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Abstract

We obtain new results using referential transla-
tion machines (RTMs) with predictions mixed
and stacked to obtain a better mixture of ex-
perts prediction. We are able to achieve better
results than the baseline model in Task 1 sub-
tasks. Our stacking results significantly im-
prove the results on the training sets but de-
crease the test set results. RTMs can achieve
to become the 5th among 13 models in ru-en
subtask and 5th in the multilingual track of
sentence-level Task 1 based on MAE.

1 Introduction

Quality estimation task in WMT20 (Specia et al.,
2020) (QET20) address machine translation (MT)
performance prediction (MTPP), where transla-
tion quality is predicted without using reference
translations, at the sentence- (Tasks 1 and 2),
word- (Task 2), and document-levels (Task 3).
Task 1 predicts the sentence-level direct assess-
ment (DA) in 7 language pairs categorized accord-
ing to the MT resources available:

* high-resource, English-German (en-de),
English—Chinese (en-zh), and Russian-
English (en-ru)

* medium-resource, Romanian—English (ro-
en) and Estonian—English (et-en), and

* low-resource, Sinhalese—English (si-en) and
Nepalese—English (ne-en).

en-ru contains sentences from both Wikipedia and
Reddit articles while others use only Wikipedia
sentences with 7000 sentences for training, 1000
for development, and 1000 for testing. The target
to predict in Task 1 is z-standardised DA scores,
which changes the range from [0, 100] for DA
scores to [3.178, —7.542] in z-standardized DA
scores.

RTM interpretants
Task Train Test setting Training LM

Task 1 (en-de) | 8000 1000 bilingual 03M 5S5M

Task 1 (en-zh) | 8000 1000 | monolingualen 0.2M 3.5M
Task 1 (si-en) | 8000 1000 | monolingualen 0.2M 3.5M
Task 1 (ne-en) | 8000 1000 | monolingualen 0.2M 3.5M
Task 1 (et-en) | 8000 1000 | monolingualen 0.2 M
Task 1 (ro-en) | 8000 1000 | monolingualen 0.2M 3.
Task 1 (ru-en) | 8000 1000 bilingual 02M 4M
Task 2 (en-de) | 8000 1000 bilingual 03M 5M
Task 2 (en-zh) | 8000 1000 | monolingual en 0.2 M

Table 1: Number of instances in the tasks and the size
of the interpretants used.

The target to predict in Task 2 is sen-
tence HTER (human-targeted translation edit rate)
scores (Snover et al., 2006) and binary classifica-
tion of word-level translation errors. We partic-
ipated in sentence-level subtasks, which include
English-German and English-Chinese in Task 2.
Table 1 lists the number of sentences in the train-
ing and test sets for each task and the number of
instances used as interpretants in the referential
translation machine (RTM) (Bigici, 2018; Bigici
and Way, 2015) models (M for million).

We tokenize and truecase all of the corpora us-
ing Moses’ (Koehn et al., 2007) processing tools.'
LMs are built using ken1lm (Heafield et al., 2013).

2 RTM for MTPP

We use RTM models for building our prediction
models. RTMs predict data translation between
the instances in the training set and the test set
using interpretants, data selected close to the task
instances in bilingual training settings or mono-
lingual language model (LM) settings. Interpre-
tants provide context for the prediction task and
are used during the derivation of the features mea-
suring the closeness of the test sentences to the

"https://github.com/moses—-smt/
mosesdecoder/tree/master/scripts

Proceedings of the 5th Conference on Machine Translation (WMT), pages 999-1003
Online, November 19-20, 2020. (©)2020 Association for Computational Linguistics


orcid.org/0000-0002-2293-2031
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mosesdecoder/tree/master/scripts

Parallel

Target Corpus

train |

lESt—

Interpretants

Learning and
Prediction

Figure 1: RTM depiction: parfwd selects interpretants close to the training and test data using parallel corpus in
bilingual settings and monolingual corpus in the target language or just the monolingual target corpus in mono-
lingual settings; an MTPPS use interpretants and training data to generate training features and another use inter-
pretants and test data to generate test features in the same feature space; learning and prediction takes place using

these features as input.

training data, the difficulty of translating them,
and to identify translation acts between any two
data sets for building prediction models. With
the enlarging parallel and monolingual corpora
made available by WMT, the capability of the in-
terpretant datasets selected to provide context for
the training and test sets improve as can be seen
in the data statistics of parfwd instance selec-
tion, parallel feature weight decay (Bigici, 2019).
RTMs use par fwd for instance selection and ma-
chine translation performance prediction system
(MTPPS) (Bigici et al., 2013; Bicici and Way,
2015) for obtaining the features, which includes
additional features from word alignment. Figure 1
depicts RTMs and explains the model building
process.

Additionally, we included the sum, mean, stan-
dard deviation, minimum, and maximum of align-
ment word log probabilities as features in Task
1. In Task 2, we included word alignment dis-
placement features including the average of source
and target displacements relative to the length of
the source or target sentences respectively and ab-
solute displacement relative to the maximum of
source and target sentence lengths.

Instead of resource based discernment, we
treated en-de of Tasks 1 and 2 and ru-en as bilin-
gual tasks where significant parallel corpora are
available from WMT from previous years and the
rest as monolingual, using solely English side of
the corpora for deriving MTPP features. In accord,
we treat en-de and ru-en as parallel MTPP and the
rest as monolingual MTPP. RTM benefits from rel-
evant data selection to be used as interpretants in
both monolingual and bilingual settings. The re-
lated monolingual or bilingual datasets are used

during feature extraction for the machine learning
models of MT.

The machine learning models we use include
ridge regression (RR), kernel ridge regression,
support vector regression (SVR) (Boser et al.,
1992), gradient tree boosting, extremely random-
ized trees (Geurts et al., 2006), and multi-layer
perceptron (Bishop, 2006) as learning models in
combination with feature selection (FS) (Guyon
et al., 2002) and partial least squares (PLS) (Wold
et al., 1984) where most of these models can be
foundin scikit-learn.” We experiment with:

* including the statistics of the binary tags ob-
tained as features extracted from word-level
tag predictions for sentence-level prediction,

* using RR to estimate the noise level for SVR,
which obtains accuracy with 5% error com-
pared with estimates obtained with known
noise level (Cherkassky and Ma, 2004) and
sete = o /2.

We use Pearson’s correlation (r), mean ab-
solute error (MAE), root mean squared error
(RMSE), relative absolute error (RAE), relative
MAE (MAER), and mean RAE relative (MRAER)
as evaluation metrics (Bicici and Way, 2015). Our
best non-mix results are in Table 2 achieving 6th
rank at best among 15 models in general.

3 Mixture of Experts Models

We use prediction averaging (Bicici, 2018) to ob-
tain a combined prediction from various predic-
tion outputs better than the components, where the
performance on the training set is used to obtain

http://scikit-learn.org/
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rp MAE RMSE
en-de | 0.2622 (11) 0.5156 (8) 0.6828 (10)
ru-en | 0.6877 (8) 0.5138 (6) 0.6878 (7)
_ en-zh | 0.2310 (13) 0.5616 (6) 0.7298 (6)
% et-en | 0.6067 (11) 0.5995 (8) 0.7284 (8)
~ ne-en | 0.5436 (11) 0.5308 (9) 0.6828 (9)
si-en | 0.5318 (10) 0.5003 (7) 0.6181 (7)
ro-en | 0.6990 (11) 0.5237 (8) 0.6574 (8)
T en-de | 0.2289 (15) 0.1669 (15) 0.2081 (15)
& en-zh | 0.3864 (15) 0.1585 (14) 0.1959 (15)

Table 2: RTM test results in sentence-level MTPP in
tasks 1 and 2 using the best non-mix result with (ranks).
rp is Pearson’s correlation.

weighted average of the top k predictions, § with
evaluation metrics indexed by j € J and weights
with w:

wii = e
G = FXi0 MEAN
il = ﬁ S wii i
gk - ﬁ Zje] giji MIX
(1)

We assume independent predictions and use
pi/ (1 —p;) for weights where p; represents the ac-
curacy of the independent classifier ¢ in a weighted
majority ensemble (Kuncheva and Rodriguez,
2014). We use the MIX prediction only when we
obtain better results on the training set. We select
the best model using  and mix the results using
r, RAE, MRAER, and MAER. We filter out those
results with higher than 0.875 relative evaluation
metric scores.

We also use generalized ensemble method
(GEM) as an alternative to MIX to combine using
weights and correlation of the errors, C; j, where
GEM achieves smaller error than the best com-
bined model (Perrone and Cooper, 1992):

YoEM = ZiL=1 withi(X) =y + ZiLzl Wi €;
Cij = Elei, ] = (¥i(x) —y) " (¢i(x) —y)
_ EJI’:l Cij

Z£:1 ZJL:1 Cr.j

Model combination (Figure 2) selects top k
combined predictions and adds them to the set of
predictions where the next layer can use another
model combination step or just pick the best model
according to the results on the training set. We use
a two layer combination where the second layer is
a combination of all of the predictions obtained.
The last layer is an arg max.
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Figure 3: Stacking use predictions as features.

We also use stacking (STACK) to build higher
level models using predictions from base predic-
tion models where they can also use the probabil-
ity associated with the predictions (Ting and Wit-
ten, 1999). The stacking models use the predic-
tions from predictors as features and additional se-
lected features and build second level predictors.
Stacking with m predictors is depicted in Figure 3
where predictions are used as features for the pre-
dictors in the next level. Martins et al. (2017) used
a hybrid stacking model to combine the word-level
predictions from 15 predictors using neural net-
works with different initializations together with
the previous features from a linear model. Our
stacking results also use top features from the data
similar to the pass through feature of the stacking
regressor of sklearn.®> For these features, we con-

*https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
StackingRegressor.html
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rp trans | GEM mix STACK
en-de | 0.2205 0.4244
en-zh | 0.43 0.5426
_  eten | 05518 0.6245
% ne-en | 0.537 0.6182
T sien | 04984  0.5907
ro-en | 0.7025 0.7518
ru-en | 0.7245 0.7734
< en-de | 0.4023 0.5153
€  enzh | 04124 05193

Table 3: RTM train results in sentence-level MTPP in
tasks 1 and 2. rp is Pearson’s correlation.

rp MAE RMSE
en-de | 0.2804 (10) 0.5139 (8) 0.6762 (7)
ru-en | 0.7009 (7) 0.4957 (5) 0.6776 (5)
_ en-zh | 0.2310 (13) 0.5616 (6) 0.7298 (6)
Z eten | 0.6051 (11) 0.5998 (8) 0.7268 (8)
ne-en | 0.6186(9) 0.4990 (9) 0.6422 (8)
si-en | 0.5493 (10) 0.4909 (6) 0.6055 (6)
ro-en | 0.7367 (10) 0.4967 (7) 0.6167 (7)
multi | 0.5063 (8) 0.5249 (5) 0.6628 (6)
T en-de | 0.2631 (15) 0.1601 (14) 0.1983 (15)
& en-zh | 0.4029 (15) 0.1574 (14) 0.1933 (15)

Table 4: RTM test results in sentence-level MTPP in
tasks 1 and 2 using the best GEM mix + mix result.

sider at most the top 15% of the features selected
with feature selection.

RTM can achieve better results than the baseline
model in Task 1 in all tasks participated * where
the baseline is a neural predictor-estimator ap-
proach implemented in OpenKiwi (Kepler et al.).
Our training rp results are in Table 3. Our test set
results using GEM mix and MIX are in Table 4
where we obtain 5th rank among 11 submissions
in the multilingual subtask according to MAE. Of-
ficial evaluation metric is 7p.

Before model combination, we further filter
prediction results from different machine learning
models based on the results on the training set to
decrease the number of models combined and im-
prove the results. A criteria that we use is MREAR
> 0.875 since MRAER computes the mean rela-
tive RAE score, which we want to be less than 1.
In general, the combined model is better than the

“Taskl: https://competitions.codalab.
org/competitions/244474#results,Task2:
https://competitions.codalab.org/
competitions/24515#results

rp MAE RMSE
en-de | 0.2289 (15) 0.6319 (13) 0.7754 (13)
ru-en | 0.6057 (8) 0.7526 (10) 0.9917 (10)
_ en-zh | 0.1504 (15) 0.8043 (11) 1.0249 (11)
% et-en | 0.4014 (13) 1.1209 (13) 1.3892 (13)
~ ne-en | 0.4856 (13) 0.5662 (10) 0.7688 (10)
sicen | 0.3720 (14) 1.1118 (14) 1.2967 (14)
ro-en | 0.5858 (15) 1.4448 (15) 1.7387 (15)
< en-de | 0.2387 (18) 0.2305 (17) 0.2896 (18)
& en-zh | 0.2701 (20) 0.5008 (19) 0.5391 (20)

Table 5: RTM test results in sentence-level MTPP in
tasks 1 and 2 using stacking.

best model in the set and stacking achieves bet-
ter results than MIX on the training set. However,
stacking models significantly improve the results
on the training data but obtain decreased scores on
the test set (Table 5).

4 Conclusion

Referential translation machines pioneer a lan-
guage independent approach and remove the need
to access any task or domain specific information
or resource and can achieve top performance in au-
tomatic, accurate, and language independent pre-
diction of translation scores. We present RTM re-
sults with ensemble models and stacking.
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