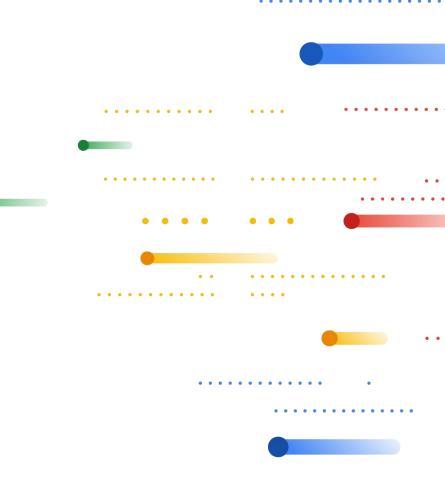
Google Research

A journey of MT research

Why it is crucial to <u>understand</u> evaluation

> Markus Freitag MT Marathon 2022



Talk

Model

APE at Scale

<u>Goal</u>: Improve naturalness of the MT output

<u>Outcome</u>: Automatic Metrics are biased towards literal, non-natural output Automatic Eval

BLEU might be Guilty/ WMT20 Metric Task Goal: Unbiased automatic metrics

<u>Outcome</u>: Human raters prefer easy-to-explain output Human Eval

Expert-based Human Eval Goal: Reliable, explainable human evaluation

Outcome: Reliable, explainable human evaluation Automatic Eval

WMT21 Metric Task

Goal: Re-evaluate with better ground truth

<u>Outcome</u>: Neural metrics correlate well with updated evaluation protocol

Model

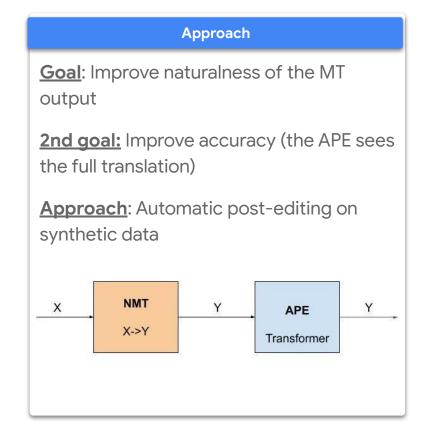
Natural Diet/ MBR-Decoding Goal: Find interesting novel translation approaches

<u>Outcome</u>: Improvements only visible with updated evaluation protocol

2019 2022 Briefly In Detail Briefly

Should we question the metric? #1 How we start questioning BLEU

APE at Scale and its Implications on MT Evaluation Biases [WMT19]



Outcome						
	BLEU	Human				
MT	34.3	4.64				
MT+APE	30.7	4.63				
Automatic Metric Crowd Scalar-Va But - Impression more natural, and Problems with eva	lue Huma ι : MT+APE ς accurate t	<u>n Eval</u> : neutral generates				

What's wrong with BLEU? A quick detour

What BLEU actually measures?

BLEU might be Guilty but References are not Innocent

Top matching 4-grams of Facebook with WMT reference:

- 1. , sagte er \rightarrow 28 times (, he said .)
- 2. ", sagte er \rightarrow 14 times (", he said)
- 3. fuegte hinzu , dass \rightarrow 8 times (added that)
- \rightarrow Easy way to generate translation output with high BLEU score:
 - 1. Match the ngrams responsible for the sentence structure [translating literally gives you the highest success rate never ever be creative or change the structure!]
- 2. Translate as simple as possible. Using frequent words have a high chance to find a counterpart in the reference translation.

 \rightarrow BT, LLMs, MBR Decoding, APE models are typical approaches that improve the output by being more creative and thus yield low BLEU scores.

BLEU might be Guilty but References are not Innocent

Markus Freitag, David Grangier, Isaac Caswell Google Research {freitag,grangier,icaswell}@google.com

Should we question the metric? #2

How we start questioning human evaluation

Translationese as a Language in "Multilingual" NMT + WMT20 Matric Task

Translationese as a Language [ACL 2020]

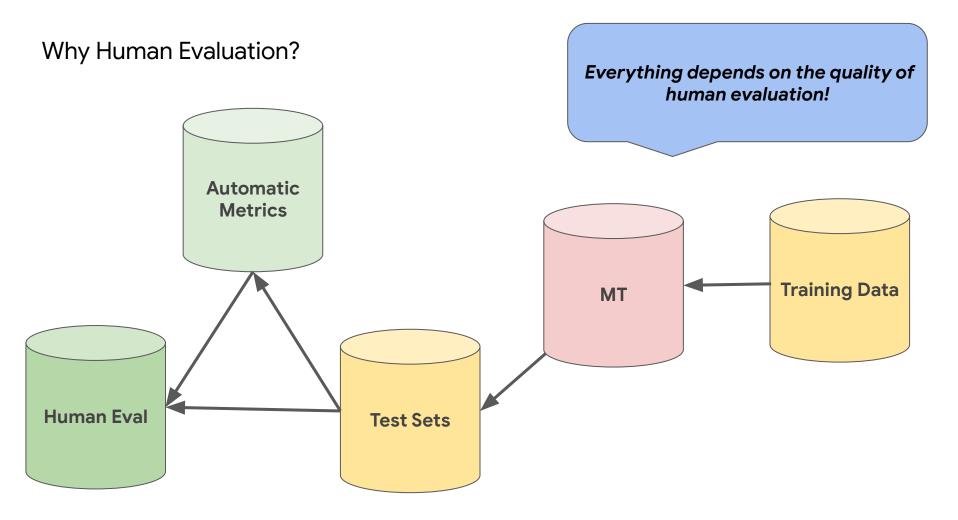
Goal: Steer Model towards training data with more natural target

<u>Approach</u>: Classify Training data and focus on training examples with natural target

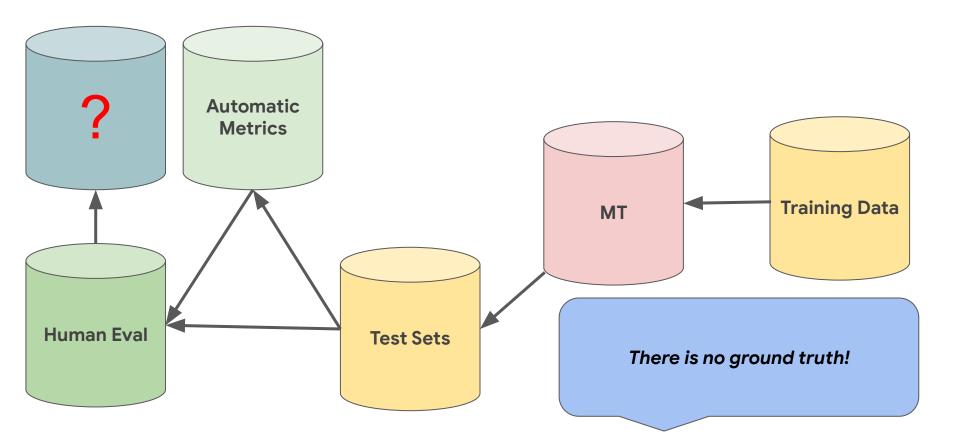
	BLEU	Human Eval
MT	44.6	4.67
NAT MT	41.5	4.72
Similar observ Eval?	ation as bei	fore. Broken

WMT20 Metric Task
Rank of human translations
EnDe 1, 4, 10
ZhEn 9
Zh->En Kendall Tau Correlation
COMET 0.28
BLEURT 0.07
Natural translations, in particular human translations are heavily penalized!

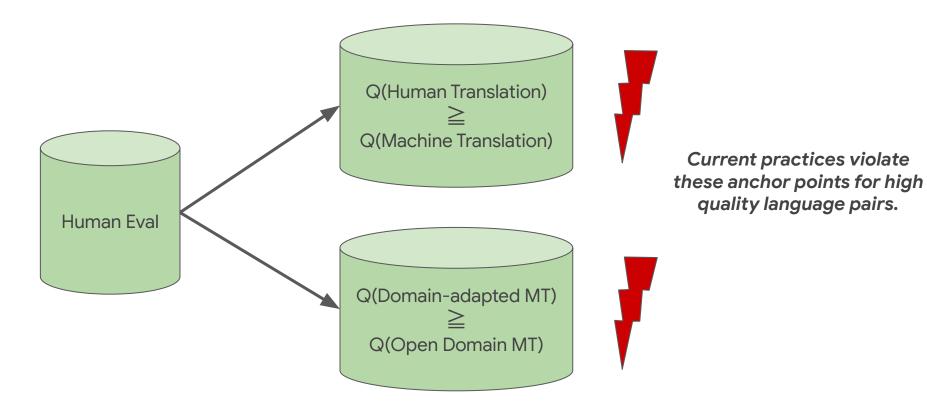
Human Evaluation



How to Measure the Quality of Human Evaluations



Evaluation Based on Anchor Points



Additional Motivation beyond Reliability of System-level scores

Feedback

- Current practices return a scalar value per segment/ system
 - How to interpret the score?
 - Is an improvement real or just rating noise?
- Better feedback:
 - Give details about error categories and severities
 - Is your method really doing what you intended?
 - Helps guide research!
 - Choose error weights for your task

Automatic Metrics

- Automatic metrics heavily rely on segment-level ratings
 - For training and evaluation
- Currently they are noisy and the general impression is that they are very noisy
 - No conclusive answer when comparing 2 metrics
 - Blocker for research in automatic metrics

Current Practices: Example WMT

WMT 2020

- Segment-level ratings with document context (SR+DC) on a 0-100 scale
- Out-of-English:
 - Source-based 0
 - Rater pool: researchers/translators 0
- Into-English:
 - Reference-based \bigcirc
 - Rater pool: crowd-workers 0
- Rater quality control
 - Remove bad ratings 0
 - Not all segments get a rating Ο
- Z-normalize ratings
 - Put raters on the same scale 0

I/12 documents, 4 items left in document	WMT20DocSrcDA #214:	Doc. #seattle_times.7674-2		English → Ge	man (deutsch)
low you see a document with 6 sentences in Eng cument context, answering the question:	lish and their corresponding candi	date translations in German (deuts	sch). Score each car	ndidate translation	in the
w accurately does the candidate text (right colum	n, in bold) convey the original sen	nantics of the source text (left colur	mn) in the document	t context?	
u may revisit already scored sentences and upda	te their scores at any time by click	ing at a source text.			
			Expand all items	Expand unannotated	Collaps all item
✓ Man gets prison after woman finds bullet in h	er skull	Der Mann wird gefangen, nach geschossen ist	ndem die Frau in ihr	em Schädel	•
 A Georgia man has been sentenced to 25 ye girlfriend, who didn't realize she survived a bullet hospital for treatment of headaches. 		Ein georgischer Mann wurde z weil er seinen Freund geschos dass er eine Kugel ins Gehirn Krankenhaus zur Behandlung	ssen hat, der nicht g überlebte, bis er in	gewusst hatte,	• •
 News outlets report 39-year-old Jerrontae Ca charges including being a felon in possession of year-old Nicole Gordon. 		Nachrichtenagenturen-Bericht am Donnerstag wegen Anklag Besitz einer Waffe beim Angrit Jahr 2017.	e verurteilt, darunte	er ein Felon im	•
← Not at all	6	1	Perfe	actly \rightarrow	

Okay, convinced? What should we do?

Goals of this study:

1. Adapt standards from the (human) translator world

2. Re-evaluate current popular approaches

3. Give recommendations on how to conduct reliable human evaluation

4. Re-evaluate quality of automatic metrics

5. Define current error types in machine translation output

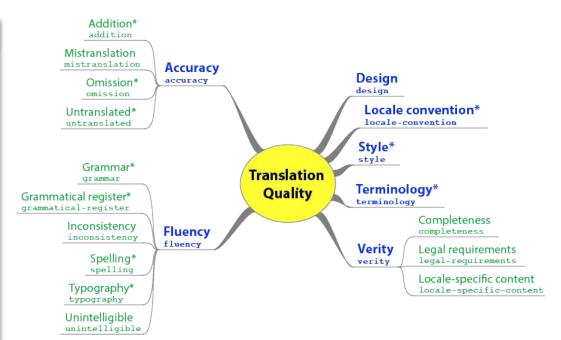
Model Automatic Metrics Human Eval

Multidimensional Quality Metrics (MQM)

Multidimensional Quality Metrics (MQM)

MQM

- Developed in the EU QTLaunchPad and QT21 projects (<u>www.qt21.eu</u>)
- Generic framework for assessing translation quality, adaptable to various evaluation needs
 standard error hierarchy
- Fairly widely adopted by LSPs to evaluate MT and HT. Not so widely adopted by MT researchers.
- To use:
 - Choose relevant errors
 - Choose severity levels
 - Specify weights on errors and severities



MQM Demo

Adapting MQM for Broad-Coverage MT (Translate)

Our MQM schema

- Standard top-level errors: Accuracy, Fluency, Terminology, Style, and Locale - dedicated sub-categories
- Special error category for completely garbled output: **Non-translation!**
- Three severities:
 - Major: real errors
 - Minor: imperfections
 - Neutral: rater vent
- All standard errors have equal weight except easily-fixable presentation errors

	Error weighting	
25	ım Error count per s -level error count is rors	C
Severity	Category	Weight
Major	Non-translation all other	25 5
Minor	Fluency/Punctuation all other	0.1 1
Neutral	all	0

Error Woighting

Why is Error Annotation Superior to Asking for a Scalar Value?

<u>Main idea:</u>

- When annotators assign scores or rank translations, their decisions are (or should be?) implicitly based on identifying errors and other imperfections.
- Grounding assessments in explicit error identification creates a "platinum standard" for human evaluation.
 - New, simpler/cheaper schemas can measure correlations to this platinum dataset

Advantages:

- No temptation to "wing it" on long or complex segments
 - Annotators have to "explain" their ratings
 - Fair evaluation of more creative translations!
- Access to annotator rationale, for standardizing ratings and improving systems
- Weight different errors differently depending on the task not on the rater
 - "Taking away the burden of scoring errors"
 - Errors can be differently important for different tasks

Rater Pool - Crowd vs. Prof. Translator

Crowd/Researcher (WMT)

- Pro:
 - Large rater pool
 - Fast evaluation
 - Impact of one rater is minimal

• Cons:

- Segment-level ratings noisy
- Needs rater quality control
- Biases:
 - Prefer the easy, direct translations

Professional Translator (MQM)

- Pro:
 - Native in the target language
 - Fluent in the source language
 - Are trained for the task
 - Reliable segment-level ratings
- Cons:
 - Small rater pool
 - One rater can have a large impact on the final result
 - More expensive
 - Slower turnaround time

Model Automatic Metrics Human Eval

Experiments

Experimental Setup - WMT 2020

WMT Submissions

- Top submission of WMT2020
- 6 for ZhEn, 5 for EnDe
- Very similar systems
- Domain-adapted systems
- The best translations we can generate for the news-domain

WHY

• Used for research

Online Systems

- 2 online systems:
- Online-A
- Online-B

WHY

- Different training data
- Not tuned on news-translations
- Worse quality on news domain -> Should be ranked last

Human Translations

- 2 standard human translations (Human-A, Human-B)
- 1 Paraphrased translation for EnDe (Human-P)
- Generated in-context

WHY

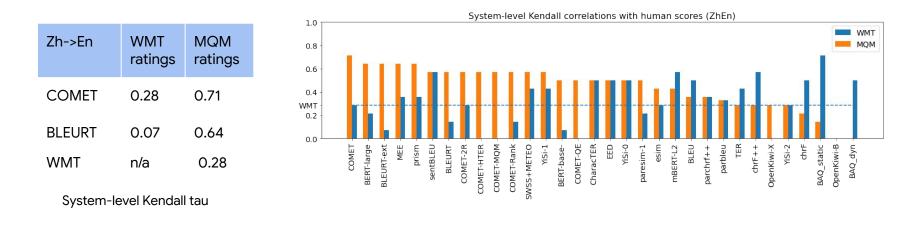
- The future of MT
- Should be ranked ahead of MT

English->German System-level Rankings

System	WMT†	MQM↓
Human-B	0.57(1)	0.75(1)
Human-A	0.45(4)	0.91(2)
Human-P	0.30(10)	1.41(3)
Tohoku-AIP-NTT	0.47(3)	2.02(4)
OPPO	0.50(2)	2.25(5)
eTranslation	0.31(9)	2.33(6)
Tencent_Translation	0.39(6)	2.35(7)
Huoshan_Translate	0.33(7)	2.45(8)
Online-B	0.42(5)	2.48(9)
Online-A	0.32(8)	2.99(10)

- MQM correctly ranks the anchor points
 - Human translations are ranked higher than MT
 - Human-P are paraphrased translations - very challenging to evaluate
- WMT has low correlation with MQM
 Devising the system ranking in
 - Revising the system ranking in WMT20

Impact on Automatic Evaluation: Metrics from WMT20 Task



- Correlation of metrics is very different when comparing to MQM (orange) vs WMT (blue).
- Dotted line is MQM/WMT (human/human) correlation.
- Most metrics outperform WMT human scores!

Error Category Distribution

Error Categories	Errors	Major	Human	All	MT	Toh	oku	OP	PO	eTra	ans
	(%)	(%)	MQM	MQM	vs H.						
Accuracy/Mistranslation	33.2	27.2	0.296	1.285	4.3	1.026	3.5	1.219	4.1	1.244	4.2
Style/Awkward	14.6	4.6	0.146	0.299	2.0	0.289	2.0	0.315	2.1	0.296	2.0
Fluency/Grammar	10.7	4.7	0.097	0.224	2.3	0.193	2.0	0.215	2.2	0.196	2.0
Accuracy/Omission	3.6	13.4	0.070	0.091	1.3	0.063	0.9	0.063	0.9	0.120	1.7
Accuracy/Addition	1.8	6.7	0.067	0.025	0.4	0.018	0.3	0.024	0.4	0.021	0.3
Terminology/Inappropriate	8.3	7.0	0.061	0.193	3.2	0.171	2.8	0.189	3.1	0.193	3.2
Fluency/Spelling	2.3	1.2	0.030	0.039	1.3	0.030	1.0	0.039	1.3	0.028	0.9
Accuracy/Untranslated text	3.1	14.9	0.024	0.090	3.8	0.082	3.5	0.066	2.8	0.098	4.2
Fluency/Punctuation	20.3	0.2	0.014	0.039	2.8	0.067	4.9	0.013	1.0	0.011	0.8
Other	0.5	5.2	0.005	0.010	1.9	0.009	1.6	0.010	1.9	0.007	1.2
Fluency/Register	0.6	5.0	0.005	0.014	3.0	0.009	1.9	0.015	3.2	0.015	3.3
Terminology/Inconsistent	0.3	0.0	0.004	0.005	1.2	0.004	0.9	0.005	1.2	0.005	1.2
Non-translation	0.2	100.0	0.003	0.083	28.3	0.041	14.0	0.065	22.0	0.094	32.0
Fluency/Inconsistency	0.1	1.3	0.003	0.002	0.7	0.001	0.3	0.001	0.3	0.003	1.0
Fluency/Character enc.	0.1	3.7	0.002	0.001	0.7	0.002	1.0	0.001	0.6	0.000	0.2
All accuracy	41.7	24.2	0.457	1.492	3.3	1.189	2.6	1.372	3.0	1.483	3.2
All fluency	34.2	1.8	0.150	0.320	2.1	0.303	2.0	0.284	1.9	0.253	1.7
All except acc. & fluenc	24.2	6.0	0.222	0.596	2.7	0.526	2.4	0.591	2.7	0.596	2.7
All categories	100.0	12.1	0.829	2.408	2.9	2.017	2.4	2.247	2.7	2.332	2.8

MQM gives feedback!

1. Tohoku: Fewer mistranslations More punctuation errors

2. eTrans: More Omission errors More Non-Translations!

Impact of Improved Human Evaluation Protocol

WMT21 Metric Task

Expert-based Human Evaluation

Changes:

- Jointly with Unbabel:
 - Expert-based human ratings of WMT submissions with MQM for 3 language pairs
- Addition of interesting metric systems that are challenging for both humans and machines
- Evaluation beyond the mean metric scores!

<u>Goal:</u>

• Establish standard + tooling for both human and automatic eval

WMT21 Results

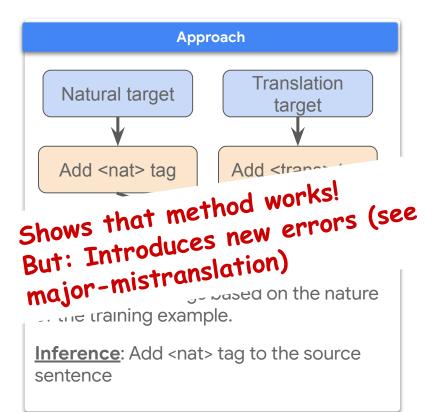
Results in line with the ones of WMT20

- MQM ranks human translations higher than MT and correlates much better with metrics
- WMT DA scores correlate poorly with MQM and metrics

Use MQM annotation for metric research

- We would like to encourage everyone working on metrics to use the MQM annotation as groundtruth.
- All data is available on <u>github</u>!

A Natural Diet: Towards Improving Naturalness of Machine Translation Output [ACL 22] An Example of Error-driven Research



Mistranslation	Major 44	Minor 79	Major 51	Minor 26		
Grammar	14	56	20	29		
•	٠	•	٠	٠		
Awkward 📢	14	143	7	95		
Total Errors	113	395	132	275		
Global Score						

The impact of better understanding

Minimum Bayes Risk Decoding with Neural Metrics High Quality Rather than High Model Probability

Motivation: MAP Decode for Translation Task

system	translations	log pplx
source	Der Ausbruch sei " mit Ansage" gekommen .	
beam (=4)	The outbreak came "with announcement".	-2.82
human-A	The outbreak occurred "predictably".	-18.10
human-B	The outbreak happened "on cue."	-18.74

- Beam search:
 - Generates target words that are frequent in the training data
 - Translates very literal without considering the sentence context too much
- Consequences
 - **Domain mismatch** (generate most likely word-to-word translation)
 - Can introduce **omission** errors (words "hard" to explain)
 - Sounds awkward and unnatural
- Human translation have very low pplx as humans use words and sentences structures that are rare in the training data!

Motivation: MAP Decode for Translation Task

system	translations	log pplx
source	Der Ausbruch sei " mit Ansage" gekommen .	
beam (=4)	The outbreak came "with announcement".	-2.82
model sample	The outbreak happened "with announcement".	-6.03
model sample	The outbreak occurred "with announcement".	-6.61
model sample	(Table of Contents)	-16.15
model sample	The outbreak took a "say-so".	-18.38
human-A	The outbreak occurred "predictably".	-18.10
human-B	The outbreak happened "on cue."	-18.74

- Potential solutions:
 - Training data distribution
 - Training objective / model
 - Inference strategy (in this talk)
 - Instead of the most likely translation (based on the model), we generate the most acceptable translation

Minimum Bayes Risk Decoding

Are we using the right **decoding criterion**?

• Beam search = Maximum LogP ≠ Maximum utility (BLEU, BLEURT, YISI, CHRF...)

MBR decoding

• Take *S*, i.e. N samples from model and find the utility "*centroid*"

$$h_{\text{MBR}} = rg\max_{h\in S} rac{1}{N} \sum_{h'\in S}^{N} u(h;h')$$

- Need:
 - \circ good model (probability distribution good estimate of $P_{
 m human}(y|x)$
 - good utility (BLEURT, YISI, CHRF, BLEU?)

Utility Functions

EnDe newstest2021	log pplx	BLEU	Chrf	YiSi	BLEURT
Human Translation	-38.0	31.5	60.9	84.7	37.1
Beam (=4)	-11.5	35.2	63.0	85.6	30.3

• BLEU, Chrf and YiSi

- Word/emb-based overlap metrics
- Aligned with log ppl
- Idea: explain every single token in the hypotheses with tokens in the reference

BLEURT

- Projects sentences into an embedding space
- The sentence structure and the actual token play a secondary role
- The semantic and the fluency are important

Experimental Setup

- Language Pairs:
 - De<->En
- Training data:
 - WMT2019 57M parallel sentences (paracrawl, nc-v15, europarl, commoncrawl)
 - Filtered via CDS (indomain = nc-v15)
- Test set:
 - newstest2019 (dev), newstest2021 (test)
- Model:
 - Transformer-big, 300k training steps
 - Model trained w/o label smoothing
- MBR Decoding:
 - Sampling strategy: ancestral sampling
 - Candidate Size: 1000
 - Utility function: sentenceBLEU, Chrf, YiSi, BLEURT

	BLEU	sBLEU	Chrf	YiSi	BLEURT
Human Translation (ref-D)	31.5	31.6	60.9	84.7	75.6
Beam (=4)	<u>34.3</u>	34.2	62.5	85.3	71.6

	BLEU	sBLEU	Chrf	YiSi	BLEURT
Human Translation (ref-D)	31.5	31.6	60.9	84.7	75.6
Beam (=4)	<u>34.3</u>	34.2	62.5	85.3	71.6
MBR-sBLEU-add_k(k=1)	34.7	<u>34.8</u>	62.5	85.4	70.5
MBR-CHRF	34.2	34.3	<u>64.1</u>	85.7	71.4
MBR-YiSi	34.2	34.2	62.8	<u>86.0</u>	71.6

	BLEU	sBLEU	Chrf	YiSi	BLEURT
Human Translation (ref-D)	31.5	31.6	60.9	84.7	75.6
Beam (=4)	<u>34.3</u>	34.2	62.5	85.3	71.6
MBR-sBLEU-add_k(k=1)	34.7	<u>34.8</u>	62.5	85.4	70.5
MBR-CHRF	34.2	34.3	<u>64.1</u>	85.7	71.4
MBR-YiSi	34.2	34.2	62.8	<u>86.0</u>	71.6
MBR-BLEURT	25.4*	26.0	57.7	83.1	<u>79.0</u>

*For more details of the biases of BLEU and why it is good to reduce BLEU scores, read: BLEU might be Guilty but References are not Innocent (EMNLP 2020)

	BLEU	sBLEU	Chrf	YiSi	BLEURT	log ppl
Human Translation (ref-D)	31.5	31.6	60.9	84.7	75.6	-38.0
Beam (=4)	<u>34.3</u>	34.2	62.5	85.3	71.6	-11.5
MBR-sBLEU-add_k(k=1)	34.7	<u>34.8</u>	62.5	85.4	70.5	-11.2
MBR-CHRF	34.2	34.3	<u>64.1</u>	85.7	71.4	-13.2
MBR-YiSi	34.2	34.2	62.8	<u>86.0</u>	71.6	-11.4
MBR-BLEURT	25.4	26.0	57.7	83.1	<u>79.0</u>	-24.4

	BLEU	sBLEU	Chrf	YiSi	BLEURT	log ppl	MQM human eval ↓
Human Translation (ref-D)	31.5	31.6	60.9	84.7	75.6	-38.0	0.338
Beam (=4)	<u>34.3</u>	34.2	62.5	85.3	71.6	-11.5	2.392
MBR-sBLEU-add_k(k=1)	34.7	<u>34.8</u>	62.5	85.4	70.5	-11.2	1.992
MBR-CHRF	34.2	34.3	<u>64.1</u>	85.7	71.4	-13.2	2.214
MBR-YiSi	34.2	34.2	62.8	<u>86.0</u>	71.6	-11.4	2.842
MBR-BLEURT	25.4	26.0	57.7	83.1	<u>79.0</u>	-24.4	1.562

- 1. MBR works: Each MBR-utility is best on their utility
- 2. Human evaluation
 - a. MBR-BLEU outperforms beam search decoding
 - b. MBR-BLEURT wins by a huge margin

MQM - Human Evaluation with Error Categories

Error Category	beam	MBR BLEURT
Accuracy/Omission	18	7
Terminology/Inappropriate for context	151	89
Style/Awkward	66	46
Accuracy/Mistranslation	70	58

Number of major errors

Improvements:

- 1. Beam Search Problem:
 - Length of translations
 - Example: omission
- 2. Beam Search Problem:
 - Autoregressive decoding
 - Example: inappropriate for context
- 3. Beam Search Problem:
 - Generate most probably tokens
 - Example 1: Style/ Awkward
 - Example 2: Mistranslation

Example Translations

System	translations	log pplx
source	Der Ausbruch sei " mit Ansage" gekommen .	
beam (=4)	The outbreak came "with announcement".	-2.82
MBR-sBLEU	The outbreak came "with announcement".	-2.82
MBR-Chrf	The outbreak came "with announcement".	-2.82
MBR-YiSi	The outbreak came "with announcement".	-2.82
MBR-BLEURT	The outbreak occurred "as announced".	-11.21
human-A	The outbreak occurred "predictably".	-18.10
human-B	The outbreak happened "on cue."	-18.74

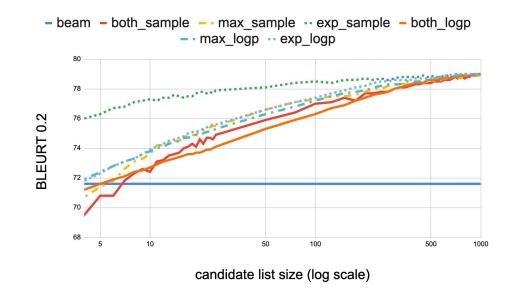
- MBR with sBLEU, chrf, or YiSi generate the same translation as beam search decoding
- MBR-BLEURT generates a better, more natural translation

No Beam Search Curse



- Quality improves when scaling the number of candidates
- Overcoming typical problems with beam search decoding

Pruning



- Randomly sampling on the expectation side is promising
- Caveat: mean BLEURT scores hide a lot of information

MBR Generates Different Translations

			Be	am]	MBR			Hui	man
		FB	O-W	UEdin	Ours	BLEU	CHRF	YISI	BL.1	BL.2	Ref-C	Ref-D
	Facebook		59.5	67.6	56.9	55.6	54.0	54.1	43.3	35.0	42.0	38.4
Beam	Online-W	59.4		56.4	53.9	52.9	52.8	51.8	42.6	34.7	41.3	40.4
Dealii	UEdin	67.6	56.5		62.1	59.5	57.4	57.8	43.7	35.4	38.0	35.7
	Ours	57.0	54.0	62.2		77.0	69.8	71.9	50.6	39.8	34.3	33.9
	BLEU	55.6	53.0	59.6	77.0		73.5	76.8	50.7	40.0	34.7	33.9
	Chrf	53.9	52.8	57.4	69.7	73.4		72.1	50.6	40.0	34.2	33.1
MBR	YISI	54.2	51.9	57.9	71.8	76.7	72.2		50.4	39.5	34.2	33.7
MDK	BL.1	43.3	42.6	43.7	50.5	50.6	50.6	50.3		50.7	29.2	28.7
	BL.2	35.0	34.7	35.3	39.8	39.9	40.0	39.5	50.7		25.4	24.6
Human	Ref-C	42.0	41.4	38.0	34.3	34.6	34.3	34.1	29.2	25.5		31.4
Human	Ref-D	38.5	40.4	35.7	33.9	33.9	33.2	33.7	28.7	24.6	31.5	

- MBR-BLEURT translations are quite <u>different</u> compared to beam search and MBR with overlap metrics
- Similarly different like 2 different human evaluation

Conclusions

- 1. MBR decoding with a neural metric like BLEURT significantly outperforms beam search decoding
- 2. MBR decoding with BLEU outperforms beam search decoding
- 3. MBR-BLEURT overcomes many problems of beam search decoding:
 - Omissions errors
 - Mistranslation
 - Awkward style
 - "Beam search curse"
- 4. MBR-BLEURT generates translations with much lower model probabilities
 - More similar to the style of human translations
- 5. Many more experiments in our paper:
 - More language pairs
 - Impact of different NMT models
 - Pruning strategies

0

...

Findings & Recommendations

Findings & Recommendations for High-quality Translations

1. Crowd-worker human evaluation has low correlation with MQM

- a. Unable to distinguish MT from human translation
- b. Difference in ranking of WMT submissions
- c. Bad ranking of online systems
- d. Same finding for WMT21 (check out Sec 8.3 of the Metric Task paper)

2. Stop using crowd-worker for human evals

- a. Unreliable, biased
- b. We have experiments comparing different rater pools based on the same human eval in the paper

3. Use MQM

- a. Reliable evaluation also for closer systems
- b. Error Annotation will help to understand the difference between 2 systems
- c. Error annotations should guide MT research
- d. Flexible error weighting schema
- 4. Higher correlation of automatic metrics with MQM
 - a. WMT human eval correlation with MQM lower than most of the metrics
 - b. MQM annotations are extremely helpful to improve and evaluate automatic metrics
 - i. WMT21 and WMT22 Metric Task are using them
- 5. All data is available on github:
 - a. Annotations: https://github.com/google/wmt-mqm-human-evaluation
 - b. MQM viewer: <u>https://github.com/google-research/google-research/tree/master/mqm_viewer</u>

Future Research Directions

Human Evaluation:

- 1. Establish MQM as a standard for human evaluation
 - a. Make MQM and the annotators accessible to everyone
- 2. **Improve Inter-annotator agreement** of raters so that we can compare MQM evaluations from different rater pools
- 3. Invent new human evaluation methodologies that have high correlation with MQM, but cheaper
 - a. Is it possible to do this with crowd workers?
- 4. Use MQM in other NLP fields
 - a. We expect similar findings

Automatic Evaluation:

- 5. Develop trained metrics that can predict error spans and error categories
 - a. Help understand errors from systems
 - b. Make MQM more accessible to everyone

MT modelling research:

- 6. Develop new interesting approaches
 - a. E.g. Paragraph-level translations
- 7. Re-visit existing approaches that were under-evaluated before?
 - a. Pre-training/ LM-augmented NMT

References

For papers discussed in this talk

- 1. APE at scale and its implications on MT evaluation biases M Freitag, I Caswell, S Roy [WMT 19]
- 2. Translationese as a Language in" Multilingual" NMT P Riley, I Caswell, M Freitag, D Grangier [ACL 19]
- 3. BLEU might be guilty but references are not innocent M Freitag, D Grangier, I Caswell [EMNLP 20]
- 4. Results of the WMT20 metrics shared task N Mathur, J Wei, M Freitag, Q Ma, O Bojar [WMT 20]
- 5. Experts, errors, and context: A large-scale study of human evaluation for machine translation M Freitag, G Foster, D Grangier, V Ratnakar, Q Tan, W Macherey [TACL 21]
- 6. Results of the wmt21 metrics shared task: Evaluating metrics with expert-based human evaluations on ted and news domain M Freitag, R Rei, N Mathur, C Lo, C Stewart, G Foster, A Lavie, O Bojar [WMT 21]
- 7. Minimum Bayes Risk Decoding with Neural Metrics of Translation Quality M Freitag, D Grangier, Q Tan, B Liang [TACL 22]
- 8. A Natural Diet: Towards Improving Naturalness of Machine Translation Output M Freitag, D Vilar, D Grangier, C Cherry, G Foster [ACL 22]

