘Matching’ operate on the
assumption of a single reference translation.
The extension to the multi-reference setting is
computed by assigning the maximum value at-
tained over all human references individually.

• ‘Overlapping’ and ‘Matching’ are general met-
rics. We may apply them to specific scenarios
by defining the class of linguistic elements and
items to be used. Below, we instantiate these
measures over several particular cases.

2.3 Shallow Syntactic Similarity

Metrics based on shallow parsing (‘SP’) analyze
similarities at the level of PoS-tagging, lemmati-
zation, and base phrase chunking. Outputs and
references are automatically annotated using state-
of-the-art tools. PoS-tagging and lemmatization
are provided by theSVMTool package (Giménez and
Màrquez, 2004), and base phrase chunking is pro-
vided by thePhrecosoftware (Carreras et al., 2005).
Tag sets for English are derived from the Penn Tree-
bank (Marcus et al., 1993).

We instantiate ‘Overlapping’ over parts-of-speech
and chunk types. The goal is to capture the propor-
tion of lexical items correctly translated, according
to their shallow syntactic realization:

SP-Op-t Lexical overlapping according to the part-
of-speech ‘t’. For instance,‘SP-Op-NN’ roughly
reflects the proportion of correctly translated
singular nouns. We also introduce a coarser
metric, ‘SP-Op-*’ which computes average
overlapping over all parts-of-speech.

SP-Oc-t Lexical overlapping according to the
chunk type ‘t’. For instance,‘SP-Oc-NP’ roughly

reflects the successfully translated proportion
of noun phrases. We also introduce a coarser
metric, ‘SP-Oc-*’ which considers the average
overlapping over all chunk types.

At a more abstract level, we use theNIST

metric (Doddington, 2002) to compute accumu-
lated/individual scores over sequences of:

Lemmas –SP-NIST(i)l-n

Parts-of-speech –SP-NIST(i)p-n

Base phrase chunks –SP-NIST(i)c-n

For instance,‘SP-NISTl-5’ corresponds to the accu-
mulated NIST score for lemman-grams up to length
5, whereas‘SP-NISTip-5’ corresponds to the individ-
ual NIST score for PoS 5-grams.

2.4 Syntactic Similarity

We have incorporated, with minor modifications,
some of the syntactic metrics described by Liu and
Gildea (2005) and Amigó et al. (2006) based on de-
pendency and constituency parsing.

2.4.1 On Dependency Parsing (DP)

‘DP’ metrics capture similarities between depen-
dency trees associated to automatic and reference
translations. Dependency trees are provided by the
MINIPAR dependency parser (Lin, 1998). Similari-
ties are captured from different viewpoints:

DP-HWC(i)- l This metric corresponds to the HWC
metric presented by Liu and Gildea (2005). All
head-word chains are retrieved. The fraction of
matching head-word chains of a given length,
‘ l’, is computed. We have slightly modified
this metric in order to distinguish three differ-
ent variants according to the type of items head-
word chains may consist of:

Lexical forms –DP-HWC(i)w -l
Grammatical categories –DP-HWC(i)c-l
Grammatical relationships –DP-HWC(i)r-l

Average accumulated scores up to a given chain
length may be used as well. For instance,
‘DP-HWCiw-4’ retrieves the proportion of match-
ing length-4 word-chains, whereas‘DP-HWC w -

4’ retrieves average accumulated proportion of
matching word-chains up to length-4. Anal-
ogously, ‘DP-HWC c-4’, and ‘DP-HWC r -4’ com-
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pute average accumulated proportion of cate-
gory/relationship chains up to length-4.

DP-Ol|Oc|Or These metrics correspond exactly to
the LEVEL, GRAM and TREE metrics intro-
duced by Amigó et al. (2006).

DP-Ol-l Overlapping between words hanging
at level ‘l’, or deeper.

DP-Oc-t Overlapping between wordsdirectly
hanging from terminal nodes (i.e. gram-
matical categories) of type ‘t’.

DP-Or-t Overlapping between words ruled
by non-terminal nodes (i.e. grammatical
relationships) of type ‘t’.

Node types are determined by grammatical cat-
egories and relationships defined byMINIPAR.
For instance,‘DP-Or-s’ reflects lexical overlap-
ping between subtrees of type ‘s’ (subject).‘DP-

Oc-A’ reflects lexical overlapping between ter-
minal nodes of type ‘A’ (Adjective/Adverbs).
‘DP-Ol-4’ reflects lexical overlapping between
nodes hanging at level 4 or deeper. Addition-
ally, we consider three coarser metrics (‘DP-Ol-

*’ , ‘DP-Oc-*’ and ‘DP-Or -*’ ) which correspond
to the uniformly averaged values over all lev-
els, categories, and relationships, respectively.

2.4.2 On Constituency Parsing (CP)

‘CP’ metrics capture similarities between con-
stituency parse trees associated to automatic and
reference translations. Constituency trees are pro-
vided by the Charniak-Johnson’s Max-Ent reranking
parser (Charniak and Johnson, 2005).

CP-STM(i)-l This metric corresponds to the STM
metric presented by Liu and Gildea (2005).
All syntactic subpaths in the candidate and the
reference trees are retrieved. The fraction of
matching subpaths of a given length, ‘l’, is
computed. For instance,‘CP-STMi-5’ retrieves
the proportion of length-5 matching subpaths.
Average accumulated scores may be computed
as well. For instance,‘CP-STM-9’ retrieves av-
erage accumulated proportion of matching sub-
paths up to length-9.

2.5 Shallow-Semantic Similarity

We have designed two new families of metrics, ‘NE’
and ‘SR’, which are intended to capture similari-
ties over Named Entities (NEs) and Semantic Roles
(SRs), respectively.

2.5.1 On Named Entities (NE)

‘NE’ metrics analyze similarities between auto-
matic and reference translations by comparing the
NEs which occur in them. Sentences are automati-
cally annotated using theBIOSpackage (Surdeanu
et al., 2005). BIOS requires at the input shallow
parsed text, which is obtained as described in Sec-
tion 2.3. See the list of NE types in Table 1.

Type Description
ORG Organization
PER Person
LOC Location
MISC Miscellaneous
O Not-a-NE
DATE Temporal expressions
NUM Numerical expressions
ANGLE QUANTITY
DISTANCE QUANTITY
SIZE QUANTITY Quantities
SPEEDQUANTITY
TEMPERATUREQUANTITY
WEIGHT QUANTITY
METHOD
MONEY
LANGUAGE Other
PERCENT
PROJECT
SYSTEM

Table 1: Named Entity types.

We define two types of metrics:

NE-Oe-t Lexical overlapping between NEs accord-
ing to their typet. For instance,‘NE-Oe-PER’ re-
flects lexical overlapping between NEs of type
‘PER’ (i.e., person), which provides a rough es-
timate of the successfully translated proportion
of person names. The‘NE-Oe-*’ metric consid-
ers the average lexical overlapping over all NE
types. This metric includes the NE type ‘O’
(i.e., Not-a-NE). We introduce another variant,
‘NE-Oe-**’ , which considers only actual NEs.

NE-Me-t Lexical matching between NEs accord-
ing to their typet. For instance,‘NE-Me-LOC’

reflects the proportion of fully translated NEs
of type ‘LOC’ (i.e., location). The‘NE-Me-*’
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metric considers the average lexical matching
over all NE types, this time excluding type ‘O’.

Other authors have measured MT quality over
NEs in the recent literature. In particular, the‘NE-

Me-*’ metric is similar to the‘NEE’ metric defined
by Reeder et al. (2001).

2.5.2 On Semantic Roles (SR)

‘SR’ metrics analyze similarities between auto-
matic and reference translations by comparing the
SRs (i.e., arguments and adjuncts) which occur in
them. Sentences are automatically annotated using
the SwiRL package (Màrquez et al., 2005). This
package requires at the input shallow parsed text en-
riched with NEs, which is obtained as described in
Section 2.5.1. See the list of SR types in Table 2.

Type Description
A0
A1
A2 arguments associated with a verb predicate,
A3 defined in the PropBank Frames scheme.
A4
A5
AA Causative agent
AM-ADV Adverbial (general-purpose) adjunct
AM-CAU Causal adjunct
AM-DIR Directional adjunct
AM-DIS Discourse marker
AM-EXT Extent adjunct
AM-LOC Locative adjunct
AM-MNR Manner adjunct
AM-MOD Modal adjunct
AM-NEG Negation marker
AM-PNC Purpose and reason adjunct
AM-PRD Predication adjunct
AM-REC Reciprocal adjunct
AM-TMP Temporal adjunct

Table 2: Semantic Roles.

We define three types of metrics:

SR-Or-t Lexical overlapping between SRs accord-
ing to their typet. For instance,‘SR-Or-A0’ re-
flects lexical overlapping between ‘A0’ argu-
ments. ‘SR-Or -*’ considers the average lexical
overlapping over all SR types.

SR-Mr-t Lexical matching between SRs accord-
ing to their type t. For instance, the met-
ric ‘SR-Mr-AM-MOD’ reflects the proportion of
fully translated modal adjuncts. The‘SR-Mr -*’

metric considers the average lexical matching
over all SR types.

SR-Or This metric reflects ‘role overlapping’, i.e..
overlapping between semantic roles indepen-
dently from their lexical realization.

Note that in the same sentence several verbs, with
their respective SRs, may co-occur. However, the
metrics described above do not distinguish between
SRs associated to different verbs. In order to account
for such a distinction we introduce a more restric-
tive version of these metrics (‘SR-Mrv-t’ , ‘SR-Orv-t’ ,
‘SR-Mrv -*’ , ‘SR-Orv -*’ , and‘SR-Orv ’), which require
SRs to be associated to the same verb.

3 Experimental Work

In this section, we study the behavior of some
of the metrics described in Section 2, according
to the linguistic level at which they operate. We
have selected a set of coarse-grained metric vari-
ants (i.e., accumulated/average scores over linguis-
tic units and structures of different kinds)3. We ana-
lyze some of the cases reported by Koehn and Monz
(2006) and Callison-Burch et al. (2006). We distin-
guish different evaluation contexts. In Section 3.1,
we study the case of a single reference translation
being available. In principle, this scenario should
diminish the reliability of metrics based on lexical
matching alone, and favour metrics based on deeper
linguistic features. In Section 3.2, we study the case
of several reference translations available. This sce-
nario should alleviate the deficiencies caused by the
shallowness of metrics based on lexical matching.
We also analyze separately the case of‘homoge-
neous’systems (i.e., all systems being of the same
nature), and the case of‘heterogenous’systems (i.e.,
there exist systems based on different paradigms).

As to the metric meta-evaluation criterion, the two
most prominent criteria are:
Human Acceptability Metrics are evaluated on the

basis of correlation with human evaluators.

Human Likeness Metrics are evaluated in terms of
descriptive power, i.e., their ability to distin-
guish between human and automatic transla-
tions (Lin and Och, 2004b; Amigó et al., 2005).

In our case, metrics are evaluated on the basis of
‘Human Acceptability’. Specifically, we use Pear-
son correlation coefficients between metric scores

3When computing ‘lexical’ overlapping/matching, we use
lemmas instead of word forms.
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and the average sum of adequacy and fluency as-
sessments at the document level. The reason is
that meta-evaluation based on ‘Human Likeness’ re-
quires the availability of heterogenous test beds (i.e.,
representative sets of automatic outputs and human
references), which, unfortunately, is not the case of
all the tasks under study. First, because most transla-
tion systems are statistical. Second, because in most
cases only one reference translation is available.

3.1 Single-reference Scenario

We use some of the test beds corresponding to
the“NAACL 2006 Workshop on Statistical Machine
Translation” (WMT 2006)(Koehn and Monz, 2006).
Since linguistic features described in Section 2 are
so far implemented only for the case of English be-
ing the target language, among the 12 translation
tasks available, we studied only the 6 tasks corre-
sponding to the Foreign-to-English direction. A sin-
gle reference translation is available. System out-
puts consist of 2000 and 1064 sentences for the ‘in-
domain’ and ‘out-of-domain’ test beds, respectively.
In each case, human assessments on adequacy and
fluency are available for a subset of systems and sen-
tences. Table 3 shows the number of sentences as-
sessed in each case. Each sentence was evaluated
by two different human judges. System scores have
been obtained by averaging over all sentence scores.

in out sys
French-to-English 2,247 1,274 11/14
German-to-English 2,401 1,535 10/12
Spanish-to-English 1,944 1,070 11/15

Table 3: WMT 2006. ‘in’ and ‘out’ columns
show the number of sentences assessed for the ‘in-
domain’ and ‘out-of-domain’ subtasks. The ‘sys’
column shows the number of systems counting on
human assessments with respect to the total number
of systems which presented to each task.

Evaluation of Heterogeneous Systems

In four of the six translation tasks under study, all
the systems are statistical except‘Systran’, which is
rule-based. This is the case of the German/French-
to-English in-domain/out-of-domain tasks. Table 4
shows correlation with human assessments for some
metric representatives at different linguistic levels.

fr2en de2en
Level Metric in out in out

1-PER 0.73 0.64 0.57 0.46
1-WER 0.73 0.73 0.32 0.38
BLEU 0.71 0.87 0.60 0.67

Lexical NIST 0.74 0.82 0.56 0.63
GTM 0.84 0.86 0.12 0.70
METEOR 0.92 0.95 0.76 0.81
ROUGE 0.85 0.89 0.65 0.79
SP-Op-* 0.81 0.88 0.64 0.71
SP-Oc-* 0.81 0.89 0.65 0.75

Shallow SP-NISTl-5 0.75 0.81 0.56 0.64
Syntactic SP-NISTp-5 0.75 0.91 0.77 0.77

SP-NISTc-5 0.73 0.88 0.71 0.54
DP-HWCw-4 0.76 0.88 0.64 0.74
DP-HWCc-4 0.93 0.97 0.88 0.72
DP-HWCr-4 0.92 0.96 0.91 0.76

Syntactic DP-Ol-* 0.87 0.94 0.84 0.84
DP-Oc-* 0.91 0.95 0.88 0.87
DP-Or-* 0.87 0.97 0.91 0.88
CP-STM-9 0.93 0.95 0.93 0.87
NE-Me-* 0.80 0.79 0.93 0.63
NE-Oe-* 0.79 0.76 0.91 0.59
NE-Oe-** 0.81 0.87 0.63 0.70
SR-Mr-* 0.83 0.95 0.92 0.84

Shallow SR-Or-* 0.89 0.95 0.88 0.90
Semantic SR-Or 0.95 0.85 0.80 0.75

SR-Mrv-* 0.77 0.92 0.72 0.85
SR-Orv-* 0.81 0.93 0.76 0.94
SR-Orv 0.84 0.93 0.81 0.92

Table 4: WMT 2006. Evaluation of Heterogeneous
Systems. French-to-English (fr2en) / German-to-
English (de2en), in-domain and out-of-domain.

Although the four cases are different, we have
identified several regularities. For instance,BLEU

and, in general, all metrics based on lexical match-
ing alone, exceptMETEOR, obtain significantly
lower levels of correlation than metrics based on
deeper linguistic similarities. The problem with lex-
ical metrics is that they are unable to capture the ac-
tual quality of the ‘Systran’ system. Interestingly,
METEOR obtains a higher correlation, which, in
the case of French-to-English, rivals the top-scoring
metrics based on deeper linguistic features. The rea-
son, however, does not seem to be related to its ad-
ditional linguistic operations (i.e., stemming or syn-
onymy lookup), but rather to theMETEORmatching
strategy itself (unigram precision/recall).

Metrics at the shallow syntactic level are in the
same range of lexical metrics. At the properly
syntactic level, metrics obtain in most cases high
correlation coefficients. However, the‘DP-HWCw-4’

metric, which, although from the viewpoint of de-
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pendency relationships, still considers only lexical
matching, obtains a lower level of correlation. This
reinforces the idea that metrics based on rewarding
long n-grams matchings may not be a reliable qual-
ity indicator in these cases.

At the level of shallow semantics, while ‘NE’
metrics are not equally useful in all cases, ‘SR’ met-
rics prove very effective. For instance, correlation
attained by‘SR-Or-*’ reveals that it is important to
translate lexical items according to the semantic role
they play inside the sentence. Moreover, correlation
attained by the‘SR-Mr-*’ metric is a clear indication
that in order to achieve a high quality, it is impor-
tant to ‘fully’ translate ‘whole’ semantic structures
(i.e., arguments/adjuncts). The existence of all the
semantic structures (‘SR-Or ’), specially associated to
the same verb (‘SR-Orv ’), is also important.

Evaluation of Homogeneous Systems

In the two remaining tasks, Spanish-to-English
in-domain/out-of-domain, all the systems are sta-
tistical. Table 5 shows correlation with human as-
sessments for some metric representatives. In this
case,BLEU proves very effective, both in-domain
and out-of-domain. Indeed, all metrics based on lex-
ical matching obtain high levels of correlation with
human assessments. However, still metrics based on
deeper linguistic analysis attain in most cases higher
correlation coefficients, although not as significantly
higher as in the case of heterogeneous systems.

3.2 Multiple-reference Scenario

We study the case reported by Callison-Burch et
al. (2006) in the context of the Arabic-to-English
exercise of the“2005 NIST MT Evaluation Cam-
paign”4 (Le and Przybocki, 2005). In this case all
systems are statistical but‘LinearB’, a human-aided
MT system (Callison-Burch, 2005). Five reference
translations are available. System outputs consist of
1056 sentences. We obtained permission5 to use 7
system outputs. For six of these systems we counted

4http://www.nist.gov/speech/tests/
summaries/2005/mt05.htm

5Due to data confidentiality, we contacted each participant
individually and asked for permission to use their data. A num-
ber of groups and companies responded positively: Univer-
sity of Southern California Information Sciences Institute (ISI),
University of Maryland (UMD), Johns Hopkins University &
University of Cambridge (JHU-CU), IBM, University of Edin-
burgh, MITRE and LinearB.

es2en
Level Metric in out

1-PER 0.82 0.78
1-WER 0.88 0.83
BLEU 0.89 0.87

Lexical NIST 0.88 0.84
GTM 0.86 0.80
METEOR 0.84 0.81
ROUGE 0.89 0.83
SP-Op-* 0.88 0.80
SP-Oc-* 0.89 0.84

Shallow SP-NISTl-5 0.88 0.85
Syntactic SP-NISTp-5 0.85 0.86

SP-NISTc-5 0.84 0.83
DP-HWCw-4 0.94 0.83
DP-HWCc-4 0.91 0.87
DP-HWCr-4 0.91 0.88

Syntactic DP-Ol-* 0.91 0.84
DP-Oc-* 0.88 0.83
DP-Or-* 0.88 0.84
CP-STM-9 0.89 0.86
NE-Me-* 0.75 0.76
NE-Oe-* 0.71 0.71
NE-Oe-** 0.88 0.80
SR-Mr-* 0.86 0.82

Shallow SR-Or-* 0.92 0.92
Semantic SR-Or 0.91 0.92

SR-Mrv-* 0.89 0.88
SR-Orv-* 0.91 0.92
SR-Orv 0.91 0.91

Table 5: WMT 2006. Evaluation of Homogeneous
Systems. Spanish-to-English (es2en), in-domain
and out-of-domain.

on a subjective manual evaluation based on ade-
quacy and fluency for a subset of 266 sentences (i.e.,
1596 sentences were assessed). Each sentence was
evaluated by two different human judges. System
scores have been obtained by averaging over all sen-
tence scores.

Table 6 shows the level of correlation with hu-
man assessments for some metric representatives
(see ‘ALL’ column). In this case, lexical metrics
obtain extremely low levels of correlation. Again,
the problem is that lexical metrics are unable to cap-
ture the actual quality of ‘LinearB’. At the shallow
syntactic level, only metrics which do not consider
any lexical information (‘SP-NISTp-5’ and ‘SP-NISTc-

5’) attain a significantly higher quality. At the prop-
erly syntactic level, all metrics attain a higher corre-
lation. At the shallow semantic level, again, while
‘NE’ metrics are not specially useful, ‘SR’ metrics
prove very effective.

On the other hand, if we remove ‘LinearB’ (see
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ar2en
Level Metric ALL SMT

1-PER -0.35 0.75
1-WER -0.50 0.69
BLEU 0.06 0.83

Lexical NIST 0.04 0.81
GTM 0.03 0.92
ROUGE -0.17 0.81
METEOR 0.05 0.86
SP-Op-* 0.05 0.84
SP-Oc-* 0.12 0.89

Shallow SP-NISTl-5 0.04 0.82
Syntactic SP-NISTp-5 0.42 0.89

SP-NISTc-5 0.44 0.68
DP-HWCw-4 0.52 0.86
DP-HWCc-4 0.80 0.75
DP-HWCr-4 0.88 0.86

Syntactic DP-Ol-* 0.51 0.94
DP-Oc-* 0.53 0.91
DP-Or-* 0.72 0.93
CP-STM-9 0.74 0.95
NE-Me-* 0.33 0.78
NE-Oe-* 0.24 0.82
NE-Oe-** 0.04 0.81
SR-Mr-* 0.72 0.96

Shallow SR-Or-* 0.61 0.87
Semantic SR-Or 0.66 0.75

SR-Mrv-* 0.68 0.97
SR-Orv-* 0.47 0.84
SR-Orv 0.46 0.81

Table 6: NIST 2005. Arabic-to-English (ar2en) ex-
ercise. ‘ALL’ refers to the evaluation of all systems.
‘SMT’ refers to the evaluation of statistical systems
alone (i.e., removing ‘LinearB’).

‘SMT’ column), lexical metrics attain a much higher
correlation, in the same range of metrics based on
deeper linguistic information. However, still met-
rics based on syntactic parsing, and semantic roles,
exhibit a slightly higher quality.

4 Conclusions

We have presented a comparative study on the
behavior of a wide set of metrics for automatic
MT evaluation at different linguistic levels (lexical,
shallow-syntactic, syntactic, and shallow-semantic)
under different scenarios. We have shown, through
empirical evidence, that linguistic features at more
abstract levels may provide more reliable system
rankings, specially when the systems under evalu-
ation do not share the same lexicon.

We strongly believe that future MT evaluation
campaigns should benefit from these results, by in-
cluding metrics at different linguistic levels. For in-

stance, the following set could be used:

{ ‘DP-HWCr-4’, ‘DP-Oc-*’, ‘DP- Ol-*’, ‘DP- Or-*’, ‘CP-

STM-9’, ‘SR-Or-*’, ‘SR-Orv ’ }

All these metrics are among the top-scoring in all
the translation tasks studied. However, none of these
metrics provides, in isolation, a‘global’ measure of
quality. Indeed, all these metrics focus on‘partial’
aspects of quality. We believe that, in order to per-
form ‘global’ evaluations, different quality dimen-
sions should be integrated into a single measure of
quality. With that purpose, we are currently explor-
ing several metric combination strategies. Prelim-
inary results, based on theQUEEN measure inside
the QARLA Framework (Amigó et al., 2005), indi-
cate that metrics at different linguistic levels may be
robustly combined.

Experimental results also show that metrics re-
quiring linguistic analysis seem very robust against
parsing errors committed by automatic linguistic
processors, at least at the document level. That
is very interesting, taking into account that, while
reference translations are supposedly well formed,
that is not always the case of automatic translations.
However, it remains pending to test the behaviour at
the sentence level, which could be very useful for er-
ror analysis. Moreover, relying on automatic proces-
sors implies two other important limitations. First,
these tools are not available for all languages. Sec-
ond, usually they are too slow to allow for massive
evaluations, as required, for instance, in the case of
system development. In the future, we plan to incor-
porate more accurate, and possibly faster, linguistic
processors, also for languages other than English, as
they become publicly available.
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Framework for Automatic Machine Translation Eval-
uation. InProceedings of the 5th LREC.
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