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Abstract

This article describes the Aalto University
entry to the English-to-Finnish news trans-
lation shared task in WMT 2017. Our sys-
tem is an open vocabulary neural machine
translation (NMT) system, adapted to the
needs of a morphologically complex target
language. The main contributions of this
paper are 1) implicitly incorporating mor-
phological information to NMT through
multi-task learning, 2) adding an attention
mechanism to the character-level decoder,
combined with character segmentation of
names, and 3) a new overattending penalty
to beam search.

1 Introduction

The rich inflection, derivation and compounding in
synthetic languages can result in very large vocab-
ularies. In statistical machine translation (SMT)
large vocabularies cause sparsity issues. While
continuous space representations make neural ma-
chine translation (NMT) more robust towards such
sparsity, it suffers from a different set of prob-
lems related to large vocabularies. A large vo-
cabulary bloats memory and computation require-
ments, while still leaving the problem of out-of-
vocabulary words unsolved.

Subword vocabularies have been proposed as a
solution. While the benefits of using subwords in
SMT have been at best moderate (Virpioja et al.,
2007; Fishel and Kirik, 2010; Grönroos et al.,
2015), subword decoding has become popular in
NMT (Sennrich et al., 2015). A subword vocabu-
lary of a moderate size ensures full coverage of an
open vocabulary. The downside is an increase in
the length of the input and output sequences. Long
sequences cause a large increase in computation

time, especially for architectures using the atten-
tion mechanism.

An alternative approach is the hybrid word-
character decoder presented by Luong and Man-
ning (2016). In the hybrid decoder, a word level
decoder outputs frequent words as they are, while
replacing infrequent words with a special <UNK>
symbol. A second character-level decoder then ex-
pands these <UNK> symbols into surface forms.

In addition to providing moderate length of in-
put and output sequences together with an open
vocabulary, the hybrid word-character decoder
makes it simple to use labels based on the level
of words, provided for example by morphological
analyzers and parsers. In SMT, such tools are typ-
ically used via factored translation models (Koehn
and Hoang, 2007). Factored translation has also
been successfully applied in NMT. For example,
Sennrich and Haddow (2016) augment the source
words with four additional factors: PoS, lemma,
dependency label and subwords. García-Martínez
et al. (2016) use a decomposed generation process,
in which they first output lemma, PoS, tense, per-
son, gender, and number, from which the surface
form is generated using a rule-based morphologi-
cal analyzer.

Neural machine translation provides another
way to utilize external annotations, multi-task
learning (MTL). MTL is a well established ma-
chine learning approach that aims at improving
the generalization performance of a task using
other related tasks (Caruana, 1998). For exam-
ple, Luong et al. (2016) use autoencoding, pars-
ing, and caption generation as auxiliary tasks to
improve English-to-German translation. Eriguchi
et al. (2017) combine NMT with a Recurrent Neu-
ral Network Grammar. The system learns to parse
the target language as an auxiliary task when trans-
lating into English.

We propose an MTL approach inspired by fac-
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tored translation. The output of a morphological
analyzer for the target sentence is used as an aux-
iliary prediction target, while sharing network pa-
rameters to a larger extent than in the approach of
Luong et al. (2016).

This approach has two advantages over factored
models. When training a system using factored
output, embedded gold standard labels are given as
input to the decoder. During translation gold stan-
dard labels are not available, and predicted labels
are instead fed back in. The confidence of the pre-
dictions is not accounted for when feeding back the
labels. This might worsen the problems caused by
exposure bias, i.e., the mismatch between training
and inference (Ranzato et al., 2016). If factored in-
put is used, the external labeling tools need to be
included also in the translation pipeline. In MTL
such tools are only necessary during training.

In terms of computational cost, a factored model
needs to predict the auxiliary labels also during
translation, slowing down inference and compli-
cating the beam search. A factored model might
also need to use a larger beam to avoid hypothe-
ses with the same surface form but different labels
from crowding out more diverse hypotheses. In
MTL, the auxiliary tasks are only performed dur-
ing training, and no changes need to be made to
the inference.

The main contributions of this paper are com-
bining word-level labels from morphological anal-
ysis with a hybrid word-character decoder, and
adding an attention mechanism to the character-
level decoder. We also propose a new overattend-
ing penalty to the beam search.

2 Neural machine translation

Neural machine translation (NMT) is a frame-
work for machine translation that uses a single
neural network trained end-to-end. The recently
proposed encoder-decoder network with attention
mechanism (Bahdanau et al., 2014) has become ac-
cepted as the current standard in NMT.

The first part of the network, the encoder, reads
a source sentence x and encodes it as a sequence
of hidden states s = (s1, s2, . . . , sN ). The en-
coder is often implemented as a bidirectional recur-
rent network with long short-term memory units
(bi-LSTM), in which case each hidden state is the
concatenation of a state from the forward and back-
ward encoders.

The last part of the network, the decoder, is

implemented as a conditional recurrent language
model which models the probability of the target
sentence y as

log p(y | x) =
∑

t

log p(yt |y<t, x)

=
∑

t

log p(yt |ht, ct). (1)

The encoder and decoder are linked by the at-
tention mechanism. At each timestep, the atten-
tion mechanism computes a context vector ct as
a weighted average of the encoder hidden states
s. The weights at,i are determined by a layer that
takes as input the current decoder hidden state ht

and each of the vectors si in turn.

at,i(h, s) =
exp(align(ht, si))∑
j exp(align(ht, sj))

align(ht, si) = v⊤
a tanh(Wa[ht; si]) (2)

In effect, at each timestep the attention mechanism
scans the entire source to decide which parts are rel-
evant to focus on when generating the next output
symbol.

Luong and Manning (2016) extend the word-
level encoder-decoder model by adding character-
level processing of rare words. On the encoder
side, word embeddings for rare source words are
produced by a character-level encoder, instead of
using a universal <UNK> embedding. The hybrid
model ensures an open vocabulary, while keeping
the attended sequence shorter than using characters
or subwords.

On the decoder side, the word-level decoder out-
puts <UNK> for rare words, while storing the
decoder hidden state at that timestep. A separate
character-level decoder expands these tokens into
the surface form. The character-level encoder and
decoder can be trained jointly with the word-level
components, by backpropagating end-to-end.

In separate-path initialization of the character-
level decoder, the word-level LSTM output h is
not used to seed the character-level decoder, but
instead a counterpart vector h̆ is calculated as

h̆t = tanh(W̆ [ct; ht])

3 System description

Our system is based on the open-source Helsinki
Neural Machine Translation (HNMT) software1.

1Available from
https://github.com/robertostling/hnmt .
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Figure 1: Our neural network architecture. In the example, “Forget the hype” is translated into “Unohda
kohu”. On the left side, the hybrid word-character encoder, using bi-LSTM for both levels. On the lower
right side, the word-level attentional LSTM decoder, which predicts both word tokens and auxiliary labels.
Above it, the predicted <UNK> is expanded by the attentional character-level decoder. For clarity,
attention is only drawn for the first timestep of each decoder.

We extend2 HNMT with a hybrid word-character
decoder, multi-task learning, and improved beam
search. An overview of the neural network archi-
tecture can be seen in Figure 1.

Hybrid encoder-decoder. HNMT implements
a hybrid word-character encoder. Instead of the
two-level unidirectional LSTM character-level en-
coders of Luong and Manning (2016), bi-LSTM
encoders are used. The embedding for rare words
is the concatenation of the last states of the forward
and backward character-level encoders.

We extend HNMT with a hybrid word-character
decoder, using separate path initialization of the
character-level decoder. We also add an attention
mechanism to the character-level decoder, yield-
ing the character-level context vector c̆t,tc . The at-
tended sequence is the same as for the word-level
decoder: the word-level encoding s of the source
sentence. To make it possible for the attentional
character-level decoder to copy or transcribe on
a subword-level, we perform character segmenta-
tion preprocessing on capitalized input words (af-
ter truecasing). The segmentation is described in
Section 4.

Multi-task learning. The main task is transla-
2Our fork available from

https://github.com/Waino/hnmt .

tion into the target language surface form, while
the auxiliary tasks consist of predicting the out-
put of the FinnPos morphological analyzer for the
target sentence. The auxiliary tasks provide addi-
tional supervision signals that can help the model
learn grammar and morphology. The tasks share
parameters more closely than the one-to-many
multi-task learning setting defined by Luong et al.
(2016). In addition to sharing the encoder, all parts
of the word level decoder except the final feed-
forward prediction layers are shared. A potential
downside compared to using a separate decoder is
that the label sequence must be of the same length
and synchronous with the surface sequence. This
tightly shared MTL matches perfectly with the hy-
brid word-character decoder, as the labeling is on
the level of words. The work-around of repeating
labels to match the length of a subword sequence
was not explored in this work.

In MTL, the supervision from the labels is softer
than when using a factored model. Uncertain la-
bels could be ignored, by limiting the task to sen-
tences with high-confidence labels. We did not
use this opportunity, as FinnPos labels every in-
put sentence, and does not provide confidence esti-
mates. As all our data D is labeled, we control the
influence of the auxiliary task using a multiplica-
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tive weight on part of the cost function, instead of
the minibatch mixing ratio used by Luong et al.
(2016).

We train the whole model jointly to maximize

E(x,y,a)∈D[log p(y, a | x)]

where a are the labels: the cluster id of the lemma,
the rounded log-frequency of the lemma, the PoS,
and 5 morphological tags: number, case, person,
mood, and tense. Each label is independently pre-
dicted from the concatenation of h and h̆.

Beam search scoring function. We use beam
search during decoding to find the optimal trans-
lation sequence y. Instead of directly maximiz-
ing the probability, we maximize a score function
s(y, x), designed to alleviate two known issues in
NMT: overtranslation and undertranslation.

Undertranslation is reduced by adding length
normalization (lp) and a coverage penalty (cp), fol-
lowing Wu et al. (2016).

Unlike undertranslation, overtranslation is to
some extent inherently reduced by the mono-
tonically increasing generation log-probabilities.
However, the inherent cost is not enough, leading
us to add a penalty for overattending a source token
(oap). The penalty is applied if the most attended
source word has sum attention over 1.0. We use
the maximum function instead of sum, in order not
to increase the strength of the penalty for long in-
put sentences. The overattending penalty is mono-
tonically increasing, which enables us to include it
when pruning active hypotheses.

The overattending penalty is not suitable if the
decoder uses smaller units than the output of the en-
coder. Repeated attention is required if the decoder
must output several subwords for each source to-
ken.

The scoring function is

s(y, x) = − log
(
p(y | x)

)
+ lp(y)

+ cp(y, x) + oap(y, x), (3)

where

lp(y) =
(|y| + λ)α

(1 + λ)α
(4)

cp(y, x) =β

|x|∑

i=1

log
(

min(

|y|∑

j=1

aij , 1.0)
)

(5)

oap(y, x) = − γ max
( |x|

max
i=1

( |y|∑

j=1

aij − 1.0
)
, 0.0

)

(6)

The parameters α, β, γ, and λ control the strengths
of the penalties.

Pruning in beam search. We use three types
of pruning in the beam search.

First, at each step, for each hypothesis to be ex-
tended, we prune the list of candidates for the next
symbol based on local probability, to only keep
beam_width + 1 candidates. This pruning im-
proves speed without affecting the output.

Second, after at least one hypothesis has been
completed, we keep track of the current best nor-
malized score. This allows pruning active hypothe-
ses by comparing their partially normalized score
against the best normalized score, with adjustable
pruning margin. The partially normalized score is
calculated as the sum of the monotonically increas-
ing parts of the scoring function

− log
(
p(y | x)

)
+ oap(y, x)

This pruning may affect the output by removing a
hypothesis with a poor early score that could have
improved later. To gain a speed-up, it is neces-
sary to prune active hypotheses: limiting pruning
to completed hypotheses cannot reduce the num-
ber of hypotheses in early stages, and thus cannot
result in early clearing of the beam.

Completed hypotheses are moved from the
beam to a separate heap. This clears out room in
the beam for active hypotheses, but also means that
the pruning of active hypotheses becomes essential
for early stopping of the beam search.

The third type of pruning is applied to the
heap of completed hypotheses based on normal-
ized score, to only keep n best hypotheses. This
pruning conserves memory and does not affect the
ordering of the results.

4 Data

Our system participates in the constrained condi-
tion of the WMT shared task. As training data,
we used the Europarl-v8, Rapid and Wikititles cor-
pora, extended with backtranslated monolingual
data, resulting in 6 091 184 parallel sentence pairs
after cleaning. The backtranslated sentences were
from the news.2014.fi corpus, translated with a PB-
SMT model, trained with WMT16 constrained set-
tings. Based on initial experiments we decided to
use the full backtranslated set, for a ratio of ca 60%
backtranslated to 40% parallel data, instead of sub-
sampling to balance the ratio.
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newstest2016AB newstest2017

Configuration chrF-1 chrF-2 BLEU chrF-1 chrF-2 BLEU TER

Hybrid decoder with MTL, ensemble of 4 56.79 55.60 21.46 57.30 55.96 20.28 .673
+ repetition removal 57.07 55.59 21.55 57.57 55.92 20.31 –

FlatCat subword decoder, ensemble of 4 55.77 55.41 20.01 54.10 53.98 17.15 .750

Hybrid decoder with MTL, single model 54.69 53.43 18.60 55.17 53.87 17.84 –

Table 1: Results of automatic evaluation. BLEU and chrF scores are percentages. TER from
http://matrix.statmt.org/matrix/systems_list/1871?metric_id=2 .

newstest2016AB

Configuration chrF-1 chrF-2 BLEU

Hybrid decoder with MTL 56.79 55.60 21.46

No morphological tags 55.97 55.20 19.83
No log frequency 55.49 54.26 19.47
No clustered lemma 55.23 53.65 19.37
No PoS-tags 55.05 53.73 19.29

No multi-task learning 54.91 53.48 19.43

No character attention
& name segmentation 52.12 50.80 17.16

No length penalty 56.68 55.52 21.35
No overattending penalty 56.68 55.53 21.33
No coverage penalty 56.43 54.93 20.97
No penalties 55.90 54.21 20.45

Table 2: Results of ablation experiments. All runs
are ensembles of 4, to reduce variability.

Data preprocessing consists of filtering too long
sentences, normalizing misencoded data, normal-
izing punctuation, deduplication, tokenization, sta-
tistical truecasing, filtering of untranslated sen-
tences, and character segmentation of names on the
source side.

Segmenting names into characters, when com-
bined with attention on the character level, al-
lows copying or transliteration on a character-to-
character basis. It is applied using a rough heuris-
tic: we segment any token longer than one char-
acter beginning with an upper case letter or digit.
All segmented characters are marked using re-
served symbols. The first and last characters of the
sequence have distinct symbols separating them
from word-internal characters.

The filtering of untranslated sentences was also
performed using a rough heuristic, by filtering
any sentences containing certain common En-
glish contractions and clitics that do not occur in
Finnish. The target side training data, especially
Europarl, contains hundreds of sentences with En-

glish phrases. A typical reason is discussions on
the wording of English-language documents being
drafted. The filtering was an attempt to alleviate a
failure mode in which the system would instead of
translating attempt (and fail) to output the English
source.

A parallel corpus augmented with gold-standard
labels for MTL is not available. We tag the target
side of the parallel corpus using the statistical tag-
ger FinnPos (Silfverberg et al., 2016). The result-
ing labels are noisy, but nonetheless provide super-
vision for the morphological analysis task.

We postprocess the output of FinnPos. The mor-
pheme tag sequence is split, and tags are grouped
by type. FinnPos lemmas are noisy, containing
many remaining affixes and other mislemmatiza-
tions. We collapse numbers into a single num-
ber symbol, remove special characters, and cluster
the remaining lemmas into 10 000 clusters with
word2vec (Mikolov et al., 2013).

5 Training details

We use the following parameters for the network:
weight of auxiliary task between 0.001 and 0.75,
64 dimensional character embeddings, 256 dimen-
sional word embeddings, 128 dimensional aux em-
beddings, 2*256 dimensional encoder state, 1024
dimensional word decoder state, 1024 dimensional
character decoder state, 256 dimensional attention,
everything except 25k most frequent source words
embedded by character level encoder, 50k most
frequent target words output by word level de-
coder, 10k overlap between word level and char-
acter level vocabularies during training.

For training, we use Adam with initial learning
rate 0.001 and gradient norm clipped to 5.0.

The systems have been tuned towards
characterF-1.0 (Popovic, 2015, 2016). We
optimize the beam search parameters, using a grid
search. The optimal parameters were α 0.012,
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β 0.3, γ 0.2, λ 3, pruning margin 1.4, and weight
0.8 for the character-level cost.

We use an ensemble procedure, in which the
combined prediction is computed as the mean af-
ter the softmax layer of the predictions of 4 models.
The primary system uses systems from 4 runs with
different weights for the auxiliary task. The sys-
tems trained for comparison—a subword system
based on Morfessor FlatCat and the systems in ab-
lation experiments—were ensembled using 4 save
points from a single run.

To include an example of subword NMT, we
also submit our FlatCat system. As preprocess-
ing, the target side has been segmented using Mor-
fessor FlatCat (Grönroos et al., 2014), which was
tuned to produce a subword lexicon of approxi-
mately 60k symbols. Segmenting names into char-
acters is applied in addition to the FlatCat segmen-
tation. The FlatCat segmented system uses WMT
2016 data only, i.e., omits the Rapid corpus.

The FlatCat subword system uses the standard
HNMT decoder. It uses neither the hybrid word-
character decoder nor MTL. We did however use
the improved beam search with penalties.

6 Results

We evaluate the systems using characterF with
β set to 1.0 and 2.0, and cased BLEU using the
mteval-v13a.pl script. We also include Transla-
tion Error Rate (TER) results for the submitted sys-
tems. Our primary system has the best TER score
of all participants.

As the development test set we use both ref-
erence translations of the newstest 2016 set. Ta-
ble 1 shows the submitted ensemble systems, and
the best single model for our primary system. As
our system has a tendency to repeat certain words,
we also evaluate the primary system after a post-
processing step in which consecutive repetitions
are removed.

We perform ablation experiments for all new
components in our system, by removing each of
them separately (non-cumulative effect). Results
are shown in Table 2.

All added components were beneficial. The
largest improvement, +4.3 BLEU, comes from
the attention mechanism in the character decoder,
combined with segmenting names into characters.

Multi-task learning improves BLEU by +2.03.
Not all auxiliary labels are equally important. PoS
tags (+2.17 BLEU) and clustered lemmas (+2.09

BLEU) perform above average, and removing ei-
ther of them yields worse BLEU than not using
MTL at all. The results of both characterF mea-
sures differ in this, ranking not using MTL as
worse than all the partial MTL variants.

The overattending penalty to the beam search
gives a much more modest gain of +0.13 BLEU.
The coverage penalty is the most important of the
beam search penalties. In total, the beam search
heuristics yield an improvement of +1.01 BLEU.

In the human evaluation, our primary system
was ranked in the second of five clusters (tied 3rd

to 5th place).

7 Discussion

All our added components improved the transla-
tion quality.

The largest improvement comes from the modi-
fications intended to enable character-to-character
copying: segmenting names into characters and
character-level attention. However, the simple
heuristic used for selecting words to segment can
make translation more difficult in some cases, e.g.
the names of institutions are typically capitalized,
but translated on a term level. Replacing the heuris-
tic with named-entity recognition or other more ad-
vanced methods is left for future work.

A common type of error made by our system
is overtranslation through repetition. A possible
explanation for the effect is the way that the lev-
els of the hybrid word-character decoder are con-
nected. There is no connection from the character
level back to the word level. The surface forms
generated by the character-level decoder are condi-
tionally independent given the word-level hidden
states, which can be similar to the states at adjacent
time steps. The word-level decoder must decide on
the number of words in an expression, which is a
difficult task if the proportion of <UNK> tokens
becomes large. The overattending penalty is only
partially successful at reducing the repetition, and
increasing the penalty weight deteriorates overall
performance before eliminating the problem.

8 Conclusion

Our results show that translation into a morpho-
logically complex language can be improved us-
ing word-level labels from morphological analysis
combined with a hybrid word-character decoder.
Adding an attention mechanism to the character de-
coder yields a large quality improvement.
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