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Abstract

This paper describes our submission to the
Tuning Task of WMT16. We replace the
grid search implemented as part of stan-
dard minimum-error rate training (MERT)
in the Moses toolkit with a search based
on particle swarm optimization (PSO). An
older variant of PSO has been previously
successfully applied and we now test it
in optimizing the Tuning Task model for
English-to-Czech translation. We also
adapt the method in some aspects to al-
low for even easier parallelization of the
search.

1 Introduction

Common models of statistical machine transla-
tion (SMT) consist of multiple features which as-
sign probabilities or scores to possible transla-
tions. These are then combined in a weighted
sum to determine the best translation given by the
model. Tuning within SMT refers to the process of
finding the optimal weights for these features on a
given tuning set. This paper describes our submis-
sion to WMT16 Tuning Task1, a shared task where
all the SMT model components and the tuning set
are given and task participants are expected to pro-
vide only the weight settings. We took part only in
English-to-Czech system tuning.

Our solution is based on the standard tuning
method of Minimum Error-Rate Training (MERT,
Och, 2003). The MERT algorithm described in
Bertoldi et al. (2009) is the default tuning method
in the Moses SMT toolkit (Koehn et al., 2007).
The inner loop of the algorithm performs opti-
mization on a space of weight vectors with a given

1http://www.statmt.org/wmt16/
tuning-task/

translation metric2. The standard optimization is a
variant of grid search and in our work, we replace
it with the Particle Swarm Optimization (PSO,
Eberhart et al., 1995) algorithm.

Particle Swarm Optimization is a good candi-
date for an efficient implementation of the inner
loop of MERT due to the nature of the optimiza-
tion space. The so-called Traditional PSO (TPSO)
has already been tested by Suzuki et al. (2011),
with a success. Improved versions of the PSO al-
gorithm, known as Standard PSO (SPSO), have
been summarized in Clerc (2012).

In this paper, we test a modified version of
the latest SPSO2011 algorithm within the Moses
toolkit and compare its results and computational
costs with the standard Moses implementation of
MERT.

2 MERT

The basic goal of MERT is to find optimal weights
for various numerical features of an SMT system.
The weights are considered optimal if they min-
imize an automated error metric which compares
the machine translation to a human translation for
a certain tuning (development) set.

Formally, each feature provides a score (some-
times a probability) that a given sentence e in goal
language is the translation of the foreign sentence
f . Given a weight for each such feature, it is pos-
sible to combine the scores to a single figure and
find the highest scoring translation. The best trans-
lation can then be obtained by the following for-
mula:

e∗ = argmax
e

∑

i

λi log (pi(e|f)) = gp(λ) (1)

2All our experiments optimize the default BLEU but other
metrics could be directly tested as well.
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The process of finding the best translation e∗ is
called decoding. The translations can vary signif-
icantly based on the values of the weights, there-
fore it is necessary to find the weights that would
give the best result. This is achieved by minimiz-
ing the error of the machine translation against the
human translation:

λ∗ = argmin
λ

errf (gp(λ), ehuman) (2)

The error function can also be considered as a
negative value of an automated scorer. The prob-
lem with this straight-forward approach is that de-
coding is computationally expensive. To reduce
this cost, the decoder is not run for every consid-
ered weight setting. Instead, only some promis-
ing settings are tested in a loop (called the “outer
loop”): given the current best weights, the decoder
is asked to produce n best translation for each
sentence of the tuning set. This enlarged set of
candidates allows us to estimate translation scores
for similar weight settings. An optimizer uses
these estimates to propose a new vector of weights
and the decoder then tests this proposal in another
outer loop. The outer loop is stopped when no new
weight setting is proposed by the optimizer or no
new translations are found by the decoder. The
run of the optimizer is called the “inner loop”, al-
though it need not be iterative in any sense. The
optimizer tries to find the best weights so that the
least erroneous translations appear as high as pos-
sible in the n-best lists of candidate translations.

Our algorithm replaces the inner loop of MERT.
It is therefore important to describe the properties
of the inner loop optimization task.

Due to finite number of translations accumu-
lated in the n-best lists (across sentences as well as
outer loop iterations), the error function changes
only when the change in weights leads to a change
in the order of the n-best list. This is represented
by numerous plateaus in the error function with
discontinuities on the edges of the plateaus. This
prevents the use of simple gradient methods. We
can define a local optimum not in a strict math-
ematical sense but as a plateau which has only
higher or only lower plateaus at the edges. These
local optima can then be numerous within the
search space and trap any optimizing algorithm,
thus preventing convergence to the global opti-
mum which is desired.

Another problem is the relatively high dimen-
sionality of the search space. The Tuning Task

model has 21 features but adding sparse features,
we can get to thousands of dimensions.

These properties of the search space make PSO
an interesting candidate for the inner loop algo-
rithm. PSO is stochastic so it doesn’t require
smoothness of the optimized function. It is also
highly parallelizable and gains more power with
more CPUs available, which is welcome since the
optimization itself is quite expensive. The simplic-
ity of PSO also leaves space for various improve-
ments.

3 PSO Algorithm

The PSO algorithm was first described by Eber-
hart et al. (1995). PSO is an iterative optimization
method inspired by the behavior of groups of ani-
mals such as flocks of birds or schools of fish. The
space is searched by individual particles with their
own positions and velocities. The particles can in-
form others of their current and previous positions
and their properties.

3.1 TPSO

The original algorithm is defined quite generally.
Let us formally introduce the procedure. The
search space S is defined as

S =
D⊗

d=1

[mind,maxd] (3)

where D is the dimension of the space and
mind and maxd are the minimal and maximal
values for the d-th coordinate. We try to find a
point in the space which maximizes a given func-
tion f : S 7→ R.

There are p particles and the i-th particle in
the n-th iteration has the followingD-dimensional
vectors: position xni , velocity vni , and two vectors
of maxima found so far: the best position pni vis-
ited by the particle itself and the best known po-
sition lni that the particle has learned about from
others.

In TPSO algorithm, the lni vector is always the
globally best position visited by any particle so far.

The TPSO algorithm starts with simple initial-
ization:
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x0
i = rand(S) (4)

v0
i =

rand(S)− x0
i

2
(5)

p0
i = x0

i (6)

l0i = argmax
j

f(p0
j ) (7)

where the function rand(S) generates a random
vector from space S with uniform distribution.

The velocity for the next iteration is updated as
follows:

vt+1
i = wvti + U(0, 1)φpp

t
i + U(0, 1)φll

t
i (8)

where U(0, 1) denotes a random number be-
tween 0 and 1 with uniform distribution. The pa-
rameters w, φp, φl ∈ (0, 1) are set by the user and
indicate a slowdown, and the respective weight for
own vs. learned optimum.

All the following vectors are then updated:

xt+1
i = xti + vt+1

i (9)

pt+1
i = xt+1

i if f(xt+1
i ) > f(pti) (10)

lt+1
i = argmax

j
(f(pt+1

j )) (11)

The process continues with the next iteration
until all of the particles converge to proximity of a
certain point. Other stopping criteria are also used.

3.2 Modified SPSO2011

We introduce a number of changes to the algo-
rithm SPSO2011 described by Clerc (2012).

In SPSO2011 the global best position lti is re-
placed by the best position the particle has re-
ceived information about from other particles. In
the original SPSO2011 this is done in a synchro-
nized fashion: after every iteration, all particles
send their best personal positions to m other parti-
cles. Every particle chooses the best position it has
received in the current iteration and sets its lti ac-
cordingly. This generalization of lti is introduced
in order to combat premature convergence to a lo-
cal optimum.

To avoid waiting until all particles finish their
computation, we introduce per-particle memory
of “learned best positions” called the “neighbour-
hood set” (although its members do not have to be

located in any close vicinity). This set of best po-
sitions is limited to k elements, each new addition
over the limit k replaces the oldest information.
To establish the “global” optimum lti, every parti-
cle consults only its set of learned best positions.

The algorithm starts with the initialization of
particle vectors given by the equations (4-6). The
l0i is initialized with the value of p0

i . The sets of
learned best positions are initialized as empty.

Two constants affect computations given below:
w is again the slowdown and c controls the “ex-
pansion” of examined neighbourhood of each par-
ticle. We setw and c to values that (as per Bonyadi
and Michalewicz, 2014) ensure convergence:

w =
1

2ln(2)
≈ 0.721 (12)

c =
1

2
+ ln(2) ≈ 1.193 (13)

xti

lti

pti

Gt
i

vti

xt+1
i

yti wvti

vt+1
i

clti

cpti

Figure 1: Construction of the particle position up-
date. The grey area indicates P (G,x).

For the update of velocity, it is first necessary to
calculate a “center of gravity” Gt

i of three points:
the current position xti, a slightly “expanded” cur-
rent best position pti and a slightly expanded best
position known by colleagues lti. The “expansion”
of the positions is controlled by c and directed out-
wards from xti:

Gt
i = xti + c · p

t
i + lti − 2xti

3
(14)

To introduce further randomness, xti is relocated
to a position yti sampled from the uniform distri-
bution in the area P (Gt

i,x
t
i) formally defined as:
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P (G,x) =

D⊗

d=1

[
Gd−|Gd−xd|, Gd+ |Gd−xd|

]

(15)
Our P (G,x) is a hypercube centered in Gt

i and
touching xti, see Figure 1 for an illustration. The
original SPSO2011 used a d-dimensional ball with
the center in G and radius ‖G − x‖ to avoid the
bias of searching towards points on axes. We are
less concerned about this and opt for a simpler and
faster calculation.

The new velocity is set to include the previous
velocity (reduced by w) as well as the speedup
caused by the random relocation:

vt+1
i = wvti + yti − xti (16)

Finally, the particle position is updated:

xt+1
i = xti + vt+1

i = wvti + yti (17)

The optimized function is evaluated at the new
position xt+1

i and the particle’s best position is up-
dated if a new optimum was found. In any case,
the best position pt+1

i together with its value is
sent tom randomly selected particles (possibly in-
cluding the current particle) to be included in their
sets of learned best positions as described above.
The particle then sets its lt+1

i to best position from
its own list of learned positions.

The next iteration continues with the updated
vectors. Normally, the algorithm would terminate
when all particles converge to a close proximity
to each other, but it turns out that this often leads
to premature stopping. There are many other ap-
proaches possible to this problem (Xinchao, 2010;
Evers and Ben Ghalia, 2009), but we choose a sim-
ple restarting strategy: when the particle is send-
ing out its new best position and value to m fel-
lows, the manager responsible for this checks if
this value was not reported in the previous call
(from any other particle). If it was, then the current
particle is instructed to restart itself by setting all
of its vectors to random initial state.3 The neigh-
borhood set is left unchanged. The restart prevents
multiple particles exploring the same area.

The drawback of restarts is that the stopping cri-
terion is never met. In our first version, we ran

3The use of score and not position is possible due to the
nature of the space in which a same score of two points very
likely means that the points are equivalent.

the algorithm for a fixed number of position up-
dates, specifically 32000. Later, we changed the
algorithm to terminate after the manager has seen
3200 position updates without any update of the
global best position. In the following section, we
refer to the former as PSO without the termination
condition (PSO) and the latter as PSO with the ter-
mination condition (PSO-T).

Properties of SPSO2011 have been investigated
by Bonyadi and Michalewicz (2014). We use a
slightly different algorithm, but our modifications
should have an effect only on rotational invariance,
which is not so much relevant for our purpose.
Aside from the discussion on the values of w and
c with respect to the convergence of all particles
to the same point, Bonyadi and Michalewicz also
mention that SPSO2011 is not guaranteed to con-
verge to a local optimum. Since our search space
is discontinuous with plateaus, the local conver-
gence in the mathematical sense is not especially
useful anyway.

4 Implementation

We implemented the algorithm described above
with one parameter, the number of particles. We
set the size of the neighborhood set, denoted k
above, to 4 and the number of random particles re-
ceiving the information about a particle’s best po-
sition so far (m) to 3.

The implementation of our version of the PSO
algorithm is built within the standard Moses code.
The algorithm itself creates a reasonable parallel
structure with each thread representing a single
particle.

We use similar object structure as the base-
line MERT implementation. The points are rep-
resented by their own class which handles basic
arithmetic and stream operations. The class car-
ries not only the vector of the current position but
also its associated score.

Multiple threads are maintained by the stan-
dard Moses thread pools (Haddow, 2012). Ev-
ery thread (“Task” in Moses thread pools) cor-
responds to a particle and is responsible for cal-
culating its search in the space using the class
PSOOptimizer. There are no synchronous it-
erations, each particle proceeds at its own pace.

All optimizers have access to a global manager
object of class PSOManager, see Figure 2 for an
illustration. The manager provides methods for
the optimizers to get the best vector lti from the
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Run PSO-16 PSO-64 PSO-T-16 PSO-T-64 MERT-16
1 14.5474 15.6897 15.6133 15.6613 14.5470
2 17.3292 18.7340 18.7437 18.4464 18.8704
3 18.9261 18.9788 18.9711 18.9069 19.0625
4 19.0926 19.2060 19.0646 19.0785 19.0623
5 19.1599 19.2140 19.0968 19.0738 19.1992
6 19.2444 19.2319 - 19.0772 19.1751
7 19.2470 19.2383 - - 19.0480
8 19.2613 19.2245 - - 19.1359
12 - - - - 19.1625

Table 1: The final best BLEU score after the runs of the inner loop for PSO without and with the
termination condition with 16 and 64 threads respectively and standard Moses MERT implementation
with 16 threads.

ScorerData

FeatureData

ScorerData

FeatureData

PSOManager

+addPoint(Point p)
+getBestNeighbor(int i, Point P)
+cont()

AllTasks

...
PSOOptimizer

PSOOptimizationTaskPSOOptimizationTask

PSOOptimizer

Figure 2: Base structure of our PSO algorithm

neighborhood set, to report its best position to the
random m particles (addPoint) and to check if
the optimization should still run (cont) or termi-
nate. The method addPoint serves two other
purposes: incrementing an internal counter of it-
erations and indicating through its return value
whether the reporting particle should restart itself.

Every optimizer has its own FeatureData
and ScorerData, which are used to determine
the score of the investigated points. As of now,
the data is loaded serially, so the more threads we
have, the longer the initialization takes. In the
baseline implementation of MERT, all the threads
share the scoring data. This means that the data
is loaded only once, but due to some unexpected
locking, the baseline implementation never gains
speedups higher than 1.5, even with 32 threads,
see Table 2 below.

This structure allows an efficient use of multi-
ple cores. Methods of the manager are fast com-

pared to the calculations performed in the optimiz-
ers. The only locking occurs when threads are try-
ing to add points; read access to the manager can
be concurrent.

5 Results

We ran the tuning only for the English to Czech
part of the tuning task. We filtered and binarized
the model supplied by the organizers to achieve
better performance and smaller memory costs.

For the computation, we used the services of
Metacentrum VO. Due to the relatively high mem-
ory demands we used two SGI UV 2000 machines:
one with 48x 6-core Intel Xeon E5-4617 2.9GHz
and 6TB RAM and one with 48x 8-core Intel Xeon
E5-4627v2 3.30GHz and 6TB RAM. We ran the
tuning process on 16 and 64 CPUs, i.e. with 16
and 64 particles, respectively. We submitted the
weights from the 16-CPU run. We also ran a test
run using the standard Moses MERT implementa-
tion with 16 threads for a comparison.

Table 1 shows the best BLEU scores at the end
of each inner loop (as projected from the n-best
lists on the tuning set of sentences). Both meth-
ods provide similar results. Since the methods are
stochastic, different runs will lead to different best
positions (and different scores).

Comparison of our implementation with with
the baseline MERT on a test set is not nec-
essary. Both implementations try to maximize
BLEU score, therefore any overtraining occurring
in the baseline MERT occurs also in our imple-
mentation and vice versa.

Table 2 shows the average run times and
reached scores for 8 runs of the baseline MERT
and our PSO and PSO-T, starting with the same
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Wall Clock [s] Projected BLEU Reached
Outer Loop CPUs MERT PSO PSO-T MERT PSO PSO-T

1 1 186.24±10.63 397.28±2.13 62.37±19.64 14.50±0.03 13.90±0.05 13.84±0.05
1 4 123.51±3.58 72.75±1.12 21.94±4.63 14.51±0.03 14.48±0.08 14.46±0.06
1 8 135.40±8.43 43.07±0.78 15.62±3.40 14.52±0.04 14.53±0.05 14.42±0.12
1 16 139.43±8.00 33.00±1.37 14.59±2.21 14.53±0.02 14.51±0.08 14.48±0.10
1 24 119.69±4.43 32.20±1.62 16.89±3.16 14.52±0.02 14.55±0.06 14.47±0.07
1 32 119.04±4.47 33.42±2.16 19.16±2.92 14.53±0.03 14.50±0.04 14.50±0.07
3 1 701.18±47.13 1062.38±1.88 117.64±0.47 18.93±0.04 18.08±0.00 18.08±0.00
3 4 373.69±28.37 189.86±0.64 57.28±23.61 18.90±0.00 18.82±0.12 18.81±0.07
3 8 430.88±24.82 111.50±0.53 37.92±8.68 18.95±0.05 18.89±0.09 18.87±0.06
3 16 462.77±18.78 80.54±5.39 29.62±4.34 18.94±0.04 18.94±0.07 18.90±0.05
3 24 392.66±13.39 74.08±3.64 31.67±3.47 18.94±0.04 18.93±0.05 18.86±0.05
3 32 399.93±27.68 82.83±3.82 37.70±4.52 18.91±0.01 18.90±0.05 18.87±0.06

Table 2: Average run times and reached scores. The ± are standard deviations.

n-best lists as accumulated in iteration 1 and 3 of
the outer loop. Note that PSO and PSO-T use only
as many particles as there are threads, so running
them with just one thread leads to a degraded per-
formace in terms of BLEU. With 4 or 8 threads,
the three methods are on par in terms of tuning-
set BLEU. Starting from 4 threads, both PSO and
PSO-T terminate faster than the baseline MERT
implementation. Moreover the baseline MERT
proved unable to utilize multiple CPUs efficiently,
whereas PSO gives us up to 14-fold speedup.

In general, the higher the ratio of the serial data
loading to the search computation time, the worse
the speedup. The search in PSO-T takes much
shorter time so the overhead of serial data loading
is more apparent and PSO-T seems parallelized
badly and gives only quadruple speedup. The re-
duction of this overhead is highly desirable.

6 Conclusion

We presented our submission to the WMT16 Tun-
ing Task, a variant of particle swarm optimization
applied to minimum error-rate training in statisti-
cal machine translation. Our method is a drop-in
replacement of the standard Moses MERT and has
the benefit of easy parallelization. Preliminary ex-
periments suggest that it indeed runs faster and de-
livers comparable weight settings.

The effects on the number of iterations of the
MERT outer loop as well as on the test-set perfor-
mance have still to be investigated.
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