
KenLM - Fun with Language Models

Kenneth Heafield
Junfei Guo
Marcin Junczys-Dowmunt
Dmitry Khristich

1



CMPH Language Model

2



Huge LM

Language models memorize strings in the training data:
Entries from 1.8 trillion tokens

Length Unique Strings

1 2,640,258,088
2 15,297,753,348
3 61,858,786,129
4 156,775,272,110
5 263,690,452,834

Store a model with 500,262,522,509 entries
Currently, online decoding requires 5.5 TB RAM (2.4 TB with
quantized Q-values)

3



Saving Memory - Minimal Perfect Hashing

CMPH - CHD algorithm

Minimal perfect hash function

Great: CMPH-Library, CHD algorithm: 2.06 bits per key

Bad: Assigns a value from 1 .. N for unseen keys

Good-enough solution: Fingerprinting using n bits from
random hash function e.g. MurmurHash

4



Saving Memory - Sharding

Hash the n-gram

MurmurHash - 64bit or 128bit random hash value, use last
m + n bits

Use m bits for sharding (m - command line option, there will
be 2m shards)

Store next n bits for fingerprinting

5



Saving Memory – Q-Values

Unigrams
Words log p log b
iran −3.9 −0.6
is −2.6 −1.5
one −3.4 −1.0
of −2.5 −1.1

Unigrams
Words log q
iran −4.5
is −4.1
one −4.4
of −3.6

Compress

Fewer values to remember =⇒ 11–26% reduction in RAM usage.

6



Projected size-reduction

Status: we programmed a little bit, but we now
know how to do it.

Bits FP Ratio Size (TB)

10 1:1024 1.25
12 1:4096 1.38
16 1:65536 1.63

Together with aggressive pruning might actually fit into RAM of
an affordable machine

7



Class-based Language Models
with Modified Kneser-Ney

Smoothing

8



Discount Injection for Class-based models

Modified Kneser-Ney Smoothing requires the presence of
n-grams with counts 1, 2, 3 to calculate discounts

Problem: unigrams (and lower order n-grams) in class-based
models occur hundreds of times, there may be no n-grams
with counts 1, 2, 3

Solution: Injecting fall-back discounts where this failed.

9



Results

Status: It’s alive!

Baseline:

18M sentences, English-Spanish, UN resolutions

Vanilla Moses, language model trained on target training data.

Word Cluster IDs calculated with word2vec, 200 clusters

System BLEU

Baseline 58.43
+WC-LM (IRSTLM, Witten Bell) 59.84
+WC-LM (KenLM, MKN)* 60.25

* Using weights that have been tuned with the IRSTLM model.

10



Tunable Discounts

11



Modified Kneser-Ney Discount

Chen and Goodman (1996) replace the only one
Kneser-Ney-discount by the discount function fixed on the
training data

However, still mismatch between training data and test data

Especially in the case: the training data domain is different
from test data domain

12



Proposed Methods

MITLM: Iterative Language Model Estimation by tuning
KN-discount parameters to minimize Development set
perplexity with Powell’s method

Polynomial Discount Method: POLKN class-based model with
polynomial discounting, optimize parameters on development
set

Replace the KN-discount D by the discounting function
E (c) = ρ · cγ

13



KenLM

Status: Research in progress...

Implement one of the discount models in KenLM

Tune the parameters on development set

14


