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Abstract

Simultaneous translation involves translating
a sentence before the speaker’s utterance is
completed in order to realize real-time under-
standing in multiple languages. This task is
significantly more challenging than the gen-
eral full sentence translation because of the
shortage of input information during decoding.
To alleviate this shortage, we propose mul-
timodal simultaneous neural machine transla-
tion (MSNMT), which leverages visual infor-
mation as an additional modality. Our experi-
ments with the Multi30k dataset showed that
MSNMT significantly outperforms its text-
only counterpart in more timely translation sit-
uations with low latency. Furthermore, we
verified the importance of visual information
during decoding by performing an adversarial
evaluation of MSNMT, where we studied how
models behaved with incongruent input modal-
ity and analyzed the effect of different word
order between source and target languages.

1 Introduction

Simultaneous translation is a natural language pro-
cessing (NLP) task in which translation begins be-
fore receiving the whole source sentence. It is
widely used in international summits and confer-
ences where real-time comprehension is one of
the essential aspects. Simultaneous translation is
already a difficult task for human interpreters be-
cause the message must be understood and trans-
lated while the input sentence is still incomplete,
especially for language pairs with different word
orders (e.g. SVO-SOV) (Seeber, 2015). Conse-
quently, simultaneous translation is more challeng-
ing for machines. Previous works attempt to solve
this task by predicting the sentence-final verb (Gris-
som II et al., 2014), or predicting unseen syntactic
constituents (Oda et al., 2015). Given the difficulty
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of predicting future inputs based on existing lim-
ited inputs, Ma et al. (2019) proposed a simple
simultaneous neural machine translation (SNMT)
approach wait-k which generates the target sen-
tence concurrently with the source sentence, but
always k tokens behind, satisfying low latency re-
quirements.

However, previous approaches solve the given
task by solely using the text modality, which may
be insufficient to produce a reliable translation. Si-
multaneous interpreters often consider various ad-
ditional information sources such as visual clues
or acoustic data while translating (Seeber, 2015).
Therefore, we hypothesize that using supplemen-
tary information, such as visual clues, can also be
beneficial for simultaneous machine translation.

To this end, we propose Multimodal Simul-
taneous Neural Machine Translation (MSNMT)
that supplements the incomplete textual modal-
ity with visual information, in the form of an im-
age. It will predict still missing information to
improve translation quality during the decoding
process. Our approach can be applied in various
situations where visual information is related to
the content of speech such as presentations with
slides (e.g. TED Talks1) and news video broad-
casts2. Our experiments show that the proposed
MSNMT method achieves higher translation ac-
curacy than the SNMT model that does not use
images by leveraging image information. To the
best of our knowledge, we are the first to propose
the incorporation of visual information to solve the
problem of incomplete text information in SNMT.

The main contributions of our research are as
follows. We propose to combine multimodal and
simultaneous NMT, therefore, discovering cases
where such multimodal signals are beneficial for

1https://interactio.io/
2https://www.a.nhk-g.co.jp/bilingual-

english/broadcast/nhk/index.html
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the end-task. Our MSNMT approach brings sig-
nificant improvement in simultaneous translation
quality by enriching incomplete text input informa-
tion using visual clues. As a result of a thorough
analysis, we conclude that the proposed method is
able to predict tokens that have not appeared yet
for source-target language pairs with different word
order (e.g. English→Japanese). By providing an
adversarial evaluation, we showed that the models
indeed utilize visual information.

2 Related Work

For simultaneous translation, it is crucial to predict
the words that have not appeared yet. For example,
it is important to distinguish nouns in SVO-SOV
translation and verbs in SOV-SVO translation (Ma
et al., 2019). SNMT can be realized with two
types of policy: fixed and adaptive policies (Zheng
et al., 2019b). Adaptive policy decides whether
to wait for another source word or emit a target
word in one model. Previous models with adaptive
policies include explicit prediction of the sentence-
final verb (Grissom II et al., 2014; Matsubara et al.,
2000) and unseen syntactic constituents (Oda et al.,
2015). Most dynamic models with adaptive poli-
cies (Gu et al., 2017; Dalvi et al., 2018; Arivazha-
gan et al., 2019; Zheng et al., 2019a,c, 2020) have
the advantage of exploiting input text information
as effectively as possible due to the lack of such
information in the first place. Meanwhile, Ma et al.
(2019) proposed a simple wait-k method with
fixed policy, which generates the target sentence
only from the source sentence that is delayed by
k tokens. However, their model for simultaneous
translation relies only on the source sentence. In
this research, we concentrate on the wait-k ap-
proach with fixed policy, so that the amount of
input textual context can be controlled to analyze
better whether multimodality is effective in SNMT.

Multimodal NMT (MNMT) for full-sentence
machine translation has been developed to en-
rich text modality by using visual informa-
tion (Hitschler et al., 2016; Specia et al., 2016;
Elliott and Kádár, 2017). While the improvement
brought by visual features is moderate, their use-
fulness is proven by Caglayan et al. (2019). They
showed that MNMT models are able to capture
visual clues under limited textual context, where
source sentences are synthetically degraded by
color deprivation, entity masking, and progres-
sive masking. However, they use an artificial set-

ting where they deliberately deprive the models of
source-side textual context by masking. However,
our research has discovered an actual end-task and
has shown the effectiveness of using multimodal
data for it. Compared with the entity masking ex-
periments (Caglayan et al., 2019), where they use
a model exposed to only k words, our model starts
by waiting for the first k source words and then
generates each target word after receiving every
new source token, eventually seeing all input text.

In MNMT, visual features are incorporated
into standard machine translation in many ways.
Doubly-attentive models are used to capture the tex-
tual and visual context vectors independently and
then combine these context vectors in a concatena-
tion manner (Calixto et al., 2017) or hierarchical
manner (Libovický and Helcl, 2017). Some stud-
ies use visual features in a multitask learning sce-
nario (Elliott and Kádár, 2017; Zhou et al., 2018).
Also, recent work on MNMT has partly addressed
lexical ambiguity by using visual information (El-
liott et al., 2017; Lala and Specia, 2018; Gella et al.,
2019) showing that using textual context with vi-
sual features outperform unimodal models.

In our study, visual features are extracted using
image processing techniques and then integrated
into an SNMT model as additional information,
which is supposed to be useful to predict missing
words in a simultaneous translation scenario. To
the best of our knowledge, this is the first work that
incorporates external knowledge into an SNMT
model.

3 Multimodal Simultaneous Neural
Machine Translation Architecture

Our main goal is to investigate if image informa-
tion would bring improvement on SNMT. As a
result, two tasks could benefit from each other by
combining them.

In this section, we describe our MSNMT model,
which is composed by combining an SNMT frame-
work wait-k (Ma et al., 2019) and a multimodal
model (Libovický and Helcl, 2017). We base our
model on the RNN architecture, which is widely
used in MNMT research (Libovický and Helcl,
2017; Caglayan et al., 2017a; Elliott and Kádár,
2017; Zhou et al., 2018; Hirasawa et al., 2019).
The model takes a sentence and its correspond-
ing image as inputs. The decoder of the MSNMT
model outputs the target language sentence in a
simultaneous and multimodal manner by attaching
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attention not only to the source sentence but also
to the image related to the source sentence.3

3.1 Simultaneous Translation
We first briefly review standard NMT to set up
the notations. The encoder of standard NMT
model always takes the whole input sequence
X = (x1, ..., xn) of length n where each xi is a
word embedding and produces source hidden states
H = (h1, ..., hn). The decoder predicts the next
output token yt using H and previously generated
tokens, denoted Y<t = (y1, ..., yt−1). The final
output is calculated using the following equation:

p(Y|X) =

|Y|∏
t=1

p(yt|X, y<t) (1)

Different from standard neural translation, in
which each yi is predicted using the entire source
sentence X, the simultaneous translation requires
the model to translate concurrently with the grow-
ing source sentence. We incorporate the wait-k
approach (Ma et al., 2019) for our simultaneous
translation model. Instead of waiting for the whole
sentence before translating, this model waits for
only the first k tokens and starts to generate each
target tokens after taking every new source token
one by one. It stops taking new input tokens once
the whole input sentence is on board. For example,
if k = 3, the first target token is predicted using
the first 3 source tokens, and the second target to-
ken using the first 4 source tokens. The wait-k
decoding probability pwait-k is:

pwait-k(Y|X) =

|Y|∏
t=1

p(yt|X≤g(t), y<t) (2)

where g(t) is the wait-k policy function which
decides how much input text to read and translate,
X≤g(t) = (x1, ..., xg(t)) and g(t) is 0 ≤ t ≤ n.
g(t) is defined as follows:

g(t) = min{k + t− 1, n} (3)

When k + t − 1 is over source length n, g(t) is
fixed to n, which means the remaining target tokens
(including current step) are generated using the full
source sentence. For full sentence translation, g(t)
is constant g(t) = n.

3Our code is publicly available at: https://github.
com/toshohirasawa/mst. We fixed our code based on
the comments of Ozan Caglayan.

3.2 Multimodal Translation

We use a hierarchical attention combination tech-
nique (Libovický and Helcl, 2017) to incorporate
visual and textual features into an MNMT model.
This model calculates the independent context vec-
tors from the textual features htxt = (htxt1 , ..., htxtn )

and the visual features himg = (himg
1 , ..., himg

m ),
which are extracted by the textual encoder and
the image processing model, respectively. It then
combines the resulting two vectors using a second
attention mechanism, which helps to perform si-
multaneous translation taking into account visual
information.

Specifically, we compute the context vectors cfi
for each image (f = img) and text (f = txt) modal-
ity independently using the following equations:

efi,j = Ωf(si, h
f
j) (4)

αf
i,j =

exp(efi,j)∑|hf |
l=1 exp(efi,l)

(5)

cfi =

|hf |∑
j=1

αf
i,jh

f
j (6)

where Ωf is a feedforward network for each modal-
ity f; si is i-th decoder hidden state.

We project these image and text context vectors
into a common space and compute another distri-
bution over the projected context vectors and their
corresponding weighted average using the second
attention:

ẽfi = Ψ(si, c
f
i) (7)

βfi =
exp(ẽfi)∑

r∈{img,txt} exp(ẽri)
(8)

c̃i =
∑

r∈{img,txt}

βriW
rcri (9)

where Ψ is a feedforward network. Equation 8 cal-
culates the second attention to combine the image
and text vectors. W r is a weight matrix used to
compute the context vector c̃i calculated from im-
age and text features. The final hypothesis Y has
the probability:

pmnmt(Y|X,Z) =

|Y|∏
t=1

p(yt|X,Z, y<t) (10)

where Z represents input image features.

https://github.com/toshohirasawa/mst
https://github.com/toshohirasawa/mst
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3.3 Multimodal Simultaneous Neural
Machine Translation

In this subsection, we describe the structure of the
MSNMT model, which is a combination of the
models described in Sections 3.1 and 3.2. The
method for calculating the image context vector is
the same as for MNMT; however, the text context
vector (Equation 6) for the t-th step is calculated
as follows:

ĉtxti =

g(t)∑
j=1

αtxt
i,j h

txt
j (11)

Thus ĉtxti is calculated from the input text prefix
determined by wait-k policy function g(t). Then
we apply the second attention to ĉtxti and cimg

i in
order to calculate c̃i (Equation 9).

The decoding probability becomes as follows:

pmsnmt(Y|X,Z) =

|Y|∏
t=1

p(yt|X≤g(t),Z, y<t)

(12)

4 Experimental Setup

4.1 Dataset

We experiment with our model in four transla-
tion directions consisting of 5 languages: English
(En), German (De), French (Fr), Czech (Cs), and
Japanese (Ja). All language pairs include En on the
source side.

We used the train, development, and test sets
from the Multi30k (Elliott et al., 2016) dataset
published in the WMT16 Shared Task, which is
a benchmark dataset generally used in MNMT re-
search (Libovický and Helcl, 2017; Caglayan et al.,
2019; Elliott and Kádár, 2017; Zhou et al., 2018;
Hirasawa et al., 2019) for En→De, En→Fr and
En→Cs.

Nakayama et al. (2020) released F30kEnt-JP
dataset4 which contains Japanese translations of
first two original English captions for each image
of the Flickr30k Entities dataset (Plummer et al.,
2017). They follow the same annotation rules as the
Flickr30k Entities dataset using exactly the same
tags with entity types and IDs. We preprocessed
this data as follows: 1) The parallel En→Ja data
was created by taking alignment using correspond-
ing IDs assigned to each Japanese translation entity

4https://github.com/nlab-mpg/
Flickr30kEnt-JP

with the IDs of Flickr30k entities.5 2) The created
parallel data was aligned with its corresponding
images using text files named (image id).txt cor-
responding to each image in Flickr30k. 3) Finally,
the created multimodal data was split to train, dev,
and test following data splits of Multi30k using
the same Multi30k image IDs. Note that the En-
glish side of En→Ja parallel data extracted from
F30kEnt-JP and English side of Multi30k data are
thought to be somewhat comparable but not strictly
the same while their corresponding images are the
same.

Data split for all language pairs were as follows:
training set, 29,000 sentence pairs, development
set, 1,014 sentence pairs, and 1,000 sentence pairs
for the test set. This dataset’s average sentence
length is 12-13 tokens for En, De, Fr, Cs and 20
tokens for Ja.

We limit the vocabulary size of the source and
the target languages after concatenating them to
10,000 sub-words (Sennrich et al., 2016). All sen-
tences are preprocessed with lower-casing, tokeniz-
ing, and normalizing the punctuation using the
Moses script6. To tokenize Japanese sentences,
we used MeCab7 with the IPA dictionary.

Visual features are extracted using pre-trained
ResNet (He et al., 2016). Technically, we encode
all images in Multi30k with ResNet-50 and pick
out the hidden state in the pool5 layer as a 2,048-
dimension visual feature.

4.2 Systems

We compare the following models: 1. SNMT: We
use only text modality for training data as a base-
line for each wait-k model. 2. MSNMT: We
use image modality along with text modality for a
training data for each wait-k model.

To train the above models, we utilize attention
NMT (Bahdanau et al., 2015) with a 2-layer unidi-
rectional GRU encoder and a 2-layer conditional
GRU decoder. We use the open-source implementa-
tion of the nmtpytorch toolkit v3.0.0 (Caglayan
et al., 2017b). We first pre-train the MSNMT model
for each k until convergence using only text data
and use zeros for visual features. Then we con-
tinue training MSNMT on multimodal data for

5We used the second translations due to some empty trans-
lations of the first captions.

6We applied preprocessing using task1-tokenize.sh from
https://github.com/multi30k/dataset.

7http://taku910.github.io/mecab, version
0.996.

https://github.com/nlab-mpg/Flickr30kEnt-JP
https://github.com/nlab-mpg/Flickr30kEnt-JP
http://taku910.github.io/mecab
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wait-k
En→De En→Fr En→Cs En→Ja

S M S M S M S M

1 19.18 †19.90 31.23 †32.49 7.78 †9.07 21.95 †23.45
3 28.22 †28.75 43.85 43.99 18.91 †19.39 27.35 †27.74
5 30.38 †31.48 48.01 †48.40 23.35 23.50 31.71 31.72
7 31.72 32.14 50.14 50.16 25.65 25.83 33.70 33.93

Full 34.64 34.84 53.55 53.78 27.22 26.85 35.93 35.62

Table 1: BLEU scores of SNMT (S) and MSNMT (M) models for four translation directions on test set. Results
are the average of four runs. Bold indicates the best BLEU score for each wait-k for each translation direction.
“†” indicates statistical significance of the improvement over SNMT.

(a) En→De (b) En→Fr

(c) En→Cs (d) En→Ja

Figure 1: Average Lagging scores. Results are the average of four runs.

each k. We employ early-stopping: the training
was stopped when the BLEU score did not increase
on the development set for 10 epochs for MSNMT
pre-training, 5 epochs for MSNMT fine-tuning, and
15 epochs for SNMT training.

In order to keep our experiments as pure as pos-
sible, we will not use additional data or other types
of models. It will allow us to control the amount
of input textual context, so we can easily analyze
the relationship between the amount of textual and
visual information.

4.3 Hyperparameters

We use the same hyperparameters for SNMT and
MSNMT for a fair comparison as follows. All
models have word embeddings of 200 and recur-
rent layers of dimensionality 400 units with 2way

sharing of embeddings in the network. We used
Adam (Kingma and Ba, 2015) with a learning rate
of 0.0004. Decoders were initialized with zeros.
We used a minibatch size of 64 for training and 32
for fine-tuning. Rates of dropout applied on source
embeddings, source encoder states and pre-softmax
activations were 0.4, 0.5, and 0.5, respectively. We
set the max length of the input to 100. wait-k
experiments were conducted for 1, 3, 5, 7, and Full
settings. For MSNMT only hyperparameters, the
sampler type was set to approximate, and chan-
nels were set to 2048. The fusion type was set to
hierarchical mode.

4.4 Evaluation

We report BLEU scores calculated using Moses’
multi-bleu.perl, which is a widely used evalu-
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wait-k
En→De En→Fr En→Cs En→Ja

C I C I C I C I

1 †19.90 8.19 †32.49 18.00 †9.07 6.83 †23.45 17.57
3 †28.75 26.78 †43.99 42.31 †19.39 18.78 †27.74 24.51
5 31.48 31.08 48.40 48.19 †23.50 22.81 †31.72 28.57
7 †32.14 32.04 50.16 50.15 †25.83 25.09 †33.93 31.03

Full 34.84 34.40 †53.78 53.10 26.85 26.84 35.62 35.59

Table 2: Image Awareness results on the test set. BLEU scores of MSNMT Congruent (C) and Incongruent (I)
settings for four translation directions. Results are the average of four runs. Bold indicates the best BLEU score
for each wait-k for each translation direction. “†” indicates the statistical significance of the improvement over
Incongruent settings.

ation metric in MT, on our test sets for each
wait-k model.8 Statistical significance (p <
0.05) on the difference of BLEU scores was
tested by Moses’ bootstrap-hypothesis-difference-
significance.pl. “Full” means that the whole input
sentence is used as an input for the model to start
translating. All reported results are the average of
four runs using four different random seeds.

Additionaly, we use open-sourced Average Lag-
ging (AL) latency metric proposed by Ma et al.
(2019) to evaluate the latency for SNMT and
MSNMT systems.9 It calculates the degree of out
of sync time with the input, in terms of the number
of source tokens as follows:

ALg(X,Y) =
1

τg(|X|)

τg(|X|)∑
t=1

g(t)− t− 1

r
(13)

where r = |Y|/|X| is the target-to-source length
ratio and τg is the decoding step when source sen-
tence finishes:

τg(|X|) = min{t|g(t) = |X|} (14)

5 Results

Table 1 illustrates the BLEU scores of MSNMT
and SNMT models on the test set. MSNMT sys-
tems show significant improvements over SNMT
systems for all language pairs when input textual
information is limited. Note that the difference
of BLEU scores between MSNMT and SNMT be-
comes larger as the k gets smaller, especially when
the target language is distant from English in terms
of word order (e.g. Cs and Ja). On the other hand,
the availability of more tokens during the decod-
ing process (k ≥ 5) leads to the text information
becoming sufficient in some cases.

8Due to space constraints, we show results only for test
sets.

9https://github.com/SimulTrans-demo/
STACL

Figure 1 shows translation quality against AL for
four language directions. In all these figures, we
observe that, as k increases, the gap between BLEU
scores for MSNMT and SNMT decreases. We also
observe that AL scores are better for MSNMT as
k decreases. From these results, it can be seen
that in terms of latency, the smaller k is, the more
beneficial the visual clues become.

6 Analysis

In this section, we provide a thorough analysis
to further investigate the effect of visual data to
produce a simultaneous translation by (a) providing
adversarial evaluation; and (b) analyzing the impact
of different word order for En→Ja language pair.

6.1 Adversarial Evaluation

In order to determine whether MSNMT systems
are aware of the visual context (Elliott, 2018), we
perform the adversarial evaluation on the test set.
We present our system with correct visual data with
its source sentence (Congruent) as opposed to ran-
dom visual data as an input (Incongruent) (Elliott,
2018).Therefore, we reversed the order of 1,000
images of the test set, so there will be no overlap-
ping congruent visual data. Then we reconstruct
image features for those images to use as an input.

Results of image awareness experiments are
shown in Table 2. We can see the large differ-
ence in BLEU scores between MSNMT congruent
(C columns) and incongruent (I columns) settings
when k are small. This implies that our proposed
model utilizes images for translation by learning
to extract needed information from visual clues.
The interesting part is for a full translation, where
scores for the incongruent setting are very close to
those of the congruent setting. The reason is that
when textual information is enough, visual infor-
mation becomes not that relevant in some cases.

https://github.com/SimulTrans-demo/STACL
https://github.com/SimulTrans-demo/STACL
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6.2 How Source-Target Word Order Affects
Translation

In wait-k translations, for the En→Ja language
pair with different word orders (SVO vs. SOV),
some source tokens should be translated before
they are presented to the decoder for grammatical-
ity and fluency purposes. Hence, the model also
needs to handle such cases well apart from the
“usual” order. We hypothesized that MSNMT mod-
els, given additional visual information, are able
to translate such cases better than SNMT models.
Therefore, we investigated how many tokens were
correctly translated that are not given as input yet.

First, we quantitatively analyze how well we
can translate entities that are not presented from
the source yet but should exist in target sentences.
To align the source and target entities, we use the
entities’ annotation attached to both the source
and target sentences. Given that annotated enti-
ties have the same IDs and tags for both English
and Japanese, we can align, calculate, and extract
those entities from source and target sentences. If
the index of the first token of the aligned target en-
tity is not given as input at timestep k yet, we count
them for each k scenario as # total entities (Ta-
ble 4). For example, in Table 3 a wait-3 model
should start translating after a token “rappelling”
is presented to the model. And if an ID of the
entity of “海 (a body of water)” is in the target
sentences but not in the inputted part yet, we count
it as an entity that should be translated before be-
ing inputted to the model. Similarly, an entity of
“断崖 (cliff)” is already presented to the model at
timestep 5, so we do not count those entities. If
the same entity ID appears more than once in one
sentence, we exclude those entities due to the im-
possibility of alignments. Finally, for each model
during decoding, if those entities are included in
the model’s translation results with a perfect match
from pre-calculated # total entities, we consider
them as correctly translated.10

Table 4 demonstrates the results. k column is
to determine how many tokens a model waits be-
fore starting translating. Note that k=Full is not
included because all entities are given at the time
of translation. The reason that the total number of
entities that were not inputted yet decreases when
k increases (# total entities column) is that more
entities are already available for the model for trans-

10We can not create # total entities from decoded tokens
directly due to unavailability of entity annotations.

lation. wait-k columns show how many entities
were correctly translated by wait-k SNMT and
MSNMT models from # total entities for each k
scenario. Columns Full show upper-bounds of
how many entities can be correctly translated if
the models were trained with full sentences for en-
tities from each k. Comparing Full results to
wait-k for both SNMT and MSNMT shows that
it is hard to correctly translate entities when k is
small. Furthermore, comparing wait-k results of
SNMT to MSNMT, it can be seen that the smaller
value of k, the better MSNMT can handle different
source-target word order than SNMT.

(a) A person rappelling a
cliff.

(b) Eight men on motorcy-
cles.

Figure 2: Images presented in translation examples (Ta-
ble 5).

As an example, we sampled sentences and their
images from the En→Ja test set (Figure 2) to com-
pare the outputs of our systems. Table 5 lists their
translations generated by SNMT (S) and MSNMT
(M) models. In the first example, an SNMT model
with wait-3 could not predict “海 (sea, a body
of water)” which appears at the end of the source
sentence and generated an erroneous “岩 (rock)”
which is not present neither in source text nor in
a corresponding image. Contrarily, the MSNMT
model with wait-3 was able to correctly predict
“海 (body of water)” even before it was inputted by
capturing visual information. When a full sentence
is given as an input, MSNMT translated it correctly
using more information, unlike SNMT, which trans-
lated only from the given text and generated incor-
rect “登って (climbing)” instead of “降りて (rap-
pelling)”. Interestingly, in the second example, the
MSNMT model with wait-3 predicted “自転車
(bicycles)” instead of “オートバイ (motorcycles)”
at the beginning of the sentence, while the SNMT
model with wait-3 was not able to generate any
vehicle entities. Also, both MSNMT models with
wait-3 and Full correctly captured that there
were eight men, whilst both SNMT models incor-
rectly predicted about one and two men. From
these results, we can conclude that visual clues pos-
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t 1 2 3 4 5 6 7 8 9 10 11
Source a person rappelling a cliff above a body of water .

Target, k=3 海 の 上 に ある 断崖 を 降り て いる 一 人 の 男性 。
Entity count 3 7 7

Table 3: Example of En→Ja translation to count entities that should be translated before introducing it to a model in
case of wait-3 (see Figure 2a). A wait-k model starts translating after k tokens are inputted. Colors represent
the same entities. 3 indicates entities that are not presented to the model at timestep t yet and 7 indicates entities
that are already seen by the model at timestep t. We count only those entities marked with 3 for # total entities
(Table 4).

k # total entities
# correct entities by S # correct entities by M

wait-k Full wait-k Full

1 1,343 251 716 270 707
3 852 229 433 242 432
5 502 147 247 151 243
7 320 106 160 106 159

Table 4: Number of entities that were correctly translated before being presented to the model by SNMT (S) and
MSNMT (M) models with their for each k. Results are the average of four runs.

Source a person rappelling a cliff above a body of water .
Target 海の上にある断崖を降りている一人の男性。

S wait-3 誰かが、岩の上で崖を登る。 (someone climbs a cliff on a rock.)
M wait-3 人が海の上で崖を降りている。 (a person is rappelling a cliff above the sea.)
S Full 人が水域の上の崖を登っている。 (a person is climbing a cliff above a body of water.)
M Full 人が水域の上で崖を降りている。 (a person is rappelling a cliff above a body of water.)

Source eight men on motorcycles dressed in red and black are all lined up on the side of the street .
Target 赤と黒の服を着たオートバイに乗っている８人の男性が通りの脇にずらりと並んでいる。

S wait-3 白い服を着て、黒と黒の服を着た１人の男性が、通りの脇に並んでいる。
(a man in white and black and black is standing beside the street.)

M wait-3 自転車に乗っている赤と黒の服を着た８人の男性が、通りの側面にある。
(eight men in red and black clothes riding a bicycle are on the side of the street.)

S Full 赤と黒の服を着た、オートバイに乗った２人の男性が、通りの脇で並んでいる。
(two men on motorcycles, dressed in red and black, line up by the side of the street.)

M Full 赤と黒の服を着た、オートバイに乗った８人の男性が、通りの側面に並んでいる。
(eight men on motorcycles, dressed in red and black, line the side of the street.)

Table 5: Examples of En→Ja translations from test set using SNMT (S) and MSNMT (M) models (also refer to
Figure 2). In () are shown their English meanings. The same colors indicate the same entity types.

itively impact generated translations where there is
still a lack of textual information, especially when
we deal with language pairs with different word
order.

7 Conclusion

In this paper, we proposed a multimodal simulta-
neous neural machine translation approach, which
takes advantage of visual information as an addi-
tional modality to compensate for the shortage of
input text information in the simultaneous neural
machine translation. We showed that in a wait-k
setting, our model significantly outperformed its
text-only counterpart in situations where only a
few input tokens are available to begin translation.

We showed the importance of the visual informa-
tion for simultaneous translation, especially in the
low latency setup and for a language pair with
word-order differences. We hope that our proposed
method can be explored even further for various
tasks and datasets.

In this paper, we created a separate model for
each value of wait-k. However, in future work,
we plan to experiment on having a single model
for all k values (Zheng et al., 2019b). Furthermore,
we acknowledge the importance of investigating
MSNMT effects on more realistic data (e.g. TED),
where the utterance does not necessarily match
a shown image while speaking and/or where its
context can not be guessed from the shown image.
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