
Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 685–691,
Berlin, Germany, August 11-12, 2016. c©2016 Association for Computational Linguistics

Bitextor’s participation in WMT’16: shared task on document alignment
Miquel Esplà-Gomis, Mikel L. Forcada

Departament de Llenguatges i Sistemes Informàtics
Universitat d’Alacant, E-03690 Sant Vicent del Raspeig, Spain

{mlf,mespla}@dlsi.ua.es

Sergio Ortiz-Rojas, Jorge Ferrández-Tordera
Prompsit Language Engineering,

Av. Universitat, s/n, Edifici Quorum III, E-03202 Elx, Spain
{sergio,jferrandez}@prompsit.com

Abstract

This paper describes the participation of
Prompsit Language Engineering and the
Universitat d’Alacant in the shared task on
document alignment at the First Confer-
ence on Machine Translation (WMT 2016).
Two systems have been submitted, corre-
sponding to two different versions of the
tool Bitextor: the last stable release, ver-
sion 4.1, and the newest one, version 5.0.
The paper describes the main features of
each version of the tool and discusses the
results obtained on the data sets published
for the shared task.

1 Introduction

Parallel data harvesting has become a critical prob-
lem for many cross-lingual tasks in natural lan-
guage processing. These data are the basis of many
approaches, specially in the case of corpus-based
machine translation (MT). One of the main sources
of new parallel data is the Internet; in fact, many
solutions have been proposed for exploiting spe-
cific websites by learning features of their structure.
Some popular examples of corpora built by mining
specific websites are the Europarl Corpus (Koehn,
2005), which exploits the European Parliament
website, or the TED2013 corpus (Cettolo et al.,
2012), that mines bitexts from the TED talks web-
site,1 a site that provides videos of public speeches
and their transcriptions translated into several lan-
guages. Nevertheless, defining methodologies to
surf the Web and identify parallel documents in
any website is still an open problem. Some of
the earliest tools developed for this purpose are
STRAND (Resnik and Smith, 2003) and BITS (Ma
and Liberman, 1999). These tools use similarities
in the URLs and the content of the webpages to
detect parallel documents in a given web domain.

1http://www.ted.com

Based on these principles, many later approaches
have been proposed (Nie et al., 1999; Chen et al.,
2004; Zhang et al., 2006; Désilets et al., 2008;
San Vicente and Manterola, 2012; Papavassiliou
et al., 2013); this paper describes the participation
of Prompsit Language Engineering and the Uni-
versitat d’Alacant in the shared task on document
alignment of WMT 2016, based on one of these
tools: Bitextor (Esplà-Gomis and Forcada, 2010).

The rest of the paper is organised as follows:
Section 2 describes the main features of Bitextor,
highlighting the main differences between versions
4.1 and 5.0. Section 3 describes the steps taken to
produce the submissions for the shared task on doc-
ument alignment in WMT 2016, and discusses the
results obtained. Finally, some concluding remarks
are provided in Section 4.

2 Bitextor

Bitextor is a free/open-source tool for harvesting
parallel data from multilingual websites; it is highly
modular and is aimed at allowing users to easily
obtain segment-aligned parallel corpora from the
Internet. This section summarises the evolution of
the tool from its earliest versions, paying special
attention to versions 4.1 and 5.0, corresponding to
the systems submitted to WMT 2016.

The first version of Bitextor was developed in
2006 as a monolithic library written in C++. The
core component of Bitextor to find document and
sentence-level alignments was an XHTML sen-
tence aligner called TagAligner,2 which heavily
relied on the HTML structure of the documents to
be compared. Some analysis on the performance
of this tool versus other approaches was presented
in (Sánchez-Villamil et al., 2006). The first ver-
sion of Bitextor used TagAligner along with some
strategies aimed at spotting language identifiers or
names in document URLs.

2http://tag-aligner.sf.net

685

At some point, the monolithic nature of Bitex-
tor and its dependence on unmaintained external
libraries made it hard for users to install it and get it
working. Addressing these issues led to a dramatic
restructuring for version 4.0 in order to ease the
maintenance and to improve the performance of the
tool. Bitextor was fully re-implemented and deeply
modularised with parallel processing in mind. The
new version was mostly implemented in Python
and Bash. Most of the external libraries were re-
placed: LangID3 was adopted for language detec-
tion; XML/HTML normalisation, previously car-
ried out by W3C HTML Tidy,4 was done now with
the more modern and powerful Apache Tika;5 and
the library Boilerpipe6 was included in the pipeline
to simplify the document structure by removing
boilerplate material. As regards the strategies for
document alignment, heuristics based on language
identifiers in URLs were replaced by the use of
bilingual lexicons for shallow indexing of docu-
ments. This method reduces the search space when
looking for translation candidates for a given doc-
ument. For a more reliable source of information,
Bitextor kept relying on the use of XHTML struc-
tural comparison for document alignment.

2.1 Current version: Bitextor 4.1

The architecture of Bitextor in versions since 4.0 is
based on a Unix-style pipeline, in which a collec-
tion of scripts are connected using text interfaces.
This architecture favours the parallelisation of sub-
tasks and eases the maintenance of the tool. Fig-
ure 1 represents this architecture, describing the
main modules in Bitextor and how they interact.
As can be seen, the user is required to provide one
or more URLs of websites to be processed, the two
languages (L1 and L2) for which the parallel cor-
pus will be produced, and a bilingual lexicon in
these two languages. The following list describes
the modules in Bitextor and how this input data is
processed to obtain a translation memory:

1. Website crawling: given the URL of a web-
site, it is completely downloaded by means
of the tool HTTrack,7 keeping only HTML
documents; this module does not produce text
output, but downloads a mirror of a webpage.

3https://github.com/saffsd/langid.py
4http://tidy.sf.net
5https://tika.apache.org
6https://github.com/kohlschutter/

boilerpipe
7http://www.httrack.com/

2. Webpage normalisation: downloaded docu-
ments are preprocessed with Apache Tika8

and Boilerpipe9 (Kohlschütter et al., 2010) to
normalise the HTML markup into XHTML
and remove boilerplates. After normalisation,
exact duplicates are discarded. This module
outputs a list of tab-separated fields, in which
every line corresponds to a file. Four fields are
included in each line: the MIME type,10 the
character encoding, the local path to the file
processed, and the content of the document af-
ter normalisation encoded in base64;11 this
format is henceforth called ett.

3. Language identification: this module receives
as an input the list of processed documents in
format ett; the language of each document
is detected with LangID (Lui and Baldwin,
2012),12 keeping only those documents in one
of the target languages (L1 or L2). Before
language identification, Apache Tika is used
to convert the XHTML content of the docu-
ment into plain text. The module outputs a
list of files in lett format, which consists of
the same fields than ett plus the language
identifier of the document and the plain text
extracted, encoded in base64.

4. XHTML structure representation extraction:
this module receives a list of files in lett
format and obtains a string that tries to rep-
resent the XHTML structure as follows: (i)
every different XHTML tag is replaced by an
arbitrary character, and (ii) the sequence W
of words between two XHTML tags is rep-
resented with a reserved character, which is
repeated log2(|W |) times to account for the
length of the text (in words) in the text block.
The objective of this representation is to ease
the comparison of the structure of the docu-
ments by reducing it to a string comparison.
The new field is added to the lett input: the
resulting format is the lettr format.

5. Indexing of words in webpages: this module
receives a lett list of files and a bilingual
lexicon and produces an idx index contain-
ing, for every word in the lexicon, the list of
documents in which it occurs. The output of
this module consists of a list of words, one

8http://tika.apache.org/
9http://code.google.com/p/boilerpipe/

10https://wikipedia.org/wiki/Media_type
11https://tools.ietf.org/html/rfc4648#

section-4
12https://github.com/saffsd/langid.py

686

Figure 1: Architecture of Bitextor.

per line, and a numeric identifier for each of
the documents in which the word appears; the
first identifier corresponds to the line num-
ber of the first document in the lett list of
documents, and the remaining identifiers are
offsets to the previous line numbers, to reduce
the size of the list. 13

6. Similarity ranking based on bilingual word
coocurrence: this module receives the idx
word index and the lett document list and
computes a bag-of-words overlapping metric
for each pair of documents. This score is used
to build a preliminary list of n-best candidates
for each document.14

7. N -best lists re-ranking: the list of the n best
candidates obtained for each document is re-
ranked by using the similarity metric based on
the Levenshtein edit distance between the rep-
resentation of the XHTML structure of each
pair of documents obtained in module 4; the
lettr list of documents is used in this step.

8. Document alignment: Once re-ranked, the n-
best lists for both languages are compared,
and those documents that are mutually among
the best candidates are aligned.15

9. Sentence alignment: aligned documents are fi-
nally aligned at the level of segments by using
the tool hunalign16 (Varga et al., 2007). The
standard output after this step is a translation
memory, but Bitextor can also be run to obtain
just a list aligned documents. In this specific
case, the list of document pairs obtained in
the previous step is filtered by using the re-
liability score at the level of document pairs
produced by hunalign to discard very unlikely

13For instance, if the word appears in documents 100, 105
and 180 the list would be 100:5:75.

14The standard size of these n-best lists is 10.
15It is possible to specify how many documents in the re-

ranked n-best list are taken into account: if only the first one
is taken into account (the highest one after re-ranking), only
mutual best-candidates are finally aligned.

16http://mokk.bme.hu/resources/hunalign

document pairs.

Three main bottlenecks can be identified in this
structure:

• crawling, given that this process is carried out
by an external tool and it is only after the
whole website is downloaded that the next
step can start;

• obtaining the lett list of documents, since
until the full list of documents is obtained it is
impossible to compute the whole idx index
of words; and

• n-best list candidates ranking, since docu-
ments cannot be aligned until the full rank-
ing is obtained to check which documents are
mutually best candidates.

The modules in between these bottlenecks are run
in parallel; this allows Bitextor to obtain a high
performance in machines with several processors.

2.2 What is new in Bitextor 5.0?
Version 5.0 of Bitextor has dramatically modified
the way in which the tool performs two of the most
important sub-tasks of its pipeline: crawling of
websites and document alignment. This section is
aimed at describing the main novelties as regards
these modules. Note that the architecture shown in
Figure 1 stays the same for Bitextor 5.0, despite the
fact that the internal behaviour of the corresponding
modules changes.

Web crawling. Until version 4.1, the tool HT-
Track was used for downloading websites, and after
this tool was done, the rest of the processing was
carried out. Version 5.0 of Bitextor implements
a new module for crawling websites based on the
Python library creepy17 which allows a better
control of the crawling process, which can be in-
terrupted at will to perform other processing. The
two main advantages of this process are:

17https://github.com/Aitjcize/creepy

687

• Better parallelisation of the processing: with
the new crawling module it is easier to control
the way in which websites are crawled, allow-
ing to specify the number of parallel threads
that can be used. In addition, the need of stor-
ing a mirror of the original website locally
disappears;18 instead of this, the documents
downloaded are directly stored in the ett for-
mat, which allows to start webpage normalisa-
tion before the whole website is downloaded.

• Higher control of the crawling process: the
new module allows for a more controlled
crawling process. For example, it is possible
to avoid following links found in a document
that is not written neither in L1 nor L2.

Document alignment. The modules of Bitex-
tor involved in the identification of parallel doc-
uments in a given website have undergone impor-
tant changes as well. As described in Section 2.1,
previous versions of Bitextor used two sources
of evidence to identify candidate pairs of docu-
ments: a bag-of-words overlapping metric and a
similarity metric based on the structure of the doc-
uments, both using the distribution of the text and
the XML/HTML structure. In Bitextor 4.1, the first
source was used to reduce the search space and cre-
ate a preliminary ranking of n-best candidates for
every document, while the second one, more reli-
able, was used to re-rank this list. Bitextor version
5.0 keeps the initial strategy for reducing the search
space by using the bag-of-words overlapping met-
ric, but adds new sources of evidence and uses a
logistic regression approach to combine them for
re-ranking the n-best list of candidates. These new
sources of information extracted for every candi-
date pair of documents are:

1. The Jaccard index of the URLs: when com-
paring documents D1 and D2, all the URLs in
each document are extracted (using the HTML
tag href) obtaining the sets U1 and U2, re-
spectively; the Jaccard index is then computed

as:
|{U1 ∩ U2}|
|{U1 ∪ U2}|

;

2. The similarity of URLs inside the document,
represented by the Levenshtein distance (Wag-
ner and Fischer, 1974) between the sequence
of the URLs contained both in D1 and D2 at
the character level;

18This means that one of the bottlenecks specified in Sec-
tion 2.1 is avoided in this version.

3. The Jaccard index of the images shared: the
URLs of the images in documents D1 and
D2 are extracted (using the HTML tag img)
obtaining the collections I1 and I2, respec-
tively; the Jaccard index is then computed as:
|{I1 ∩ I2}|
|{I1 ∪ I2}|

;

4. Mutual links: a binary feature that is true
if both documents are mutually linked, and
false otherwise; and

5. Document URL distance: the Levenshtein dis-
tance (Wagner and Fischer, 1974) between the
URLs corresponding to D1 and D2.

These new metrics, together with the two original
ones (bag-of-words overlap and structure compari-
son), are used as features19 in a logistic regression
algorithm based on the use of a multilayer percep-
tron implemented with the Python library keras.20

The logistic regression algorithm is trained to ob-
tain a real number in [0.0, 1.0] where 0.0 means
that the documents are totally unrelated and 1.0
means that the documents are parallel. The score
obtained by the logistic regressor allows to rank
the candidates in the n-best list for every document.
One of the main advantages of this approach, apart
of being more empirical and less arbitrary than the
previous heuristic approach is that it provides a sim-
ilarity score at the level of document pairs, more
reliable and easy to obtain than the one obtained
from hunalign, and which does not require to align
the documents at the level of segments.

3 Bitextor for document alignment in
WMT 2016

This section describes the problem proposed by the
organisers of the shared task in document align-
ment and the two systems submitted by Promp-
sit Language Engineering and the Universitat
d’Alacant, the two main institutions supporting the
tool Bitextor.

3.1 Data sets
The organisers of the shared task on document
alignment provided a collection of lett files con-
taining the collection of documents crawled from
several multilingual websites. Two different data
sets were provided: a training set consisting of a
collection of 49 crawled websites with a total of

19All these metrics are normalised and take values in
[0.0, 1.0] except for mutual link, which is binary.

20http://keras.io

688

573,953 documents, and a test set consisting of a
collection of 203 crawled websites, with a total of
1,204,239 documents. For the training set, a col-
lection of gold document alignments was provided
for a sub-set of the whole collection of documents.

The objective of the task is to build a collection
of documents in English aligned to their transla-
tions in French.

3.2 Submitted systems
The only external resource required by Bitextor,
a bilingual lexicon, was taken from the project’s
webpage.21 The two versions of the tool used to
produce the submissions were run with the stan-
dard parameters for document alignment, with the
only exception of the parameter that specifies the
amount of candidates to be taken into account in
the n-best list: that was set to consider only the first
one (see the description of the document alignment
module in Section 2.1). As regards the submission
based on Bitextor 4.1, its standard pipeline includes
a filtering of the document pairs using the score pro-
vided by hunalign (see Section 2.1), while Bitextor
5.0 does not use any filtering at the document level.

Given that Bitextor 4.1 uses an heuristic ap-
proach, the training set was not used to build this
system. However, Bitextor 5.0 does need22 to train
the logistic regressor used to rank the n-best trans-
lation candidates for a given document in a website;
the training set was therefore used for this purpose
in the following way:

1. the websites in the training set, which were
already provided in the lett format, were
processed up to the step in which the n-best
lists are built and the features described in Sec-
tion 2.2 were obtained for every candidate pair
of documents, i.e. for the n pairs consisting of
a document and each of its n-best candidates;

2. those document pairs for which neither of
them was not found in the gold standard pro-
vided by the organisation were discarded;

3. for the remaining pairs of documents, those in
the gold standard were considered as positive
samples (for which the expected output of the
logistic regressor is 1.0), while those aligning
a document in the gold standard with a dif-
ferent document were considered as negative

21https://sf.net/projects/bitextor/
files/lexicons/

22The new release published for Bitextor 5.0 includes a
pre-trained regression model, so it does not need to be trained
every time it is used.

samples (for which the expected output of the
logistic regressor is 0.0).

Following this method, a collection of 30,815 train-
ing samples was obtained,23 which was randomised
to use 10% of the samples as development set, and
the remaining 90% as training set.

3.3 Results
The results obtained with each version of Bitextor
consisted of a collection of 95,760 pairs of docu-
ments in the case of Bitextor 4.1 and 157,682 in
the case of Bitextor 5.0; that is, the new version de-
tected about 60% more document pairs. The organ-
isers of the task took a sample of 2,402 URL pairs
as a gold standard for evaluating the recall of each
system. On this evaluation framework, Bitextor
4.1 obtained a recall of about 31%, while Bitextor
5.0 obtained a recall of about 83%. After a careful
revision of the results obtained, it is worth men-
tioning that some errors were detected in the gold
standard, which led to considering as wrong some
correct document pairs detected by Bitextor. After
fixing them, Bitextor 5.0, the best performing ver-
sion of the tool, obtained a recall of about 87.5%.
In addition, some ambiguities were detected in the
gold standard that had not been taken into account,
such as URL aliases (having two alias that lead
to the same document) or language variants (for
example, having a document in British English and
American English). After adding these ambiguous
cases to the gold standard, the recall of Bitextor
grew to almost 88%. Finally, it was possible to
find websites translated into several languages for
which some documents were not translated and are
therefore written in the default language (English
in most of the cases). This problem is discussed in
Section 3.4.3 and, as explained in this section, af-
ter boilerplates removal, bitextor would keep only
English text from these documents, producing a
valid alignment. If we consider these alignments
as valid, the recall would reach 89%.

Regarding the quality of the aligned document
set obtained, Bitextor 4.1 reached a precision of
about 85%, while in the case of Bitextor 5.0, the
precision was higher than 90%. Taking into ac-
count the errors in the gold standard, this value
grows to more than 95%.

These results confirm that the novelties in the
new version of Bitextor provide a considerable im-
provement in the performance of the tool for docu-

23Since the standard size of the n-best lists is 10, about
10% of the samples were positive, while remaining samples
were negative.

689

ment alignment. When compared to other systems
participating in the task, Bitextor obtains a per-
formance that falls in the middle of the ranking.
However, taking into account the issues regarding
the gold standard described in this section, Bitextor
5.0 would rank among the 5-top systems submitted
in the current ranking.24

3.4 Error analysis

A deeper look into the data sets provided by the
organisation of the shared task and the results ob-
tained with Bitextor uncovered some of the most
important problems faced when dealing with docu-
ment alignment in an environment such as that of
multilingual websites. The following are some of
the main problems detected in the case of Bitextor.

3.4.1 Webpages not translated.

It is usual to find websites in which some pages
are not translated in all the languages offered; this
introduces noise into the task, since the tool may be
looking for non-existing translations for some doc-
uments. If this happens only in a language (usually,
the source language in which the original pages
are written) it is not a big problem: untranslated
webpages are just ignored. However, this issue has
a relevant impact in the final accuracy when there
are untranslated documents in both languages; in
this case, the risk to end up aligning two documents
for which no translation is available is higher. A
good example of this situation in the test set is the
website http://academiedesprez.org.

3.4.2 Webpages with little text.

This problem is usual in catalogues in which a
template is used and only a few words or phrases
(names, prices, measures, etc.) change in the dif-
ferent pages. This makes pages very similar and
rises the probability of obtaining wrong alignments,
which affect both precision and recall. An extreme
example of this problem is the website http://
milltowndowntown.com in the test set, that
contains an extensive collection of pictures, each
presented in a webpage without any text. For the
purpose of building a corpus of parallel texts, it
may be interesting to set a filter to discard those
documents that do not contain a minimum amount
of text to reduce the noise produced by this kind of
webpages.

24It is worth noting that fixing these problems in the gold
standard would possibly affect the rest of systems, and the
whole ranking would need to be built again.

3.4.3 Repeated webpages.
In multilingual websites, it is usual to find that,
when an article or a piece of news is not trans-
lated, it is shown in the default (original) language.
As a result, it may happen that two webpages
could be basically equivalent with the only excep-
tion of some menus or titles that are translated
according to the template of the website.25 In a
real-world scenario, any of these “equivalent doc-
uments” would be a valid alignment and it would
not be an error at all; however, given that the gold
standard used for evaluation only provides a valid
candidate for every document, this has an impact
both in the precision and the recall of the tool.
A good example of this problem is the website
https://pawpeds.com. It is worth mention-
ing that, even though this issue affects the evalua-
tion results, if the objective of document alignment
is to produce a parallel corpus, aligning a document
to any of its equivalent translations should not be
considered an error at all.

4 Concluding remarks

This paper describes the systems submitted to the
document alignment shared task at WMT 2016 by
the team consisting of Prompsit Language Engi-
neering and the Universitat d’Alacant. These sub-
missions are based on Bitextor, a free/open-source
tool for building parallel corpora from multilingual
websites. For this shared task, two different ver-
sions of Bitextor were used to produce the two
submissions: version 4.1 and 5.0. The results ob-
tained show that the new version of Bitextor is able
to identify a noticeably higher amount of paral-
lel documents (about 60% more). In addition, the
preliminary results obtained show that version 5.0
performs better than version 4.1 both as regards
precision and recall in document classification.

Bitextor is distributed under version 3 of
the GNU General Public Licence and can
be downloaded from the project’s website:
https://sf.net/projects/bitextor/
files/bitextor/.

Acknowledgements: Supported by the Euro-
pean Commission through project PIAP-GA-2012-
324414 (Abu-MaTran) and by the Spanish gov-
ernment through project TIN2015-69632-R (Effor-
tune).

25This information is usually discarded when boilerplates
are removed.

690

References
Mauro Cettolo, Christian Girardi, and Marcello Fed-

erico. 2012. Wit3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Confer-
ence of the European Association for Machine Trans-
lation, pages 261–268, Trento, Italy.

Jisong Chen, Rowena Chau, and Chung-Hsing Yeh.
2004. Discovering parallel text from the world wide
web. In Proceedings of the Second Workshop on
Australasian Information Security, Data Mining and
Web Intelligence, and Software Internationalisation,
volume 32, pages 157–161, Dunedin, New Zealand.

Alain Désilets, Benoit Farley, Marta Stojanovic, and
Geneviève Patenaude. 2008. WeBiText: Building
large heterogeneous translation memories from par-
allel web content. In Proceedings of Translating and
the Computer, pages 27–28, London, UK.

Miquel Esplà-Gomis and Mikel L. Forcada. 2010.
Combining content-based and URL-based heuristics
to harvest aligned bitexts from multilingual sites
with bitextor. The Prague Bulletin of Mathematical
Linguistics, 93:77–86.

Philipp Koehn. 2005. Europarl: A parallel corpus
for statistical machine translation. In Proceedings
of the X Machine Translation Summit, pages 79–86,
Phuket, Thailand.

Christian Kohlschütter, Peter Fankhauser, and Wolf-
gang Nejdl. 2010. Boilerplate detection using shal-
low text features. In Proceedings of the third ACM
international conference on Web search and data
mining, pages 441–450, New York, NY, USA.

Marco Lui and Timothy Baldwin. 2012. Langid.py:
An off-the-shelf language identification tool. In Pro-
ceedings of the ACL 2012 System Demonstrations,
pages 25–30, Jeju Island, Korea.

Xiaoyi Ma and Mark Liberman. 1999. BITS: A
method for bilingual text search over the web. In
Machine Translation Summit VII, pages 538–542,
Singapore, Singapore.

Jian-Yun Nie, Michel Simard, Pierre Isabelle, and
Richard Durand. 1999. Cross-language information
retrieval based on parallel texts and automatic min-
ing of parallel texts from the Web. In Proceedings of
the 22nd Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 74–81, Berkeley, California, USA.

Vassilis Papavassiliou, Prokopis Prokopidis, and Gre-
gor Thurmair. 2013. A modular open-source fo-
cused crawler for mining monolingual and bilingual
corpora from the web. In Proceedings of the Sixth
Workshop on Building and Using Comparable Cor-
pora, pages 43–51, Sofia, Bulgaria.

Philip Resnik and Noah A. Smith. 2003. The Web
as a parallel corpus. Computational Linguistics,
29(3):349–380.

Iñaki San Vicente and Iker Manterola. 2012. PaCo2: A
fully automated tool for gathering parallel corpora
from the web. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Eval-
uation, pages 1–6, Istanbul, Turkey.

Enrique Sánchez-Villamil, Susana Santos-Antón, Ser-
gio Ortiz-Rojas, and Mikel L Forcada. 2006. Eval-
uation of alignment methods for html parallel text.
In Advances in Natural Language Processing, pages
280–290. Springer.

Dániel Varga, Péter Halácsy, András Kornai, Viktor
Nagy, László Németh, and Viktor Trón. 2007. Par-
allel corpora for medium density languages. Amster-
dam Studies in the Theory and History of Linguistic
Science, Series IV, 292:247–258.

Robert A. Wagner and Michael J. Fischer. 1974. The
string-to-string correction problem. Journal of the
Association for Computing Machinery, 21(1):168–
173.

Ying Zhang, Ke Wu, Jianfeng Gao, and Phil Vines.
2006. Automatic acquisition of Chinese–English
parallel corpus from the web. In Advances in In-
formation Retrieval, volume 3936, pages 420–431.
Springer Berlin Heidelberg.

691

