A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent. LASER

Documen

Local

Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Searching the Web for Cross-lingual Parallel Data

Ahmed El-Kishky[†], Philipp Koehn*, Holger Schwenk[†]

Facebook AI[†], Johns Hopkins University* http://www.statmt.org/web-mining-tutorial/

July 25, 2020

- Introduction
- 2 Multilingual Corpora and Web Crawling
- Multilingual Representations
 Represent.
 LASER
 - LASER Evaluation

- Retrieval Retrieval
- 4 Parallel Document Retrieval

1 Background and Motivation

- Local Alignmen
- 5 Local Sentence Alignment

Global Alignment WikiMatrix CCMatrix WMT/TED

6 Global Sentence Alignment
WikiMatrix
CCMatrix
WMT/TED

Bitext Filtering

Parallel Sentence Filtering

Introduction

WEB Crav

Multilingua Represent.

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering For example, machine translation.

José Salvador Eu até já assinei a petição mas ainda a pouco tempo li que o presidente de junta que roubou e autorizou essa construção foi homenageado pelo povo das Cortes ... ESTRANHO

I have even signed the petition but I have only recently read that the president of the junta who stole and authorized this construction was honored by the people of the cortes... strange

Automatically Translated

A. El-Kishky. P. Koehn, H Schwenk

Introduction

Learning from Data

Needed: examples of translated sentences

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Represent

Documen

Local Alignmen

Global Alignment WikiMatrix

Bitext Filtering

Data-Driven Machine Translation

- Given: parallel corpora (collections of translated sentences)
- Output: machine translation models
- Since ∼2000: statistical methods
- Since \sim 2015: neural methods

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Documer

Local Alignmen

Global Alignment WikiMatrix

Bitext

More Data is Better

A. El-Kishky. P. Koehn, H Schwenk

Introduction

More Data is Better

High Resource Languages

Low Resource Languages (from Google)

A. El-Kishky. P. Koehn, H. Schwenk

Introduction

More Data is Better

Don't think about algorithms, get more data!

If you want to think, think about getting more data!

Eric Brill, 2001

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawl

Multilingual Represent.

Evaluation

Documer Retrieval

Local Alignmer

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Towards Interlingua

Language-agnostic meaning representations.

Parallel corpora give us two corners of this triangle

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawl

LASER Evaluation

Documen

Local Alignmen

Global Alignment WikiMatrix

WMT/TED

Bitext Filtering

Other Uses of Parallel Data

For example, multi-lingual hate speech detection.

- Annotate an English corpus
- Train a classifier
- But: use language-independent representations of input (trained on parallel data)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Evaluation

Retrieval Retrieval

Local Alignmen

Alignment
WikiMatrix
CCMatrix

Bitext Filtering

Naturally Occurring Data

- Translation is a common human activity
- Billion dollar industry that
 - localizes products and their documentation
 - makes information accessible in many languages
 - enables communication in multi-lingual organizations
 - translates books, TV shows, movies, ...
- We do not need to create this data.
- We just need to find it.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Large Pools of Data

- For instance, Europarl, 2005
 - well structured web site with clear mapping between translations
 - specialized scripts for crawling, text extraction, alignment
 - maintained structure: sessions, speakers, paragraphs

Europarl: A Parallel Corpus for Statistical Machine Translation Koehn, MT Summit 2005

- Other efforts like this
 - Project Syndicate ("news commentary")
 - Global Voices
 - FU Bookstore
 - United Nations
 - Acquis Communitaire

A. El-Kishky, P. Koehn, H. Schwenk

Introduction
Corpora and

WEB Crawling

Represent LASER Evaluation

Documer Retrieval

Local

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Commoncrawl

- The web on a hard drive
- Extraction pipeline

Dirt Cheap Web-Scale Parallel Text from the Common Crawl, Smith, Saint Amand, Plamada, Koehn, Callison-Burch, Lopez, ACL 2013

- detect document pairs based on URL
- use HTML structure to check document matches
- extract text (in chunks indicated by HTML)
- sentence alignment
- sentence filtering
- Decent amounts: French (120m words), German (80m), ..., Pashto (200k)

Multilingu Represent.

Documen

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

CCMatrix

- Preview: we wil present methods to extract parallel sentences from CommonCrawl
- CCMatrix: largest collection of high quality mined bitexts
 - 4.5 billion parallel sentences in 39 languages
 - "matrix": aligned across all pairs, not just paired with English
- Extraction purely with retrieval over sentence embeddings

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Paracrawl

- Crawling the web for parallel data
 - funding from two Google grants (2014, 2016)
 - funding from the EU since 2017
- Currently in collaboration with Edinburgh, Alicante, Prompsit, TAUS, Omniscien Technology
- ⇒ Corpora with billions* of words for major languages

* amounts vary based on degree of filtering — for German–English, raw corpus has 4 billion sentence pairs, recommended corpus only 40 million deduplicated sentence pairs)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Evaluation

Documer

Local Alignmen

Alignmen

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

Processing Pipeline

- Identifying multi-lingual web sites
- Crawling
- Text extraction from HTML and PDF
- Document alignment
- Sentence alignment
- Sentence pair repair (Bifixer)
- Sentence pair filtering

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

LASER Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Candidate Web Sites

- Extracted all text from CommonCrawl
 - Language ID on all of it
 N-gram Counts and Language Models from the Common Crawl, Buck, Heafield, Van Ooyen, LREC 2014
 - ⇒ List of web sites with content in multiple languages CommonCrawl has 1.6 million domains with de-en data, 1.7 million for es-en, etc.
- Search for language name ("Chinese") or flags (en.gif)
- For low resource languages, crawl all web sites with language content

Documen

Retrieval

Local Alignmen

Alignment
WikiMatrix
CCMatrix

Bitext Filtering

Crawling

- Several off-the-shelf tools available
 - HTTrack: multi-platform tool for crawling
 - Heritrix: Internet Archive's web crawler
 - Creepy: Python library with basic resources for crawling
 - Wget: popular Unix tool
- Many practical problems
 - large sites
 - protected content
 - interference with web server operations
 - robots.txt

Corpora and WEB Crawling

Multilingua Represent.

Documen

Local Alignmen

Alignmen Global

Alignment
WikiMatrix
CCMatrix
WMT/TED

Bitext Filtering

- Raw crawls: HTML, TXT, PDF, junk
- Converted into usable format, for each document
 - URL
 - language identification
 - raw HTML (base64)
 - extracted text (base64)
- Special challenges by formats such as PDF

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Evaluation

Documer

Local

Alignmen

Alignment
WikiMatrix

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

A Web Page

A. El-Kishky, P. Koehn, H. Schwenk

Introduction
Corpora and

WEB Crawling
Multilingual

Evaluation

Retrieval

Local Alignment

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

HTML Source

<u>todu-average.ntmt#comments</u> ret= norottow >o commentsen>omituuot; casi urbatcu

- 51 class="updated" title="2013-08-08">August 8, 2013</abbr><p
- 52 class='headline_meta'> in <a
- 53 rel='tag' href='http://www.cyberciti.biz/tips/category/linux'>Linux, <a
- 54 rel='tag' href='http://www.cyberciti.biz/tips/category/monitoring'>Monitoring, <a break rel='tag' href='http://www.cyberciti.biz/tips/category/sys-admin'>Sys admin
- 56 class="format_text entry-content">Yes, I know we can use the <kbd>exhd>uptime</kbd> command to find out the system load average. The uptime command displays the current time, the length of time the system has been up, the number of users, and the load average of the system over the last 1, 5, and 15 minutes. However, if you try to use the uptime command in script, you know how difficult it is to get correct load average. As the time since the last, reboot moves from minutes, to hours, and an even day after system rebooted. Just type the uptime command:
- 59 **id**="more-631"><br
- 60 /> <code>\$ uptime</code><br
- 61 /> Sample outputs:>1:09:01 up 29 min, 1 user, load average: 0.00, 0.00, 0.00
 cp>0R
fr
- 62 /> <code>\$ uptime</code><br
- 63 /> Sample outputs:
 /p>
 p>Traditionally, UNIX administrators used sed and other shell command in scripting to get correct value of load average. Here is my own modified hack to save the time-br
- 64 /> <code>\$ uptime | awk -F'load averages:' '{ print \$2 }'</code><br
- 65 /> OR better use the following code:<br
- 66 /> <code>\$ uptime | awk -F'[a-z]:' '{ print \$2}'</code><br
- 67 /> Output taken from my OS X desktop:y>=pre> 1.24 1.34 1.35ypre>potput taken from my Ubuntu Linux server:yp>=pre> 0.00, 0.01, 0.05ypre>Output taken from my RHEL based server:y>=pre> 0.24, 0.27, 0.21ypre>Oliput taken from my FreeBSD based server:p>=pre> 0.71, 0.71, 0.58ypre>Please note that command works on all variant of UNIX operating systems.<h2>>62<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>>61<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>Output<h2>OutputOutputOutputOutputOutputOutputOutputOutputOutputOutputOutputOutputOutputOutputOutputOutp
- 68 href="http://bash.cyberciti.biz/monitoring/chksysload.bash.php">chksysload.bash script to

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Documen

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Method 1: Strip Tags

LAST UPDATED August 8, 2013 in Linux , Monitoring , Sys admin Yes, I know we can use the uptime command to find out the system load average. The uptime command displays the current time, the length of time the system has been up, the number of users, and the load average of the system over the last 1, 5, and 15 minutes. However, if you try to use the uptime command in script, you know how difficult it is to get correct load average. As the time since the last, reboot moves from minutes, to hours, and an even day after system rebooted. Just type the uptime command: \$ uptime Sample outputs: 1:09:01 up 29 min, 1 user, load average: 0.00, 0.00, 0.00

A. El-Kishky, P. Koehn, H. Schwenk

Introduction
Corpora and

WEB Crawling

Multilingual
Represent.

LASER Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Method 2: HTML Parser

LAST UPDATED August 8, 2013 in Linux, Monitoring, Sys admin

es, I know we can use the uptime command to find out the system load average. The uptime command displays the current time, the length of time the system has been up, the number of users, and the load average of the system over the last 1, 5, and 15 minutes. However, if you try to use the uptime command in script, you know how difficult it is to get correct load average. As the time since the last, reboot moves from minutes, to hours, and an even day after system rebooted. Just type the uptime command:

\$ uptime

Sample outputs: 1:09:01 up 29 min, 1 user, load average: 0.00, 0.00, 0.00

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Documer

Retrieval

Alignmen

Global Alignmer

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

What Language?

Muitas intervenções alertaram para o facto de a política dos sucessivos governos PS, PSD e CDS, com cortes no financiamento das instituições do Ensino Superior e com a progressiva desresponsabilização do Estado das suas funções, ter conduzido a uma realidade de destruição da qualidade do Ensino Superior público.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Evaluation

Documer

Local

Alignmen

Global Alignmer

CCMatrix WMT/TED

Bitext Filtering

Clues: Letter N-Grams

Muitas intervenções alertaram para o facto de a política dos sucessivos governos PS, PSD e CDS, com cortes no financiamento das instituições do Ensino Superior e com a progressiva desresponsabilização do Estado das suas funções, ter conduzido a uma realidade de destruição da qualidade do Ensino Superior público.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction
Corpora and

WEB Crawling
Multilingual
Represent

Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Align Documents

- Paracrawl method
 - translate foreign document into English
 - score based on n-gram matches
 - matching of URL
 - other features

Quick and Reliable Document Alignment with TF/IDF Cosine Distance, Buck and Koehn, WMT 2016

- Shared task WMT 2016
 - n-gram matches on (translated) documents powerful
 - only very recently more research on topic

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua

Evaluation

Docume

Local

Alignmer

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Align Sentences

- Given: pair of documents
- Task: match sentence
- Allow 1-2 mappings etc.?
- Reordering of sentences?
- Several established tools (Hunalign, Bleualign, ...)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Corpus Cleaning

- Two objectives for clean corpus
- Fluency
 - well-formed language
- Adequacy
 - foreign and English sentence have same meaning, style, etc.
- Open question: what is harmful noise?
- Shared tasks at WMT 2018-2020

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Docume

Local

Global

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Open-Source Code: Bitextor

https://github.com/bitextor/bitextor

- Bitextor: Integrated tool to execute entire pipeline
- Pipeline management for distributed computation

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingual Represent.

Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext

ParaCrawl Release 6

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingual

Represent.

D.

Retrieval

Local Alignmen

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Multilingual Models

• 7 111 living languages

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawli

Multilingual Represent.

Evaluation

Documer Retrieval

Local Alignmer

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

- 7 111 living languages
- 40% are endangered

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingual

Represent.

LASER

Evaluation

Documer

Local Alignmen

Global Alignment WikiMatrix

Bitext Filtering

Multilingual Models

- 7 111 living languages
- 40% are endangered
- 23 languages account for half the population

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingual Represent.

LASER Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

- 7 111 living languages
- 40% are endangered
- 23 languages account for half the population
- MT: < 100 languages

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingual Represent.

Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

- 7 111 living languages
- 40% are endangered
- 23 languages account for half the population
- MT: < 100 languages
- Almost all NLP applications are mostly English (classification, sentiment analysis or NLI, Q&A, dialog, ...)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingual Represent.

LASER Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

- 7 111 living languages
- 40% are endangered
- 23 languages account for half the population
- MT: < 100 languages
- Almost all NLP applications are mostly English (classification, sentiment analysis or NLI, Q&A, dialog, ...)

Native speakers

⇒ Input in foreign language is translated into English

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingual Represent.

Evaluation Evaluation

Docume

Local

Alignmer

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

Motivation

- Try to embed sentences written in many languages into one joint space
 - ⇒ cross-lingual transfer for various NLP applications
 - benefit of similarities among languages

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingual Represent.

Evaluation

Docume

Local Alignmer

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

Motivation

- Try to embed sentences written in many languages into one joint space
 - ⇒ cross-lingual transfer for various NLP applications
 - benefit of similarities among languages
- This gives us a highly semantic representation

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingual Represent.

Evaluatio

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

Motivation

- Try to embed sentences written in many languages into one joint space
 - ⇒ cross-lingual transfer for various NLP applications
 - benefit of similarities among languages
- This gives us a highly semantic representation
- ⇒ Sentences with similar meaning are close (mono- or cross-lingual)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingual Represent.

LASER Evaluation

Docume

Retrieval

Local Alignmer

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

Applications:

- zero-shot transfer
- bitext mining and filtering
- large-scale similarity search
- paraphrasing
- data augmentation
- •

Mining

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingual Represent.

LASER Evaluation

Documei

Retrieval

Alignmer Alignmer

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

Applications:

- zero-shot transfer
- bitext mining and filtering
- large-scale similarity search
- paraphrasing
- data augmentation
- •

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw

Multilingual Represent.

Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

Some approaches:

- MUSE
 - unsupervised multilingual word embeddings
- LASER
 - supervised multilingual sentence embeddings
- XLM
 - unsupervised multilingual sentence embeddings
- Sentence BERT
 - fine-tuned for linguistic similarity

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw

Multilingual Represent.

Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Multilingual Models

Some approaches:

- MUSE
 - unsupervised multilingual word embeddings
- LASER
 - supervised multilingual sentence embeddings
- XLM
 - unsupervised multilingual sentence embeddings
- Sentence BERT
 - fine-tuned for linguistic similarity

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingual Represent.

LASER Evaluation

Documer Retrieval

Local Alignmer

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

MUSE

Principle

- Learn multilingual word embeddings without any aligned data
- fastText embeddings aligned in a common space
 - learn transformation of space X to Y
- A. Conneau et al., Word Translation Without Parallel Data, ICLR'18
- https://github.com/facebookresearch/MUSE

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua

LASER

Evaluatio

Documer Retrieval

Local

Alignmen

Alignment
WikiMatrix
CCMatrix

Bitext Filtering

LASER: Architecture

Seq2seq approach with one joint encoder and decoder

- Based on fairseq
- Shared encoder and decoder for several languages
- No attention, but max-pooling
- Sentence representation is used at the input at each time step and to initialize decoder
- Also target language embedding

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua

Represent.

Evaluati

Docume

Local

Alignmer

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

LASER: Architecture

- N:1 translation is enough to learn a joint embedding
- No explicit criterion to enforce joint embedding
 - ranking loss
 - GAN to predict language
 - ...

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua

LASER

Evaluation

Documer Retrieval

Local Alignmen

Alignmer

Global Alignment WikiMatrix

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

LASER: Architecture

- N:1 translation is enough to learn a joint embedding
- No explicit criterion to enforce joint embedding
 - ranking loss
 - GAN to predict language
 - ..
- But N:1 doesn't cover target language (English)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingua

LASER

D.

Retrieval Retrieval

Local Alignmer

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

LASER: Architecture

- N:1 translation is enough to learn a joint embedding
- No explicit criterion to enforce joint embedding
 - ranking loss
 - GAN to predict language
 - ..
- But *N*:1 doesn't cover target language (English)
- · Limited success with (noisy) autoencoder

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua

LASER

Documo

Retrieval

Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

LASER: Architecture

- How to have a language at the input and output ?
 - in the past: $N \rightarrow (N-1)$
- Two target languages are enough
 - English and Spanish
 - independently aligned
 - not all input languages need to be aligned to both
- Language pair is changed at each mini-batch
- Trained on 223M sentences of public bitexts

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingua

LASER

Docume

Retrieval

Local Alignmen

Global Alignmen

WikiMatrix CCMatrix

Bitext Filtering

LASER: Architecture

Encoder

- 5 layer BiLSTM (depth helps !)
- No information on input (or target) language
- Shared BPE tokens, 50k BPE operations
- No pretraining of BPE embeddings
- The training procedure makes no assumption on the encoder:
 - ⇒ transformers, convolutional, ...

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawi

Multilingua

Represent.

Evaluatio

Documer

Local

Alignmen

Alignment
WikiMatrix
CCMatrix
WMT/TED

Bitext Filtering

LASER: Training languages

Afrikaans Albanian Amharic Arabic Armenian Azerbaijani Aymara Basque Belarusian Bengali Chavacano Chinese mandarin Coastal Swahili Croatian Burmese Bokma Berber languages Norwegian Bulgarian Central Khmer Bosnian Breton Catalan Czech Danish Dutch **English Esperanto** Estonian Finnish French Galician Georgian Greek Hausa Hebrew Hindi Hungarian German Icelandic Interlingua Interlingue Ido Indonesian Iranian Persian Italian Kabyle Kazakh Korean Kurdish Latavian (Farsi) Japanese Latin Lingua Franca Nova Lithuanian Low German / Saxon Macedonian Malay Malavalam Marathi Maldivian (Divehi) Moldavian Malagasy Russian Romanian Occitan (post 1500) Oriya Polish Portuguese Serbian Sindhi Sinhala Slovak Slovenian Somali Spanish Swedish Tagalog Tajik Tamil Tatar Telugu Thai Turkish **Uighur** Ukrainian Urdu Uzbek Vietnamese **Wu Chinese** Yue Chinese

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw

Multilingua Represent.

Evaluation

Documen Retrieval

Local Alignmer

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

LASER: Training languages

22 different writing scripts:

Arabic	هناك العديد من اللغات في العالم.	Hebrew	ישנן שפות רבות בעולם.
Armenian	Աշխարհում շատ լեզուներ կան։	Kanjii	世界にはたくさんの言語があります。
Burmese	ကမ်ဘာပျေါတှငျဘာသာစကားမြားစှာရှိပါတယျ။	Khmer	មានភាសាជាច្រើននៅលើពិភពលោក។
Chinese	世界上有很多种语言。	Latin	There are many languages in the world.
Cyrillic	В мире много языков.	Malayalam	ലോകത്തിൽ അനേകം ഭാഷകൾ ഉണ്ട്.
Devanagari	दुनिया में कई भाषाएं हैं।	Persian	.زبان های بسیاری در جهان وجود دارد
Eastern-Nagari	বিশ্বের অনেক ভাষা আছে।	Sinhala	ලෝකයේ බොහෝ භාෂාවන් පවතී.
Ge'ez	በዓለም ውስጥ ብዙ ቋንቋዎች አሉ.	Tamil	உலகில் பல மொழிகள் உள்ளன.
Georgian	მსოფლიოში ბევრი ენაა.	Telugu	ప్రపంచంలో అనేక భాషలు ఉన్నాయి.
Greek	Υπάρχουν πολλές γλώσσες στον κόσμο.	Thaana	No free translation for Maldivian (Dhivehi)
Hangul	세계에는 많은 언어가 있습니다.	Thai	มีหลายภาษาในโลกนี้

- One single encoder can handle all these scripts
- All these sentences are close in the embedding space
- It is not necessary to specify the language or script
- Code-switching is also supported

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

Represer

Evaluation

Retrieval

Local Alignmen

Global Alignmen WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

LASER toolkit

Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond. Trans. Assoc. Comput. Linguistics 7: 597-610 (2019)

Well established in community, academia and industry

- https://github.com/facebookresearch/LASER/
- M. Artetxe and H. Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond, TACL'19 and arXiv'18
- Fast and easy to use (2000 sentences/sec)
- One model for many applications
- Current SOTA for filtering and mining bitexts

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingual Represent.

Evaluation

Documen

Local

Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Applications of Multilingual Embeddings

- Zero-shot transfer in NLP
 - Use ML embeddings to train English NLP system
 - \Rightarrow apply it to other languages without any modification
 - classification, NLI, QA, ...

Represent.

Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Applications of Multilingual Embeddings

- Zero-shot transfer in NLP
 - Use ML embeddings to train English NLP system
 - \Rightarrow apply it to other languages without any modification
 - classification, NLI, QA, . . .
- Bitexts mining and filtering
 - ullet sentence similarity \sim distance in joint space

Represer

Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Applications of Multilingual Embeddings

- Zero-shot transfer in NLP
 - Use ML embeddings to train English NLP system
 - \Rightarrow apply it to other languages without any modification
 - classification, NLI, QA, . . .
- Bitexts mining and filtering
 - sentence similarity \sim distance in joint space
- Large-scale similarity search
 - index many sentences, search for closest ones
 - paraphrasing, data augmentation, . . .

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

Multilingua Represent.

Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Applications of Multilingual Embeddings

- Zero-shot transfer in NLP
 - Use ML embeddings to train English NLP system
 - \Rightarrow apply it to other languages without any modification
 - classification, NLI, QA, ...
- Bitexts mining and filtering
 - sentence similarity \sim distance in joint space
- Large-scale similarity search
 - index many sentences, search for closest ones
 - paraphrasing, data augmentation, . . .

We always use the same LASER sentence embeddings, no task-specific fine-tuning

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawl

Multilingua Represent.

Evaluation

Documer

Local Alignmen

Global Alignmen

CCMatrix WMT/TED

Bitext Filtering

XNLI: Cross-Lingual NLI

- Fixed LASER embeddings
- NLI classifier trained on English only

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawli Multilingual

Represent.

Evaluation

Documer Retrieval

Local Alignmen

Alignmen

Alignment
WikiMatrix
CCMatrix

Bitext Filtering

XNLI: Cross-Lingual NLI

- Fixed LASER embeddings
- NLI classifier trained on English only
- Zero-shot transfer to any language supported by LASER

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawl

Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

XNLI: Cross-Lingual NLI

- Fixed LASER embeddings
- NLI classifier trained on English only
- Zero-shot transfer to any language supported by LASER
- We can arbitrarily combine sentence in any language

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

LASER

Evaluation

Documer

Local Alignmer

Global Alignmen WikiMatrix CCMatrix

Bitext Filtering

Bitext Mining Approach

Margin criterion

Semantic similarity \propto distance

⇒ mine parallel sentences

$$\max_{z \in NN_k(x)} \frac{\cos(x, y)}{\sum_{z \in NN_k(x)} \frac{\cos(x, z)}{2k} + \sum_{z \in NN_k(y)} \frac{\cos(y, z)}{2k}} \tag{1}$$

(Artexe and Schwenk, arXiv Nov'18 and ACL'19)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Represe

Evaluation

Retrieval

Alignmen

Global Alignmer WikiMatrix CCMatrix

Bitext Filtering

Results for 93 Languages: BUCC

	TRAIN				TEST			
	de-en	fr-en	ru-en	zh-en	de-en	fr-en	ru-en	zh-en
Azpeita et '17	83.3	78.83	-	-	83.7	79.5	-	-
Grégoire&Langlais '17	-	20.7	-	-	-	20	-	-
Zhang & Zweigenbaum '17	-	-	-	43.48	-	-	-	45.13
Azpeita et al. '18	84.3	80.6	80.9	76.5	85.5	81.5	81.3	77.5
Bouamor & Sajad '18	-	75.2	-	-	-	76.0	-	-
Leong & Chao '18	-	-	-	58.5	-	-	-	56
Schwenk ACL'18	76.1	74.9	73.3	71.6	76.9	75.8	73.8	71.6
Artetxe&Schwenk arXiv'18	94.8	91.9	90.9	91.0	95.6	92.9	92.0	92.6
Proposed method	95.4	92.4	92.3	91.2	96.2	93.9	93.3	92.3

Significantly outperforms other systems of the BUCC eval

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Represe

Evaluation

Documer Retrieval

Local Alignmer

Global Alignmer WikiMatrix CCMatrix

Bitext Filtering

Results for 93 Languages: BUCC

		TR.	AIN		TEST			
	de-en	fr-en	ru-en	zh-en	de-en	fr-en	ru-en	zh-en
Azpeita et '17	83.3	78.83	-	_	83.7	79.5	-	-
Grégoire&Langlais '17	-	20.7	-	-	-	20	-	-
Zhang & Zweigenbaum '17	-	-	-	43.48	-	-	-	45.13
Azpeita et al. '18	84.3	80.6	80.9	76.5	85.5	81.5	81.3	77.5
Bouamor & Sajad '18	-	75.2	-	-	-	76.0	-	-
Leong & Chao '18	-	-	-	58.5	-	-	-	56
Schwenk ACL'18	76.1	74.9	73.3	71.6	76.9	75.8	73.8	71.6
Artetxe&Schwenk arXiv'18	94.8	91.9	90.9	91.0	95.6	92.9	92.0	92.6
Proposed method	95.4	92.4	92.3	91.2	96.2	93.9	93.3	92.3

- Significantly outperforms other systems of the BUCC eval
- New system trained on 93 languages is better than dedicated system, limited to eval languages

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora a

Multilingual Represent.

Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Generalization to New Languages

System trained on the 21 languages of Europarl

	De-En	Fr-En	
State-of-the-art	85.5	81.5	
Our approach	95.6	92.9	

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw Multilingua Represent.

LASER Evaluation

Documer

Local

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Generalization to New Languages

System trained on the 21 languages of Europarl

	De-En	Fr-En	Ru-En
State-of-the-art	85.5	81.5	81.3
Our approach	95.6	92.9	62.0

Good performance on Russian (precision=80%)
 although Russian was not used during training

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingua Represent.

Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Generalization to New Languages

System trained on the 21 languages of Europarl

	De-En	Fr-En	Ru-En
State-of-the-art	85.5	81.5	81.3
Our approach	95.6	92.9	62.0

- Good performance on Russian (precision=80%)
 although Russian was not used during training
- ⇒ Very promising to mine data for dialects and minority languages which are in the same family than a trained language, Gallician, Nepali, . . .

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingual

Evaluation

Evaluatio

Document Retrieval

Local

Alignmen

Alignmen

WikiMatrix CCMatrix WMT/TED

Bitext

Results for 93 Languages: Bitext Filtering

WMT'19: Bitext filtering for low-resource conditions

- Filter very noisy Paracrawl crawled bitexts (40-60M)
- Evaluation by training SMT and NMT systems:
- Train: En/Ne (586k), En/Si (645k) + En/Hi (1.5M)

	Ne/En 1M		Ne/En 5M		Si/E	n 1M	Si/En 5M		
	SMT NMT		SMT NMT		SMT	NMT	SMT NMT		
LASER 2nd	4.21 4.10	6.88 5.48	4.63 4.74	2.84 3.43	4.27 4.19	6.39 4.97	4.94 4.62	4.02 4.44	

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingual

Evaluation Evaluation

Evaluatio

Documen Retrieval

Local Alignmer

Global Alignmen

WikiMatrix CCMatrix

Bitext Filtering

Results for 93 Languages: Bitext Filtering

WMT'19: Bitext filtering for low-resource conditions

- Filter very noisy Paracrawl crawled bitexts (40-60M)
- Evaluation by training SMT and NMT systems:
- Train: En/Ne (586k), En/Si (645k) + En/Hi (1.5M)

	Ne/En 1M		Ne/En 5M		Si/En 1M		Si/En 5M	
	SMT NMT		SMT NMT		SMT NMT		SMT NMT	
LASER 2nd	4.21 4.10	6.88 5.48	4.63 4.74	2.84 3.43	4.27 4.19	6.39 4.97	4.94 4.62	4.02 4.44

Overall best results by significant margin (+25%)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingual

Evaluation

Evaluation

Document Retrieval

Local Alignmen

Global

WikiMatrix

WMT/TED

Bitext Filtering

Results for 93 Languages: Bitext Filtering

WMT'19: Bitext filtering for low-resource conditions

- Filter very noisy Paracrawl crawled bitexts (40-60M)
- Evaluation by training SMT and NMT systems:
- Train: En/Ne (586k), En/Si (645k) + En/Hi (1.5M)

	Ne/E	n 1M	Ne/E	n 5M	Si/E	n 1M	Si/E	n 5M
	SMT	NMT	SMT	NMT	SMT	NMT	SMT	NMT
LASER 2nd	4.21 4.10	6.88 5.48	4.63 4.74	2.84 3.43	4.27 4.19	6.39 4.97	4.94 4.62	4.02 4.44

- Overall best results by significant margin (+25%)
- Good filtering is more important for NMT than SMT

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingual Represent.

Evaluation

_

Document Retrieval

Local Alignmen

Global

WikiMatrix

WMT/TE

Bitext Filtering

Results for 93 Languages: Bitext Filtering

WMT'19: Bitext filtering for low-resource conditions

- Filter very noisy Paracrawl crawled bitexts (40-60M)
- Evaluation by training SMT and NMT systems:
- Train: En/Ne (586k), En/Si (645k) + En/Hi (1.5M)

	Ne/En 1M		Ne/En 5M		Si/En 1M		Si/En 5M	
	SMT NMT		SMT NMT		SMT NMT		SMT NMT	
LASER 2nd	4.21 4.10	6.88 5.48	4.63 4.74	2.84 3.43	4.27 4.19	6.39 4.97	4.94 4.62	4.02 4.44

- Overall best results by significant margin (+25%)
- Good filtering is more important for NMT than SMT
- Vishrav et al, Low-Resource Corpus Filtering using Multilingual Sentence Embeddings, WMT'19

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

XLM: Architecture

Multilingual extension of BERT

- Unsupervised: Masked LM training (MLM)
 - Joint BPE or SentencePiece vocabulary
- Supervised: Cross-Lingual LM training (CLM)
 - attention can attend words in either language which encourages alignment

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawli

LASER

Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

XLM: Applications

Results

- Trained unsupervised on 2.5 billon sentences of CC
- Supports 100 languages, very strong results on many English and cross-lingual tasks (GLUE, XNLI, ...)
 - generally task specific fine-tuning
- G. Lample and A. Conneau, Cross-lingual Language Model Pretraining, NIPS'19
- A. Conneau et al., Unsupervised Cross-lingual Representation Learning at Scale, ACL'20
- https://github.com/facebookresearch/XLM
- Application to similarity search requires some sort of fine-tuning

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multiling Represent

Evaluation

Docume

Local

Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Sentence BERT

Recent research

- Several works aim in achieving transformer-based language agnostic sentence representations
- Feng et al., Language-agnostic BERT Sentence Embedding, arxiv Jul'20

 Very Interesting results, but no comparision with margin-based LASER mining

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingual Represent.

Document Retrieval

Local

Alignment Global

Alignment
WikiMatrix
CCMatrix

Bitext Filtering

parallel document retrieval

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent.

Document Retrieval

Local

Alignmen

Alignmen WikiMatrix CCMatrix

Bitext Filtering

Cross-lingual Document Retrieval

Finding pairs of documents that are translations/near-translations of each other.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

LASER Evaluation

Document

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Cross-Lingual Document Retrieval

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawl

Multilingual

LASER

Document Retrieval

Local Alignmer

Global

Alignmer WikiMatrix

Bitext

Cross-lingual Document Retrieval

(a) English Webpage

(b) French Webpage

Figure: Two web documents that are translations of each other.

A. El-Kishky. P. Koehn. H Schwenk

Document Retrieval

Cross-lingual Document Retrieval

(a) Arabic Webpage

(b) Spanish Webpage

Figure: Two web documents that are translations of each other.

Úneta a Facebook o Inicia sesión 🔹

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Motivation

- Training data for information retrieval
 - Supervision for learning-to-rank
 - Supervision for retrieval
- Source of training data for learning multilingual representation
 - Cross-lingual word representations
 - Cross-lingual sentence representations
 - Cross-lingual document representation
- Source of training data for machine translation (BLEU goes up)
 - Mine parallel data for low-resource directions
 - Web parallel data covers a variety of domains

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Represent LASER Evaluation

Document Retrieval

Local

Alignmen

Alignmen WikiMatrix CCMatrix

Bitext Filtering

Objective

Given a corpus of web-documents, automatically identify pairs of documents that are translations of each other.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Document

Retrieval

Local Alignmer

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

Objective

Figure: Documents are aligned 1-to-1 within each domain.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent.

Document Retrieval

Local

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Evaluation

- Recall only i.e. what percentage of the test-set pairs is found
- 1-1 rule; every document can only occur in one pair.

Cross-lingual Mining A. El-Kishky,

A. El-Kishky,P. Koehn,H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingu Represent.

Document Retrieval

Local Alignmen

Alignment

WikiMatrix CCMatrix

Bitext

CC-Aligned: A Massive Collection of Cross-Lingual Web Documents

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Motivation

Creating a large cross-lingual parallel document dataset can be valuable

- High-quality multilingual dataset can be used to benchmark document alignment algorithms
- Parallel dataset can be used for supervision for cross-lingual representation
- A large parallel dataset can be mined for parallel sentences for NMT training

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Insights

URL Signals for Parallel Web Documents

- URLs often contain language codes signifying the language a piece of web content is in
- URL structural information can be used as a signal for identifying parallel documents
 - https://anonymizedURL.com
 - https://fr-fr.anonymizedURL.com

D

Document Retrieval

Local Alignmer

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Insights

Source URL	Target URL
eng.aaa.com aaa.com/en-gb/b aaa.com/English/b aaa.com/b/en aaa.com/b/ aaa.com/b/ aaa.com/b⟨=english aaa.com/b?lang=en	aaa.com aaa.com/zh-cn/b aaa.com/Yoruba/b aaa.com/b/vi thai.aaa.com/b/ aaa.com/b⟨=arabic aaa.com/b?lang=fr aaa.com/b?lang=1

Table: URL matching via language identifiers.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingual Represent.

LASER Evaluation

Document Retrieval

Local Alignmen

Alignment Global

Alignment WikiMatrix CCMatrix

Bitext Filtering

CCAligned Dataset

A. El-Kishky, P. Koehn, H. Schwenk

Corpora and

Multilingual Represent.

Document Retrieval

Local

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Common Crawl Corpus

CommonCrawl Corpus: An Open Repository of Web Data

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingua

LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Common Crawl Corpus

CommonCrawl Corpus: An Open Repository of Web Data

- Text content
- Status information
- HTTP response code
- HTML title
- HTML meta tags
- RSS/Atom information
- All anchors/hyperlinks

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Document

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TFD

Bitext Filtering

Corpus Statistics

Corpus Statistics

- 68 CommonCrawl Snapshots (every month 2013-2020)
- Each snapshot contains over 2 billion web-documents
- 169.4 billion web documents
- 107.8 million distinct web-domainis

Represer LASER Evaluation

Document Retrieval

Local

Alignment Global

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Preprocessing Steps

URL Normalization

- URL Normalization: removing the protocol and host name
 - https://www.aaa.com ightarrow aaa.com)
- Deduplicate based on normalized URL
 - URL that appears more than once, we select the instance that possesses the longest document content.
 - 1 document was deleted and gets shorter
 - 2 document is amended and gets longer.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Document Retrieval

Local Alignmen

Alignment WikiMatrix CCMatrix

Bitext Filtering

De-duplication Corpus Statistics

- 169.4 billion documents \rightarrow 29.6 billion
- 83% reduction from raw corpus
- 107.8 million distinct web-domains

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Document

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Mining Parallel Documents

The next step is to mine parallel web documents.

- 1 De-duplicate CommonCrawl corpus
- 2 Perform language identification on each web-document.
- **3** Apply URL-Matching Heuristics

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingua Represent.

Document

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Mined Parallel Documents

Parallel Cross-lingual Documents

- 1 364 million aligned documents
 - 100M with English
 - 264M without English
- 2 4598 language pairs
 - 98 with English
 - 4500 without English

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Represent

Document Retrieval

Local

Alignmen

Alignmen: WikiMatrix CCMatrix

Bitext Filtering

CCAligned Dataset Quality

Human annotators evaluated quality of the mined documents

	Language	\mathbf{P}_{maj}	Klpha	\mathbf{P}_{adj}
High	German	90.0	0.74	96.7
	Chinese	86.7	0.68	93.3
Mid	Arabic	83.3	0.72	90.0
	Romanian	76.7	0.50	96.7
Low	Estonian	83.3	0.68	90.0
	Burmese	86.7	0.88	100.0
	Avg	84.4	0.70	94.5

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingu Represent.

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Dataset Analysis

Dataset Analysis

- High-precision collection of cross-lingual documents
- Dataset was constructed using ONLY URL-features
- Can one evaluate content-based alignment strategies on this dataset?

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Content-based Alignment: Direct Embedding

Direct Embedding (DE) with LASER

- Embed the entire document using LASER embedding
- Each document d has its dense vector representation \mathbf{v}_d

Bitext Filtering

Content-based Alignment: Sentence Average Embedding

Sentence Averaging (SA) with LASER

- Decompose each document into sentences
- 2 Embed each sentence using LASER
- ${f 3}$ document embedding by averaging the sentence vectors into a document vector ${f v}_d$

$$\mathbf{v}_d = \frac{1}{n} \sum_{i=1}^n \mathbf{v}_{s_i} \tag{2}$$

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Represent.

Document

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Content-based Alignment: Weighted Sentence Average Embedding

Weighted Sentence Averaging (WSA) with LASER. Try common information retrieval tricks

- 1 Sentence Length (SL): Longer sentences more important than shorter
- 2 Inverse Document Frequency (IDF): More frequent sentences may be unimportant
- 3 SL-IDF: Combine both

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Content-based Alignment: Weighted Sentence Average Embedding

Weighted Sentence Averaging (WSA) with LASER

$$\mathbf{v}_d = \frac{1}{n} \sum_{i=1}^n \mathbf{w}_{s_i} \times \mathbf{v}_{s_i} \tag{3}$$

$$SL_{s_i} = \frac{|s_i|}{\sum\limits_{s \in d} count(s) \times |s|}$$
 (4)

$$IDF_{s_i} = \log \frac{N+1}{1+|\{d \in D : s \in d\}|}$$
 (5)

$$SLIDF_{s_i} = SL_{s_i} \times IDF_{s_i} \tag{6}$$

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Scoring Function

Cross-lingual Document Similarity

- dense document representations for each document from the source and target sets
- score pairs to evaluate how semantically similar documents are
- given two documents a and b, compute their semantic similarity using a cosine similarity

$$sim(a,b) = \frac{\mathbf{v}_a \cdot \mathbf{v}_b}{||\mathbf{v}_a|| \ ||\mathbf{v}_b||} \tag{7}$$

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Competitive Matching

Ensuring the pairs are 1-to-1 (each aligned document is in at most one pair)

- each document in the source document set, D_s is paired with each document in the target set, D_t
- $D_s \times D_t$ scored pairs a fully connected bipartite graph
- expected output assumes each page in the non-dominant language has a translated or comparable counterpart
- $min(|D_s|, |D_t|)$ expected number of aligned pairs
- Hungarian algorithm $\mathcal{O}(\max(|D_s||D_t|)^3)$... intractable

```
Cross-lingual
  Mining
```

A. El-Kishky. P. Koehn. H Schwenk

Document Retrieval

Competitive Matching

Algorithm 1: Competitive Matching

```
1 Input: P = \{(d_s, d_t) | d_s \in D_s, d_t \in D_t\}
2 Output: P' = \{(d_{s,i}, d_{t,i}), ...\} \subset P
scored ← {(p, score(p)) for p ∈ P}
   sorted \leftarrow sort(scored) in descending order
5 aligned \leftarrow \emptyset
6 S_c \leftarrow \emptyset
7 S_t \leftarrow \emptyset
   for d_s, d_t \in sorted do
           if d_s \notin S_s \wedge d_t \notin S_t
           aligned ← aligned \cup {(d_s, d_t)}
10
           S_s \leftarrow S_s \cup d_s
11
           S_t \leftarrow S_t \cup d_t
12
    end
13
```

return aligned

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent. LASER

Document Retrieval

Local Alignmen

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

Alignment Results High-Resource

	Recall				
Language	DE	SA	SL	IDF	SLIDF
French	0.39	0.84	0.83	0.82	0.84
Spanish	0.34	0.53	0.55	0.58	0.57
Russian	0.06	0.48	0.50	0.61	0.60
German	0.52	0.74	0.76	0.74	0.76
Italian	0.22	0.54	0.55	0.55	0.57
Portuguese	0.17	0.36	0.39	0.33	0.40
Dutch	0.28	0.51	0.54	0.52	0.56
Indonesian	0.11	0.36	0.48	0.43	0.48
Polish	0.17	0.38	0.41	0.44	0.42
Turkish	0.12	0.30	0.34	0.45	0.41
Swedish	0.19	0.37	0.37	0.38	0.39
Danish	0.27	0.46	0.65	0.60	0.67
Czech	0.15	0.36	0.41	0.32	0.41
Bulgarian	0.07	0.34	0.37	0.40	0.44
Finnish	0.06	0.24	0.32	0.43	0.44
Norwegian	0.13	0.26	0.33	0.33	0.38
Macro-AVG	0.20	0.41	0.45	0.47	0.49

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent.

Document Retrieval

Local

Alignmen

Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Alignment Results Mid-Resource

	Recall				
Language	DE	SA	SL	IDF	SLIDF
Romanian	0.15	0.39	0.40	0.40	0.41
Vietnamese	0.06	0.13	0.18	0.15	0.23
Ukrainian	0.05	0.49	0.70	0.70	0.74
Greek	0.05	0.22	0.24	0.34	0.30
Korean	0.06	0.49	0.47	0.49	0.51
Arabic	0.04	0.26	0.46	0.42	0.51
Croatian	0.16	0.32	0.36	0.34	0.36
Slovak	0.20	0.37	0.44	0.41	0.42
Thai	0.02	0.15	0.28	0.19	0.35
Hebrew	0.05	0.19	0.30	0.27	0.33
Hindi	0.04	0.03	0.33	0.28	0.43
Hungarian	0.15	0.41	0.39	0.39	0.46
Lithuanian	0.11	0.61	0.72	0.74	0.80
Slovenian	0.13	0.20	0.26	0.31	0.33
Farsi	0.06	0.22	0.37	0.40	0.49
Macro-AVG	0.09	0.28	0.39	0.39	0.44

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent.

Document Retrieval

Local

Alignmer

Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Alignment Results Low-Resource

	Recall				
Language	DE	SA	SL	IDF	SLIDF
Estonian	0.28	0.57	0.62	0.58	0.64
Bengali	0.05	0.47	0.59	0.51	0.58
Albanian	0.23	0.56	0.60	0.57	0.61
Macedonian	0.02	0.16	0.22	0.19	0.08
Urdu	0.06	0.29	0.23	0.27	0.24
Serbian	0.06	0.46	0.58	0.47	0.56
Azerbaijani	0.08	0.27	0.28	0.34	0.27
Armenian	0.02	0.08	0.13	0.12	0.17
Belarusian	0.07	0.26	0.44	0.36	0.51
Georgian	0.06	0.18	0.23	0.25	0.25
Tamil	0.02	0.13	0.19	0.23	0.34
Marathi	0.02	0.13	0.20	0.10	0.16
Kazakh	0.05	0.16	0.24	0.25	0.33
Mongolian	0.03	0.01	0.05	0.10	0.22
Burmese	0.01	0.35	0.18	0.08	0.26
Bosnian	0.18	0.49	0.64	0.50	0.65
Macro-AVG	0.08	0.29	0.34	0.31	0.37

Represei LASER

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Downstream Mining

From the aligned documents, can do further sentence-level mining.

- From this dataset, mined 2.25 billion parallel sentences covering 4598 language pairs
- 950 million pairs are sentences paired with English sentences
- 1.3 billion pairs are non-English sentence pairs

Represent LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Follow-up Research

From CCAligned aligned documents, there are many open research problems that can leverage this data

- Mine more, higher quality parallel sentences from the CCAligned documents
- Use CCAligned documents as supervision for supervised document alignment (mine parallel documents using high-recall method)
- Leverage parallel documents to learn cross-linigual document representations and cross-lingual document retrieval

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Document Retrieval

Local

Alignmen

Alignmen WikiMatrix

Bitext Filtering

Cross-lingual Sentence Mover's Distance

Massively Multilingual
Document Alignment with
Cross-lingual Sentence
Mover's Distance

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw

LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Motivation & Insight

Motivation

- Cross-lingual retrieval based on content is more general than using metadata (URL, timestamp, etc)
- CCAligned is high-precision. For more training data (especially for low-resource direction, need a high-recall approach)

Insight

- Creating document level fixed representations may be destructive for variable-length documents.
- Averaging sentence embedding places equal importance to all sentences
- How well sentences match up between document pairs is a good signal for parallel documents

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Represent LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Earth Mover's Distance

- measure of the distance between two probability distributions over a region D
- For example: if the distributions are interpreted as two different ways of piling up a certain amount of dirt over the region D
 - the EMD is the minimum cost of turning one pile into the other
 - the cost is assumed to be amount of dirt moved times the distance by which it is moved

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent.

Document Retrieval

Local Alignmer

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Earth Mover's Distance

The distance between points (ground distance) can be Euclidean distance, Manhattan...

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Represent LASER

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Cross-lingual Sentence Mover's Distance

- Each document has a distribution over sentences
 - multinomial distribution normalize bag of sentences (nBOS)
- Euclidean distance between source document sents and target document sents
 - Leverage LASER embeddings to compute Euclidean distances

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Represen LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Weighting Sentences Based on Importance

- XL-SMD requires a distribution over sentences for each document
- Each sentence has probability mass allocated to it.
- 4weighting schemes for each sentence investigated
 - Uniform weighting (each sentence equally weighted)
 - Sentence length (Longer sentences = more mass)
 - Inverse document frequency (IDF)
 - SL-IDF

Bitext Filtering

Document Mass Normalization

Normalizing the mass to unit measure in both the source and target documents each each document has a legitimate distribution and the induced distance metric is valid.

$$d'_{A,i} = \frac{d_{A,i}}{\sum_{s \in A} d_{A,s}} \tag{8}$$

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Optimal Transport

- $\Delta(i,j)$ is distance between the i_{th} and j_{th} sentences
- V denote vocab size (sentences within a document pair)

$$XLSMD(A,B) = \min_{T \ge 0} \sum_{i=1}^{V} \sum_{j=1}^{V} T_{i,j} \times \Delta(i,j)$$
 (9)

subject to:

$$\forall i \sum_{j=1}^{V} T_{i,j} = d_{A,i}$$

$$\forall j \sum_{i=1}^{V} T_{i,j} = d_{B,j}$$

Where $T \in R^{V \times V}$ is a nonnegative matrix, where each $T_{i,j}$ denotes how much of sentence i in document A is assigned to sentences j in document B, and constraints ensure the flow of a given sentence cannot exceed its allocated mass.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Represent LASER

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Greedy Mover's Distance

Solving the optimal transport problem is of cubic complexity and slow. Can it be approximated?

- find the two closest sentences and moves as much mass between the two sentences as possible
- the algorithm moves to the next two closest pairs
- terminates when all mass has been moved between the source and target document
- maintains mass constraints

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multiling Represen LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignmen WikiMatrix CCMatrix

Bitext Filtering

Approximation Performance

How does this approximation compare to the exact?

Method	Kendall-Tau	Recall	MAE	Runtime (s)
Exact-XLSMD	1.00	0.69	0.000	0.402
Relaxed-XLSMD	0.70	0.58	0.084	0.031
Greedy-XLSMD	0.98	0.69	0.010	0.107

Table: Comparing exact XLSMD computation to approximation schemes for computing XLSMD on 10 webdomains.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Represent LASER

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Approximate Distances

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Document Retrieval

Local

Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Approximate Performance

Which approximate computation works better?

Approximation	Low	Mid	High	All
Relaxed-XLSMD Greedy-XLSMD	0.44 0.54			0.46 0.54

Table: Document alignment performance of fast methods for approximating the same variant of XLSMD.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent.

Evaluation

Document Retrieval

Local

Alignmer

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

Alignment Results High-Resource

	Recall					
Language	DE	SA	SMD	SL	IDF	SLIDF
French	0.39	0.84	0.81	0.84	0.83	0.85
Spanish	0.34	0.53	0.59	0.63	0.62	0.64
Russian	0.06	0.64	0.69	0.69	0.70	0.71
German	0.52	0.74	0.78	0.76	0.77	0.77
Italian	0.22	0.47	0.55	0.56	0.56	0.59
Portuguese	0.17	0.36	0.39	0.41	0.38	0.40
Dutch	0.28	0.49	0.54	0.54	0.54	0.56
Indonesian	0.11	0.47	0.49	0.52	0.51	0.53
Polish	0.17	0.38	0.45	0.45	0.46	0.46
Turkish	0.12	0.38	0.52	0.56	0.57	0.59
Swedish	0.19	0.40	0.44	0.44	0.46	0.45
Danish	0.27	0.62	0.63	0.69	0.65	0.69
Czech	0.15	0.40	0.43	0.44	0.44	0.43
Bulgarian	0.07	0.43	0.52	0.54	0.55	0.52
Finnish	0.06	0.47	0.51	0.51	0.54	0.52
Norwegian	0.13	0.33	0.37	0.39	0.42	0.41
AVG	0.20	0.50	0.54	0.56	0.56	0.57

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent.

Evaluation

Document Retrieval

Local Alignmer

Global

Alignment

CCMatrix WMT/TED

Bitext Filtering

Alignment Results Mid-Resource

	Recall					
Language	DE	SA	SMD	SL	IDF	SLIDF
Romanian	0.15	0.40	0.44	0.43	0.45	0.43
Vietnamese	0.06	0.28	0.29	0.29	0.29	0.32
Ukrainian	0.05	0.68	0.67	0.78	0.78	0.82
Greek	0.05	0.31	0.47	0.48	0.49	0.49
Korean	0.06	0.34	0.60	0.54	0.61	0.60
Arabic	0.04	0.32	0.63	0.59	0.65	0.61
Croatian	0.16	0.37	0.40	0.40	0.41	0.40
Slovak	0.20	0.41	0.46	0.46	0.46	0.44
Thai	0.02	0.19	0.41	0.33	0.47	0.41
Hebrew	0.05	0.18	0.39	0.43	0.41	0.41
Hindi	0.04	0.27	0.34	0.54	0.52	0.53
Hungarian	0.15	0.49	0.50	0.54	0.51	0.54
Lithuanian	0.11	0.73	0.79	0.79	0.80	0.80
Slovenian	0.13	0.33	0.34	0.35	0.36	0.36
Persian	0.06	0.32	0.56	0.57	0.53	0.59
AVG	0.09	0.37	0.49	0.50	0.52	0.52

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent. LASER

Document Retrieval

Local

Alignmer

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Alignment Results Low-Resource

	Recall					
Language	DE	SA	SMD	SL	IDF	SLIDF
Estonian	0.28	0.52	0.69	0.66	0.74	0.72
Bengali	0.05	0.32	0.78	0.72	0.77	0.79
Albanian	0.23	0.56	0.66	0.65	0.65	0.66
Macedonian	0.02	0.33	0.32	0.36	0.38	0.33
Urdu	0.06	0.22	0.60	0.60	0.49	0.56
Serbian	0.06	0.59	0.75	0.74	0.74	0.71
Azerbaijani	0.08	0.34	0.74	0.74	0.75	0.74
Armenian	0.02	0.18	0.32	0.35	0.34	0.38
Belarusian	0.07	0.47	0.67	0.69	0.73	0.71
Georgian	0.06	0.24	0.46	0.48	0.45	0.45
Tamil	0.02	0.20	0.51	0.45	0.51	0.53
Marathi	0.02	0.11	0.43	0.46	0.33	0.39
Kazakh	0.05	0.31	0.44	0.46	0.45	0.45
Mongolian	0.03	0.13	0.18	0.22	0.21	0.23
Burmese	0.01	0.10	0.26	0.33	0.46	0.46
Bosnian	0.18	0.64	0.61	0.69	0.65	0.72
AVG	0.08	0.33	0.53	0.54	0.54	0.55

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent. LASER

Document Retrieval

Local

Alignmen

Alignment
WikiMatrix
CCMatrix
WMT/TED

Bitext Filtering

WMT 2016 Shared Task

WMT 2016 Shared Task

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingu Represent.

Document

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

WMT 2016 Shared Task: Challenges

Big-ish websites

- E.g. cinedoc.org: 50k English, 50k French pages
- Makes 2.5B possible pairs
- Only allowed to pick 50k

Language detection unreliable

- Made sure test set can be found
- Some participants ran their own pipelines

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Represent

Document Retrieval

Local Alignmen

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

WMT 2016 Shared Task: Challenges II

Near duplicates

- Removed pages when text was exactly the same
- www.taize.fr/fr article10921.html
- www.taize.fr/fr article10921.html?chooselang=1
- Almost identical

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent.

Document

Retrieval

Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Submissions

- 11 participating groups
- 19 submissions
- Up to 95% recall (NovaLincs-URL-Coverage)

Multilings
Represent
LASER
Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

NovaLincs

- use a phrase table from a phrase-based statistical machine translation system to compute coverage scores
- based on the ratio of phrase pairs covered by a document pair.
- NOVALINCS-COVERAGE (88.6%)
- NOVALINCSCOVERAGE-URL (85.8%) coverage first then URL
- NOVALINCS-URL-COVERAGE (95.0%) URL first then coverage

Corpora and

Represer LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

- uses the machine translation of the French document, and finds the English corresponding document based on bigram and 5-gram matches, assisted by a heuristics based on document length ratio
- YODA: (93.9%)

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

UEdin1

 uses cosine similarity between tf/idf weighted vectors, extracted by collecting n-grams from the English and machine translated French text. compare many hyperparameters such as weighting schemes and two pair selection algorithms.

• UEdin1: (89.1%)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multiling Represent

Document Retrieval

Local

Alignmen

Alignment

CCMatrix WMT/TED

Bitext

Submission Results

Name	Predicted pairs	Pairs after 1-1 rule	Found pairs	Recall %
ADAPT	61 094	61 094	644	26.8
ADAPT-v2	69 518	69 518	651	27.1
BadLuc	681 610	263 133	1 905	79.3
DOCAL	191 993	191 993	2 128	88.6
ILSP-ARC-pv42	291 749	287 860	2 040	84.9
JIS	323 929	28 903	48	2.0
Medved	155 891	155 891	1 907	79.4
NovaLincs-coverage-url	207 022	207 022	2 060	85.8
NovaLincs-coverage	235 763	235 763	2 129	88.6
NovaLincs-url-coverage	235 812	235 812	2 281	95.0
UA PROMPSIT bitextor 4.1	95 760	95 760	748	31.1
UA PROMPSIT bitextor 5.0	157 682	157 682	2 001	83.3
UEdin1 cosine	368 260	368 260	2 140	89.1
UEdin2 LSI	681 744	271 626	2 062	85.8
UEdin2 LSI-v2	367 948	367 948	2 105	87.6
UFAL-1	592 337	248 344	1 953	81.3
UFAL-2	574 433	178 038	1 901	79.1
UFAL-3	574 434	207 358	1 938	80.7
UFAL-4	1 080 962	268 105	2 023	84.2
YSDA	277 896	277 896	2 021	84.1
YODA	318 568	318 568	2 256	93.9
Baseline	148 537	148 537	1 436	59.8

Figure: Documents are aligned 1-to-1 within each domain.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawli

Multilingual Represent.

LASER Evaluation

Document Retrieval

Local

Alignmen

Alignment

CCMatrix WMT/TED

Bitext Filtering

Submission Results: Fuzzy Matching

Allowing 5% edits between predicted and expected

Name	Pairs found	Δ	Recall	Δ	Rank	Δ
ADAPT	726	+82	30.2	+3.4	20	0
ADAPT-v2	733	+82	30.5	+3.4	19	0
BadLuc	2 062	+157	85.9	+6.5	13	+3
DOCAL	2 235	+107	93.1	+4.5	4	+1
ILSP-ARC-pv42	2 185	+145	91.0	+6.0	7	+2
JIS	48	0	2.0	0.0	21	0
Medved	1 986	+79	82.7	+3.3	15	0
NovaLincs-coverage-url	2 130	+70	88.7	+2.9	9	-1
NovaLincs-coverage	2 192	+63	91.3	+2.6	6	-2
NovaLincs-url-coverage	2 303	+22	95.9	+0.9	2	-1
UA PROMPSIT bitextor 4.1	775	+27	32.3	+1.1	18	0
UA PROMPSIT bitextor 5.0	2 117	+116	88.1	+4.8	10	+2
UEdin1 cosine	2 227	+87	92.7	+3.6	5	-2
UEdin2 LSI	2 146	+84	89.3	+3.5	8	-1
UEdin2 LSI-v2	2 281	+176	95.0	+7.3	3	+3
UFAL-1	2 060	+107	85.8	+4.5	14	-1
UFAL-2	1 954	+53	81.4	+2.2	17	0
UFAL-3	1 980	+42	82.4	+1.8	16	-2
UFAL-4	2 078	+55	86.5	+2.3	12	-2
YSDA	2 102	+81	87.5	+3.4	11	0
YODA	2 307	+51	96.0	+2.1	1	+1

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Document

Retrieval

Local Alignment

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Shared Task Insights

- Machine translated text helpful
- Finding matching n-grams works well
- Big boost by combination with URL-matching baseline

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingual Represent.

Documen

Local Alignment

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

sentence alignment

A. El-Kishky. P. Koehn, H Schwenk

Local

Alignment

Sentence Alignment

"Local" alignment: limited to document pairs

- given: document pair
- output: matching sentence pairs

We also respect the order of sentences.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingual Represent.

Evaluation

Docume

Local

Alignment

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Church and Gale (1993)

Consider only the lengths of the sentences

$$abs(log \frac{length_e}{length_f})$$

- Find the Viterbi path that with the best length ratios
- Additional cost factors for alignments other than 1-1

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingual Represent.

Evaluation

Docume

Local

Alignment

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Church and Gale (1993)

Consider only the lengths of the sentences

$$abs(log \frac{length_e}{length_f})$$

- Find the Viterbi path that with the best length ratios
- Additional cost factors for alignments other than 1-1

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

Represen LASER Evaluation

Documer Retrieval

Local Alignment

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Use of Dictionaries

- Given a word translation dictionary
 man = Mann; window = Fenster; shaddow = Schatten;
 trees = Bäumen: alarmed = alamiert
- Find matching word pairs
- Score sentence pairs based on number of matches
- Hunalign: (Varga et al., 2005) tool using this feature
- Gargantua: unsupervised induction of translation dictionary

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingua Represent.

Evaluation

Documer Retrieval

Local Alignment

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Translate and Match

- Use machine translation to translate foreign sentences
- Match translation with English
- Use of standard machine translation metric to assess match: BLEU score
- Bleualign (Sennrich and Volk, 2010)

Bitext Filtering

Use of Sentence Embeddings

- Multilingual sentence embeddings, e.g., LASER
- Sentences with similar meaning have similar embedding
 independent of language
- Comparison based on Cosine distance

$$c(x,y) = \frac{(1 - \cos(x,y)) N(x) N(y)}{\sum_{s=1}^{S} 1 - \cos(x,y_s) + \sum_{s=1}^{S} 1 - \cos(x_s,y)}$$

• Vecalign (Thompson and Koehn, 2019)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Evaluation

Retrieval

Local Alignment

Global Alignmen

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Efficient Algorithm

- Complexity of alignment via dynamic programming: $O(n^2)$
- Coarse to fine algorithm: O(n) embedding for block = average of sentence embeddings

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Evaluation

Retrieval

Local Alignment

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Evaluation: Text + Bild

Algorithm	O()	Р	R	F_1
Gargantua	N^2	0.48	0.54	0.51
Hunalign w/o lexicon	N	0.59	0.70	0.64
Hunalign w/ lexicon	N	0.61	0.73	0.66
Church and Gale	N^2	0.71	0.72	0.72
Moore	‡	0.86	0.71	0.78
Bleualign	N^2	0.83	0.78	0.81
Bleualign-NMT	N^2	0.85	0.83	0.84
Coverage-Based	N^2	0.85	0.84	0.85
Vecalign	N	0.89	0.90	0.90

[‡]O() is data dependent

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingua Represent.

Evaluation

Documen

Retrieval

Local Alignment

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Evaluation: Bible

	Verse-level F_1		
Languages	Vecalign	Hunalign	
Afrikaans–Arabic	0.863	0.339	
Afrikaans–Tagalog	0.922	0.775	
Arabic-Norwegian	0.787	0.406	
Arabic–Somali	0.634	0.067	
Turkish–Somali	0.533	0.331	
Norwegian-Somali	0.697	0.687	
Somali–Afrikaans	0.782	0.738	
Tagalog-Norwegian	0.874	0.764	
Turkish–Afrikaans	0.703	0.401	
Turkish–Tagalog	0.647	0.247	

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multiling Represen LASER

Documen Retrieval

Local Alignment

Global Alignmen WikiMatrix CCMatrix

Bitext Filtering

Evaluation: CommonCrawl

Language Pair	LASER-only	Vecalign (best setup)
English–Portuguese	31.5	32.9 (+1.4)
Portuguese–English	36.0	38.8 (+2.8)
English–Bulgarian	29.6	32.6 (+3.0)
Bulgarian–English	20.6	22.3 (+1.7)
English–Estonian	14.0	15.0 (+1.0)
English–Georgian	8.6	9.1 (+0.5)
English-Urdu	10.9	12.5 (+1.6)
English–Marathi	10.0	10.3 (+0.3)
English–Burmese	8.0	9.0 (+1.0)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawl

Represen

LASER

Evaluation

Documen Retrieval

Local Alignment

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Evaluation: Paracrawl

 Task: align sentences in document pairs (subset of ParaCrawl data)

Language	Web	Document	English
	Domains	Pairs	Tokens
German	21,806	17,109,018	10,788,923,009
Czech	12,179	6,661,650	4,089,806,440
Hungarian	5,560	2,770,432	1,504,698,348
Estonian	5,129	2,301,309	1,427,328,440
Maltese	933	303,198	134,232,546

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingi Represent LASER Evaluation

Documen Retrieval

Local Alignment

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Evaluation: Paracrawl

• Results: BLEU scores for best subset (English token count)

Language	Huna	lign	Vecalign		Bleualign	
German	35.1	(100m)	35.8	(150m)	35.0	(100m)
Czech	21.0	(50m)	21.2	(50m)	21.0	(50m)
Hungarian	16.5	(30m)	16.8	(30m)	16.6	(15m)
Estonian	21.8	(20m)	21.6	(20m)	21.4	(20m)
Maltese	33.5	(5m)	34.1	(7m)	30.3	(2m)

Best results with Vecalign, except for Estonian

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingual Represent. LASER

Documen

Local

Global

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

global sentence alignment

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

LASER Evaluation

Documer

Retrieval

Local Alignment

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Bitext Mining in Wikipedia

Some statistics

- 300 different languages
- Huge differences in size:
 - 1M+ articles: 15 languages (major European languages, ru, vi, ja, zh)
 - 100k+ articles: 47 languages
 - 10k+ articles: 81 languages
 - long tail . . .
- English by far the biggest (5.8M articles, 208M sentences)
- Cebuano has many articles produced by a bot (5.4M articles, 67M sentences)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Represer

Documen

Local

Alignmen

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Bitext Mining in Wikipedia

Local mining

- Only articles with link
- + Seems logical
- + Very fast
- Ignored articles
- Many simple sentences

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Represent LASER

Documen Retrieval

Local Alignmen

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Bitext Mining in Wikipedia

Local mining

- Only articles with link
- + Seems logical
- + Very fast
- Ignored articles
- Many simple sentences

Global mining

- Always consider all sent.
- Increased complexity
- ± Lower recall?
- + Generic: any corpus

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

Represent LASER Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Bitext Mining in Wikipedia

Global mining

- Compare all sentences of two Wikipedia
- Computationally more challenging: 134M×51M distances
- + Ability to handle two languages even though there are only few articles in common
- Margin criterion: excludes short sentences which differ in NE only
 - Potentially increased risk of misalignment and a lower recall

We chose global mining for this study (more generic)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

LASER

Documer

Retrieval

Local Alignmen

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Bitext Mining in Wikipedia

Processing pipeline

- Sentence splitting (very difficult for Thai)
- Deduplication
- Language identification with fasttext
- ightarrow pprox 600 M sentences for > 180 languages (each with more than 50k sentences)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

LASER

Evaluation

Retrieval

Local Alignment

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Bitext Mining in Wikipedia

Processing pipeline

- Sentence splitting (very difficult for Thai)
- Deduplication
- Language identification with fasttext
- ightarrow pprox 600 M sentences for > 180 languages (each with more than 50k sentences)

Complexity issues

- English/German Wikipedia:
 - 134M × 51M sentences
 - 513 + 204GB memory to store LASER embeddings
 - 6.8×10^{15} distance calculations
- ⇒ Optimization and compression are needed !!

Introduction

Corpora and WEB Crawlin

Represer LASER

Documen

Local Alignmer

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Efficient Mining with FAISS

FAISS library

- Library for efficient similarity search and clustering of dense vectors
- https://github.com/facebookresearch/faiss
- Mainly used for indexing images but can operate on any arbitrary vectors
- ⇒ Used here for efficient large-scale bitext mining
 - Can be scaled to search in billions of sentences

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingual Represent.

Documer

Retrieval

Alignmer

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

Efficient Mining with FAISS

FAISS index types

- Define N Voronoi cells
- Quantizers:
 - PCA, not enough compression
 - Product: OPQ64, IVF32768, PQ64, 55x compression
 - Scalar: PCAR128, IVF32768, SQ8, 28x compression

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingual Represent.

Documer

Local

Alignmen

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

Efficient Mining with FAISS

FAISS index types

- Define N Voronoi cells
- Quantizers:
 - PCA, not enough compression
 - Product: OPQ64, IVF32768, PQ64, 55x compression
 - Scalar: PCAR128, IVF32768, SQ8, 28x compression
- English FAISS index: 9.2GB

A. El-Kishky. P. Koehn, H Schwenk

Define N Voronoi cells

Quantizers:

FAISS index types

PCA, not enough compression

Product: OPQ64, IVF32768, PQ64, 55x compression

Efficient Mining with FAISS

Scalar: PCAR128, IVF32768, SQ8, 28x compression

English FAISS index: 9.2GB

English/German mining: 3h30 on 8 GPUS

Global Alignment

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingual Represent.

Documer

Retrieval

Local Alignmen

Global Alignment

WikiMatrix CCMatrix

Bitext Filtering

Efficient Mining with FAISS

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingual Represent.

Evaluation

Documer Retrieval

Local Alignmen

Alignmen

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

Efficient Mining with FAISS

- Deduplication and LID
 - a couple of hours, run on parallel on standard server

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw

Represent LASER

Documer

Local

Alignmen

Global Alignment WikiMatrix

Bitext Filtering

Efficient Mining with FAISS

- Deduplication and LID
 - a couple of hours, run on parallel on standard server
- Sentence embeddings with LASER (>7M sents/h)
 - total of 100h, can be run in parallel on cluster

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawl

LASER Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Efficient Mining with FAISS

- Deduplication and LID
 - a couple of hours, run on parallel on standard server
- Sentence embeddings with LASER (>7M sents/h)
 - total of 100h, can be run in parallel on cluster
- Train and create FAISS index for each language (CPU)
 - English \approx 4h, total 21h

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Represer LASER Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix

Bitext Filtering

Efficient Mining with FAISS

- Deduplication and LID
 - a couple of hours, run on parallel on standard server
- Sentence embeddings with LASER (>7M sents/h)
 - total of 100h, can be run in parallel on cluster
- Train and create FAISS index for each language (CPU)
 - English \approx 4h, total 21h
- Mine bitext for each language pair
 - total of $\approx 1000 h$

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

Represent LASER Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Efficient Mining with FAISS

- Deduplication and LID
 - a couple of hours, run on parallel on standard server
- Sentence embeddings with LASER (>7M sents/h)
 - total of 100h, can be run in parallel on cluster
- Train and create FAISS index for each language (CPU)
 - English \approx 4h, total 21h
- Mine bitext for each language pair
 - total of $\approx 1000h$
- ⇒ Total of 43 days on one GPU

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Represent LASER Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Efficient Mining with FAISS

- Deduplication and LID
 - a couple of hours, run on parallel on standard server
- Sentence embeddings with LASER (>7M sents/h)
 - total of 100h, can be run in parallel on cluster
- Train and create FAISS index for each language (CPU)
 - English \approx 4h, total 21h
- Mine bitext for each language pair
 - total of $\approx 1000 h$
- ⇒ Total of 43 days on one GPU or much less on many GPUs . . .

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw

Represen LASER

Documen

Local Alignmen

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Threshold Optimization

Precision/recall trade-off

- Margin-based mining has only one parameter: the margin between the closest and the average distance
 - large margin: high precision, low recall
 - small margin: lower precision, higher recall
- We have no gold-alignments to optimize this parameter

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawli

Represent LASER Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Threshold Optimization

Precision/recall trade-off

- Margin-based mining has only one parameter: the margin between the closest and the average distance
 - large margin: high precision, low recall
 - small margin: lower precision, higher recall
- We have no gold-alignments to optimize this parameter

Task oriented threshold optimization

- Mine bitexts for thresholds in range [1.01-1.06]
- Train NMT systems for increasing amounts of data
- Evaluate each one and keep best one

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Documer

Local

Alignmen

Global Alignment

WikiMatrix

Bitext Filtering

Threshold Optimization on Europarl

Precision/recall trade-off

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Documer

Local

Alignmen

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

Threshold Optimization on Europarl

Precision/recall trade-off

 Threshold on margin of 1.04 best for most conditions

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Documer

Local

Alignmer

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Threshold Optimization on Europarl

Precision/recall trade-off

 Threshold on margin of 1.04 best for most conditions

Bitexts	de-en	de-fr	cs-de	cs-fr
Mined	1.0M	372k	201k	219k
Wikipedia	24.4	22.7	13.1	16.3
Europarl	1.0M	370k	200k	220k
	21.2	21.1	12.6	19.2

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingu Represent.

Documen

Local Alignmer

Global

Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Threshold Optimization on Europarl

Precision/recall trade-off

- Threshold on margin of 1.04 best for most conditions
- WikiMatrix bitexts outperform Europarl

Bitexts	de-en	de-fr	cs-de	cs-fr	
Mined	1.0M	372k	201k	219k	
Mined Wikipedia	24.4	22.7	13.1	16.3	

Europarl	1.0M	370k	200k	220k
	21.2	21.1	12.6	19.2

Cross-lingual Mining A. El-Kishky,

WikiMatrix: 85 Languages, 1620Pairs

With English: Indonesian 1M,
 Hebrew 545k, Farsi 303k or Marathi 124k

Cross-lingual Mining A. El-Kishky,

WikiMatrix: 85 Languages, 1620Pairs

Russian/Ukrainian 2.5M, Catalan/Spanish 1.6M

Cross-lingual Mining A. El-Kishky,

WikiMatrix: 85 Languages, 1620Pairs

• Between Romance languages fr, es, it and pt 480k-923k

WikiMatrix: 85 Languages, 1620Pairs

 Japanese/Korean 222k, Japanese/Russian 196k, Indonesian/Vietnamese 146k, Hebrew/fr,es,it,ru 120–150k

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingual Represent.

Documer

Local

Alignmen

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Large-Scale Bitext Mining

Scaling up!

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora a WEB Cra

Multilingual Represent.

Documer

Retrieval

Local Alignmen

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Large-Scale Bitext Mining

Scaling up!

 Can we apply the same global mining approach to a much bigger corpus? Introduction

Corpora and WEB Crawling

Represen LASER

Documen

Local Alignmen

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Large-Scale Bitext Mining

Scaling up!

- Can we apply the same global mining approach to a much bigger corpus?
- 10 snapshot of curated common crawl corpus (Wenzek et al, arxiv'19)
- 36 billion unique sentences (50× bigger than Wikipedia)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

Represent LASER Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Large-Scale Bitext Mining

Scaling up!

- Can we apply the same global mining approach to a much bigger corpus?
- 10 snapshot of curated common crawl corpus (Wenzek et al, arxiv'19)
- 36 billion unique sentences (50× bigger than Wikipedia)
- ⇒ Substantial computational and storage challenges
 - Mining Russian against Japanese: 3×2.9 billion sentences
 - $\approx 8.7 \cdot 10^{18}$ distances (6 months on 8 GPUs)
 - optimized and highly parallelized processing

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Mining in the Whole Internet

CCMatrix

- 36 billion sentences collected on the Internet in 39 languages
- ⇒ More than 4.5 billion parallel sentences in 39 languages

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw

Represent LASER Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix

Bitext Filtering

Mining in the Whole Internet

CCMatrix

- 36 billion sentences collected on the Internet in 39 languages
- ⇒ More than 4.5 billion parallel sentences in 39 languages

⇒ By far the largest collection of high quality mined bitexts

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawl

Represent

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Mining in the Whole Internet

CCMatrix

- 36 billion sentences collected on the Internet in 39 languages
- ⇒ More than 4.5 billion parallel sentences in 39 languages

- ⇒ By far the largest collection of high quality mined bitexts
 - Expected to cover many topics: politics, sports, tourism, daily life, . . .

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingua Represent.

Documer

Local

Alignmen

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Complexity Optimization

Example: mining French/English

- Split monolingual texts into many parts
- Calculate forward and backward distances in parallel
- ⇒ Extract bitexts when all distances are available

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingual

LASER

Evaluation

Retrieval

Local Alignmer

Global

Alignmen

CCMatrix WMT/TEI

Bitext Filtering

CCMatrix

ISO	Name	Family	Size	bg	cs	da	de	el	en	es	fa	fi	fr	he	hí	hu	id	it	ja	ko	ms	nl	no	pl	pt	ru	sv	tr	uk	vi	zh	To
ar .	Arabic	Arabic	196	3.0	3.9	2.7	7.5	3.3	6.5	10.0	3.1	2.7	23.8	2.2	1.4	2.7	4.1	5.8	5.0	2.5	1.5	5.1	2.5	4.5	6.7	9.2	5.6	5.5	1.5	4.2	5.4	141
bg 1	Bulgarian	Slavic	68	-	6.1	3.7	9.9	4.3	3.7	10.7	2.3	3.6	11.4	2.1	1.5	3.8	3.8	7.4	5.7	2.8	1.3	6.9	3.0	7.2	7.5	17.4	7.6	5.8	2.3	4.4	5.0	154
es i	Czech	Slavic	303	-		5.9	18.3	5.4	9.8	15.5	2.9	6.1	17.3	3.1	2.0	6.1	5.3	11.2	8.0	4.0	2.0	11.6	4.9	13.2	10.7	18.1	12.9	8.6	2.6	6.0	7.0	228
da l	Danish	Germanic	109	-		-	12.6	3.8	4.5	10.2	2.0	4.8	12.0	2.3	1.5	3.7	3.9	7.3	5.6	2.9	1.4	9.5	9.6	6.5	7.4	9.2	15.2	5.7	1.5	4.2	4.9	164
de (German	Germanic	1728	-		-	-	9.8	67.3	38.8	4.8	11.3	50.0	5.6	3.2	11.0	9.6	29.5	11.6	6.2	3.5	33.2	10.4	20.5	23.4	29.3	29.3	15.5	3.8	9.7	11.8	49
el (Greek	Hellenic	144	-	-	-	-	-	5.6	12.2	2.2	3.6	12.9	2.3	1.4	3.7	3.7	8.5	5.2			6.9	3.0	6.2	8.4	9.9	7.3	5.6	1.7	4.2	4.7	150
en l	English	Germanic	8677	-	-	-	-	-	-	86.3	2.5	4.1	94.1	1.5	0.7		13.4					23.8	3.8	16.0	33.1	72.4	43.8	26.8	1.6	18.5	17.6	63
es :		Romance	1534	-	-	-	-	-	-	-	5.5		70.9			9.5	12.4	44.3				23.3	8.8		59.4	32.4	22.3	15.2	4.0	11.9	13.2	57.
a l		Iranian	192	-		-	-	-	-	-	-	2.0	5.5			1.9	3.1	3.6	3.5	2.0	1.3	3.6	1.9	3.2	4.1	5.6		4.9	1.1	3.3	3.4	8
		Uralic	132	-		-	-	-	-	-	-	-	11.1			4.2	3.8	7.1	6.2	3.0	1.4	8.1	4.1	6.8	7.1	9.9	13.8	6.2	1.7	4.4	5.2	15
r I	French	Romance	1869	-		-		-	-	-	-	-		6.8	3.5	10.3	11.9	46.2	12.6	6.9	4.2	32.1		21.1	37.9	31.9	27.6	17.4	4.2	12.5	14.0	
ie l	Hebrew	Semitic	70	-							-		-		1.2	1.9	2.8	4.0	5.3	2.5	1.1	4.2	2.0	3.6	4.3	6.4	5.1	4.4	1.2	3.6	3.6	9
í l	Hindi	Indo-	48	-							-					1.3	1.9	2.3	2.7	1.6	0.9	2.4	1.4	2.1	2.6	3.4	3.0	3.2	0.8	1.9	2.4	5
		Aryan																														1
u I	Hungarian	Uralic	148	-							-				-		3.2	7.0	5.2	2.6	1.3	7.1	3.0	7.1	6.8	9.6	7.4	5.6	1.7	3.7	4.6	13
d I	Indonesian	Malayo-	366	-				-			-				-	-		7.4	5.9	3.5	4.4	7.6	3.7	6.0	9.1	9.9	8.6	8.1	1.7	7.9	6.3	17
		Polynesian																														1
	Italian	Romance	686	-	-	-	-	-	-	-	-	-	-	-	-	-	-		8.9	4.7	2.5	16.6	6.1	14.7	25.4	20.5	16.0	10.5	2.8	8.0	8.6	36
a,	Japanese	Japonic	2944	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.3	8.9	5.1	7.7	9.1	11.6	11.3	12.1	2.8	6.5	13.5	22
0	Korean	Koreanic	778	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	1.9	4.8	2.6	4.0	4.9	6.0	7.1	8.4	1.4	5.2	6.3	11
ns l		Malayo-	25	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	2.6	1.3	2.3	2.8	3.7	3.6	3.4	0.8	3.2	2.8	6
		Polynesian																														1
d I	Dutch	Germanic	510	-		-		-		-	-	-	-		-	-	-	-		-	-	-	7.8	12.9	15.5	17.7	20.8	11.0	2.7	7.2	8.4	32
10	Norwegian	Germanic	109	-		-		-		-	-	-	-		-	-	-	-		-	-			5.5	6.4	8.1	13.8	5.2	1.4	3.9	4.3	14
ol I	Polish	Slavic	505	-							-				-		-	-			-				13.5	22.9	13.8	9.1	3.4	6.5	7.1	26
t I	Portuguese	Romance	729								-				-		-							-	-	20.9	15.7	11.0	3.0	8.8	9.5	37
u I	Russian	Slavic	3047								-				-		-								-	-	18.9	15.3	31.2	10.4	13.0	47
v :	Swedish	Germanic	1200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	2.8	10.6	10.4	35
r '	Turkish	Turkic	1382	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5	10.4	10.0	24
k I	Ukrainian	Slavic	110	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.2	2.2	1 8
i '	Vietnamese	Vietic	1172	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9.1	15
sh (Chinese	Chinese	2512	_		-		-	_	_	-	_													-							21

Table 1: CCMatrix: size of mined sentences (in millions) for each language pair.

• French/Spanish: 71M

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingual

LASER

Documen

Retrieval

Alignmer

Global

Alignmen

CCMatrix WMT/TEI

Bitext Filtering

CCMatrix

so	Name	Family	Size	bg	cs	da	de	el	en	es	fa	fi	fr	he	hí	hu	id	it	ja	ko	ms	nl	no	pl	pt	ru	sv	tr	uk	vi	zh	To
r	Arabic	Arabic	196	3.0	3.9	2.7	7.5	3.3	6.5	10.0	3.1	2.7	23.8	2.2	1.4	2.7	4.1	5.8	5.0	2.5	1.5	5.1	2.5	4.5	6.7	9.2	5.6	5.5	1.5	4.2	5.4	14
g l	Bulgarian	Slavic	68	-	6.1	3.7	9.9	4.3	3.7	10.7	2.3	3.6	11.4	2.1	1.5	3.8	3.8	7.4	5.7	2.8	1.3	6.9	3.0	7.2	7.5	17.4	7.6	5.8	2.3	4.4	5.0	15
s (Czech	Slavic	303	-		5.9	18.3	5.4	9.8	15.5	2.9	6.1	17.3	3.1	2.0	6.1	5.3	11.2	8.0	4.0	2.0	11.6	4.9	13.2	10.7	18.1	12.9	8.6	2.6	6.0	7.0	22
a l	Danish	Germanic	109	-			12.6	3.8	4.5	10.2	2.0	4.8	12.0	2.3	1.5	3.7	3.9	7.3	5.6	2.9	1.4	9.5	9.6	6.5	7.4	9.2	15.2	5.7	1.5	4.2	4.9	16
e (German	Germanic	1728	-		-	-	9.8	67.3	38.8	4.8	11.3	50.0	5.6	3.2	11.0	9.6	29.5	11.6	6.2	3.5	33.2	10.4	20.5	23.4	29.3	29.3	15.5	3.8		11.8	49
	Greek	Hellenic	144	-	-	-	-	-		12.2			12.9			3.7	3.7	8.5	5.2			6.9	3.0	6.2	8.4	9.9	7.3	5.6	1.7	4.2	4.7	15
ıl	English	Germanic	8677	-	-	-	-	-	-	86.3	2.5	4.1	94.1	1.5	0.7	3.6	13.4					23.8	3.8	16.0	33.1	72.4	43.8	26.8	1.6	18.5	17.6	
: 5	Spanish	Romance	1534	-	-	-	-	-	-	-	5.5		70.9			9.5	12.4	44.3				23.3	8.8		59.4	32.4	22.3	15.2	4.0	11.9	13.2	
.]	Farsi	Iranian	192	-		-	-	-	-	-	-	2.0				1.9	3.1	3.6	3.5	2.0	1.3	3.6	1.9	3.2	4.1	5.6	4.0	4.9	1.1	3.3	3.4	ш
1	Finnish	Uralic	132	-		-	-	-	-	-	-	-	11.1			4.2	3.8	7.1	6.2	3.0	1.4	8.1	4.1	6.8	7.1	9.9	13.8	6.2	1.7	4.4	5.2	1
1	French	Romance	1869	-		-		-	-	-	-	-	-	6.8	3.5	10.3	11.9	46.2	12.6	6.9	4.2	32.1		21.1	37.9	31.9	27.6	17.4	4.2	12.5	14.0	
: 1	Hebrew	Semitic	70	-						-	-				1.2	1.9	2.8	4.0	5.3	2.5	1.1	4.2	2.0	3.6	4.3	6.4	5.1	4.4	1.2	3.6	3.6	ш
1	Hindi	Indo-	48	-							-					1.3	1.9	2.3	2.7	1.6	0.9	2.4	1.4	2.1	2.6	3.4	3.0	3.2	0.8	1.9	2.4	Ш
		Aryan																														Н
. 1	Hungarian	Uralic	148	-				-			-				-		3.2	7.0	5.2	2.6	1.3	7.1	3.0	7.1	6.8	9.6	7.4	5.6	1.7	3.7	4.6	1
1	Indonesian	Malayo-	366	-				-			-				-	-		7.4	5.9	3.5	4.4	7.6	3.7	6.0	9.1	9.9	8.6	8.1	1.7	7.9	6.3	1
		Polynesian																														Ш
		Romance	686	-	-	-	-	-	-	-	-	-	-	-	-	-	-		8.9	4.7		16.6					16.0		2.8	8.0	8.6	
J	Japanese	Japonic	2944	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.3	8.9	5.1	7.7	9.1	11.6	11.3	12.1	2.8	6.5	13.5	2
, 1	Korean	Koreanic	778	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.9	4.8	2.6	4.0	4.9	6.0	7.1	8.4	1.4	5.2	6.3	1
s I		Malayo-	25	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.6	1.3	2.3	2.8	3.7	3.6	3.4	0.8	3.2	2.8	Ш
		Polynesian																														Н
		Germanic	510	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		7.8	12.9	15.5	17.7	20.8	11.0	2.7	7.2	8.4	
1	Norwegian	Germanic	109	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		5.5	6.4	8.1	13.8	5.2	1.4	3.9	4.3	1
		Slavic	505	-		-		-	-		-	-			-		-	-	-		-		-	-	13.5	22.9	13.8	9.1	3.4	6.5	7.1	2
1	Portuguese	Romance	729	-					-		-	-			-		-				-		-	-	-	20.9	15.7	11.0	3.0	8.8	9.5	
		Slavic	3047	-					-		-	-			-		-				-		-		-	-	18.9	15.3			13.0	
		Germanic	1200	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		10.6		3
	Turkish	Turkic	1382	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	2.5	10.4		2
	Ukrainian		110	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.2	2.2	Ш
	Vietnamese		1172	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9.1	1
1 (Chinese	Chinese	2512	-						_								-						-							-	12

Table 1: CCMatrix: size of mined sentences (in millions) for each language pair.

• Norwegian/Swedish: 14M

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingual

LASER

Documer

Retrieval

Alignmer

Global

Alignmen

CCMatrix WMT/TEI

Bitext Filtering

CCMatrix

SO	Name	Family	Size	bg	cs	da	de	el	en	es	fa	fi	fr	he	hí	hu	id	ít	ja	ko	ms	nl	no	pl	pt	ru	sv	tr	uk	vi	zh	To
ır .	Arabic	Arabic	196	3.0	3.9	2.7	7.5	3.3	6.5	10.0	3.1	2.7	23.8	2.2	1.4	2.7	4.1	5.8	5.0	2.5	1.5	5.1	2.5	4.5	6.7	9.2	5.6	5.5	1.5	4.2	5.4	141
og :	Bulgarian	Slavic	68	-	6.1	3.7	9.9	4.3	3.7	10.7	2.3	3.6	11.4	2.1	1.5	3.8	3.8	7.4	5.7	2.8	1.3	6.9	3.0	7.2	7.5	17.4	7.6	5.8	2.3	4.4	5.0	154
S	Czech	Slavic	303	-		5.9	18.3	5.4	9.8	15.5	2.9	6.1	17.3	3.1	2.0	6.1	5.3	11.2	8.0	4.0	2.0	11.6	4.9	13.2	10.7	18.1	12.9	8.6	2.6	6.0	7.0	228
		Germanic	109				12.6			10.2		4.8	12.0			3.7	3.9	7.3		2.9		9.5	9.6	6.5	7.4			5.7	1.5	4.2	4.9	16
le		Germanic	1728	-		-	-	9.8	67.3	38.8	4.8	11.3	50.0	5.6	3.2	11.0	9.6	29.5	11.6	6.2	3.5	33.2	10.4	20.5	23.4	29.3	29.3	15.5	3.8		11.8	49
1	Greek	Hellenic	144	-	-	-	-	-		12.2		3.6	12.9	2.3	1.4	3.7	3.7	8.5	5.2	2.6	1.4	6.9	3.0	6.2	8.4	9.9	7.3	5.6	1.7	4.2	4.7	15
n	English	Germanic	8677	-	-	-	-	-	-	86.3	2.5	4.1	94.1	1.5	0.7		13.4						3.8	16.0	33.1	72.4	43.8	26.8	1.6	18.5	17.6	63
s	Spanish	Romance	1534	-	-	-		-	-	-	5.5	9.7	70.9	5.9	3.2	9.5	12.4	44.3	11.6	6.2	-	23.3	8.8	19.6	59.4	32.4	22.3	15.2	4.0	11.9	13.2	57
a :	Farsi	Iranian	192	-		-		-		-	-	2.0	5.5	1.7	1.2	1.9	3.1	3.6	3.5	2.0	1.3	3.6	1.9	3.2	4.1	5.6	4.0	4.9	1.1	3.3	3.4	8
	Finnish	Uralic	132	-		-		-		-	-	-	11.1	2.2	1.4	4.2	3.8	7.1	6.2	3.0	1.4	8.1	4.1	6.8	7.1	9.9	13.8	6.2	1.7	4.4	5.2	15
	French	Romance	1869	-		-				-	-			6.8	3.5	10.3	11.9	46.2	12.6	6.9	4.2	32.1	9.9	21.1	37.9	31.9	27.6	17.4	4.2	12.5	14.0	61
e :	Hebrew	Semitic	70								-				1.2	1.9	2.8	4.0	5.3	2.5	1.1	4.2	2.0	3.6	4.3	6.4	5.1	4.4	1.2	3.6	3.6	1 9
	Hindi	Indo-	48								-					1.3	1.9	2.3	2.7	1.6	0.9	2.4	1.4	2.1	2.6	3.4	3.0	3.2	0.8	1.9	2.4	L
		Arvan																														1
u	Hungarian		148														3.2	7.0	5.2	2.6	1.3	7.1	3.0	7.1	6.8	9.6	7.4	5.6	1.7	3.7	4.6	1:
	Indonesian		366															7.4	5.9	3.5	4.4	7.6	3.7	6.0	9.1	9.9	8.6	8.1	1.7	7.9	6.3	11
		Polynesian																														l-
	Italian	Romance	686	-		-		-		-	-				-	-		-	8.9	4.7	2.5	16.6	6.1	14.7	25.4	20.5	16.0	10.5	2.8	8.0	8.6	30
١.	Japanese	Japonic	2944	-		-		-		-	-		-		-	-	-		-		3.3	8.9	5.1	7.7	9.1	11.6	11.3	12.1	2.8	6.5	13.5	12
0	Korean	Koreanic	778	-		-		-		-	-	-	-		-	-	-	-			1.9	4.8	2.6	4.0	4.9	6.0	7.1	8.4	1.4	5.2	6.3	11
18	Malay	Malayo-	25	-				-	-	-	-	-	-		_	-	_	-	_	-		2.6	1.3	2.3	2.8	3.7	3.6	3.4	0.8	3.2	2.8	П
		Polynesian																														П
1		Germanic	510	-				-		-	-	_	-		_	-	_	-		-	-	- 1	7.8	12.9	15.5	17.7	20.8	11.0	2.7	7.2	8.4	32
0	Norwegian	Germanic	109	-		-		-		-	-	-	-		_	-	-	-		-	-		-	5.5	6.4		13.8	5.2	1.4	3.9	4.3	14
		Slavic	505	-						-	-							-						-	13.5	22.9	13.8	9.1	3.4	6.5	7.1	20
	Portuguese		729																					- 1			15.7		3.0		9.5	3
		Slavic	3047																						- 2		18.9					4
		Germanic	1200	-		-		-		-	-	_	_		-	-	-	-		-	_		-	-	-					10.6		3
	Turkish	Turkic	1382	-		-		-	-	-	-	_	_		-	-	-	-	-	-	-	-	-	-	-	-	-			10.4		2
	Ukrainian		110					-	-	_	-	-				-		-			-		-	-	-		-			0.2		Ľ
	Vietnamese		1172																												9.1	1
		Chinese	2512																											- 1	201	21

Table 1: CCMatrix: size of mined sentences (in millions) for each language pair.

• Chinese/Japanese: 13.5M

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawli

LASER

Documo

Retrieval

Local Alignmer

Alignmer

Alignmer

CCMatrix WMT/TEI

Bitext Filtering

CCMatrix

SO Name	e l	Family	Size	bg	cs	da	de	el	en	es	fa	fi	fr	he	hí	hu	id	it	ja	ko	ms	nl	no	pl	pt	ru	sv	tr	uk	vi	zh	Te
r Arabi	de ,	Arabic	196	3.0	3.9	2.7	7.5	3.3	6.5	10.0	3.1	2.7	23.8	2.2	1.4	2.7	4.1	5.8	5.0	2.5	1.5	5.1	2.5	4.5	6.7	9.2	5.6	5.5	1.5	4.2	5.4	1/
g Bulga	arian 5	Slavic	68		6.1	3.7	9.9	4.3	3.7	10.7	2.3	3.6	11.4	2.1	1.5	3.8	3.8	7.4	5.7	2.8	1.3	6.9	3.0	7.2	7.5	17.4	7.6	5.8	2.3	4.4	5.0	15
Czech	h 5	Slavic	303	-		5.9	18.3	5.4	9.8	15.5	2.9	6.1	17.3	3.1	2.0	6.1	5.3	11.2	8.0	4.0	2.0	11.6	4.9	13.2	10.7	18.1	12.9	8.6	2.6	6.0	7.0	22
a Danis	sh (Germanic	109			-	12.6	3.8	4.5	10.2	2.0	4.8	12.0	2.3	1.5	3.7	3.9	7.3	5.6	2.9	1.4	9.5	9.6	6.5	7.4	9.2	15.2	5.7	1.5	4.2	4.9	16
e Germ	nan (Germanic	1728	-				9.8	67.3	38.8	4.8	11.3	50.0	5.6	3.2							33.2	10.4	20.5	23.4	29.3	29.3	15.5	3.8	9.7	11.8	
Greek	k l	Hellenic	144	-	-	-	-	-	5.6	12.2	2.2	3.6	12.9	2.3	1.4	3.7	3.7	8.5	5.2	2.6	1.4	6.9	3.0	6.2	8.4	9.9	7.3	5.6	1.7	4.2	4.7	1:
n Engli	ish (Germanic	8677	-	-	-	-	-	-	86.3	2.5	4.1	94.1	1.5	0.7	3.6	13.4	31.3	33.7	7.2	0.8	23.8	3.8	16.0	33.1	72.4	43.8	26.8	1.6	18.5	17.6	6
Spani	ish 1	Romance	1534	-	-	-		-	-	-	5.5	9.7	70.9	5.9	3.2	9.5	12.4	44.3	11.6	6.2	-	23.3	8.8	19.6	59.4	32.4	22.3	15.2	4.0	11.9	13.2	5
Farsi	i]	Iranian	192	-	-	-		-		-	-	2.0	5.5	1.7	1.2	1.9	3.1	3.6	3.5	2.0	1.3	3.6	1.9	3.2	4.1	5.6	4.0	4.9	1.1	3.3	3.4	ш
Finni	ish 1	Uralic	132	-	-	-		-		-	-		11.1	2.2	1.4	4.2	3.8	7.1	6.2	3.0	1.4	8.1	4.1	6.8	7.1	9.9	13.8	6.2	1.7	4.4	5.2	1
Frenc	ch 1	Romance	1869	-		-		-			-		-	6.8	3.5	10.3	11.9	46.2	12.6	6.9	4.2	32.1	9.9	21.1	37.9	31.9	27.6	17.4	4.2	12.5	14.0	6
e Hebre	ew 5	Semitic	70			-					-				1.2	1.9	2.8	4.0	5.3	2.5	1.1	4.2	2.0	3.6	4.3	6.4	5.1	4.4	1.2	3.6	3.6	Ш
Hindi	i 1	Indo-	48								-					1.3	1.9	2.3	2.7	1.6	0.9	2.4	1.4	2.1	2.6	3.4	3.0	3.2	0.8	1.9	2.4	ш
		Arvan																														1
Hung	garian 1	Uralic	148												-		3.2	7.0	5.2	2.6	1.3	7.1	3.0	7.1	6.8	9.6	7.4	5.6	1.7	3.7	4.6	Ш
Indor	nesian 1	Malayo-	366												-			7.4	5.9	3.5	4.4	7.6	3.7	6.0	9.1	9.9	8.6	8.1	1.7	7.9	6.3	Ш
	1	Polynesian																														1
Italia	in 1	Romance	686	-	-	-	-	-	-	-	-	-	-	-	-	-		-	8.9	4.7	2.5	16.6	6.1	14.7	25.4	20.5	16.0	10.5	2.8	8.0	8.6	H3
Japar	nese .	Iaponic	2944	-		-		-		-	-				-	-	-	-	-	-	3.3	8.9	5.1	7.7	9.1	11.6	11.3	12.1	2.8	6.5	13.5	II:
Korea	an I	Koreanic	778	-		-		-		-	-		-		-	-	-	-			1.9	4.8	2.6	4.0	4.9	6.0	7.1	8.4	1.4	5.2	6.3	lli
s Mala	v I	Malavo-	25	-		-		-		-	-		-		-	-	-	-				2.6	1.3	2.3	2.8	3.7	3.6	3.4	0.8	3.2	2.8	Ш
	. 1	Polynesian																														1
Dutch	h (Germanic	510	-		-		-		-	-		-		-	-	-				-	-	7.8	12.9	15.5	17.7	20.8	11.0	2.7	7.2	8.4	13
Norw	vegian (Germanic	109			-		-			-				-	-	-				-			5.5	6.4	8.1	13.8	5.2	1.4	3.9	4.3	lb
Polish	h !	Slavic	505			-					-										-				13.5	22.9	13.8	9.1	3.4	6.5	7.1	2
Portu	iguese l	Romance	729								-														-	20.9	15.7	11.0	3.0	8.8	9.5	13
Russi		Slavic	3047								-																18.9	15.3	31.2	10.4	13.0	114
Swed	lish (Germanic	1200	-	-	-		-		-	-				-	-	-	-		-	-		-	-	-					10.6		
Turki	ish '	Turkic	1382	-	-	-		-		-	-			-	-	-	-	-		-	-		-	-	-				2.5	10.4	10.0	112
Ukrai	inian S	Slavic	110	-	-	-		-		-	-				-		-	-		-	-		-		-				-	0.2	2.2	
Vietn	amese '	Vietic	1172	-	-	-		-		-	-				-		-	-		-	-		-					-	-	-	9.1	
Chine	ese (Chinese	2512																											- 2	_	1/2

Table 1: CCMatrix: size of mined sentences (in millions) for each language pair.

Hindi with Chinese, Japanese, Korean, Indonesian: ≈2M

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingu Represent.

Documen

Local

Alignmen

Global Alignment WikiMatrix

WMT/TED

Bitext Filtering

Example Parallel Sentences

	国内レベルで進捗状況を監視するためには、良質かつアク
	セス可能な適時のデータ収集や、地域的なフォローアップ
,	と検証が必要となります
Japanese	
	(Monitoring progress at the national level requires quality, accessible and timely data collection and regional follow-up and verification.)
	Для мероприятий по отслеживанию прогресса на
	национальном уровне необходимо обеспечить сбор
	качественных, доступных и актуальных данных, а также
	проведение последующей деятельности и обзора на
Russian	региональном уровне.
	(For activities to track progress at the national level, it is
	necessary to ensure the collection of quality, accessible and
	relevant data, as well as follow-up and review at the regional
	level.)

A. El-Kishky, P. Koehn, H. Schwenk

CCMatrix

Example Parallel Sentence

Malay	Tahun ketiga pengajian biasanya dibelanjakan ke luar negara di institusi rakan kongsi di Timur Tengah atau Afrika Utara.
Malay	(The third year of study is usually spent abroad at partner institutions in the Middle East or North Africa.)
	研究的第三年通常是在中东或北非伙伴机构在国外度过。
Chinese	(The third year of the study is usually spent abroad in partner institutions in the Middle East or North Africa.)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WFB Crawlin

Multilingua Represent.

Docume

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Example Parallel Sentence

ذهب الحراس إلى الأبواء الملوط الكبيرة وهيلين وجاك نزل إلى السطيلات للجعل لأجل اثنين من المخبول.

Arabic

(The guards went to the large oak doors, Helen and Jack came down to stables to make for two horses.)

השומרים חזרו אל דלתות עץ האלון הגדולות והלנה וג'ק ירדו לאורוות להכין שני סוסים.

Hebrew

(The guards returned to the large oak doors and Helena and Jack went down to the stables to make two horses.)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Documer

Local

Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Example Parallel Sentence

	Tarkista aina väliin, että olet oikealla tiellä.
Finish	
	(Always check in between that you are on the right track.)
	எப்போதும் உறுதிப்படுத்திக் கொள்ளுங்கள் நீங்கள் சரியான
Tamil	வழியில் செல்வீர்கள்.
	(Always make sure you go the right way.)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Multilingua

LASER Evaluation

Documen Retrieval

Local Alignmen

Global Alignmen

CCMatrix

Bitext Filtering

11-way Parallel Sentences

En	You should clean the refrigerator once a month.	Visiting a sick friend.
Ar	وأخيرا تذكري أنه يجب عليكي تنظيف الثلاجة مرة واحدة في الشهر	زرت صديقا مريضا
De	Den Kühlschrank sollten Sie einmal im Monat saubermachen.	Ein Besuch in einem kranken Freund
Fr	Il est recommandé de nettoyer le réfrigérateur une fois par mois.	visite à un ami malade.
Id	Sebulan sekali kulkas harus dibersihkan.	Kunjungi teman yang sakit
Ja	1ヶ月に1回くらいは冷蔵庫の蔵ざらえをしなきゃ。	病の友達を訪ねる
Ko	한 달에 한 번 정도는 냉장고 청소를 해주는 게 좋다.	아픈 친구를 보는 심정으로
Ru	Холодильник следует размораживать раз в месяц.	Посещение больного друга.
Tr	Buzdolabını boşaltarak ayda bir kez temizleyin.	Hasta bir dostu ziyaret etmek.
Vi	Vì vậy, mỗi tháng bạn nên vệ sinh tủ lạnh một lần.	Thăm người bạn THÂN bệnh
Zh	如果有必要,你可以一个月清理一次冰箱。	探望一个生病的朋友。

En	When we breathe quickly we also build up oxygen in our blood.
Ar	.عندما نتنفس بسرعة نقوم ببناء الأكسجين في دمائنا
De	Wenn wir schnell atmen, bauen wir auch Sauerstoff in unserem Blut auf.
Fr	Lorsque nous respirons rapidement, nous créons également de l'oxygène dans notre sang.
Id	Ketika kita bernapas dengan cepat, kita juga membangun oksigen dalam darah kita.
Ja	私たちが素早く呼吸すると、血液中に酸素も蓄積します。
Ko	우리가 빨리 숨을 쉬면 우리도 피 속에 산소를 축적합니다.
Ru	Когда мы дышим быстро, мы также накапливаем кислород в нашей крови.
Tr	Khi chúng ta thở nhanh, chúng ta cũng tích tụ oxy trong máu.
Vi	Çabucak nefes aldığımızda, kanımızda da oksijen biriktiririz.
Zh	当我们快速呼吸时,我们的血液中也会积聚氧气。

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Evaluation

Documen Retrieval

Local Alignmen

Alignmer

Alignmen

CCMatrix

Bitext Filtering

11-way Parallel Sentences

En	With the growing importance of world trade and the global community, business executives and legal professionals are expected to look beyond national jurisdictions and understand issues of international law and international commercial law.
Ar	.مع توايد أهمية التجزة العالمية والمجتمع العالمي، ومن المتوقع أن تنظر إلى أبعد السلطات القضائية الوطنية وفهم قضايا القانون الأوروبي والدولي المستشارين القانونيين
De	Da Handel und Unternehmen immer globaler werden, wird erwartet, dass Rechtsberater über nationale Zuständigkeiten hinausblicken und Fragen des europäischen und internationalen Rechts verstehen.
Fr	Avec l'importance croissante du commerce mondial et la communauté mondiale, consultants juridiques devraient regarder au-delà des juridictions nationales et de comprendre les questions de droit européen et international.
Id	Dengan semakin pentingnya perdagangan dunia dan masyarakat global, konsultan hukum diharapkan untuk melihat melampaui yurisdiksi nasional dan memahami masalah hukum Eropa dan internasional.
Ja	法律コンサルタントは、貿易とビジネスがますますグローバル化するにつれて、国の管轄権を超えて、欧州および国際法の問題を理解することが期待されています。
Ko	무역 및 비즈니스가 전 세계적으로 증가함에 따라 법률 컨설턴트는 국가 관할권을 넘어서서 유럽 및 국제법 문제를 이해할 것으로 예상됩니다.
Ru	С ростом важности мировой торгован и мирового сообщества, юридические консультанты, как ожидается, искать за пределами национальной юрисдикции и понимания вопросов европейского и международного права.
Tr	Ticaret ve iş dünyası gittikçe küreselleştikçe, hukuk müşavirlerinin ulusal yargıların ötesine geçmesi ve Avrupa ve uluslararası hukuk konularını anlamaları beklenmektedir.
Vi	Với tầm quan trọng ngày càng tăng của thương mại thế giới và cộng đồng quốc tế, tư vấn pháp luật được dự kiến để nhìn xa hơn khu vực pháp lý quốc gia và hiểu các vấn đề của pháp luật châu Âu và quốc tế.
Zh	随着世界贸易和全球社会的重要性日益增加,法律顾问有望超越国家管辖和了解欧洲和国际法律的问题。

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

Represer

Documer

Local

Alignmer

Global
Alignment
WikiMatrix
CCMatrix
WMT/TED

Bitext Filtering

Evaluating CCMatrix

WMT'19

- De-facto standard for NMT progress, strong competition
- Train NMT systems on mined data only, no human bitexts

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Represent LASER

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Evaluating CCMatrix

WMT'19

- De-facto standard for NMT progress, strong competition
- Train NMT systems on mined data only, no human bitexts
- Newstest 2018:

Cross-lingual Mining A. El-Kishky,

P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Represent LASER Evaluation

Documer Retrieval

Local Alignmer

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Evaluating CCMatrix

WMT'19

- De-facto standard for NMT progress, strong competition
- Train NMT systems on mined data only, no human bitexts
- Newstest 2018:

We outperform all best single systems, +3.8 BLEU en-de

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingu Represent LASER Evaluation

Documer Retrieval

Local Alignmer

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Evaluating CCMatrix

WMT'19

- De-facto standard for NMT progress, strong competition
- Train NMT systems on mined data only, no human bitexts
- Newstest 2019:

Cross-lingual Mining A. El-Kishky.

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Represent

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Evaluating CCMatrix

WMT'19

- De-facto standard for NMT progress, strong competition
- Train NMT systems on mined data only, no human bitexts
- Newstest 2019:

en-de/de-fr: on-pair with eval system (BT, sys.comb)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawli

LASER

Documer

Retrieval

Alignmen

Global Alignmen WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

BLEU Scores on TED Test Sets

	ar	bg	cs	da	de	el	en	es	fa	fi	fr	he	hi	id	it	ja	ko	ms	nl	no	pl	pt	ru	sv	tr	uk	vi	zh
ar																											19.0	
bg	9.5	-																									21.8	
cs		21.9																									20.2	
da																											19.9	
de																											22.6	
el																											22.2	
																											29.5	
es																											24.7	
fa							25.1																				17.7	
fi																											16.1	
																											24.6	
he							33.4																				18.8	
hi																											15.3	
id																											23.7	
																											23.7	
ja																											12.0	
ko																											14.3	
ms																											23.8	
nl																											22.0	
no																											16.4	
pl																											17.7	
•																											25.1	
ru																											19.3	
																											24.9	
tr							25.0													14.7							19.2	
uk							23.1				17.7									12.9							14.5	
vi							25.8																				-	
zh	6.3	11.8	9.3	11.2	12.2	12.3	18.3	16.0	6.9	7.4	15.2	7.6	12.3	14.8	13.4	9.6	3.5	9.7	12.8	12.6	8.4	14.0	11.2	13.8	6.8	6.1	18.1	-

- Same NMT system for all language pairs (despite huge difference in bitext size)
- Best: BLEU 45.2 for Norwegian/English

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

Represent

Evaluation

Documer

Retrieval

Local Alignmer

Global Alignment WikiMatrix

WMT/TED

Bitext Filtering

CCMatrix: What's Next?

Scaling even further

- Scaling to 32 crawls, 100 languages
- $\Rightarrow \approx 10$ billion bitexts
 - Further improvements on WMT evaluation

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Represer LASER

Documen

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

WMT/TED
Bitext
Filtering

CCMatrix: What's Next?

Scaling even further

- Scaling to 32 crawls, 100 languages
- $\Rightarrow \approx 10$ billion bitexts
 - Further improvements on WMT evaluation

Sharing our results

Looking for means to share these CCMatrix bitexts

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingual Represent. LASER

Documen

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

parallel sentence filtering

A. El-Kishky, P. Koehn, H Schwenk

Bitext Filtering

Filtering for What?

- We have intuitive notions of useful training data
 - source and target match in meaning
 - both are well-formed text

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Craw

Multilingua Represent.

Documer

Retrieval Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Filtering for What?

- We have intuitive notions of useful training data
 - source and target match in meaning
 - both are well-formed text
- But: the right question is: does it help to build a better MT system
- We do not know how to answer that

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingua Represent.

_

Documen Retrieval

Local Alignmen

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Types of Noise

- Misaligned sentences
- Disfluent language (from MT, bad translations)
- Wrong language data (e.g., French in German–English corpus)
- Untranslated sentences
- Short segments (e.g., dictionaries)
- Mismatched domain

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawl

Represent LASER Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Mismatched Sentences

- Artificial created by randomly shuffling sentence order
- Added to existing parallel corpus in different amounts

5%	10%	20%	50%	100%
24.0	24.0	23.9	26.123.9	25.323.4
-0.0	-0.0	-0.1	-1.1 -0.1	-1.9 -0.6

Bigger impact on NMT (green, left) than SMT (blue, right)

Represent LASER Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Misordered Words

Artificial created by randomly shuffling words in each sentence

	5%	10%	20%	50%	100%
Source	24.0	23.6	23.9	26.6 23.6	25.5 23.7 -1.7 -0.3
Target	24.0	24.0	23.4	26.7 23.2 -0.5 -0.8	26.1 22.9

Similar impact on NMT than SMT, worse for source reshuffle

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Multilingua Represent.

LASER Evaluation

Documen Retrieval

Local Alignmer

Global

Alignment
WikiMatrix
CCMatrix
WMT/TED

Bitext Filtering

Untranslated Sentences

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Documen

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Copy Noise

- Harmfulness of copy noise also discovered by Ott, Auli, Granger, Ranzato (Facebook FAIR)
 - noticed link to beam search decoding
 - proposed remedies at inference time

Motivated overlap penalty as feature in data filtering

Introduction

WEB Crawlin

LASER

Documer

Retrieval

Alignmen

Global Alignmen WikiMatrix CCMatrix

Bitext Filtering Zipporah: A Fast and Scalable Data Cleaning System for Noisy Web-Crawled Parallel Corpora Represe

Documer

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Zipporah: Motivation & Objective

Motivation

- Often have large pool of noisy parallel data
- Need to perform fast data-selection to select a higher-quality subset of this data

Objective

- Design a function to rank the sentence pairs
- Select the best sentences under some size constraint

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingual Represent.

Documen

Local Alignmen

Global Alignment WikiMatrix

WMT/TED

Bitext Filtering

Zipporah: Features

Features

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Represent LASER

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Zipporah: Features

Features

• Adequacy: how good the translation is

French	English	adequacy
Je suis Hainan. Je suis Hainan.	I am Hainan. The weather is quite good today.	✓ X ✓

• Fluency: measures how good a sentence is

French	English	fluency
		XX
Je suis Hainan.	The weather is not quite good today.	/ /

Bitext Filtering

Zipporah: Adequacy Features

- Dictionary
 - P(I—Je) = 1
 - P(am—suis) = 3/4
 - P(follow—suis) = 1/4

Bitext Filtering

Zipporah: Adequacy Features

$$XEnt(p,q) = \sum_{i} p(i)log\frac{1}{q(j)}$$
 (10)

- A(en—fr) = 1/3 * log 3 + 1/3 * log 4 + 1/3 log 3 = 1.1945
- Also compute A(fr—en), given e2f dictionary
- For each sentence pair, define A(fr—en) + A(en—fr) as the adequacy feature
- Small when the translation is good (and literal)

Bitext Filtering

Zipporah: Fluency Features

$$F(s) = -\frac{\log(p_{LM}(s))}{\operatorname{lengh}(s)} \tag{11}$$

- Tarn ngram LMs for both languages
- For each sentence, we compute the F(s)
- For each sentence pair, define F(en) + F(fr) as the fluency feature
- Small when the sentence pair is fluent

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw

Represent LASER Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Zipporah: Scoring Function

- Goal: train a classifier to distiinguish between good and bad data
- Have good data (true parallel sentences)
- Need bad data. Preferably one that covers all types f bad data in the feature space
- Auto generate bad data from good data

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Documer

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Zipporah: Generating Bad Data

Starting from a good dev corpus

- Shuffly individual words within sentences (bad fluency)
- shuffle sentences (bad adequacy)
- Shuffle both (bad both)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WFB Crawlin

Multilingu Represent LASER Evaluation

Documen

Local Alignmen

Global Alignment WikiMatrix

Bitext Filtering

Zipporah: Bad Data vs Good Data

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Represent LASER

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Zipporah: Logistic Regression Classifier

- Task: To separate the good parallel data from (synthetic) bad parallel data
- Method: Logistic regression classifier with polynomials of features.
- Use the trained weights to compute a signed-distance to the decision boundary as score

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingua Represent.

Documer

Local

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Zipporah: Baselines

- Random selection
- QE Clean: Uses LM scores and word-alignment scores to perform data selection

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Represent

Docume

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Zipporah: Results

French-English: Ted Talks Dataset

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawling

Multilingua Represent.

Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Zipporah: Results

German-English: Newstest 11 Datasett

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingu Represent.

Documen

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

WMT Shared Task on Sentence Pair Filtering

WMT Shared Task on Sentence Pair Filtering

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Documen

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

WMT Shared Task on Sentence Pair Filtering

- Shared Task in 2018: High Resouce
 - German–English
 - 1 billion words of noisy parallel data
 - 100+ million words of clean parallel data

- Shared Task in 2019: Low Resource
 - Sinhala–English and Nepali–English
 - 50-60 million words of noisy parallel data
 - 3-4 million words of relatively clean parallel data

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingual

LASER

Documer

Retrieval

Local Alignmen

Alignmen

Alignment WikiMatrix CCMatrix

Bitext Filtering

Task Definition

Given

- very noise web crawled corpus
- sentence-aligned
- 50-60 billion English words

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora a
WEB Cra

Multilingual Represent.

Evaluation

Documen Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Task Definition

- Given
 - very noise web crawled corpus
 - sentence-aligned
 - 50-60 billion English words
- Submission: sentence-level quality score for each sentence pair

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

LASER Evaluation

Documen

Local Alignmer

Global

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Task Definition

- Given
 - very noise web crawled corpus
 - sentence-aligned
 - 50-60 billion English words
- Submission: sentence-level quality score for each sentence pair
- Evaluation
 - subselection of training corpus based on quality threshold
 - 1 million English words
 - 5 million English words
 - machine translation performance on undisclosed test sets
 - statistical machine translation (Moses)
 - neural machine translation (fairseq)

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingua Represent.

Documen

Local

Alignmen

Alignmen
WikiMatrix
CCMatrix

Bitext Filtering

Provided Resources

- Noisy parallel corpus
 - English sentence
 - foreign sentence
 - Hunalign score
- Training data

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Represent.

Documen

Local

Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Provided Resources

- Noisy parallel corpus
 - English sentence
 - foreign sentence
 - Hunalign score
- Training data
- Development pack
 - script to subsample corpora
 - Moses configuration file to build and test SMT system
 - Fairseq scripts to build and test NMT system
 - Development and test sets: Wikipedia translations

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Retrieval Retrieval

Local Alignmer

Global Alignmen WikiMatrix CCMatrix

Bitext Filtering

Clean Parallel Corpora

Nepali	Sentence	English
	Pairs	Words
Bible (two translations)	61,645	1,507,905
Global Voices	2,892	75,197
Penn Tree Bank	4,199	88,758
GNOME/KDE/Ubuntu	494,994	2,018,631
Nepali Dictionary	9,916	25,058

Sinhala	Sentence Pairs	English Words
Open Subtitles	601,164	3,594,769
GNOME/KDE/Ubuntu	45,617	150,513

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw

Represent.

Documer

Local

Global Alignmen WikiMatrix

CCMatrix WMT/TED

Bitext Filtering

Development and Test Sets

Evaluation on translations of Wikipedia content
 Two New Evaluation Datasets for Low-Resource
 Machine Translation: Nepali-English and Sinhala-English, Francisco Guzmán, Peng-Jen Chen, Myle Ott,
 Juan Pino, Guillaume Lample, Philipp Koehn, Vishrav
 Chaudhary, Marc'Aurelio Ranzato, arXiv:1902.01382

	Nepali		Sinhala		
	Sentence	English	Sentence	English	
	Pairs	Words	Pairs	Words	
dev	2,559	46,274	2,898	53,479	
dev test	2,835	51,458	2,766	50,985	
test	2,924	54,062	2,905	52,851	

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawlin

Represen LASER

Documen

Local Alignmen

Global Alignmen WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Participants

Acronym	Participant and System Description Citation
AFRL	Air Force Research Lab, USA
DiDi	DiDi, USA
Facebook	Facebook, USA
Helsinki	University of Helsinki, Finland
IITP	Indian Institute of Technology Patna, India
Webinterpret	WebInterpret Inc., USA
NRC	National Research Council, Canada
Stockholm	Stockholm University, Sweden
SUNY Buffalo	State University of New York, USA
Sciling	Sciling S.L., Spain
TALP-UPC	TALP, Universitat Politècnica de Catalunya, Spain

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

Multilingua Represent. LASER Evaluation

Document

Local Alignmen

Global

WikiMatrix CCMatrix

Bitext Filtering

methods

Represen

LASER

Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

AFRL

AFRI

- Uses coverage metric and quality metric.
- Coverage metric discourages addition of sentence pairs that have vocab already included in selected set
- Quality metric based on comparing machine translation of foreign sentences with English sent using METEOR MT metric

Introduction

Corpora and WEB Crawl

Represer LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

DiDi

- Dual cross-entropy based on monolingual language models to find pairs where each sentence has similar probability
- Cynical data selection that prefers to select representative subset
- Length-ratio and using character-set based language identification

Documen

Local

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Facebook

Facebook

- Ensemble
- Matching of cross-lingual sentence embeddings feature
- Dual cross entropy based on neural translation model scores
- Open source Ziporah and Bicleaner

Corpora and WEB Craw

Multilingua Represent.

Documen

Local

Alignment

Alignment
WikiMatrix
CCMatrix
WMT/TED

Bitext Filtering

NRC

- Filtering rules based on lang ID, length ratio, mismatched numbers, near duplicates
- Cross-lingual semantic evaluation metric (Yisi-2) that uses:
 - cross-lingual word embeddings
 - transformer model language model pretrainined based on XLM
 - optimized to distinguish between clean parallel data and synthetic noisy parallel data
- Reranking to increase coverage

Multilingua Represent.

Documen

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Sciling

Sciling

- Build translation models on clean data
- translate non-english to English in noisy data
- Similarity between machine translation and given English sentence
- Filtering rules for sent length, source-target overlap, and lang identification

Represen: LASER Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Stockholm

Stockholm

- Filtering (excessive numbers, too few words, sentence length, too long, etc)
- Mono-lingual word embeddings with FastText
- learn projection between emebdding spaces based on word alignment from parallel data
- Cosine similarity between English word to best matching projection of the word

Represent.

Documen

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

TALP-UPC

TALP-UPC

- Monolingual word embeddings with FastText
- Unsupervised word ealignment
- Word mover's distance between sentences
- Filtering rules (sent length, lang identification, num mismatches)

Represen

LASER

Evaluation

Document Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Helsinki

TALP-UPC

- Clean the clean parallel data using filter rules (sent length, sents with long words, XML, HTML, tags, wrong script)
- Obtain word alignments from this clean data
- Noisy parallel data is scored using word alignments
- Filtered with language models, lang identifiication, ratio of chars in correct script, punctuation, number matching, length mismatch

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Craw

Represent

Documen

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Webinterpret

Webinterpret

- Filtering rules based on language identification and sent length
- Coverage ranking incrementally adds sentence pairs to increase vocan and ngram coverage
- Adequacy ranking considers IBM Model 1 word translation scores

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

LASER Evaluation

Documer Retrieval

Local Alignmer

Global Alignmen WikiMatrix CCMatrix

Bitext Filtering

Different Subset Sizes

Neural Machine Translation, Sinhala

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Represen

Documer Retrieval

Local Alignmer

Global Alignmen WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Different Subset Sizes

Statistical Machine Translation, Sinhala

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multiling Represen LASER

Documer

Local

Global Alignmen WikiMatrix CCMatrix

Bitext Filtering

Different Subset Sizes

Neural Machine Translation, Nepali

Neural Machine Translation, Nepali

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingu Represent LASER

Documer

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Different Subset Sizes

Statistical Machine Translation, Nepali

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Multilingual Represent. LASER

Documen

Local Alignmen

Alignmen Global

Alignment
WikiMatrix
CCMatrix
WMT/TED

Bitext Filtering

Things Learned

Commonalities Learned from Submissions

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Crawlin

LASER

Documer

Local

Alignmen

Alignment WikiMatrix CCMatrix

Bitext Filtering

Pre-Filtering Rules

- Discard some data based on deterministic filtering rules
 - too short or too long
 - too many non-words
 - average token length is too short or too long
 - mismatched lengths
 - names, numbers, email addresses, URLs do not match between both sides
 - too similar, indicating simple copying
 - language identification

Multilingu Represent.

Documen

Local

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Embeddings

- Cross-lingual sentence embeddings
 - central to best performing system
 - LASER (Artexte and Schwenk, 2018)
- Word embeddings
 - monolingual spaces, mapped unsupervised or using dictionaries
 - bilingually trained word embeddings

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingu Represent.

Documer

Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Use of Machine Translation Models

- Quality scores on translations
 - translate foreign into English
 - score with METEOR, BLEU, Levenshtein distance
- Cross-entropy filtering
 - force-translate foreign into given English
 - consider translation model score

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawl

Represent

Documer

Retrieval

Alignmen

Global Alignment WikiMatrix CCMatrix

Bitext Filtering

Scoring Functions

- N-gram or neural language models on clean data
- Language models trained on the provided raw data as contrast
- Neural translation models
- Bag-of-words lexical translation probabilities
- Off-the-shelf tools: Zipporah, Bicleaner

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multiling Represent LASER Evaluation

Documer Retrieval

Local Alignmen

Global Alignment WikiMatrix CCMatrix WMT/TFD

Bitext Filtering

Learning Weights for Scoring Functions

- Large number of scoring functions \rightarrow averaging scores inadequate
- Learning weights to optimize MT quality computationally intractable
- Solution: train classifier to distinguish between good and bad sentence pairs
 - good sentence pairs from clean corpus
 - bad sentence pairs from provided data, or synthetic noise

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and WEB Crawli

Multilingu Represent LASER

Documer

Local

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Low-Resource Corpus Filtering using Multilingual Sentence Embeddings

Low-Resource Corpus Filtering using Multilingual Sentence Embeddings

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

Corpora and

Multilingua Represent.

Documen

Local Alignmen

Global Alignmen WikiMatrix CCMatrix

Bitext Filtering

Approach

- Leverage LASER multilingual embeddings as a tool to measure parallel sentence quality
- Margin-based scoring function to score sentence pairs

Bitext Filtering

Scoring Function

$$\frac{2k \cos(x,y)}{\sum_{y' \in NN_k(x)} \cos(x,y') + \sum_{x' \in NN_k(y)} \cos(x'y))}$$

where

- $NN_k(x)$ denotes the k nearest neighbors of x in the other language and analogously for $NN_k(y)$.
- · pool of sentences are deduplicated
- Global: pool of neighbors can be from global (all = clean + noisy data)
- Local: pool of neighbors can be from local (only from noisy data)

Dev Test Results

Method	ne-en		si-en	
	1M	5M	1M	5M
Zipporah				
base	5.03	2.09	4.86	4.53
+ LID	5.30	1.53	5.53	3.16
+ Overlap	5.35	1.34	5.18	3.14
Dual X-Ent.				
base	2.83	1.88	0.33	4.63^{+}
+ LID	2.19	0.82	6.42	3.68
+ Overlap	2.23	0.91	6.65	4.31
Bicleaner				
base	5.91	2.54^{+}	6.20	4.25
+ LID	5.88	2.09	6.36	3.95
+ Overlap	6.12^{+}	2.14	6.66^{+}	3.26
LASER				
local	7.37*	3.15	7.49*	5.01
global	6.98	2.98*	7.27	4.76
Ensemble				
ALL	6.17	2.53	7.64	5.12
LASER glob. + loc.	7.49	2.76	7.27	5.08*

WEB Craw

Multilingua Represent.

Evaluation

Retrieval

Local Alignmen

Global Alignment

WikiMatrix CCMatrix WMT/TED

Bitext Filtering

Bold=best scores, Italics*= runner up

Results

WEB Crawl

Represent LASER Evaluation

Documen

Local Alignmen

Global Alignment WikiMatrix

Bitext Filtering

Test Results

Method	ne-en		si-en	
	1M	5M	1M	5M
Main - Ensemble	6.8	2.8	6.4	4.0
Constr LASER <i>local</i>	6.9 5.5	2.5 3.4	6.2 5.0	3.8 4.4
Best (other)	3.3	3.4	3.0	4.4

A. El-Kishky, P. Koehn, H. Schwenk

Introduction

WEB Craw

Multilingua Represent.

Documer

Retrieval

Alignmen

Global Alignment

CCMatrix WMT/TED

Bitext Filtering

