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Abstract

This paper presents the contribution of the
Unbabel team to the WMT 2017 Shared
Task on Translation Quality Estimation.
We participated on the word-level and
sentence-level tracks. We describe our
two submitted systems: (i) STACKEDQE,
a “pure” QE system, trained only on
the provided training sets, which is a
stacked combination of a feature-rich se-
quential linear model with a neural net-
work, and (ii) FULLSTACKEDQE, which
also stacks the predictions of an automatic
post-editing system, trained on additional
data. When evaluated on the English-
German and German-English datasets,
FULLSTACKEDQE achieved word-level
F MULT
1 scores of 56.6% and 52.9%, and

sentence-level correlation Pearson scores
of 64.1% and 62.6%, respectively. Our
system ranked second in both tracks, be-
ing statistically indistinguishable from the
best system in the word-level track.

1 Introduction

Quality estimation is the task of evaluating a trans-
lation system’s quality without access to reference
translations (Blatz et al., 2004; Specia et al., 2013).
This paper describes the contribution of the Unba-
bel team to the Shared Task on Sentence-Level and
Word-Level Quality Estimation (QE Tasks 1 and
2) at the 2017 Conference on Statistical Machine
Translation (WMT 2017).

In the word-level task, the goal is to predict the
word-level quality of machine translated text, by
assigning a label of OK or BAD to each word in

the translation. The sentence-level task attempts
to predict the HTER of each sentence, along with
a ranking of the sentences. Two language pairs
and domains are considered: English-German (IT
domain) and German-English (medical domain).

Our submission is largely based on the approach
that we have recently proposed in Martins et al.
(2017), which ensembles a “pure” quality estima-
tion system with predictions derived from an au-
tomatic post-editing system. The focus was on
developing a word-level system, and to use the
word label predictions to predict the sentence-
level HTER.

Our system architecture is described in full de-
tail in the following sections. We first describe
our “pure” QE system (§2), which consists of a
neural model (NEURALQE) stacked into a lin-
ear feature-rich classifier (LINEARQE). Then, we
train an APE system (using a large amount of arti-
ficial “roundtrip translations”) and adapt it to pre-
dict word-level quality labels (yielding APEQE,
§3). We show that the pure and the APE-based QE
system are highly complementary (§4): our best
system is a stacked combination of LINEARQE,
NEURALQE, and APEQE. By employing a simple
word-to-sentence conversion, we adapt our sys-
tems to sentence-level QE. Overall, we achieve
word-level F MULT

1 scores of 56.6% and 52.9% and
sentence-level Pearson scores of 64.1% and 62.6%
for English-German and German-English, respec-
tively.

The following external resources were used:
part-of-speech tags and extra syntactic depen-
dency information were obtained with Turbo-
Tagger and TurboParser (Martins et al., 2013),1

1Publicly available on http://www.cs.cmu.edu/
˜ark/TurboParser/.
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trained on the Penn Treebank (for English) and on
the version of the German TIGER corpus used in
the SPMRL shared task (Seddah et al., 2014). For
the neural models, we used pre-trained word em-
beddings from Polyglot (Al-Rfou et al., 2013).

For our FULLSTACKEDQE submission, we also
use additional data to train the APE-based QE sys-
tems: for English-German, the set of 500K arti-
ficial roundtrip translations provided by Junczys-
Dowmunt and Grundkiewicz (2016), and, for
German-English, the UFAL Medical Corpus pro-
vided in the WMT17 Biomedical Translation task.

2 Pure Quality Estimation

We use the pure quality estimation system devel-
oped by the Unbabel team and described in Mar-
tins et al. (2017), which consists of an ensemble
of a linear feature-based classifier with a neural
network. We briefly describe the linear (§2.1) and
neural (§2.2) components of our system, as well as
their combination (§2.3). Further details are pre-
sented in Martins et al. (2016, 2017).

2.1 Linear Sequential Model

The linear component of our model is a discrimi-
native feature-based sequential model (called LIN-
EARQE). The system receives as input a tuple
〈s, t,A〉, where s = s1 . . . sM is the source sen-
tence, t = t1 . . . tN is the translated sentence, and
A ⊆ {(m,n) | 1 ≤ m ≤ M, 1 ≤ n ≤ N} is a
set of word alignments. It predicts as output a se-
quence ŷ = y1 . . . yN , with each yi ∈ {BAD, OK}.
This is done as follows:

ŷ = argmaxy

N∑

i=1

w>φu(s, t,A, yi)

+
N+1∑

i=1

w>φb(s, t,A, yi, yi−1). (1)

Above, w is a vector of weights, φu(s, t,A, yi)
are unigram features (depending only on a sin-
gle output label), φb(s, t,A, yi, yi−1) are bigram
features (depending on consecutive output labels),
and y0 and yN+1 are special start/stop symbols.

Table 1 shows the unigram and bigram fea-
tures used in the LINEARQE system. We include
features that depend on the target word and its
aligned source word, as well as the context sur-
rounding them.2 We include also syntactic fea-

2Features involving the aligned source word are replaced
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Figure 1: Architecture of our NEURALQE system.

tures to detect grammatically incorrect construc-
tions. We use features that involve the depen-
dency relation, the head word, and second-order
sibling and grandparent structures. Features in-
volving part-of-speech (POS) tags and syntactic
information are obtained with TurboTagger and
TurboParser (Martins et al., 2013). The feature
weights are learned by running 50 epochs of the
max-loss MIRA algorithm (Crammer et al., 2006),
with regularization constant C ∈ {10−k}4k=1 and
a Hamming cost function placing a higher penalty
on false positives than on false negatives (cFP ∈
{0.5, 0.55, . . . , 0.95}, cFN = 1 − cFP), to account
for the existence of fewer BAD labels than OK la-
bels in the data. These values are tuned on the
development set.

2.2 Neural System
Next, we describe the neural component of our
pure QE system, which we call NEURALQE.

The architecture of NEURALQE is depicted in
Figure 1. We used Keras (Chollet, 2015) to im-
plement our model. The system receives as in-
put the source and target sentences s and t, their
word-level alignments A, and their corresponding
POS tags obtained from TurboTagger. The input
layer follows a similar architecture as QUETCH
(Kreutzer et al., 2015), with the addition of POS
features. A vector representing each target word is
obtained by concatenating the embedding of that
word with those of the aligned word in the source.3

The immediate left and right contexts for source
and target words are also concatenated. We use

by NIL if the target word is unaligned. If there are multiple
aligned source words, they are concatenated into a single fea-
ture.

3For the cases in which there are multiple source words
aligned to the same target word, the embeddings are aver-
aged.
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Features Label Input (referenced by the ith target word)

unigram yi ∧ . . . ∗BIAS
∗WORD, LEFTWORD, RIGHTWORD
∗SOURCEWORD, SOURCELEFTWORD, SOURCERIGHTWORD
∗LARGESTNGRAMLEFT/RIGHT, SOURCELARGESTNGRAMLEFT/RIGHT
∗POSTAG, SOURCEPOSTAG
†WORD+LEFTWORD, WORD+RIGHTWORD
†WORD+SOURCEWORD, POSTAG+SOURCEPOSTAG

simple bigram yi ∧ yi−1 ∧ . . . ∗BIAS

rich bigrams yi ∧ yi−1 ∧ . . . all above
yi+1 ∧ yi ∧ . . . WORD+SOURCEWORD, POSTAG+SOURCEPOSTAG

syntactic yi ∧ . . . DEPREL, WORD+DEPREL
HEADWORD/POSTAG+WORD/POSTAG
LEFTSIBWORD/POSTAG+WORD/POSTAG
RIGHTSIBWORD/POSTAG+WORD/POSTAG
GRANDWORD/POSTAG+HEADWORD/POSTAG+WORD/POSTAG

Table 1: Features used in the LINEARQE system (see Martins et al., 2016 for a detailed description).
Features marked with ∗ are included in the WMT16 baseline system. Those marked with † were proposed
by Kreutzer et al. (2015).

the pre-trained 64-dimensional Polyglot word em-
beddings (Al-Rfou et al., 2013) for English and
German, and refine them during training. In ad-
dition to this, POS tags for each source and target
word are also embedded and concatenated. POS
embeddings have size 50 and are initialized as de-
scribed by Glorot and Bengio (2010). A dropout
probability of 0.5 is applied to the resulting vector
representations.

The following layers are then applied in se-
quence:

1. Two feed-forward layers of size 400 with rec-
tified linear units (ReLU; Nair and Hinton
(2010));

2. A layer with bidirectional gated recurrent
units (BiGRU, Cho et al. (2014)) of size 200,
where forward and backward vectors are con-
catenated, trained with layer normalization
(Ba et al., 2016);

3. Two feed-forward ReLU layers of size 200;

4. A BiGRU layer of size 100 with identical
configuration to the previous BiGRU;

5. Two more feed-forward ReLU layers of sizes
100 and 50, respectively.

As the output layer, a softmax transformation over
the OK/BAD labels is applied. We provide ablation
experiments in Martins et al. (2017) to validate this
architecture choice.

We train the model with the RMSProp algo-
rithm (Tieleman and Hinton, 2012) by minimiz-
ing the cross-entropy with a linear penalty for BAD

word predictions, as in Kreutzer et al. (2015). We
set the BAD weight factor to 3.0. All hyperparam-
eters are adjusted based on the development set.
Target sentences are bucketed by length and then
processed in batches (without any padding or trun-
cation).

Finally, we also trained 5 independent instances
of NEURALQE with different random initializa-
tions and different data shuffles. We ensemble
these systems by taking the averaged probability
of each word being BAD. Tables 2–3 show the re-
sults. We observe that, for both language pairs, the
neural model outperforms the linear model, and
the ensemble of 5 neural systems achieves an ex-
tra boost (most noticeable in the English-German
dataset).

2.3 Stacking Neural and Linear Models

We now stack the NEURALQE system (§2.2)
into the LINEARQE system (§2.1) as an en-
semble strategy; we call the resulting system
STACKEDQE.

The individual instances of the neural systems
are incorporated in the stacking architecture as dif-
ferent features, yielding STACKEDQE. In total, we
have 5 predictions (probability values given by
each NEURALQE system) for every word in the
training, development and test datasets. These pre-
dictions are plugged as additional features in the
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LINEARQE model. As unigram features, we used
one real-valued feature for every model prediction
at each position, conjoined with the label. As bi-
gram features, we used two real-valued features
for every model prediction at the two positions,
conjoined with the label pair.

For the remainder of this paper, we will take
STACKEDQE as our pure QE system.

3 APE-Based Quality Estimation

To develop our APE-based QE system (APEQE),
we followed a similar approach as the one de-
scribed in Martins et al. (2017), with a few minor
differences, explained below.

Junczys-Dowmunt and Grundkiewicz (2016)
applied neural translation models to the APE prob-
lem, treating different models as components in a
log-linear model, allowing for multiple inputs (the
source s and the translated sentence t) that were
decoded to the same target language (post-edited
translation p). Two systems were considered, one
using s as the input (s → p) and another using
t as the input (t → p). For English-German, we
used the 500K artificial roundtrip translations pro-
vided by the shared task organizers, along with
the original data from the shared task (oversam-
pled 20 times, as in Junczys-Dowmunt and Grund-
kiewicz (2016)). For German-English, we only
considered the s→ p machine translation system,
trained from a subset of the UFAL Medical Cor-
pus provided in the WMT17 Biomedical Transla-
tion task. This subset was obtained through cross-
entropy filtering. For this, we built an in-domain
trigram language model from the English post-
edited training data. We then calculated cross-
entropy scores for the UFAL corpus according to
the language model. We sorted the corpus by in-
creasing cross-entropy and kept the first 500K sen-
tences to be used as additional training data.

To convert the resulting APE systems into
word-level quality estimators, we need to turn the
automatic post-edited sentences into word quality
labels. This is done in a straightforward way by
using the TERCOM software tool (Snover et al.,
2006)4 with the default settings (tokenized, case
insensitive, exact matching only, shifts disabled).
This tool computes the HTER (the normalized edit
distance) between the translated and post-edited
sentence. As a by-product, it aligns the words in
the two sentences, identifying substitution errors,

4http://www.cs.umd.edu/˜snover/tercom.

word deletions (i.e. words omitted by the trans-
lation system), and insertions (redundant words in
the translation). This is mapped deterministically
into OK and BAD labels.

Our approach for the shared task differs from
Martins et al. (2017) in which we skipped the
QE-tuning step when training the log-linear APE
model; instead, we kept the output of the s →
p and the t → p systems, converted each to
word-level quality labels, and then include the two
predictions as additional features in the FULL-
STACKEDQE system, described below. We de-
note the individual systems as APEQE s → p
and APEQE t → p, and the combined system as
FULLSTACKEDQE s, t→ p.

4 Full Stacked System

Finally, we consider a larger stacked system where
we stack both NEURALQE and APEQE into LIN-
EARQE. This mixes pure QE with APE-based QE
systems; we call the result FULLSTACKEDQE.
The procedure is analogous to that described in
§2.3, with extra binary features for the APE-based
word quality label predictions. For training, we
used jackknifing to ensure the predictions on the
training set are not biased.

4.1 Word-Level QE

The performance of the FULLSTACKEDQE sys-
tem on the English-German and German-English
development datasets are shown in Tables 2–3.
For English-German, we compare with the system
from Martins et al. (2017).

For both language pairs, we can see that the
APE-based and the pure QE systems are highly
complementary. For English-German, the full
combination of the linear, neural, and APE-based
systems improves the scores with respect to the
best individual system by about 5.5 points. There
is a small improvement by including also a fea-
ture from APE t → p, in addition to s → p. For
German-English, we observe an improvement of
4.9 points.

4.2 Sentence-Level QE

We followed the same procedure of Martins et al.
(2017) to convert word-level quality predictions to
a sentence-level HTER prediction. For the APE
system, we simply measured the HTER between
the translated sentence t and the predicted cor-
rected sentence p̂. For a pure QE system, we ap-
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F MULT
1 dev F MULT

1 test 2016

Martins et al. (2017) 56.80 57.47

LINEARQE 47.71 48.09
NEURALQE (single) 49.58 49.95
NEURALQE (5-avg) 51.37 51.38
STACKEDQE 52.72 52.89
APEQE (s → p) 51.43 52.47
APEQE (t → p) 35.27 37.13
FULLSTACKEDQE (s → p) 57.18 58.04
FULLSTACKEDQE (s, t → p) 57.55 58.36

Table 2: Performance of the several word-level
QE systems on the development and WMT16
English-German test datasets.

F MULT
1 dev

LINEARQE 48.07
NEURALQE (single) 49.39
NEURALQE (avg-5) 49.58
STACKEDQE 53.22
APEQE (s → p) 45.09
FULLSTACKEDQE (s → p) 58.08

Table 3: Performance of the several word-level
QE systems on the German-English development
dataset.

plied the following word-to-sentence conversion
technique: (i) run a QE system to obtain a se-
quence of OK and BAD word quality labels; (ii)
use the fraction of BAD labels as an estimate for
HTER. Finally, to combine the APE and pure QE
systems toward sentence-level QE, we simply take
the average of the two HTER predictions above.

Table 4 shows the results obtained with our pure
QE system (STACKEDQE), with our APE-based
system (APEQE), and with the combination of the
two (FULLSTACKEDQE). We report also the per-
formance of the system of Martins et al. (2017) for
English-German, for comparison.

5 Final Results

Finally, we show in Tables 5–6 the results ob-
tained in the test set for our two submitted systems,
STACKEDQE and FULLSTACKEDQE, in word-
level and sentence-level quality estimation. As
expected, the inclusion of the predictions made
by the APE system gave a significant boost for
the word-level task (>5 F MULT

1 points for English-
German, and >6 points for German-English) and
for the sentence-level task (>5 Pearson correla-
tion points for English-German, >4 points for
German-English).

6 Conclusions

We have presented the contribution of the Unba-
bel team to the WMT 2017 Shared Task on Trans-
lation Quality Estimation. Our word-level sys-
tem combines a pure quality estimation system,
based on stacking a neural and feature-based lin-
ear model, and an APE-based quality estimation
system, which uses the predictions of an auto-
matic post-editing system to generate additional
features. We applied a simple conversion strategy
to obtain a sentence-level quality estimator based
on the word-level one. The system is evaluated on
two language pairs, English-German and German-
English.
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