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Mārcis Pinnis and Rihards Krišlauks and Toms Miks
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Abstract

The paper describes Tilde’s English-
Latvian and Latvian-English machine
translation systems for the WMT 2017
shared task in news translation. Both con-
strained and unconstrained systems are de-
scribed. Our constrained systems were
ranked as the best performing systems ac-
cording to the automatic evaluation re-
sults. The paper gives details to how we
pre-processed training data, the NMT sys-
tem architecture that we used for training
the NMT models, the SMT systems and
their usage in NMT-SMT hybrid system
configurations.

1 Introduction

The year 2016 marked the first time when neu-
ral machine translation (NMT) systems achieved
significantly better results than statistical machine
translation (SMT) systems for most of the trans-
lation directions in the news translation shared
task of the WMT conference. This was achieved
due to a number of architectural and data pre-
processing novelties that the winning systems in-
corporated, for instance, the use of an attention
mechanism in the decoder of the NMT system
(Bahdanau et al., 2014), back-translation of ad-
ditional in-domain monolingual data for domain
adaptation of the NMT system after training of
a broad domain model or during re-training of
the whole NMT model, use of sub-word units to
address the problem of out-of-vocabulary word
translation, and others (Sennrich et al., 2016).

Since then, a number of further advances have
been made in machine translation and related
fields. A lot of effort has been invested in the
search for the best hyper-parameter configurations
and neural network architectures for NMT sys-

tem training (Britz et al., 2017). In particular,
the use of long short-term memory (LSTM) cells
and deep architectures has shown to allow increas-
ing translation quality. Parallel to that, a num-
ber of novelties in neural network architectures
have been introduced for other sequence process-
ing tasks, some of which, like the multiplica-
tive LSTM (MLSTM) units (Krause et al., 2016),
promise advantages even over deep recurrent net-
work architectures. For data pre-processing, we
have shown that the language agnostic word split-
ting method using byte pair encoding (BPE) in-
consistently splits words for morphologically rich
languages and that the method can be improved
by linguistically motivating word splitting (Pinnis
et al., 2017b).

For the WMT 2017 shared task in news trans-
lation, we build upon the NMT toolkit Nematus
(Sennrich et al., 2016) that achieved the best re-
sults in the WMT 2016 shared task. We also in-
corporate in our systems the latest advancements
in the field, for instance, MLSTM recurrent lay-
ers, morphology-driven word splitting, better han-
dling of unknown and rare words with robust
NMT models, and hybrid methods. The improve-
ments over the baseline NMT model have allowed
us to develop the best scoring systems for the
English-Latvian and Latvian-English translation
directions.

The paper is further structured as follows: Sec-
tion 2 provides an overview of our WMT 2017
systems, Section 3 describes the data and the dif-
ferent data processing workflows used for prepar-
ing the data for training, Section 4 describes SMT
systems that were used in NMT-SMT hybrid sys-
tem configurations, Section 5 describes the NMT
architecture used for training of our NMT systems,
Section 6 describes the hybrid NMT-SMT system
architecture, Section 7 describes our evaluation re-
sults, and Section 8 concludes the paper.
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2 System Overview

For the WMT 2017 shared task, we developed
both constrained and unconstrained MT systems.
In total, we submitted five systems:

• Constrained English-Latvian and Latvian-
English NMT-SMT hybrid systems.

• Unconstrained English-Latvian and Latvian-
English NMT-SMT hybrid systems trained
on significantly larger corpora.

• An unconstrained English-Latvian SMT sys-
tem that achieves higher automatic evaluation
results than the NMT-SMT hybrid systems.

3 Data

For training of MT systems, we used the
WMT 2017 training data, however, for the un-
constrained systems we also used resources from
the Tilde Data Library.1 All data were fil-
tered using our data filtering methods (see Sec-
tion 3.1), pre-processed with standard and custom
pre-processing tools (see Section 3.2), and supple-
mented with synthetic data (see Section 3.3). For
tuning and for decision-making during the devel-
opment, we used the newsdev2017 data set that
was provided by the WMT 2017 organisers.

3.1 Data Filtering

Our previous research in NMT system develop-
ment has shown that NMT systems are more sen-
sitive to the noise present in the training data (Pin-
nis et al., 2017a) than SMT systems, therefore,
we performed parallel data filtering to reduce po-
tential non-parallelities and the negative effect of
noise on the NMT systems. The filtering consisted
of the following steps:

1. Long sentence filtering (longer than 1500
symbols or 80 tokens).

2. Sentence length difference filter (sentence
pairs with a length ratio smaller than 0.3 were
filtered out).

3. Incorrect language filtering using a language
detection tool (Shuyo, 2010).

1Tilde Data Library is a parallel and mono-
lingual data repository of the Tilde MT platform
(http://www.tilde.com/mt/).

4. Low content overlap filter using the cross-
lingual alignment tool MPAligner (Pinnis,
2013).

5. Bad encoding filter that filtered out sentences
containing foreign and corrupt symbols.

6. Digit mismatch filter that showed to be an ef-
fective method for dealing with sentence seg-
mentation issues in a number of corpora (in-
cluding the Digital Corpus of European Par-
liament).

Training data statistics for both constrained and
unconstrained systems are shown in Table 1.

3.2 Data Pre-processing
After filtering, all training data were pre-processed
using the following steps:

1. Normalisation of punctuation. Only one
standard of quotation marks and apostrophes
were used, hyphenated tokens were split and
the hyphens were replaced with a special
symbol.

2. Identification of non-translatable entities. E-
mail addresses, URLs, file addresses and
XML tags were identified and replaced with
place-holders.

3. Tokenisation. For tokenisation, we used the
Tilde’s regular expression-based tokeniser.

4. Truecasing. The Moses truecase.perl was
used to truecase the first word of each sen-
tence.

5. Morphology-driven word splitting (Pinnis
et al., 2017b). Tokens were split using
a morphological analyser and further pro-
cessed with byte pair encoding (BPE) (Sen-
nrich et al., 2015) to ensure an open vocab-
ulary. For both languages, we used mor-
phological analysers that were developed by
Deksne (2013) using finite state transducer
technology.

6. Factorisation. Following the work of Sen-
nrich and Haddow (2016), who showed
that linguistic input features allow increasing
NMT system translation quality, we devel-
oped our NMT systems using factored mod-
els. Therefore, the source data were fur-
ther factored using a language-specific tag-
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Scenario Lang. Before filtering (Total / Unique) After filtering (Unique)
pair Parallel Monolingual Parallel Monolingual

Constrained
en-lv 4.51M / 1.92M 38.13M / 28.81M 1.61M 27.75M
lv-en 4.51M / 1.92M 369.85M / 335.55M 1.61M 330.23M

Unconstrained
en-lv 39.28M / 15.78M 128.28M / 87.60M 12.69M 81.68M
lv-en 39.28M / 15.78M 416.36M / 360.01M 12.69M 351.99M

Table 1: Training data statistics (sentence counts) for SMT and NMT systems before and after filtering

ger or parser. For Latvian, we used an aver-
aged perceptron-based morpho-syntactic tag-
ger (Nikiforovs, 2014) that was trained on
the data from Pinnis and Goba (2011). For
English, we used the lexicalized probabilistic
parser (Klein et al., 2002) from the Stanford
CoreNLP toolkit (Manning et al., 2014).

3.3 Synthetic Data

Similarly to the method by Pinnis et al. (2017b)
that allows training NMT models that are more
robust to unknown and rarely occurring words,
we supplemented the parallel training data with
synthetic parallel training sentences. To create
the synthetic corpus, we performed word align-
ment on the parallel corpus using fast-align (Dyer
et al., 2013). Then, we randomly replaced one
to three unambiguously (one-to-one) aligned con-
tent words with unknown word <UNK> place-
holders. Finally, we copied factor information
from the original factored source sentence to the
synthetic sentence.

Using the filtered and the synthetic training
data, we trained initial target-to-source NMT mod-
els (see Section 5 for details on the NMT architec-
ture). Then, we shuffled the available in-domain
monolingual data (news articles or news commen-
tary in the target language) and for each system
back-translated a part of the monolingual data
from the target language into the source language
in order to create additional synthetic source-to-
target parallel corpora. The data were selected
such that the amount would approximately cor-
respond to the original training data. Exper-
iments with different back-translated data pro-
portions showed that the best results could be
achieved with a proportion of 1-to-1.

The back-translated parallel corpora were also
supplemented with sentence pairs where con-
tent words with unambiguous alignments were
randomly replaced with unknown word place-
holders. Finally, the additional synthetic data were

Lang. Synth. Re- Total
pair <UNK> transl.

sent. sent.

(C)
en-lv 1.48M 3.09M 6.19M
lv-en 1.48M 3.09M 6.19M

(U)
en-lv 11.66M 21.69M 46.04M
lv-en 11.66M 21.36M 45.71M

Table 2: Synthetic data and final NMT model
training data statistics

added to the existing training data. The statistics
of the synthetic corpora and the final training data
for NMT system training are given in Table 2. It
can be seen that the synthetic data creation process
increased the size of the training data four times.

4 SMT Systems

SMT systems were trained using Moses (Koehn
et al., 2007) in the Tilde MT platform (Vasiļjevs
et al., 2012). All systems were trained using the
filtered training data (see Table 1). Word align-
ment was performed using fast-align (Dyer et al.,
2013). All SMT systems feature 7-gram trans-
lation models and the wbe-msd-bidirectional-fe-
allff 2 reordering models. The systems have two
language models that were trained using KenLM
(Heafield, 2011) - an in-domain language model
trained on the news article and news commentary
corpora and an out-of-domain language model
trained on the remaining monolingual data. The
systems were tuned using MERT on the news-
dev2017 data set.

5 NMT System Architecture

The NMT system architecture is based on the im-
plementation available with the Nematus toolkit
that was used by Sennrich et al. (2016) to produce

2More about the different types of reorder-
ing models in Moses can be found online at
http://www.statmt.org/moses/?n=FactoredTraining.BuildReo
rderingModel
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Factor English Latvian
Word part 350 360
Position 5 5
Lemma 125 125
Part-of-speech tag 10 -
Syntactic function 10 -
Morpho-syntactic tag - 10

Table 3: Dimensionality of each factor in the en-
coder’s embedding layer

the top-scoring results for multiple language pairs
in the WMT 2016 shared task in news translation.
It is an encoder-decoder model with attention. The
main distinction of our model is the use of mul-
tiplicative long short-term memory cells (Krause
et al., 2016) instead of gated recurrent units (GRU)
in the encoder and in the first cell of the decoder.
We also use linguistic input features as described
by Sennrich and Haddow (2016). I.e., each factor
of a word part has its own embedding vector and
in order to obtain one embedding vector for the
whole word part, the individual embedding vec-
tors are concatenated.

In more detail, the encoder’s embedding layer
has a total of 500 dimensions, which are split
among the different input factors as specified in
Table 5. It accommodates a vocabulary of 25 thou-
sand sub-word units. The embedding layer is fol-
lowed by a bidirectional MLSTM layer with 1024
dimensions for gates and cell states.

The decoder has a similar architecture to the
implementation in the Nematus toolkit (Sennrich
et al., 2017) which improves on the original
attention-based NMT model (Bahdanau et al.,
2014) by conditioning the attention weights on the
previously decoded word in addition to the hidden
state at the previous time-step. This is achieved by
first computing an intermediate state

ŝt = GRU(st−1, eyt−1),

then using it to compute the attention context

ct = attention(ŝt, h),

where st−1 and eyt−1 are the decoder’s hidden
state and the embedding of the decoded word at
the previous time-step respectively, and h is the
annotation matrix produced by the encoder. The
hidden state is then calculated as

st = GRU(ŝt, ct).

We modify this scheme by using an MLSTM cell
to calculate the intermediate state

(ŝt, zt) = MLSTM(st−1, zt−1, eyt−1),

where ŝt and zt are the MLSTM cell’s output and
hidden states respectively.

Similarly to the encoder, all of the gates and in-
termediate states of the decoder have a dimension-
ality of 1024. The decoder’s embeddings have a
dimensionality of 500.

For training, we also used dropout with the rate
of 0.2 for hidden layers, and 0.1 for input and
output embedding layers. For optimisation, we
used Adadelta (Zeiler, 2012) with a learning rate
of 0.0001, and we also used gradient clipping with
a threshold of 1.

After training, 5 to 7 models that achieved the
highest mixed metric evaluation results on the tun-
ing data (i.e., the newsdev2017 data set) were se-
lected for ensemble decoding with a beam size of
12.

6 Hybrid System Architecture

After developing the initial NMT models, a pre-
liminary manual analysis of the translations of the
English-Latvian constrained system showed that
only 34-44% of named entities within the tuning
set were translated correctly. At the same time,
the SMT system was able to handle approximately
70% of named entities correctly. Taking into ac-
count that our previous research in hybrid machine
translation system development has shown that
SMT systems in hybrid NMT-SMT system sce-
narios can handle rare and unknown word transla-
tion in hybrid scenarios better than the NMT mod-
els (Pinnis, 2016) alone, we decided to chain the
NMT and SMT systems into a hybrid NMT-SMT
system set-up. In the hybrid set-up, a sentence is at
first translated with the NMT system, after which
rare and unknown words that are left untranslated
by the NMT system are translated with the SMT
system.

The hybrid translation method performs trans-
lation in six steps as follows (see Table 4 for an
example of a sentence processed through all of the
hybrid translation steps):

1. First, rare and unknown words are identified
in the source sentence and replaced by un-
known word place-holders. Words are con-
sidered rare if they consist of at least one sub-
word unit (or a sub-word unit bigram), which
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Translation step Example sentence
Source text Šodien skatieties Ikaunieces-Admidiņas startu Rio spēlēs.

Pre-processed text šodien skat@@ ieties I@@ kaun@@ iec@@ es - Ad@@ mi@@ di@@ ņas
start@@ u Rio spēlē@@ s .

Text with identified
rare words

šodien skat@@ ieties βIDβ - βIDβ start@@ u Rio spēlē@@ s .

NMT translation watch the βIDβ - βIDβ start at the Rio Games today .

Moses XML with
untranslated rare
words

<nmt translation="watch the">šodien skatieties
</nmt>Ikaunieces <nmt translation="-">-</nmt>Admidiņas <nmt
translation="start at the Rio Games today">šodien startu Rio
spēlēs</nmt><nmt translation=".">.</nmt>

Moses XML with
identified
untranslated person
names

<nmt translation="watch the">šodien skatieties </nmt><ne
translation="Ikauniece" prob="1.0">Ikaunieces</ne> <nmt
translation="-">-</nmt><ne translation="Admidina||Admidins"
prob="0.95||0.05">Admidiņas</ne> <nmt translation="start
at the Rio Games today">šodien startu Rio spēlēs</nmt><nmt
translation=".">.</nmt>

SMT translation watch the Ikauniece - Admidina start at the Rio Games today .

Post-processed
translation

Watch the Ikauniece-Admidina start at the Rio Games today.

NMT only transl.
(for comparison)

Today, look at the start of the Isolence-Admidias in the Rio
Games.

Table 4: Example of the NMT-SMT hybrid translation process

Lang. BPE BPE
pair count 2-gram

(C)
en-lv 25 1
lv-en 35 0

(U)
en-lv 100 1
lv-en 125 1

Table 5: Rare word detection thresholds

occurrence count in the training data is be-
low a certain threshold. The thresholds for
our submitted systems were empirically iden-
tified by analysing the hybrid method’s per-
formance on the tuning data. The thresholds
are given in Table 5.

2. Then, the pre-processed sentence is trans-
lated with the NMT system. Our NMT mod-
els have been trained to leave the unknown
word place-holders untranslated, i.e., to pass
them through to the target side (Pinnis et al.,
2017b). The capability of the NMT system to
pass the place-holders through unchanged is
vital for the further steps to work.

3. After translation, the NMT model’s produced
attention matrix is used to perform word
alignment. Here, we also identify which
source words correspond to each place-

holder on the target side.

4. Then, a Moses XML document is prepared
for the sentence such that the Moses SMT
system will have to translate only the words
that were replaced by the place-holders but
leave the remaining part as it was translated
by the NMT system.

5. Then, for the Latvian-English unconstrained
system, we use a person name and surname
dictionary to look-up translations of untrans-
lated person names. The translations from
the dictionary are merged in the Moses XML
document so that the SMT system would be
constrained to the translations found in the
dictionary.

6. Finally, the Moses XML document is trans-
lated with the SMT system.

In the hybrid set-up, the same pre-processing
and post-processing steps are used as for the in-
dividual NMT and SMT systems.

7 Results

We evaluated all MT systems using multiple au-
tomatic evaluation metrics including BLEU (Pa-
pineni et al., 2002), BEER 2.0 (Stanojevic and
Sima’an, 2014), CharacTER (Wang et al., 2016),
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Scenario Lang. pair System BLEU (CS) BEER 2.0 CharacTER TER (CS)

(C)

en-lv
SMT 12.98 (12.36-13.60) 0.5086 0.6642 0.7582
NMT †19.49 (18.71-20.28) 0.5478 0.5877 0.6741
Hybrid †19.52 (18.70-20.34) 0.5482 0.5853 0.6729

lv-en
SMT 15.47 (14.88-16.06) 0.5219 0.6606 0.7272
NMT †20.01 (19.31-20.64) 0.5494 0.6088 0.6725
Hybrid †20.06 (19.45-20.71) 0.5496 0.6081 0.6721

(U)

en-lv
SMT 20.43 (19.57-21.28) 0.5491 0.6126 0.6954
NMT 20.04 (19.22-20.78) 0.5563 0.5832 0.6634
Hybrid 20.08 (19.30-20.85) 0.5567 0.5827 0.6630

lv-en
SMT 19.05 (18.42-19.67) 0.5515 0.6233 0.6928
NMT †22.02 (21.38-22.63) 0.5677 0.5838 0.6450
Hybrid †22.06 (21.41-22.74) 0.5683 0.5833 0.6442

Table 6: Automatic evaluation results of Tilde’s systems (CS stands for case sensitive evaluation; the
results are significant compared to the SMT system with p = 0.01†; the BLEU scores are given with a
95% confidence interval that was calculated using bootstrap resampling (Koehn, 2004))

and TER (Snover et al., 2006). The automatic
evaluation results (see Table 6) on the new-
stest2017 data set show that for English-Latvian
the constrained NMT system and for Latvian-
English both the constrained and unconstrained
NMT systems achieve significantly better results
than the SMT systems. The difference between the
quality of the unconstrained English-Latvian SMT
and NMT systems is not statistically significant.

Since the automatic metrics have shown not to
be sufficient to evaluate MT systems of the two
different paradigms (Pinnis et al., 2017a), we also
performed (blind) human comparative evaluation
of the SMT and NMT system translations. Five
professional translators were given the source sen-
tence and translations of two MT systems and
asked to select, which system (NMT, SMT, or nei-
ther) produces a better translation. The evaluation
was performed on the tuning data set. In total,
200-250 sentences were evaluated in each eval-
uation task. The results in Figure 1 show that
the NMT system translations are preferred more
than the translations of the SMT systems. Accord-
ing to the methodology by Skadiņš et al. (2010),
the results are weakly sufficient for all scenar-
ios (except the Latvian-English unconstrained sce-
nario for which the results are strongly sufficient)
to conclude that the NMT systems produce better
translations than the SMT systems.

The results also show that there is an insignif-
icant quality increase for the hybrid systems over
the NMT systems. The increase is minimal as only
sentences that contain words with rare word parts

are translated differently. However, the hybrid
scenario (and the components used in the hybrid
scenario) allows us to integrate the NMT systems
in our existing SMT infrastructure for formatting-
rich document translation, which is a vital require-
ment for us to provide NMT services for cus-
tomers.

Compared to other submitted systems, it is evi-
dent (see Table 7) that our constrained NMT-SMT
hybrid systems significantly outperform other sub-
mitted systems.

8 Conclusions

In the paper, we have described English-Latvian
and Latvian-English MT systems that were devel-
oped by Tilde for the WMT 2017 shared task in
news translation. In total, we submitted five sys-
tems: four NMT-SMT hybrid systems (two con-
strained and two unconstrained systems) and one
unconstrained English-Latvian SMT system that
achieves similar translation quality as the NMT
system according to automatic evaluation.

We have documented the methodology used to
prepare the data for training of the systems, the
SMT and NMT system training set-ups, the work-
flow for chaining the NMT and SMT systems into
a hybrid NMT-SMT system, as well as our evalu-
ation efforts.

The automatic and manual evaluation results
show that three out of four NMT systems signif-
icantly outperform the SMT systems. Although
the hybrid systems did not produce a significant
improvement, the minimal improvement is con-
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Figure 1: Results of the human comparative evaluation of Tilde’s SMT and NMT systems

Lang. pair System BLEU (CS) BEER 2.0 CharacTER TER (CS)

en-lv
Tilde (hybrid) †19.52 (18.74-20.31) 0.5482 0.5853 0.6729
QT21 combination 18.03 (17.32-18.73) 0.5403 0.6455 0.7034
KIT primary 17.72 (17.01-18.39) 0.5428 0.6051 0.6992

lv-en
Tilde (hybrid) †20.83 (20.13-21.49) 0.5496 0.6081 0.6641
UEDIN NMT 20.02 (19.39-20.63) 0.5462 0.6308 0.6719
JHU SMT 17.67 (17.11-18.30) 0.5281 0.6485 0.7068

Table 7: Automatic evaluation results of the top three English-Latvian and Latvian-English constrained
systems submitted for the WMT 2017 shared task on news translation (CS stands for case sensitive
evaluation; the results are significant compared to other systems with p = 0.01†; the BLEU scores are
given with a 95% confidence interval that was calculated using bootstrap resampling (Koehn, 2004))

sistent across all language pairs. The results also
showed that in terms of automatic evaluation our
submitted NMT-SMT hybrid systems significantly
outperform the systems submitted by other partic-
ipants of the shared task.
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