Moses version 2.1 Release Notes

Overview

The document is the release notes for the Moses SMT toolkit, version 2.1. It describes the
changes to toolkit since version 1.0 from January 2013. The aim during this period has been to
tackle more complicated issues to enable better expandability and reliability.

Specifically, the decoder has been refactored to create a more modular framework to enable
easier incorporation of new feature functions into Moses. This has necessitate major changes in
many other parts of the toolkit, including training and tuning.

As well as the refactored code, this release also incorporate a host of new features donated by
other developers. Transliteration modules, better error handling, small and fast language models,
and placeholders are just some of the new features that spring to mind.

We have also continue to expand the testing regime to maintain the reliability of the toolkit, while
enable more developers to contribute to the project.

We distribute Moses as:
1. source code,
2. binaries for Windows (32 and 64 bit), Mac OSX (Mavericks), and various flavours of
Linux (32 and 64 bit).
3. pre-installed in a Linux virtual machine, using the open source VirtualBox application.
4. Amazon cloud server image.

New Feature Function Framework

Feature functions are code that gives are score, or scores, to the partial or complete translation
to indicate whether the function believe the translation is good or bad. Translation models and
language models are examples of feature functions.

The framework for incorporating feature functions was changed to enable new feature functions
to be added easily.

Before the refactoring, adding new feature function was ad-hoc, requiring the developer to:

1. Add a new section to the moses.ini file which hold information specific to the feature
function. Add code in the Parameter class to read the new section.

2 Add code in StaticData class to instantiate and store the feature function, and delete it

1

on exit.

3. Add code to read the feature functions weights.

4. Create a class that implements the feature function.

5. Add code to the mert-moses.pl to tune the weights for the feature function.
This ad-hoc approach puts a burden on the developer and increases the likelihood of error if one
of the above steps is not correctly implemented.

After refactoring:

1. No new section in moses.ini file is required.

2. The feature function framework takes care of managing feature functions instances.
The developer just has to register the feature.

3. The framework reads the feature function weights.

4. Create a class that implements the feature function.

5. No changes to mert-moses.pl is required.

Also, before the refactoring, a core set of feature function were hard coded into the decoding
algorithm: distortion, word penalty, and unknown word penalty. After refactoring, no feature
functions are hardcoded.

As well as refactoring, the decoder source code was cleaned up and simplified where possible.

The documentation on the Moses website has been updated to reflect the refactored framework.

New Features

The following is a list of the major new features in the Moses toolkit since version 1.0, in roughly
chronological order.

1. Transliteration Phrase-Table by Nadir Durrani
By default, Moses copies unknown words from the input to the output ad-verbatim. This
is a good strategy when the languages are close, and their alphabets are the same.
However, for wildly different language pairs, the unknown word must be transliterated to
the target alphabet. This new feature integrated both the training and decoding into
Moses.
2. DALM integration by Jun-ya Norimatsu. Smaller, faster language model’.
3. CoveredReferenceFeature by Ales Tamchyna. Given a file with reference
translation, reward phrases for matching words from the reference

a. Constrained Decoding by Hieu Hoang. Restrict creation of hypothesis to
known output.
4. Picaro by Jason Riesa. Tool for visualisation of word alignment.

' http://www.aclweb.org/anthology/D13-1023

5. Neural LM by Lane Schwartz. Integration of Ashish Vaswani’'s LM into Moses.

6. Tokenization configuration files for Greek and Tamil by Dimitris Mavroeidis and

Arththika Paramanathan.

7. DIMwid by Robin Kurtz. Visualisation of SCFG decoding.

8. Placeholder by Achim Ruopp and Hieu Hoang. Better handling of names, numbers

and dates.

9. Backward LM by lane Schwartz.

10. Multimodel phrase-table by Rico Sennrich. A phrase table that merges the results
of multiple phrase-tables.

11. Operation Sequence Model by Nadir Durrani?.

12. Alternate weight setting by Philipp Koehn. Run multiple language pairs systems
in one decoder instance.

13. Lattice and confusion network phrase-based decoding with any phrase-tables
by Hieu Hoang. Any phrase-table implementation can now be used to decode lattices and
confusion networks. Previously, only Richard Zen'’s binary phrase-table could be used.

14. Ondisk phrase-table for phrase-based model by Hieu Hoang. The ondisk,
load-on-demand phrase-table can be used for both phrase-based models and hierarchical
models. Previously, the type of phrase-table implementation that could be used was dependent
on the model.

15. Clearer error messages by Hieu Hoang. Abort errors have been converted to
throw exceptions, with user-friendly messages where possible.

Operating-System Compatibility

We ensured Moses, IRSTLM, and MGIZA compiles on the following platforms:

i. Windows 8 (32-bit and 64-bit) with Cygwin 6.1

ii. Mac OSX 10.8 with MacPorts

iii. Ubuntu 12.04 and 12.10, 32 and 64-bit

iv. Debian 6.0, 32 and 64-bit

v. Fedora 17, 32 and 64-bit

vi. openSUSE 12.2, 32 and 64-bit
All the binary executables are made available for download for users who do not wish to compile
their own version. The URL for downloads is

http://www.statmt.org/moses/RELEASE-2.1/binaries/

Issues:

1. IRSTLM was not linked statically. The 64-bit version fails to execute on Debian 6.0. All other
platforms can run the downloaded executables without problem.

2. Mac OSX does not support static linking. Therefore, it is not known if the executables would
work on any other platforms, other than the one on which it was tested.

3. mgiza compilation failed on Mac OSX with gcc v4.2. It could only be successfully compiled

2 hitp://statmt.org/OSMOSES/osmoses.pdf

http://www.google.com/url?q=http%3A%2F%2Fwww.statmt.org%2Fmoses%2FRELEASE-1.0%2Fbinaries%2F&sa=D&sntz=1&usg=AFQjCNH3PZY_8MO-TUNKjyG4ME-JCI3y-A

with gcc v4.5, available via MacPorts.

Also, we ran a phrase-based training one language language pair end-to-end on Debian 32 and
64-bit. We make available the Virtual Machines for users to download and use for their own
experiments.

The Moses 2.1 release has also been incorporated by Amittai Axelrod into a virtual SMT research
& development platform for use on Amazon’s commercial cluster, the Elastic Compute Cloud
(EC2). This Amazon Machine Image (AMI id: ami-feec8dc) comes pre-installed with popular
research tools such as Moses version 2.1, Joshua v5.0, and Cdec. Initial registration is here:
https://portal.aws.amazon.com/gp/aws/application/edit/index.htmi?productCode=38C7C397

Virtual machines may be launched directly from here:
https://console.aws.amazon.com/ec2/v2/home?region=us-west-2#LaunchinstanceWizard:ami=ami-feec8dce

Performance

The Moses regression tests were ran to ensure that the output remained constant despite the
major refactoring changes. 22 new regression tests were created to improve the test coverage.

End-to-end testing of the Moses pipeline was run for 9 European language pairs, trained on the
Europarl corpus, to ensure that translation quality had been maintained. The tests were initiated
for Moses v 0.91 and have been expanded to test new features in version 2.1. There seems to
be no consistent degradation in the translation quality, besides random variation. The results are
shown below.

RELEASE 0.91(RELEASE 1.00 RELEASE-2.1

En-es| 1 pb 24.70 24.81 24.61
2 hiero 24.18 24.20 23.74

3 (1) + placeholders 24.80

4| (1) + CreateOnDiskPt 24.67

Es-en| 1 pb 22.87 23.01 22.97
2 hiero 22.32 22.37 22.20

3 (1) + placeholders 22.78

4((1) + CreateOnDiskPt 23.06

En-cs| 1 pb 10.98 11.04 11.16
2 hiero 10.92 10.93 10.90

3 (1) + placeholders 10.5

4| (1) + CreateOnDiskPt 11.12

5] (2) + Ken's incre algo 10.76

Cs-en| 1 pb 16.00 15.72 15.81
2 hiero 15.89 15.68 15.66

3 (1) + placeholders 15.65

4| (1) + CreateOnDiskPt 15.80

5| (2) + Ken's incre algo 15.43

https://www.google.com/url?q=https%3A%2F%2Fportal.aws.amazon.com%2Fgp%2Faws%2Fapplication%2Fedit%2Findex.html%3FproductCode%3D38C7C397&sa=D&sntz=1&usg=AFQjCNHp4J-Em1R2l5RGrS-nj4ZBhmYKXA
https://www.google.com/url?q=https%3A%2F%2Fconsole.aws.amazon.com%2Fec2%2Fv2%2Fhome%3Fregion%3Dus-west-2%23LaunchInstanceWizard%3Aami%3Dami-feec8dce&sa=D&sntz=1&usg=AFQjCNE1dtg1pxUwVAwwqYTOtjm-AidieQ

En-de| 1 pb 11.72 11.87 11.71
2 hiero 11.59 11.62 11.45

3| (1) + CreateOnDiskPt 11.64

4 (1) + POS de 11.55 11.67 11.75

5 (4) + POS en 11.64 11.75 11.69

De-en| 1 pb 15.71 15.75 15.80
2 hiero 15.74 15.53 15.56

3 (1) + POS de 15.71 15.84 15.70

4 (3) + POS en 15.84 15.93 15.94

5] (1) + CreateOnDiskPt 15.70

6| (3) + CreateOnDiskPt 15.76

7| (4) + CreateOnDiskPt 15.79

En-fr| 1 pb truecase 24.43 24.38 24 .45
2 pb recase 22.95 22.94 22.67

3 (2) + hiero 22.35 22.28 22.11

4 (2) + POS en 23.34 23.05 23.06

5 (2) + kbmira 22.81

6 (2) + pro 22.52

7 (5) + mira 21.59

8| (2) + CreateOnDiskPt 22.89

9 (2) + CompactPt 22.67

Fr-en| 1 pb truecase 24.09 24.06 23.87
2 pb recased 22.40 22.41 22.43

3 (2) + hiero 18.19 18.05 17.78

4 (2) + en POS 22.51 22.55 22.47

5 (2) + kbmira 22.46

6 (2) + pro 22.44

7| (2) + CreateOnDiskPt 22.50

8 (2) + CompactPt 22.58

The speed of the decoder was also measure before and after refactoring. The refactored
decoder is approximately 30% to 50% slower, when translating 50 sentences, with a cs-en
Europarl (filtered) model. This concurs with large scale experiments we have run at the
University of Edinburgh.

v1.0 v 2.1
Phrase-Based
Binary 20.132 29.334 -46%
Compact 19.985 26.422 -32%
On-Disk 26.831

Hierarchical
On-Disk 39.433 53.943 -37%

The slowdown may be due to the less efficient translation rule caching mechanism, or the
exception error handling, used in version 2.1.

End-to-End Testing and Pre-Made Models

A number of full scale experiments are run. This is the final test to ensure that the Moses pipeline
can run from beginning to end, uninterrupted, with ‘real-world’ datasets. The translation quality,
as measured by BLEU, is also noted, to ensure that there is no decrease in performance due to
any interaction between components in the pipeline.

The end-to-end tests produces a large number of tuned models. The models, as well as all
configuration and data files, are made available for download. This is useful as a template for
users setting up their own experimental environment, or for those who just want the models
without running the experiments.

The URL for downloading the pre-made model is
http://www.statmt.org/moses/RELEASE-2.1/models/

