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Introduction

The First Conference on Machine Translation (WMT 2016) took place on Thursday and Friday, August
11-12, 2016 in Berlin, Germany, immediately following the annual meeting of the Association for
Computational Linguistics (ACL).

This is the first time WMT has been held as a conference, following 10 earlier editions where it was held
as a workshop. WMT was held for the first time at HLT-NAACL 2006 in New York City, USA. In the
following years the Workshop on Statistical Machine Translation was held at ACL 2007 in Prague, Czech
Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala,
Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia,
Bulgaria, ACL 2014 in Baltimore, USA, and EMNLP 2015 in Lisbon, Portugal.

The focus of our conference was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
conference we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages, languages with partial free
word order, and low-resource languages.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 10 shared tasks. This consisted of five translation tasks: Machine Translation of News,
Machine Translation of IT domain, Biomedical Translation, Multimodal Machine Translation, and
Cross-lingual Pronoun Prediction, three evaluation tasks: Metrics, Quality Estimation, and Tuning,
as well as the Automatic Post-Editing and Bilingual Document Alignment tasks. Five of these tasks
were run at WMT for the first time. The Machine Translation of IT domain and the Biomedical
Translation tasks extend the general translation task by focusing on measuring translation quality for
domain-specific applications. The Multimodal Machine Translation task includes image descriptions
in multiple languages, as well as non-textual information in the form of image features to measure the
quality of generating image descriptions in multiple languages. The Cross-lingual Pronoun Prediction
focuses on the problem of generating the correct pronoun in translation. Finally, the Bilingual Document
Alignment addresses the problem of automatically finding parallel documents in a large collection of
documents to facilitate the creation of parallel corpora.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submission than we could accept for
presentation. This year we have received 42 full research paper submissions. In total, WMT 2016
featured 13 full paper oral presentations (31% acceptance rate) and 87 shared task poster presentations.
The invited talk was given by Spence Green entitled “Interactive Machine Translation: From Research
to Practice”.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Ondfej Bojar, Christian Buck, Rajen Chatterjee, Christian Federmann, Liane Guillou, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Aurelie Neveol, Mariana Neves, Pavel Pecina, Martin Popel,
Philipp Koehn, Christof Monz, Matteo Negri, Matt Post, Lucia Specia, Karin Verspoor, Joerg Tiedemann,
and Marco Turchi
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Abstract

Tree-to-tree machine translation (MT) that
utilizes syntactic parse trees on both
source and target sides suffers from the
non-isomorphism of the parse trees due
to parsing errors and the difference of an-
notation criterion between the two lan-
guages. In this paper, we present a method
that projects dependency parse trees from
the language side that has a high quality
parser, to the side that has a low qual-
ity parser, to improve the isomorphism of
the parse trees. We first project a part of
the dependencies with high confidence to
make a partial parse tree, and then com-
plement the remaining dependencies with
partial parsing constrained by the already
projected dependencies. MT experiments
verify the effectiveness of our proposed
method.

1 Introduction

According to how syntactic parse trees are used
in machine translation (MT), there are 4 types of
MT approaches: string-to-string that does not use
parse trees (Chiang, 2005; Koehn et al., 2007),
string-to-tree that uses parse trees on the target
side (Galley et al., 2006; Shen et al., 2008), tree-
to-string that uses parse trees on the source side
(Quirk et al., 2005; Liu et al., 2006; Mi and Huang,
2008), and tree-to-tree that uses parse trees on both
sides (Zhang et al., 2008; Richardson et al., 2015).
Intuitively, the tree-to-tree approach seems to be
the most appropriate. The reason is that it could
preserve the structure information on both sides,
which leads to fluent and accurate translations.

In practice, however, good quality parsers on
both the source and target sides are difficult to ac-

"Corresponding author.

1

quire. In many cases, the parsing quality of one
side is much higher than that of the other side,
because the higher quality side has a well anno-
tated treebank or is linguistically easier to parse.
For example, in the case of Japanese-Chinese MT
that we study in this paper, the head-final charac-
teristic of Japanese (Isozaki et al., 2010) makes
the dependency parsing for Japanese much eas-
ier than that of Chinese. Currently, the depen-
dency parsing accuracy of Japanese is over 90%
(Kawahara and Kurohashi, 2006), while the Chi-
nese parsing accuracy is less than 80% (Shen et
al., 2012). Another problem is the annotation cri-
terion difference of the treebanks in different lan-
guages, which are used for training the parsers.
For example, the dependency annotations of noun
phrases and coordination could be different among
different languages. For example, in Japanese,
noun phrases and coordination are annotated as
modifier-head dependencies (Kawahara and Kuro-
hashi, 2006), while in Chinese they are annotated
as sibling dependencies (Shen et al., 2012). These
two problems lead to the parse difference between
the source and target parse trees, which affects the
translation rule extraction in tree-to-tree MT that
requires the isomorphism of the parse trees. This
extremely limits the translation quality of tree-to-
tree MT.

In this paper, we present an approach that
projects dependency trees from a high quality
(HQ) parser to a low quality (LQ) parser using
alignment information. The projection could re-
duce the parsing errors on the LQ side, and ad-
dress the annotation criterion difference problem.
This can make the LQ trees isomorphic to the HQ
trees, which can benefit the translation rule extrac-
tion in tree-to-tree MT, and thus improve the MT
performance. The idea of cross-language projec-
tion of parse trees has been proposed previously,
e.g., (Ganchev et al., 2009; Jiang et al., 2010; Goto

Proceedings of the First Conference on Machine Translation, Volume 1: Research Papers, pages 1-11,
Berlin, Germany, August 11-12, 2016. (©2016 Association for Computational Linguistics



Translation Example Database

Input:
iZer kg g dii
TH®

Output:
REHB/ELTIE
RbyT oAy FERN

Fig. 1: Anexample of the KyotoEBMT system on
Chinese-to-Japanese translation.

et al., 2015). However, few studies have been con-
ducted in the context of dependency based tree-to-
tree MT, which is the setting of this paper.

In addition, we propose a novel constrained par-
tial parsing method to address the word alignment
problems such as unaligned words and alignment
errors in projection. In detail, we first apply a par-
tial projection step to project a part of the depen-
dencies with high confidence judged by the align-
ment information and a projectivity criterion. We
thus obtain a projected “partial tree.” We then find
the missing dependencies from this partial tree by
applying a “partial parsing” method: we apply a
parser to find the missing dependencies subject to
respecting the projected dependencies, so that we
obtain a full dependency tree. Initially, the LQ
parser is used for the partial parsing process. Once
the entire projection process has been finished, we
select a part of the projected trees based on the de-
pendency projection ratio of the partial projection
step, and re-train a parser for the LQ side. This
re-trained parser tends to be more isomorphic to
the HQ parser, and thus we again apply it for the
partial parsing process.

We conduct experiments with an open source
dependency based tree-to-tree MT system Ky-
otoEBMT! (Richardson et al., 2015) on the
Japanese-Chinese language pair. Because of the
improvement of the isomorphism of the source
and target parse trees by our proposed method,
we achieve significant MT performance improve-
ments on both Japanese-to-Chinese and Chinese-
to-Japanese translation directions.

2 The Difficulties of Tree-to-Tree MT
2.1 Overview of the KyotoEBMT System

This study is conducted on the KyotoEBMT sys-
tem (Richardson et al., 2015), which is a represen-

! http://nlp.ist.i.kyoto-u.ac jp/EN/index.php?KyotoEBMT

tative dependency based tree-to-tree MT system.
Figure 1 shows an overview of the KyotoEBMT
system on Chinese-to-Japanese translation. The
translation example database is automatically con-
structed from a parallel training corpus by means
of a discriminative alignment model (Riesa et al.,
2011). It contains “examples” that form the hy-
potheses to be combined during decoding. Note
that both source and target sides of all the exam-
ples are stored in dependency trees. An input sen-
tence is also parsed and transformed into a depen-
dency tree. For all the subtrees in the input de-
pendency tree, matching hypotheses are searched
in the example database. This step is the most
time consuming part, and a fast subtree retrieval
method (Cromieres and Kurohashi, 2011) is used.
There are many available hypotheses for one sub-
tree, and also, there are many possible hypothesis
combinations. The best combination is detected
by a lattice-based decoder, which optimizes a log-
linear model (Cromieres and Kurohashi, 2014). In
the example in Figure 1, four hypotheses are used.
They are combined and produce an output depen-
dency tree, which is the final translation. For more
details of the system, please refer to (Richardson
et al., 2015).

2.2 The Translation Example Extraction
Problem

One advantage of the KyotoEBMT system is that
it can handle examples that are discontinuous as
a word sequence but continuous structurally, be-
cause of the usage of both source and target parse
trees. In Figure 2, for example, the translation ex-
ample of “26-31: L9 5 Z & & /R % /4:5RH
14:25/8L (show the similarity)” and “0-2: 2D Z &
1330-35:RI2F % £ D & B DD /0-4:1\ Ayix—
I 5220 (I think that this phenomenon shows)”
can be extracted by the KyotoEBMT system, be-
cause they are continuous in the parse trees. How-
ever, in phrase based MT (Koehn et al., 2007),
both of these two translation examples could not
be extracted. The reason for this is that “4:2¢H]
(show)” and “14:25{L (similarity)” are discontin-
uous in the Chinese sentence; similarly, “0-2: Z @D
Z & & (this phenomenon)” and “30-35:/RIE 4 %
H DL EDND (I think that shows)” are discon-
tinuous in the Japanese sentence.

On the other hand, it also adds the constraint
that a translation example has to share the same
structure on the parse trees to guarantee the quality
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of the extracted examples. This could be a prob-
lem because of two reasons. The main reason is
parsing error. In Figure 2, for example, because
of the parsing errors in the Chinese parse tree, the
translation examples of “3-8:JK #1 D K + D/6-
10:4x4 K + 4 (sap’s K+),” and “13-17:K +
DA% & 1/16-19: 4 K+ (only include K+)”
could not be extracted. The other reason is the an-
notation criterion difference. In Figure 2, for ex-
ample, the translation example of “18:f5¥E 19:3X
BL21: 474 2237 £ (standard sample)” could not
be extracted, though both of the parses are correct.
In Japanese this kind of noun phrase structure is
annotated as the modifier-head, while in Chinese
it is annotated as siblings depending on the last
word.

One possible solution to address the above
problem is to loosen the constraint for translation
example extraction. For example, to extract the
“18:A5HE 19:5:0R /21 #7: 4E 22: 33t £ (standard sam-
ple)” example caused by the annotation criterion
difference, we might allow the extraction of exam-
ples that are modifier-head and sibling subtrees on
the source and target sides, respectively. However,
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Fig. 3: An overview of our constrained partial
parsing based projection method.

firstly, even the loosening in this degree could also
lead to other noisy translation examples; secondly,
what kind of loosening is required for the parse
error case is unclear, because the types of parse er-
rors are diverse. Therefore, instead of loosening
the constraint, we choose the cross-lingual projec-
tion approach to address the problem.

3 Projection of Dependency Trees with
Constrained Partial Parsing

Figure 3 is an overview of our proposed con-
strained partial parsing method. Firstly, we apply
a partial projection process to project a part of the



dependencies from the HQ tree using the HQ tree,
word alignment information and a projectivity cri-
terion. Note that the word alignment information
is omitted in Figure 3 for simplification. In Fig-
ure 3, the circled part in the HQ tree is projected.
Next, we apply partial parsing to complement the
other dependencies in the partially projected tree
using the LQ parser. In Figure 3, as the LQ parser
could parse the circled part in the original LQ tree
correctly, it also complements the dependencies
for the partially projected tree correctly. Once we
obtained the projected trees, we select a part of the
highly confident projected trees as training data to
re-train the LQ parser. Finally, we apply the re-
trained LQ parser for the partial parsing process,
which further improves the quality of projection.

In the remaining of this section, we describe the
details of partial projection, partial parsing, and re-
training of the LQ parser in Section 3.1, 3.2, and
3.3 respectively.

3.1 Partial Projection

3.1.1 Direct Mapping for Dependency Tree
Projection

We first present a direct mapping method for de-
pendency tree projection using word alignment,
which can be formalized as below.

Given a parallel sentence pair (S,7"), where
S = 51...8;...5p, and T' = t;...t;...t,, are sen-
tences of the HQ and LQ sides, respectively; s;
and t; denote the word index (which also de-
notes the node index in the dependency tree) in
the corresponding sentences. We have a depen-
dency tree for S denoted as T'reeg = {(s;, Sg)..-}
that is composed of a set of dependencies, where
(s, s) means that the word s; is dependent on
the word s;. We also have an alignment set A =
{a(si,tj)...} from S to T, where a(s;,t;) means
that the HQ word s; is aligned to the LQ word ;.
The new LQ parse tree T'ree’”" is projected from
Treeg. We first perform the following preprocess-
ing for the unaligned HQ words.

e unaligned words (HQ side): If s; is an un-
aligned word, link the dependencies around
s;. More specifically, if s; is unaligned, and
(sn,si) € Treeg, (si,s;) € Treeg, we
add (sp, sx) to Treeg, and discard (sp, s;)
and (s;,si) from Treeg. This preprocess
can make two distinct words separated by
unaligned words be a modifier-head pair.
For example, in Figure 2, because “32:% M

(thing)” is an unaligned word, we add (30:7~
I# (show), 33: & (and)) to Treeg.

We then process each source node s; in T'reeg
in a top-down manner (from the root node to the
leaf node) by applying the following rules divided
by the alignment types.

e one to one alignment: If s; aligns to a unique
tj, si aligns to a unique ¢;, and (s;,s;) €
Treeg, add (t;,t;) to Tree’. For example,
in Figure 2, the Japanese dependency (0: Z D
(this), 1: Z & (phenomenon)) is projected to
the Chinese side as (1:7X2:— (this)) by ap-
plying this rule.

e many to one alignment: If (s;, s, ...) aligns
to t;, we take the head s, (e.g., s;) from
(i, Sk,...) as the representative, and then
perform the same process as in the one to
one alignment case. For example, in Fig-
ure 2, a(33: & 34: 8 35:41% (think), 0:iA
79(think)) is a many to one alignment, and
we select the head “34: 5840 as the represen-
tative.

e one to many alignment:. If s; aligns to sev-
eral words (¢;,1;,...), similar to the many to
one alignment case, we take the head ¢, (e.g.,
t;) from (¢;,%;,...) based on the original LQ
tree as the representative, and then perform
the same process as in the one to one align-
ment case for s; and ¢,..

e many to many alignment: Reduce this to one-
to-many and many-to-one cases, i.e., select
the representatives for both sides, and then
perform the same process as in the one to one
alignment case.

3.1.2 Partial Projection with Direct Mapping

There are several cases that the direct mapping
method could not deal with:

1. the other nodes in the one to many alignment
case: For the nodes (e.g., t;) (in (t;,1,...)
that align to one word s;) other than the rep-
resentative t,., there are no clues to determine
their dependencies during the projection.

2. unaligned words (LQ side): If t; is an un-
aligned word, there are also no clues for the
projection. For example, in Figure 2, because
the word Chinese “3:F4 (phenomenon)”,



“15:5- (and)” and “20:# (’s)” are unaligned
words, we cannot determine their dependen-
cies by projection.

3. alignment errors: Because the direct map-
ping method highly depends on word align-
ments, erroneous word alignments would
lead to wrong projected dependency results.
For example, in Figure 2, the Japanese
word “12:83 U A (preferably)” is incorrectly
aligned to the Chinese word “13:}H: (ex-
tremely)”; this erroneous alignment would
project the Japanese dependency (12:42 U A
(preferably), 14:+) to the Chinese side, lead-
ing to a projected dependency of (13:}% 1
(extremely), 19:+), which is obviously in-
correct. Alignment errors could happen due
to many factors, one of which is translation
shift. The erroneous alignment in Figure 2 is
caused by this.

Because of the existence of the above cases, we
only apply the direct mapping method for partial
projection. For the (1) and (2) cases, we leave the
dependencies for these words as null. For the (3)
case, we propose a projectivity criterion to detect
the alignment error, and again leave the dependen-
cies as null. Note that all of these three cases are
processed during the top-down projection process.

3.1.3 Adding a Projectivity Criterion to the
Projection Process

Projectivity is a property of dependency pars-
ing, which informally means that there should
not be crossing arcs in a dependency tree (Kubler
et al., 2009). For example, Treer”™ =
{(0,2)(1,3)(2,3)(3,—1)} (-1 denotes the root) is
not projective, because the arc of modifier-head
pair (0,2) and that of modifier-head pair (1,3) is
crossed. We use the projectivity property to de-
tect alignment errors during the top-down projec-
tion process. Suppose that by processing the HQ
tree from the root, we already have a partially pro-
jected LQ subtree. Next, we want to project a
new dependency in the HQ tree to the LQ side. If
adding this newly projected dependency to the par-
tially projected subtree leads to non-projectivity,
we give up this projection and leave the depen-
dency as null.

Many alignment errors can be detected by the
property of projectivity. For example, in Figure

% Note that not all non-projectivites are caused by align-
ment errors; a few of them are also due to translation shift.

2, if we use the erroneous alignment a(12:4} L
% (preferably), 13: % H (extremely)) to project
the Japanese dependency (12:42 U 5 (preferably),
14:+) to the Chinese side, we obtain the depen-
dency of (13: % H (extremely), 19:+). Before the
projection for the node “12:4> U % (preferably)”,
because the node “24: 2% (behavior)” is an an-
cestor of this node in the Japanese tree, it has been
projected. The dependency (24: Z£HE]j (behavior),
26: %5 (similar)) has been projected to the Chi-
nese side, leading the dependency of (27:/FH (be-
havior), 14:35{8 (similar)). (13: &% (extremely),
19:4) and (27:/EH (behavior), 14:25{5L (similar))
lead to non-projectivity. Therefore, we leave the
dependency for “13: % H (extremely)” as null.

3.2 Partial Parsing

After the partial projection step, we obtain partial
projected trees, with null dependencies discussed
in Section 3.1.2. We then perform partial parsing
to complement these null dependencies. Before
the description of the partial parsing method, we
first review the formalism of dependency parsing
used in many previous studies such as (Kubler et
al., 2009; Shen et al., 2012):

Y* = argmazycex)score(Y, X) (1)

where X = x...x;...x, is the input sentence, Y
is a candidate tree, ®(X) is a set of all possible
dependency trees over X. Y can be denoted as
Y ={(m,h) : 0 <m < n,0 <h < n}, where
(m, h) is a dependency from the modifier x,,, to
the head zj. The problem of dependency parsing
is to search the best tree from ®(X) that maxi-
mizes the score function score(Y, X). The score
function can be factorized as the summation of the
scores of its factors (subtrees):

score(Y,X) = Z score(F, X) ()
Fey

The score function for each factor is denoted as the
inner product of a feature and a weight vector:

score(F, X) =w- f(F,X) 3)

The weight vector can be learnt by e.g., the av-
eraged structured perceptron algorithm (Collins,
2002) on an annotated treebank. During parsing,
the parser would utilize the learnt weight vector to
determine the best parse tree.

In our partial parsing method, we aim to keep
the dependencies in partial projected trees, while



complement the null dependencies to construct a
projective tree. To realize this, we set extremely
high scores to the projected dependencies to max-
imize the score(F,X) for these dependencies,
while for the null dependencies we set relatively
small scores. Doing so, the parser would search
the best tree that respects the partial projected
dependencies. In our experiments, we used the
projective second order graph based dependency
parser (Shen et al., 2012). We set the initial de-
pendency scores for the projected dependencies to
lel2, and O to the null dependencies.

3.3 Re-train a New Low Quality Side Parser

Re-training a new LQ parser on the projected trees
is necessary for two reasons. Initially, we use the
original LQ parser for the partial parsing process,
because we do not have a better choice; due to the
low accuracy and the annotation criterion differ-
ence problem of the LQ parser, we have the risk
that it will produce unsatisfying parsing results,
especially for the trees with a low ratio of depen-
dencies being projected. Secondly, if we perform
the LQ-to-HQ direction MT, we should make the
parsed trees of the input sentences isomorphic to
the projected trees. Re-training a new LQ parser
on the projected trees could address both of these
two problems. As the re-trained parser tend to
be more isomorphic to the HQ parser, it could be
more effective for the partial parsing process, and
could be applied for parsing the input sentences
for the LQ-to-HQ direction MT task.

Therefore, after the entire projection process,
we select a part of the projected trees, and re-train
a parser for the LQ side. How to select the pro-
jected trees for training the new LQ parser is an
open question. The main question is how to take
the balance of the quality and quantity of the pro-
jected trees. Currently, the selection criterion is
empirical based on the ratio of dependencies pro-
jected by the partial projection process in a tree,
defined by

. #projected_dependencies
ratio = - 4)
#all_dependencies

The motivation behind this is that the more de-
pendencies projected by the partial projection in
a tree, the more isomorphic would the projected
tree be as the HQ tree, and the less affect would
be introduced by the original LQ parser during the
partial parsing process. We set a threshold, and

use the trees with the ratio higher than the thresh-
old for training the parser. We tried several thresh-
olds in our preliminary experiments, and selected
the best threshold of 0.78 (170k trees) based on the
MT performance.’

4 Experiments

We conducted Japanese-Chinese MT experiments
to verify the effectiveness of our constrained par-
tial parsing based projection method.

4.1 Settings

We conducted experiments on the scientific do-
main MT task on the Japanese-Chinese paper ex-
cerpt corpus (ASPEC-JC),* which is one sub-
task of the workshop on Asian translation (WAT)?
(Nakazawa et al., 2015). The ASPEC-JC task
uses 672,315, 2,090, and 2,107 sentences for train-
ing, development, and testing, respectively. We
used the tree-to-tree MT system KyotoEBMT®
(Richardson et al., 2015) for all of our MT exper-
iments. For Chinese, we used the Chinese ana-
lyzing tool KyotoMorph’ proposed by Shen et al.
(2014) for segmentation and part-of-speech (POS)
tagging, and the SKP parser® (Shen et al., 2012)
for parsing. As the baseline Chinese parser, we
trained SKP with the Penn Chinese treebank ver-
sion 5 (CTBS)? containing 18k sentences in news
domain, and an in-house scientific domain tree-
bank of 10k sentences. For Japanese, we used JU-
MAN!? (Kurohashi et al., 1994) for morpholog-
ical analyzing, and the KNP parser for parsing!!
(Kawahara and Kurohashi, 2006). We trained
two 5-gram language models for Chinese and
Japanese, respectively, on the training data of the
ASPEC corpus using the KenLM toolkit'? with
interpolated Kneser-Ney discounting, and used
them for all the experiments. In all of our ex-
periments, we used the discriminative alignment
model Nile!? (Riesa et al., 2011) for word align-
ment; tuning was performed by the k-best batch

3 The average partial projection ratio was 0.70.

4 http://lotus.kuee kyoto-u.ac jp/ASPEC/

5 http://orchid.kuee kyoto-u.ac jp/WAT/

® http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KyotoEBMT)
7 https://bitbucket.org/msmoshen/kyotomorph-beta

8 https://bitbucket.org/msmoshen/skp-beta

? https://catalog.ldc.upenn.edu/LDC2005T01

19 http:/mlp.ist.i.kyoto-u.ac jp/EN/index.php?JUMAN
' http://nlp.ist.i.kyoto-u.ac.jp/EN/index . php?KNP

12 https://github.com/kpu/kenlm/

13 https://github.com/neubig/nile



MIRA (Cherry and Foster, 2012) with 10 itera-
tions, and it was re-run for every experiment.

Note that, in our task, Japanese is the HQ parser
side, and Chinese is the LQ parser side, because of
the parsing accuracy difference (90% v.s. 80%).
Therefore, in our experiments, we projected the
Japanese parse trees to Chinese. We compared
the MT performance of our proposed projection
method with the baseline Chinese parser. For
Japanese-to-Chinese MT experiments, we com-
pared the MT results of the Chinese training data
parsed by the baseline parsed, to those of the pro-
jected trees. For Chinese-to-Japanese MT, we also
re-parsed the development and test Chinese sen-
tences using the SKP model trained on the pro-
jected Chinese trees, for the comparison.

4.2 MT Results

Table 1 shows the results, where KyotoEBMT is
the baseline system that used the Chinese parser
trained on CTBS5; Baseline partial parsing de-
notes the projection systems that used the Chi-
nese parser trained on CTBS5 for the partial pars-
ing process; Re-trained partial parsing denotes the
systems that used the Chinese parser re-trained
on the projected trees for the partial parsing pro-
cess. For reference, we also show the MT per-
formance of the phrase based, string-to-tree, and
tree-to-string systems, which are based on the
open-source GIZA++/Moses pipeline (Koehn et
al., 2007). Note that in all of the Moses, string-to-
tree, and tree-to-string settings, Japanese is always
in the string format, and Chinese is parsed by the
Berkeley parser'# (Petrov and Klein, 2007).'> The
significance tests were performed using the boot-
strap resampling method (Koehn, 2004).

We can see that, the Baseline KyotoEBMT sys-
tem outperforms the Moses, string-to-tree, and
tree-to-string systems, which verifies the effective-
ness of the tree-to-tree approach. The performance
difference of KyotoEBMT against the other three
MT approaches on the Ja-to-Zh direction is much
larger than those of the Zh-to-Ja direction. The
reason for this is that KyotoEBMT is much more
sensitive to the parsing accuracy on the source
side, because the source tree is utilized in the or-
dering of the final translation. Therefore using
Chinese as the source side limits the effectiveness

1 https://github.com/slavpetrov/berkeleyparser

15 We show the MT performance of Moses that only parsed
the Chinese data, because these were the baseline systems of
WAT.

System | Ja-to-Zh | Zh-to-Ja

Moses phrase based 27.25 33.94
Moses string-to-tree 26.20 N/A
Moses tree-to-string N/A 33.49
Baseline KyotoEBMT 29.33 34.73
Baseline partial parsing 30.12¢ 35.84%
Re-trained partial parsing 30.28" | 36.18'"

Tab. 1: BLEU scores for ASPEC Ja-to-Zh and
Zh-to-Ja (““1,” and “1” indicate that the re-
sult is significantly better than “Baseline
KyotoEBMT” and “Baseline partial pars-
ing” at p < 0.01, respectively).

System \ Ja-to-Zh \ Zh-to-Ja

Baseline KyotoEBMT 13.13M 8.43M

Baseline partial parsing 15.69M 9.88M

Re-trained partial parsing | 15.69M 9.90M

Tab. 2: Number of hypotheses for the test sen-
tences.

of the KyotoEBMT system. Baseline partial pars-
ing performs significantly better than the Baseline
KyotoEBMT, and Re-trained partial parsing fur-
ther improves the performance significantly. We
also observe slightly more improvement on the
Zh-to-Ja direction than the Ja-to-Zh direction. The
reason is similar to the one above that in Zh-to-Ja
task, we not only improve the translation example
extraction, but also the quality of the input trees.

To further understand the reason for the MT
improvement, we investigated the number of hy-
potheses for the test sentences. The number of hy-
potheses for a test sentence is the number all the
matching hypotheses in the example database for
all the subtrees in the input dependency structure
of the test sentence (refer to Section 2.1). The en-
tire number of hypotheses for all the test sentences
of different systems are shown in table 2. We can
see that the number of hypotheses for the partial
parsing systems is greatly larger than the baseline
KyotoEBMT system. The reason for this is that
our projection method significantly increased the
isomorphism of the source and target trees in the
training corpus, making more translation exam-
ples being extractable. More hypotheses are po-
tentially to improve the final MT performance.

In addition, we investigated the translation re-
sults of the Baseline KyotoEBMT and Re-trained
partial parsing systems. We found that there are
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Fig. 4: An improved example of Zh-to-Ja translation (The subtrees in corresponding IDs/colors in the
input and output dependency trees show the translation examples being used during translation).

three reasons that lead to the improvement. We
explain these reasons through an improved exam-
ple of Zh-to-Ja translation shown in Figure 4. The
first reason is the improvement of the input parse
tree. There is a crucial parsing error in the input
tree of the Baseline KyotoEBMT system. The Ky-
otoMorph incorrectly assigned a wrong POS tag
“VV (verb)” for the word “15:#1#l] (inhibition)”,
which should be “NN (noun)” in fact. This leads to
this word be the head of the whole following noun
phrase. Using this erroneous input parse tree, this
word is also translated into the head of the entire
noun phrase. Our Re-trained partial parsing cor-
rectly parsed the word “15:4l1i] (inhibition)” as
a part of the noun phrase “15-18:#JI il 45 74 ¥E5¢
I& (inhibition of oxygen consumption test)”, lead-
ing to the correct translation. Although the Re-
trained partial parsing could not correct the wrong
POS tag of the word, because we also used this
kind of data to train the parser, it successfully
parsed this sentence. The second reason is the in-
crease of translation hypotheses. The number of
hypotheses for the Baseline KyotoEBMT system
is 2,447, while the number of hypotheses of the
Re-trained partial parsing system is 3,311. The
number of hypotheses for “0:%f %tf...7: 347 8: T
(about...performed)” increased from 52 to 176 by
the Re-trained partial parsing system, which im-
proved the translation. The third reason is the iso-
morphism of the input and output target depen-
dency trees. Note that the noun phrases “15-18:
111 48 74 #£ 52 B8 (inhibition of oxygen consump-
tion test)” and “20-23: KB B SR 5296 (large-

scale flea acute toxicity test)” are parsed as sib-
lings in the Baseline KyotoEBMT system, while
in our Re-trained partial parsing model they are
parsed as modifier-head dependencies, which are
isomorphic to the Japanese parse tree. One unsat-
isfying point is that “21: 2 /2\M: (flea acute)” is an
unknown word, which is a difficult technical term
that could not be translated by both of the two sys-
tems.

5 Related Work

There are many previous studies that propose
many methods to address the difficulties in pro-
jecting the parse trees from a resource rich lan-
guage (e.g., English) to a low resource language,
to improve the parsing accuracy of the low re-
source language. The difficulties in projection
can be mainly divided into two categories: word
alignment errors and annotation criterion differ-
ence (Gancheyv et al., 2009).

To address the word alignment error prob-
lem, several studies have proposed to train a tar-
get parser on high confidence partially projected
trees. Ganchev et al. (2009) presented a par-
tial projection method with constraints such as
language-specific annotation rules. They then
trained a target parser using the partially pro-
jected trees. Spreyer and Kuhn (2009) proposed
a similar method that trains both graph-based and
transition-based dependency parsers on the par-
tially projected trees. Rasooli and Collins (2015)
proposed a method to train a target parser on



“dense” projected trees. The “dense” projected
trees might only contain a part of dependencies
over a threshold. Our proposed method differs
from the previous studies in several aspects: we
propose the use of the projectivity criterion for
partial projection; we utilize the original target
parser and propose a constrained partial parsing
algorithm; we re-train a target parser on the full
trees generated by the partial parsing.

To address the annotation criterion difference
problem in projection, Hwa et al. (2005) firstly
projected the dependency parse trees, and then
applied post projection transformations based on
manually created rules. Jiang et al. (2011) pre-
sented a method that tolerates the syntactic non-
isomorphism between languages. This allows the
projected parse trees do not have to follow the an-
notation criterion of the source parse trees. Our
proposed method does not adjust the annotation
criterion difference between the source and the
projected trees, because in our tree-to-tree MT
task, we prefer isomorphic trees.

Only a few studies have been conducted to
improve MT performance via projection. For
string-to-string MT (Koehn et al., 2007), Goto et
al. (2015) proposed a pre-ordering method that
projects target side constituency trees to the source
side, and then generates pre-ordering rules based
on the projected trees. For tree-to-string MT,
Jiang et al. (2010) combined projection and su-
pervised constituency parsing by guiding the pars-
ing procedure of the supervised parser with the
projected parser. They showed that the guided
parser achieved comparable MT results on a tree-
to-string system (Liu et al., 2006), compared to
a normal supervised parser trained on thousands
of CTB trees. For tree-to-tree MT (Richardson et
al., 2015), Shen et al. (2015) proposed a naive
projection method. They complemented the re-
maining dependencies for a partially projected tree
with a backtracking method. Namely, they reused
the dependencies in the original target tree for the
complement without considering the partially pro-
jected dependencies. In contrast, in this paper
we propose partial parsing for the complement, in
which we search for the best parse tree by taking
account of the partially projected dependencies.

6 Conclusion

In this paper, we proposed a constrained partial
parsing method for projection to address the non-

isomorphic parse tree problem in a dependency
based tree-to-tree MT system. Experiments ver-
ified the effectiveness of our proposed method. As
future work, firstly, we plan to design a better way
for selecting the projected trees for re-training the
LQ parser. Secondly, we plan to perform the par-
tial parsing in several iterations. Finally, we plan
to conduct experiments on more language pairs
to show the language-dependence of our proposed
method.
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Abstract

Information about the antecedents of pro-
nouns is considered essential to solve cer-
tain translation divergencies, such as those
concerning the English pronoun if when
translated into gendered languages, e.g.
for French into il, elle, or several other
options. However, no machine translation
system using anaphora resolution has so
far been able to outperform a phrase-based
statistical MT baseline. We address here
one of the reasons for this failure: the im-
perfection of automatic anaphora resolu-
tion algorithms. Using parallel data, we
learn probabilistic correlations between
target-side pronouns and the gender and
number features of their (uncertain) an-
tecedents, as hypothesized by the Stan-
ford Coreference Resolution system on the
source side. We embody these correlations
into a secondary translation model, which
we invoke upon decoding with the Moses
statistical phrase-based MT system. This
solution outperforms a deterministic pro-
noun post-editing system, as well as a sta-
tistical MT baseline, on automatic and hu-
man evaluation metrics.

1 Introduction

Pronoun translation remains a challenge for ma-
chine translation (MT), likely because solving cer-
tain translation divergencies between source and
target pronouns requires non-local information,
possibly from one or more sentences before the
one that is being translated. In this paper, we fo-
cus on the divergencies that occur when translat-
ing the English neutral pronouns it and they into
French. Depending on their functions (referen-
tial or pleonastic) and on their actual antecedents,
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Source: My cat brought home a mouse that he
hunted, and ity was not dead but ity was mor-
tally wounded. What is the best way to kill its
humanely?

MT: Mon chat a ramené a la maison une souris
qui il a chassé, et ily était pas mort, mais ily a
été mortellement blessé. Quelle est la meilleure
facon de les tuer humainement?

Figure 1: Wrong translations of it into French (1-
3) resulting in a serious misunderstanding.

there are almost twenty different lexical items that
can serve as translations into French, e.g. for it: il,
elle, ce/c’, cela, ¢a, on, le, and others.

For instance, in an example from an online dis-
cussion forum shown in Figure 1, two referents are
mentioned, a cat and a mouse, which are translated
in French by nouns with different genders: mas-
culine for cat (le chat) vs. feminine for mouse (la
souris). The three instances of it, referring to the
mouse, should be translated into feminine French
pronouns: respectively elle, elle and la (the latter
is an object pronoun). However, the online MT
system to which we submitted this example trans-
lated all of them with the masculine forms, mak-
ing the readers think that the author intends to kill
his/her cat.

The designers of MT systems have been aware
of this problem and sometimes tried to address it,
starting already from rule-based systems. How-
ever, it is only recently that specific strategies
for translating pronouns have been proposed and
evaluated (see Hardmeier (2014), Section 2.3.1).
Most of the strategies have attempted to con-
vey information from anaphora resolution sys-
tems to statistical MT ones, by constraining target
pronouns based on features of their antecedents
in the target language (Hardmeier and Federico,
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2010; Le Nagard and Koehn, 2010). Still, at the
DiscoMT 2015 shared task on pronoun-focused
EN/FR translation (Hardmeier et al., 2015), none
of the submitted systems was able to outperform a
well-trained phrase-based statistical MT baseline.
Apart from the need for considering first the func-
tions of pronouns and then their antecedents, if any
(Guillou, 2016), one of the reasons that limit per-
formance is the large number of errors made by
co-reference or anaphora resolution systems.

In this paper, we attempt to model the uncer-
tainty of an off-the-shelf coreference resolution
system (Lee et al.’s (2011) Stanford system) with
respect to its impact on MT. We propose to learn
from parallel data the correlations between tar-
get side pronouns and the gender/number of their
(uncertain) antecedents, as hypothesized by the
coreference resolution system. These correlations
are represented as an additional translation model,
which we baptize ‘coreference model’ or CM. We
use this model as an additional translation table
in the Moses phrase-based statistical MT system
(Koehn et al., 2007) along with a standard phrase-
based translation table. While decoding, the an-
tecedents are obtained from the Stanford system
as well, and their target-side features are obtained
through alignment and POS analysis. Through ex-
periments based on the DiscoMT 2015 data (tran-
scripts of TED talks), and automatic and human
evaluation metrics, we show that our solution out-
performs a deterministic pronoun post-editing sys-
tem, as well as the DiscoMT 2015 statistical MT
baseline.

Below, we first review previous work (Sec-
tion 2) before explaining how the coreference
model is constructed (Section 3). The integration
of the model into the Moses SMT decoder is pre-
sented in Section 4. We report and discuss the re-
sults of our experiments in Section 5.

2 Related Work

Following considerable achievements during the
early 1990s, many rule-based and statistical
anaphora resolution systems have been designed
in the past two decades (Mitkov, 2002; Ng, 2010).
However, only recently were they exploited as a
knowledge source for improving pronoun trans-
lation. Using rule-based or statistical methods
for anaphora resolution, several studies have at-
tempted to integrate anaphora resolution with sta-
tistical MT, as reviewed by Hardmeier (2014, Sec-
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tion 2.3.1). Le Nagard and Koehn (2010) trained
an English-French translation model on an anno-
tated corpus in which each occurrence of the En-
glish pronouns it and they was annotated with the
gender of its antecedent on the target side. Their
system correctly translated 40 pronouns out of the
59 that they examined, but was not able to outper-
form a baseline that was not aware of coreference,
which correctly translated 41 pronouns. These
results were likely due to the insufficient perfor-
mance of anaphora resolution.

Integrating anaphora resolution with statis-
tical MT, Guillou (2012) deployed pronoun-
focused translation in English-Czech SMT, study-
ing the imperfect coreference and alignment re-
sults. Hardmeier and Federico (2010) proposed to
integrate a word dependency model into the SMT
decoder as an additional feature function, which
kept track of pairs of source words acting respec-
tively as antecedent and anaphor in a coreference
link. This model helped to improve slightly the
English-German SMT performance (F-score cus-
tomized for pronouns) on the WMT News Com-
mentary 2008 and 2009 test sets, with relative
gains of 0.9% and 0.7% respectively.

Following the same strategy, in a previous
study (Luong et al., 2015), we combined lin-
early the score obtained from a coreference reso-
lution system with the score from the search graph
of the Moses decoder, to determine whether an
English-French SMT pronoun translation should
be changed into the opposite gender (e.g. il —
elle). Our system thus combines knowledge from
the coreference links and the MT search graph
with several post-editing rules. Although our sys-
tem performed best among the six participants in
the pronoun-focused shared task at the 2015 Dis-
coMT workshop (Hardmeier et al., 2015), it still
remained below the SMT baseline.

Several other studies attempted to automati-
cally correct (post-edit) pronouns in SMT out-
put, including as features the baseline translation
of each pronoun. A considerable set of coref-
erence features, used in a deep neural network
architecture, was presented by Hardmeier (2014,
Chapters 7-9), who observed significant improve-
ments on TED talks and News Commentaries. Al-
ternatively, to avoid extracting features from an
anaphora resolution system, Callin et al. (2015)
developed a classifier based on a feed-forward
neural network, which considered as features the



preceding nouns and determiners along with their
parts-of-speech. Their predictor worked particu-
larly well, with over 80% of F-score, on the ce
and ils target pronouns for English-French MT.
The predictor reached an overall macro F-score of
55.3% for all classes, thus outperforming the Dis-
coMT 2015 shared task systems and baseline after
the submissions were closed.

Similarly to the approach proposed by Le Na-
gard and Koehn (2010), we employ the gender
and number of the hypothesized antecedents to
help with pronoun translation. However, instead
of training an SMT system on the gender-marked
datasets and then testing it on an annotated test
set, in which coreference predictions are always
used with absolute confidence, we model the prob-
abilistic connection between a given pronoun and
a given gender/number on a large-scale dataset,
and integrate it into SMT decoder. This enables
us to exploit the probabilistic scores of the transla-
tion and language models, and of the coreference
model at the time of decoding, which leads to an
improvement in the translation of pronouns.

3 Modeling Coreference Uncertainty
from Parallel Data

The translation model used by an SMT decoder
indicates how likely a source word or phrase is to
be translated into a target one. However, in the
phrase-based MT models, but also in hierarchical
ones, the phrase table cannot constrain the gener-
ation of a target pronoun based on features of its
antecedent. Moreover, such features cannot be re-
liably obtained from anaphora resolution systems,
as they are quite error prone.

We propose to model the uncertainty of
anaphora resolution and the acceptable variability
of pronoun EN/FR translation by estimating the
likelihood of observing a target language pronoun
depending on the gender and number of its an-
tecedent (noted respectively as ‘G’ and ‘N’), as
hypothesized by the Stanford coreference resolu-
tion system (Lee et al., 2011).

The construction of the model is represented in
Figure 2, and explained in detail in the remainder
of this section. In a nutshell, we extract pairs of
pronouns and their antecedents from the source-
side of a large bilingual corpus. Then, we obtain
the gender and number of the translation of the an-
tecedent through target-side POS tagging. Finally,
we estimate the co-occurrence probability of each
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target-side (pronoun, G/N) pair from these obser-
vations.

We build the model over transcripts and transla-
tions of TED talks from the IWSLT training data
(Cettolo et al., 2012) with about 180,000 English-
French sentence pairs, as presented in more detail
in Section 5.1.

3.1 Extraction of Coreference Links

To build the coreference-aware translation model,
we perform coreference resolution on the source
side. From the available off-the-shelf coreference
resolution systems, we examined the Stanford sys-
tem (Lee et al., 2011) and BART (Versley et al.,
2008). We conducted a manual evaluation on 202
instances of it and they extracted from the TED
talks. The Stanford system correctly detected the
antecedents of 121 of them (60% accuracy), while
BART only solved correctly 93 (46%), a markedly
lower score. We thus selected Stanford system,
and used it to identify, on the source side, the an-
tecedents of all instances of it and they.

We then project the noun phrase antecedents of
it and they to the target side thanks to the align-
ment information.! If the target counterpart of
the source antecedent contains multiple words, we
keep only the first noun or pronoun that is de-
tected, which is likely the headword. We deter-
mine the gender and number (G/N) of the an-
tecedent through French part-of-speech analysis
with Morfette (Chrupala et al., 2008). If the
coreference system proposes a pronoun as the an-
tecedent, we also use its G/N value. The an-
tecedent identification is considered unsuccessful
if the system generates no antecedent, or if either
the source headword or the aligned target phrase
are not nouns or pronouns; in such cases, the cor-
responding pairs are not retained.

If the co-reference resolution system could out-
put a probability distribution over several poten-
tial antecedents for a given pronoun, which is cur-
rently not the case of the freely available Stanford
system, then this could be added as a confidence
score to each (pronoun, G/N) pair. Another possi-
bility would be to estimate the confidence of each
link as the average accuracy p of the system, com-
puted over a set with ground-truth links. Here,

"For training, one could also, more directly, perform
anaphora resolution on the target side of the parallel corpus.
However, this cannot be done during decoding, since the cor-
rectness of the target pronoun, which is precisely the problem
we address, is a key feature for anaphora resolution.
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(pronoun,
antecedent) pairs

3. Annotation of
FR gender/number
(POS tagging)

Figure 2: Data and processing steps for the construction of the EN/FR Coreference Model.

however, we assign a confidence score of 1 to the
antecedent hypothesized by the Stanford system
and implicitly a zero value to all other links to the
pronouns. For instance, in the following French
text: “J’aime cette maison. Elle est jolie.”, if the
anaphora resolver detects maison (a French fem-
inine singular noun) as the referent of the target
pronoun elle, then we extract the corresponding
link: (elle, feminine/singular, 1.0) assign a zero
value to the other three possibilities: (elle, mas-
culine/singular, 0.0), (elle, masculine/plural, 0.0)
and (elle, feminine/plural, 0.0). With a suitable
coreference resolver, however, these values could
be different from 0 and 1.

This stage results in a list of all extracted French
pronouns, translations of it and they, along with
the G/N features of their antecedents, and an
associated score. Theoretically, if source-side
anaphora resolution and source-target alignment
were perfect, these features would be the ones pre-
dicted by the dictionaries: masculine/singular for
il, feminine/singular for elle, and so on. However,
the point of counting these pairs is to model the
uncertainty of the anaphora resolution system over
large corpora. In other words, we aim to learn, for
instance, in which contexts a source-side if, with a
target-side antecedent identified as masculine sin-
gular, is translated by i/ or could be translated by
another pronoun, if other features from the trans-
lation model increase the likelihood of this trans-
lation, assuming in this case that the anaphora res-
olution system was mistaken. Our model thus also
allows other possible translations of it such as cela
or ce, which are less directly constrained by the
gender of the antecedent.

3.2 Assignment of Co-occurrence Scores

Once a list containing all observed triples (pro-
noun, G/N, confidence score) is generated from
the training corpus, we compute the co-occurrence
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probability between each pronoun and G/N fea-
tures. This value is obtained by summing up all
the confidence scores of triples where the pronoun
and this G/N value appear together, then normal-
izing by the sum of the scores of those containing
this G/N value:

> score(G/N, pronoun)

>~ score(G/N)

The new triples including G/N values, pro-
nouns and their co-occurrence scores constitute
our Coreference Model (CM). To simplify the
model and avoid noise, all triples with a probabil-
ity lower than 10~ are removed, leading to a final
model with 4,878 triples. This rather large number
with respect to the number of French pronouns and
possible G/N values is due to the alignment stage,
as a source pronoun might be mapped to multiple
target words, e.g. they — ils ont, or it — qu’ il, or
it — coupez-le. This generates a large number of
spurious triples, but their co-occurrence scores, as
defined above, remain quite low.

The Coreference Model does not simply con-
vey the likelihood of translating a source pronoun
into a specific target one, given the antecedent’s
G/N value, but, more importantly, it models the
likelihood of translation options under uncertain
co-reference hypotheses, as well as the legitimate
variations of pronouns (e.g. il/ce or ils/on). As we
will show, the CM provides helpful information
to the SMT decoder, to improve pronoun choice
when several translation options are available.

P(pronoun|G/N) =

4 Coreference-Aware Decoder

The Moses phrase-based statistical MT decoder
(Koehn et al., 2007) searches among hypotheses
stored in the search graph for a candidate t* that
maximizes its objective function given the input s:

nr

t* = arg mtaxkz_:l e fr(t, s)



[mapping]

0 T O # Translation options from Table 0

1 T 1 # Additional options from Table 1
[feature]

PhraseDictionaryMemory path=path_to_table
[decoding-graph-backoff]

0 #first table used for everything

1 #second table used for unknown single word
[weight]

TranslationModelO= 0.2 0.2 0.2 0.2 #default
TranslationModel1= 0.8 #weight of CM table

Figure 3: Options in ‘moses.ini’ for adding the
CM backoff table to the translation models con-
sidered by Moses.

where fi(t, s) is one of the np feature functions,
coming from various models (e.g. the language
model, the translation model, the re-ordering
model or the word penalty model) and Ay is the
weight of the function. Here, we add to the Moses
decoder an additional back-off translation table,
based directly on the Coreference Model. The
goal is to use the Moses default phrase table for
any source word other than it or they, and use the
CM table for these pronouns. In order to pro-
cess all occurrences of it and they with the back-
off CM table, we turn them into unknown words
for the default table, simply by substituting them
by the G/N value of their antecedent, as hypothe-
sized by the coreference system, as explained be-
low. This decoder is called coreference-aware de-
coder (CAD), and finds the best translation as the
one that maximizes the objective function above,
with an additional term: the CM feature function
foum(t, s) corresponding to the CM table, with a
weight Aoy.

In implementation terms, in the Moses envi-
ronment, we declare the new table in the [fea-
ture] section of the ‘moses.ini’ configuration file,
and specify its role as a back-off table in the
[decoding-graph-backoff] and [mapping] sections.
The weight Aoy of the added table is declared in
the [weight] section, as shown in Figure 3. In our
experiments, we assign a default weight of 0.8 to
the CM model, which is identical to the sum of the
four feature functions related to the default table.
The optimization of this weight will be studied in
future work.

Before using the Coreference-Aware Decoder,
the document to be translated is pre-processed by
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the anaphora resolution system, thus marking all
coreference links from either it or they back to
their most likely antecedent noun phrases.” We
distinguish the following two possibilities.

If the coreference link is inter-sentential, i.e.
if the antecedent belongs to the preceding sen-
tence, then we use the translation of this preced-
ing sentence, and pass the extracted G/N value on
to the current one. For instance, with the source
text: “I like this house. It has a nice view.”, the
first sentence is translated into: “J’aime cette mai-
son.”, then the G/N value of the hypothesized an-
tecedent maison (feminine/singular) is used to re-
place the pronoun it in the second sentence as fol-
lows: “feminine/singular has a nice view”.

If the coreference link is intra-sentential, i.e. if
the antecedent and pronoun are in the same sen-
tence, then we first translate the sentence to ob-
tain the antecedent’s G/N value, and afterward we
replace the pronoun with this value and translate
the sentence a second time. Therefore, unlike the
first case, the cost of translation is doubled as a
second pass is needed. Processing intra-sentential
anaphora in one pass remains to be studied in the
future.

5 Experiments and Results

5.1 Data and Evaluation Metrics

We built the phrase table on the following parallel
datasets: aligned TED talks from the WIT> cor-
pus (Cettolo et al., 2012), Europarl v. 7 (Koehn,
2005), News Commentary v. 9 and other news
data from WMT 2007-2013 (Bojar et al., 2014).
The language model was trained on the target side
(French) of all above datasets. Then, the system
was tuned on a development set of 887 sentences
from IWSLT 2010 provided for the shared task on
pronoun translation of the DiscoMT 2015 work-
shop (Hardmeier et al., 2015). The test set was
also the one from the DiscoMT 2015 shared task,
with 2,093 English sentences along with French
gold-standard translations, extracted from 12 re-
cent TED talks. The test set contains 809 occur-
rences of it and 307 of they.

We processed each talk separately, translating
its sentences in order. As explained above, after
translating each sentence, the G/N values of any
target antecedents, if any, are passed to the current
or following sentence containing the anaphoric

2Forward or cataphoric links have never been observed
with this coreference resolution system.



pronoun. If the antecedent is unidentified or not
nominal (due to errors of anaphora resolution or
alignment), we let these pronouns be translated by
the default phrase table. As a result, only 367 oc-
currences of it and 196 of they (i.e. 563 instances
or about 50% of the total) are processed by the
Coreference-Aware Decoder, and have the poten-
tial to improve over the SMT baseline. The ac-
curacy of the new decoder will be therefore eval-
uated only over the pronouns that have actually
been processed.

5.2 Results using Automatic Metrics

We report the performance first by automatically
computing the following four scores, inspired
by the ACT metric for evaluating the translation
of discourse connectives (Hajlaoui and Popescu-
Belis, 2013). These scores rely on the compari-
son of the system’s pronouns (candidates) with the
ones in the reference translation.

¢ (C1: Number of candidate pronouns which are
identical to the reference ones.

¢ (C5: Number of candidate pronouns which are
“similar” to the reference ones. Similarity al-
lows for two equivalence classes of French
pronouns, accounting for the variants of “ce”
and “ca” with or without apostrophe, and for
two different symbols used for the apostro-
phe: {ce, ¢’, ¢’} and {¢aq, ca, ¢, ¢’}.

* ('3: Number of candidate pronouns which are
not identical or similar to the reference.

* C4: Number of source pronouns which are
untranslated in the candidate translation.

Although these scores, even taken together, are
only an imperfect reflection of translation correct-
ness, it is likely that increasing the first two scores
(C'1 and Cs) indicates improved quality, as we will
verify here using human metrics.> Below, we will
also consider the number of “correct” translations,
C1 + Oy, as an indicator of quality.

We compare the performance obtained by our
coreference-aware decoder (noted CM) against the
two following systems:

3In theory, the target pronoun does not need to be identi-
cal to the reference one to be correct: it must only point to the
same antecedent. Some variation is in reality acceptable such
as among expletive pronouns (it — ce / cela / il), or due to
different translations of an antecedent in the candidate and the
reference, but this variation will not be tolerated by our met-
ric. However, in the hundreds of sentences we rated for this
study, we never observed such a variation of the antecedent’s
gender or number.
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Sys. | C1 | C2| C3 | C4 | C1+C2 | Acc.
BL | 194 | 38 | 284 | 47 232 41
PE | 185 | 38 | 292 | 48 223 40
CM | 210 | 43 | 241 | 69 253 45
Table 1: Detailed scores of the three systems: BL,

PE and CM. The accuracy is the proportion of
good translations (C7 + C) over the total num-
ber of pronouns (563). CM outperforms both PE
and BL on all scores.

* BL: the baseline MT system provided by
the DiscoMT 2015 workshop organizers for
the pronoun-focused translation shared task,
built using the Moses toolkit. This system
was trained on the same datasets as CM, but
was tuned on IWSLT 2010 development data
and IWSLT 2011 test data (1,705 sentences).

* PE: our post-editing system for the transla-
tions of it and they generated by a baseline
SMT system (Luong et al., 2015), which was
the highest scoring system at the DiscoMT
2015 shared task on pronoun-focused trans-
lation. It was trained on the DiscoMT 2015
data and tuned on the IWSLT 2010 develop-
ment data.

We translated the test set using the three sys-
tems, and computed the C1, ...,y scores over
the 563 pronouns. The results, shown in Table 1,
reveal that CM outperforms both BL and PE, with
gains in the numbers of exact translations (C7) of
16 and 25 pronouns respectively. In terms of the
number of correct translations (C7] + Cs), CM is
also the best-performing one, with 21 instances
above BL and 30 above PE.

For the sake of completeness, we also compare
the performance of three above mentioned systems
in overall Precision, Recall and F-score for pro-
nouns, as proposed by Hardmeier and Federico
(2010) and used in DiscoMT 2015 among other
metrics. We also compute the BLEU score to in-
vestigate the impact of pronoun improvement on
the global translation quality. The results in Ta-
ble 2 show that CM surpasses BL and PE by 0.022
and 0.025 in terms of F-score, which is very simi-
lar to the above C'; + C5 score. In terms of BLEU,
CM outperforms BL and PE by respectively 0.35
and 0.06 BLEU points. The small magnitude of
these differences is due to the sparseness of pro-
nouns in the evaluated texts, but they tend to con-
firm the improvements brought by the CM.



Sys. | Prec. | Rec. | F-score | BLEU
BL | 337 | .348 342 35.81
PE | 334 | 343 .339 35.52
CM | 414 | .324 364 35.87

Table 2: Overall precision, recall, F-score and
BLEU score of BL, PE and CM.

Significance tests were conducted for CM vs.
BL and CM vs. PE using McNemar’s test, which
compares binary pairwise data (correct or incor-
rect pronouns in our case) between two systems.
We calculate the p-values for the two pairs of sys-
tems either when considering only exact matches
(C1) as positive results, or when allowing similar
pronouns as well (C7 + C3). For CM vs. BL, the
p-values are respectively 0.049 and 0.046, while
for CM vs. PE they are respectively 0.007 and
0.012. As these values are all below 0.05, the
improvements brought by CM over each of the
two other systems are statistically significant at the
95% level.

5.3 Human Evaluation

The automatic metrics have demonstrated that the
system using the Coreference Model is closer to
the reference, in terms of pronouns, than the Base-
line and the Post-editing systems. Our automatic
metric is particularly strict in requiring identity
to the reference, with only minimal variation ac-
cepted on the forms of “ce” and “ca”. However,
in French, some variations of pronouns are accept-
able. For instance, the indefinite pronoun “on”
may replace the third person plural pronouns “ils”
or “elles”; the pronouns “i/” and “ce” may be
substituted in some cases (e.g. as in il est impor-
tant = c’est important); and idiomatic translations
are frequent (e.g. on discute de ¢a ~ on en dis-
cute).

Therefore, in addition to automatic metrics, we
performed a human evaluation of the translated
pronouns. Two annotators with good knowledge
of French and English evaluated the 329 sentences
of the test set, containing 563 instances of it and
they. For each sentence, the annotators were
shown the English source sentence and the preced-
ing one, followed by the outputs of the three sys-
tems for the source sentence, as well as the refer-
ence translation of this sentence and the preceding
one, as exemplified in Table 3 on the next page.
The positions in the source sentence of all pro-
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System | Correct | Incorrect | Accuracy

Evaluation 1: two evaluators (adjudicated)
BL 53 20 73
PE 52 21 1
CM 57 16 .78

Evaluation 2: one evaluator
BL 360 203 .64
PE 344 219 .61
CM 370 193 .66

Table 4: Number of correctly vs. incorrectly trans-
lated pronouns by the three systems BL, PE and
CM. In Evaluation 1, they are rated on 40 blocks
by two human annotators after deliberation. In
Evaluation 2, they are rated on the full set (329
blocks) by one annotator.

nouns to be evaluated were specified. The order of
the three systems was randomly assigned in each
such evaluation block and was hence unknown to
annotators.

The annotators were instructed to judge pro-
nouns according to their subjective impression of
correction, based mainly on compatibility with the
antecedent, and not on the identity to the refer-
ence translation, which was shown only to make
sure that the source was correctly understood. The
score of an evaluated pronoun is 1 if correct and
0 if not, and the system’s score is the sum of the
scores over all source pronouns.

Due to time limitations, one annotator com-
pleted the entire evaluation (329 blocks with 563
pronouns), whereas the other one completed 40
blocks which contained 73 occurrences of i and
they in the source. Of the total of 73 x 3 = 219
instances of the 40 blocks rated by the two anno-
tators, the annotators agreed on the rating (correct
or incorrect) of 188 instances and disagreed on 31,
corresponding to a Kappa score of 0.645, i.e. a
moderate agreement. The annotators deliberated
to analyze their differences and reached consensus
over 26 additional instances, leading to an adjudi-
cated Kappa score of 0.939.

The accuracy of the three systems computed
against the adjudicated annotations of 73 source
pronouns is shown in Table 4, as Evaluation 1,
while accuracy over the full set of 563 source pro-
nouns rated by only one annotator (hence with a
smaller confidence) is shown as Evaluation 2. The
results from Evaluation 1 indicate that CM is the
best performing system among the three, with rel-



SRC-1 | when he was born , he was diagnosed with diastrophic dwarfism , a very disabling condition , [. . .]
SRC and it was suggested to them that they leave him at the hospital so that he could die there quietly .
SYS1 etil a suggéré qu’ ils le laisser a I’ hopital pour qu’ il puisse y mourir paisiblement . they(7)= |||
SYS2 | etil asuggéré qu’ ils le laisser a I” hopital pour qu’ il puisse y mourir paisiblement . they(7)= |||
SYS3 | etil asuggéré qu’ elles le laisser a 1" hopital pour qu’ il puisse y mourir paisiblement . they(7)= |||
REF | onleur a suggéré de le laisser 2 I’ hopital pour qu’ il puisse y mourir en paix .

REF-1 | lorsqu’ il est né , on lui a diagnostiqué un nanisme diastrophique , une maladie trés handicapante , [. . .]

Table 3: Example of a block for human evaluation: source sentence SRC (and the preceding one SRC—
1) followed by the three system translations in random order, the reference translation REF and the

preceding sentence.

ative improvements of 5.5% and 6.9% over BL
and PE respectively. Although less reliable, results
from Evaluation 2 show that CM outperforms BL.
by 10 correct translations (ca. 1.8%), and PE by 26
correct translations (ca. 4.6%). These proportions
are in the same order as those from Evaluation 1.

The results of Evaluation 2 show a considerable
increase of the accuracy of all systems compared
to the scores from the automatic metrics, with rel-
ative gains slightly above 20%. As expected, in all
three systems, a large number of pronouns judged
as incorrect by the automated metric because they
differed from the reference (C'3) have been judged
as correct by the human evaluators. However, al-
though they are higher, human scores are strongly
correlated with automatic ones: Pearson’s correla-
tion coefficient between C1 + Cy and scores from
Evaluation 1 is 0.994, while for Evaluation 2 it is
0.936.

Example 1

SRC: But it takes time , it takes money .

CM: Mais ¢a prend du temps , ¢a prend de I’ argent .
REF: Mais ¢a prend du temps et [none] de I’ argent .

Example 2

SRC: [...] we know what it is : it ’s the wikipedia .
CM: [...] nous savons ce que ¢’ est : wikipédia .

REF: [...] nous la connaissons maintenant : wikipedia .

Figure 4: Examples of pronouns that are consid-
ered as correct by human judges, although differ-
ent from the reference.

Figure 4 shows two examples in which candi-
date pronouns were judged as correct by both an-
notators, although they differ from the reference.
In Example 1, the second if in the source sen-
tence was translated into ¢ca by CM, but was not
translated in the reference, as the human transla-
tor combined two identical source pronouns into a
unique target one. Similarly, in Example 2, CM
translated the first i into a French subject pronoun
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(c’), while the reference used a third person object
pronoun (/a). A more flexible assessment than the
strict automatic one thus increases the scores of
the systems.

6 Conclusion and Perspectives

This paper proposed a Coreference Model, con-
structed from the gender and number information
of each pronoun antecedent, to model the uncer-
tainty of anaphora resolution for integration with
SMT and improve pronoun translation from En-
glish to French. The proposed Coreference-Aware
Decoder outperformed the phrase-based baseline
SMT system, as well as one that uses anaphora
information for post-editing without modeling its
uncertainty, on the test set from the DiscoMT 2015
shared task. These significant improvements show
that appropriate modeling of co-reference uncer-
tainty is helpful, and will remain so as long as
anaphora resolution is imperfect.

In the future, this work can be extended in sev-
eral ways. Firstly, we intend to obtain probabilities
of anaphor-antecedent links from a different coref-
erence resolver, which would be better adapted to
our needs than the ones we examined. Secondly,
we will optimize the weight of our Coreference
Model on a held-out development set. Thirdly, we
will enrich the model with more types of features
in addition to gender and number, for instance hu-
manness, formality, or abstractness, which help to
distinguish effectively between several translation
options of it and they, and are also relevant to other
language pairs. Finally, the complexity of pro-
noun translation evaluation, reflected in the differ-
ences between human and automatic assessments,
requires further research as well.
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Abstract

German verbal inflection is frequently
wrong in standard statistical machine
translation approaches. German verbs
agree with subjects in person and num-
ber, and they bear information about mood
and tense. For subject—verb agreement,
we parse German MT output to iden-
tify subject—verb pairs and ensure that the
verb agrees with the subject. We show
that this approach improves subject-verb
agreement. We model tense/mood transla-
tion from English to German by means of
a statistical classification model. Although
our model shows good results on well-
formed data, it does not systematically
improve tense and mood in MT output.
Reasons include the need for discourse
knowledge, dependency on the domain,
and stylistic variety in how tense/mood is
translated. We present a thorough analysis
of these problems.

1 Introduction

Statistical machine translation of English into Ger-
man faces two main problems involving verbs: (i)
correct placement of the verbs, and (ii) generation
of the appropriate inflection for the verb.

The position of verbs in German and English
differs greatly and often large-range reorderings
are needed to place the German verbs in the cor-
rect positions. Gojun and Fraser (2012) showed
that the preordering approach applied on English—
to—German SMT overcomes large problems with
both missing and misplaced verbs.

Fraser et al. (2012) proposed an approach for
handling inflectional problems in English to Ger-
man SMT, focusing on the problems of sparsity
caused by nominal inflection. However, they do
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not handle the verbs, ensuring neither that verbs
appear in the correct position (which is a problem
due to the highly divergent word order of English
and German), nor that verbs are correctly inflected
(problematic due to the richer system of verbal in-
flection in German). In many cases, verbs do not
match their subjects (in person and number) which
makes understanding of translations difficult. In
addition to person and number, the German verbal
inflection also includes information about tense
and mood. If these are wrong (i.e. do not cor-
respond to the tense/mood in the source), very
important information, such as point of time and
modality of an action/state expressed by the verb,
is incorrect. This can lead to false understanding
of the overall sentence.

In this paper, we reimplement the nominal in-
flection modeling for translation to German pre-
sented by Fraser et al. (2012) and combine it
with the reordering of the source data (Gojun and
Fraser, 2012). In a novel extension, we present a
method for correction of the agreement errors, and
an approach for modeling the translation of tense
and mood from English into German. While the
subject-verb agreement problems are dealt with
successfully, modeling of tense/mood translation
is problematic due to many reasons which we will
analyze in detail.

In Section 2, we give an overview of the pro-
cessing pipeline for handling verbal inflection.
The method for handling subject—verb agreement
errors is described in Section 3, while modeling of
tense/mood translation is presented in Section 4.
The impact of the proposed methods for modeling
verbal inflection on the quality of the MT output is
shown in Section 5. An extensive discussion of the
problems related to modeling tense/mood is given
in Section 6. Finally, future work is presented in
Section 7.

Proceedings of the First Conference on Machine Translation, Volume 1: Research Papers, pages 21-31,
Berlin, Germany, August 11-12, 2016. (©2016 Association for Computational Linguistics



2 Overall architecture

2.1 Ensuring correct German verb
placement

Different positions of verbs in English and Ger-
man often require word movements over a large
distance. This leads to two problems in German
translations generated by SMT systems concern-
ing the verbs: either the verbs are not generated at
all, or they are placed incorrectly.

To ensure that our MT output contains the maxi-
mum number of (correctly placed) finite verbs, we
reorder English prior to training and translation us-
ing a small set of reordering rules originally de-
scribed by Gojun and Fraser (2012). The verbs in
the English part of the training, tuning and testing
data are moved to the positions typical for German
which increases the syntactic similarity of English
and German sentences. We train an SMT system
on the reordered English and apply it to the re-
ordered English test set.

This approach has good results in terms of the
position of the verbs in German translations. How-
ever, the problem of incorrect verbal inflection
is unresolved. In fact, the reordering makes the
agreement problems even worse due to move-
ments of verbs away from their subjects (cf. Sec-
tion 3.1).

2.2 Inflection of the German SMT output

Fraser et al. (2012) proposed a method for han-
dling nominal inflection for English to German
SMT. They work with a stemmed representation of
the German words in which certain morphological
features such as case, number, etc. are omitted.
After the translation step, for nominal stemmed
words in the MT output, morphological features
are predicted using a set of pre-trained classifiers
and finally surface forms are generated resulting
in fully-inflected German MT output.

In their approach, the verbs are neither stemmed
nor inflected, but instead handled as normal words.
Thus, in the translation step, the decoder (in inter-
action with the German language model) decides
on the inflected verb forms in the final MT output.

2.3 Adding verbal inflection modeling

As a baseline SMT system, we use a system
trained on the reordered English sentences (cf.
Section 2.1) and stemmed German data with nom-
inal inflection modeling as a post-processing step
(cf. Section 2.2). In our system, we extend the
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MT: reordered EN + stemmed DE
+ DE inflection generation

new drugs might lung , ovarian cancer slow

NN T

neue Medikamante konnte Lungen— und Eierstockkrebs verlangsamen

Tense/Mood
— derive features
— predict tense/mood with CRF

Agreement
— parse
— find SV pairs
Medikamente + konnen
— map subject morph to verb

(Past.Subj

3.PI

Generate

- SMOR
— stem + morph features
konnen + 3.Pl.Past.Subj

Figure 1: Processing pipeline. The verbal inflec-
tion modeling consists of two components: (i) a
component for deriving agreement features person
and number, and (ii) a component for predicting
tense and mood. The inflected verbs are generated
with SMOR (Schmid et al., 2004), a morphology
generation tool for German.

baseline by identifying finite verbs in the baseline
MT output, predicting their morphological fea-
tures and finally producing the correct inflected
output (see Figure 1).

Verbal morphological features include informa-
tion about person/number, as well as tense and
mood. Particularly the modeling of tense/mood
translation is interesting: in this paper, we present
a method to model the translation of English tense
and mood into German considering all German
tenses/moods in a single model. In addition,
we present a detailed discussion which is, to our
knowledge, the first deep analysis of this topic.

The processing pipeline is given in Figure 1.
After translation of the reordered English input to
a German stem-like representation, the nominal
feature prediction is performed followed by our
novel verbal feature prediction. Finally, the entire
German MT output is inflected by combining the
stems and the predicted features to produce sur-
face forms (normal words).

3 Correction of the subject—verb
agreement

3.1 Problem description

In many languages, the subject is located near the
corresponding finite verb. However, in languages
such as German, the subject might be very far from



[ Data [ avg distin words | >5 words ]
News 3.9 24%
Europarl 3.7 22%
Crawled 29 15%

Table 1: Subject—verb distances in German texts.

the verb. We extracted subject—verb pairs from
German corpora and computed their distances.
The results are summarized in Table 1.

News and Europarl are composed of more com-
plex sentences than the corpus crawled from the
internet. While in the crawled data, there are
more sentences with smaller subject—verb dis-
tances, News and Europarl expose larger distances
between subjects and finite verbs.

Although the average distance in words is rather
small, there is a fair amount of subject—verb pairs
with distance larger than 5 words (in Europarl
22%, in News 25%) which are problematic for
training the translation system. Even for small
distances, it is not guaranteed that the agreement
is generated correctly due to the missing appro-
priate translation phrases. Moreover, the German
language model trained on the same data would
probably have problems to extract n-grams which
ensure the correct subject—verb agreement for all
possible subject—verb combinations.

Translating reordered English (cf. section 2.1)
dramatically improves the problems of misplaced
and missing verbs, but at the same time makes the
extraction of translation phrases with subject—verb
agreement even harder. Particularly problematic
are movements of the verbs in subordinate clauses
where the entire German VP is placed at the clause
end, while the subject is normally placed in the
2nd position (after the complementizer). In our
training data, 20% of the clauses are reordered in a
way that the distance between the reordered finite
verb and the subject is more than 5 words.

An example of a reordered English subordinate
clause is given in Figure 2: the English verb said
is ambiguous with respect to person and number.
Translated independently from its subject, it is not
guaranteed that the German translation will con-
tain the correctly inflected finite verb since the
German language model is very unlikely to have
the exact 6-gram which could ensure the agree-
ment between the subject ich/I and the inflected
verb habe/have.
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that that yesterday  to said; s

X/

das gestern gesagt habe; s,

Ii.sg.

dass ich;. g, dir

Figure 2: Example of a subject-verb distance
caused by the reordering of the English clause
‘that I said that yesterday to you’.

3.2 Parsing for detection of subject—verb
pairs

Agreement correction depends on correct identifi-
cation of subject—verb pairs. Although we work
with English parses where the subjects can be cor-
rectly identified in many cases, this information
source seems not to be sufficient. Problematic are
syntactic divergences where the English subject
does not correspond to the German subject.

Initially, we aimed at predicting agreement fea-
tures. However, we were not able to build a clas-
sifier with satisfying results due to the problems
mentioned above. We thus applied a method im-
plemented in Depfix (Rosa et al., 2012). They
parse the MT output, extract subject—verb pairs
from the trees and copy the agreement information
of the subject to the corresponding verb. Although
the idea of parsing MT output may not sound very
promising, the results are surprisingly good.

We implement the agreement correction for
English-German SMT as an automatic post-
editing step applied on the fully inflected MT
output. The MT output is first annotated with
morphological information (Miiller et al., 2013)
and subsequently parsed (Bjorkelund and Nivre,
2015). The person and number of the subjects are
then mapped from the subject to the finite verbs.

To generate the appropriate inflected verb, we
use SMOR (Schmid et al., 2004), a morphology
generation tool for German. Based on the stem
of the verb, as well as its morphological features
person, number, tense and mood (cf. section 4),
the inflected verb form is generated. In case the
tool produces multiple surface form possibilities
(which is very rare for verbs) we use the frequency
of the alternatives (derived from a large German
corpus) as a filter: the most frequent alternative is
chosen.



4 Modeling tense and mood

We define the modeling of tense and mood as
a classification problem. In the following, we
present the problem in more detail, motivate the
machine learning features that we use and give a
detailed evaluation of the classification model.!

4.1 Problem description

We distinguish between tense/mood of the finite
verbs and tense/mood of the clauses. The Ger-
man finite verbs can be present or past. As for
the mood, they can be indicative, subjunctive and
imperative.’

4.1.1 Tense

The tense of the finite verb does not necessar-
ily match the clausal tense. For example, given
the clausal tense perfect, the finite auxiliary is in
present tense, while the main verb is a past partici-
ple: [habepycs. rna/have gesagtypart /Said]per fect-
We model the translation of clausal tenses from
English to German and than map the clausal tense
to the corresponding tense of the finite verb.
German has six indicative clausal tenses (cf. Ta-
ble 3). While in some languages, the use of tense
underlies strict rules, the use of tenses in German
often follows from the register (spoken vs. writ-
ten) or even from the author’s stylistic preferences
(e.g. (Sammon, 2002), (Collins and Hollo, 2010)).

4.1.2 Mood

In addition to six indicative German tenses, we
also distinguish two further tense/mood combina-
tions: Konjunktiv I (present subjunctive) and Kon-
Jjunktiv II (past subjunctive). While Konjunktiv II
corresponds to English conditionals, Konjunktiv I
is used in the context of indirect speech.

The use of subjunctives in German is not only
quite complex, but also largely user- and register-
dependent. For example, while Konjunktiv I oc-
curs in Europarl and News, it is almost never used
in the web-crawled corpus, as we will see in the
following sections.

"Note that aspect is not encoded in the German verbal
morphology. For expressing progressive aspect, adverbials
(e.g. gerade/at the moment) or prepositional phrases (e.g.
Ich/l bin/fam am/at Arbeiten/work 'I am working’) are used
(cf. e.g. (Heinold, 2015)). In this work, we do not explicitly
model aspect.

*In this work, we ignore imperatives. Imperatives do not
bear morphological information about tense and mood: they
solely distinguish the person (singular/plural). We simply re-
tain imperatives generated by the baseline system.
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[ Info type [ Example
STEMS habenvAFIN sagenyvvpp
POS VAFIN, VVPP
RFTagger | 1.Sg.Past.Subj
RULE if VP consists of an auxiliary (VAFIN)

and a participle (VVPP) and if the finite
verb is Past.Subj
= konjunktivII (past subjunctive)’

Table 2: Information used to derive tense for the
VP hdéitte/would-have gesagt/said.

4.2 Tense/mood prediction model
4.2.1 Model

For the classifier training, we use the toolkit Wapiti
(Lavergne et al., 2010) which supports both multi-
label maximum entropy classification and bigram
linear-chain CRF classification.

We train a maximum entropy model, as well as a
bigram linear-chain CRF model. The latter model
captures intra-sentence tense/mood dependencies,
i.e. between verbs within clauses of a single sen-
tence: the prediction of tense/mood for the current
clause considers the prediction made for the pre-
ceding clause.

Inter-sentence dependencies are however not
modeled. The prediction for the first clause of the
sentence under consideration does not take the last
prediction made for the previous sentence into ac-
count.

4.2.2 Data

The training instances are extracted from FEu-
roparl, News Commentary and Crawled corpus.
The English part of the corpus is parsed with
the constituent parser of (Charniak and Johnson,
2005), while the German data is stemmed (cf. Sec-
tion 2.2). We use the automatically computed
word alignment (Och and Ney, 2003) in order to
identify verb pairs in a given sentence pair.

We work with a set of 8 labels which includes
six German tenses and the two subjunctive moods
(see Table 3). In the training data, the labels are
annotated by rule-based mapping of the German
VPs. We use information about the verbs, their
POS tags, as well as the morphological analysis
of the finite verb to derive labels for each German
VP (see Table 2 for an example mapping). The
distribution of the labels in the corpora we use is
given in Table 3.

For each finite verb, a training instance with
features from English and German parallel sen-
tence is extracted. Finite verbs of a sentence build



tense/mood news | europarl | crawl || news+
euro+
crawl
present 54 63 71 || 62
perfect 11 14 12 12
imperfect 19 6 9| 11
pluperfect 3 2 3 2.6
future | 1 3 1| 1.6
future II 0.5 0.1 1] 05
konjunktiv I 1 0.9 0.7 || 0.8
konjunktiv IT 8 7 2 5.8

Table 3: Distribution of the tense/mood labels in
the German corpora (given in percentage).

a sequence which allows for taking into account
the tense/mood dependency between finite verbs
within a sentence.

For the classifier training, we only use instances
where the German verb is aligned with at least one
English word. Furthermore, if the mapping of a
VP to tense in one of the languages fails, the train-
ing instance is omitted as well. In total, we extract
5.2 million training instances.

4.2.3 Feature set

Each German finite verb gets features assigned
from both English and German. The English fea-
tures are extracted on the basis of the clauses.
Given the alignment between the German finite
verb and a specific word in English, the features
are used which are extracted from the clause the
English word is placed in. Since in the training,
finite German verbs may be aligned with arbitrary
English words (i.e. not only verbs), the clause-
wide features allow to extract features also for
these verbs.

Lexical features Lexical features give informa-
tion about lexical choice of the verbs. To avoid
sparsity problems, we abstract the English VP to a
certain extent: we use information about (i) main
(meaning-bearing) verbs, (ii) a sequence of auxil-
iaries without the main verb since the auxiliaries
in English are used to form different tense/moods.
By having access to the main verbs from both
the current clause, as well as from the preceding
clause, we account for the fact that the verbs (or
their sequences) influence the use of tense/mood.

Contextual features Words preceding the Ger-
man finite verb are useful for some specific con-
texts in which Konjunktiv is used.

Semantics/discourse The combination of
clauses, i.e. clause types, has impact on the choice
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[ Feature [ English | German |
finite verb said haben
finite verb align - said
VP said —
VP correct yes —
main verb said sagen
prev. clause main verb - denken
auxiliaries VBD -
main suffix id -
sentence main verb think -
word-1 - gesagt
word-2 - gestern
clause type SBAR -
preceding clause type S-MAIN —
following clause type END -
syntactical tense past -
logical tense past -
conditional context no -
composed sent yes -

Table 4: Full feature set for modeling tense/mood
translation. The values are derived for the German
finite verb haben/have from the clause pair given
in Figure 2 assuming that the full English sentence
is ’I think that I said that yesterday to you.’

of tense/mood. Moreover, we use the information
whether the sentence is composed (i.e. consists
of more than one clause) to account for the fact
that some tense/moods, e.g. Konjunktiv, are
rarely used in simple sentences. The conditional
context is derived by a simple check whether the
conjunction in the subordinate clause is if.

The features are summarized in Table 4. Our
model does not only use these features, but also
a number of their combinations to strengthen
contexts for specific tense/moods.

4.2.4 Classifier evaluation

Although both maximum entropy, as well as CRF
models trained on the same data using the same
feature set perform equally well, CRF performs
better for certain labels as shown in Table 5.

We further evaluate the CRF model on test sets
from different domains (cf. Table 6). Note that the
test sets are well-formed sentences taken from the
corpora we work with. We contrast evaluation re-
sults gained on well-formed test data to those ob-
tained for noisy MT output. The evaluation on the
well-formed data is given in Fj-scores while the
MT output is evaluated with BLEU.

The row mostFreqTense is considered to be a
baseline: the verbs are annotated with tense which
is the most frequent German tense given a specific
English tense (cf. Figure 3). It is interesting that



tense/mood

[ Ficrr | Fime |

present 0.92 0.92
perfect 0.81 0.81
imperfect 0.85 0.85
pluperfect 0.74 0.73
future [ 0.84 0.83
future II 0.50 0.50
konjunktivl | 0.27 0.17
konjunktiv II | 0.83 0.83
[ overall [0.87 1087 ]

Table 5: Performance of a CRF vs. maximum
entropy classifier gained for a test set containing
5,000 sentence from the news corpus.

the baseline performs equally well when applied
on news and crawl, it however leads to lower Fj
for the europarl test set. This indicates that the
tense usage in europarl deviates from that in news
and crawled corpora.

Our model is considerably better than the base-
line. It leads to better results on both well-formed
test sets, as well as on the MT output.

tense/mood Ficrr BLEU
news | europarl [ crawl [[ MT-news

mostFreqTense | 0.70 0.64 0.70 21.79

our model 0.87 0.90 0.88 21.95

Table 6: Classifier evaluation using different fea-
tures and different test sets. Each of the clean data
test sets contain 5,000 sentences. Clean data sets
are evaluated in terms of I} scores, while the MT
output is evaluated with BLEU.

The difference in performance gained on test
sets from different domains (although small) raises
the question whether the classifier is solely to be
trained on in-domain data. Since we work with
MT output of the news test set, we would have
to train the classifier only on the news data. Due
to the corpus size (272k sentences), we get into
sparsity problems since many lexical features are
used. A further reason for using additional (out-
of-domain) training data are low-frequent labels
which then get more training instances.

In summary, the evaluation indicates that a sin-
gle classifier leads to different results when ap-
plied on data from different domains. Further-
more, the initial experiments showed that having
better results on the clean data does not necessar-
ily lead to better results for the noisy MT output.
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5 Verbal morphology in MT output

5.1 Baseline system

Our baseline system is trained on reordered En-
glish sentences (cf. Section 2.1) and stemmed
German data (cf. Section 2.2). It is trained on a
corpus consisting of 4.5 M sentences from news,
Europarl and crawled texts. It uses a 5-gram lan-
guage model trained on 1.5 billion German words.
The baseline system translates reordered En-
glish into stemmed German in which the verbs are
surface forms and enriched with POS tags.

5.2 Evaluation of the verbs in MT output

The baseline SMT system is applied on a news test
set from WMT 2015.°

The baseline MT output we aim at correcting
is surprisingly good. The stem- and surface-based
comparison of the verbs in the baseline with the
reference revealed that 82% of the verbs in the
baseline are already correctly inflected. This quite
high number though takes only 21% of the verbs
in the baseline into account: nearly 80% of the
verbs in the baseline do not match the reference,
i.e. the lexical choice (the lemma) of the verbs
differs from the reference.

Our verbal inflection correcting system changes
242 (6%) of the verbs output by the baseline SMT
system. Given the strong baseline we work with,
we would in fact do worse if we changed more (i.e.
already correctly inflected) verbs.

Considering the fact that most of the finite verbs
do not match the reference and are thus not con-
sidered with automatic metrics such es BLEU (cf.
Section 5.2.1), we also carried out a human evalu-
ation which is presented in Section 5.2.2.

5.2.1 Automatic evaluation

In Table 7, the BLEU scores (Papineni et al., 2002)
of the MT output with predicted verbal inflection
are presented.

[ [ BLEU; ]
[ Surface [ 2159 |
Baseline 22.00
Verbal inflection 22.05
Agreement 22.08
Tense/mood 21.95

Table 7: BLEU scores of MT outputs with cor-
rected verbal inflection.

*http://www.statmt.org/wmt15/



Verbal inflection denotes MT output for which
all verbal features are derived/predicted and then
used to generate the inflected verb forms. The
translation quality does not increase (in terms of
BLEU) significantly. Most of the improvement
comes from the agreement correction (given in
row Agreement) while the tense/mood prediction
(row Tense/mood) lowers the BLEU score.

5.2.2 Manual evaluation of MT

70 sentence pairs consisting of the baseline MT
output and MT output with corrected verbal inflec-
tion with respect to tense and mood were evaluated
by four human evaluators. The evaluators anno-
tated the better translation alternative with 1, the
worse one with 2. For each of the translations, the
majority vote (most frequent annotation) was com-
puted. The counts of the human votes are given in
Table 8.

Grade
MT 1 [ 2 [ 3 [ nA
Baseline 29 | 19 | 4| 19
Verbal inflection | 17 | 31 | 4 | 19

Table 8: Results of human evaluation. 1 = better,
2 = worse, 3 = don’t know, nA = no majority vote.

Human evaluators prefer the choice of tense
(expressed in verbal inflection) made by the base-
line. Only a third of the alternatives with verbal
inflection handling are considered to be better than
the baseline. An interesting fact is that the anno-
tator agreement in terms of Kappa was only 0.33
which means that the annotators often disagreed
which translation alternative was better.

In Table 9, a few example MT outputs are
shown in which the verbal inflection is correct,
while the baseline is incorrect. The VI transla-
tion of SRC1 shows corrected agreement between
the plural subject Kldger/claimants and the finite
verb legten/presented. The translations of SCR2
and SRC3 show the corrected tense. In SRC2, the
English verb in past tense is in VI also translated
as past tense. In SRC3, the German translation of
the subordinate clause should be past subjunctive
as generated by VI
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SRC1 | the claimants presented proof of extortion
BL *legtes. sy die Klager Beweise von Erpres-
sung
v | VI legtens. p; die Kldger Beweise von Erpres-
E sung
S | SRC2 | then he put his finger on it
S [ BL dann *legtpres.1na er seinen Finger auf sie
VI dann legte post. 1na er seinen Finger auf sie
SRC3 | Ifear I may need more surgery
BL ich fiirchte, ich *kannp,.cs. 14 €ine Opera-
tion notig
VI ich fiirchte, ich koénnte pqs¢.sup; eine Op-
eration notig
SRC4 | Maybe his father intended to be cruel
BL vielleicht soll pres. rnd s€ine Vater grausam
Zu sein
VI vielleicht *sollte past.sub; seine Vater
grausam zu sein
| SRC5 | "ihave rung mr piffl and suggested that we
3 get together ”
E BL “ich habepyes.1nq geklingelt Herr piffl und
g schlug vor, dass wir gemeinsam”
= | VI ”ich *hattepast.1nd geklingelt Herr piffl
> und schlug vor, dass wir gemeinsam”
SRC6 | no word could get beyond the soundproof-
ing
BL kein Wort konnte iier die Schalldimmung
VI kein Wort *konte iiber die Schallddmmung

Table 9: Example of MT outputs with improved
(upper part) and incorrect verbal inflection (lower
part). SRC denotes the source sentences, the base-
line translations are indicated with BL, while the
translations with verbal inflection handling are in-
dicated with VI.

The VI translation of intended in SRC4 retains
the tense in the source sentences. The human eval-
uators, however, prefer the baseline translation,
which switches to present tense. German has two
past tenses: the baseline translation of have rung
in SRCS is perfect (habe geklingelt), while the VI
translation is pluperfect (hatte geklingelt). Even
for a human, it is hard to decide which of the trans-
lations is better. The translation of SRC6 shows a
problem with English modal verbs such as could
which expose functional ambiguity. As subjunc-
tive, could almost always translates into subjunc-
tive German modal konnte. Thus the model al-
ways predicts konjunktiv II given English modals
for which the past indicative form equals to the
subjunctive form.

6 Discussion

6.1 Subject—verb agreement

Correction of the subject—verb agreement pro-
posed by Rosa et al. (2012) and adapted in this
work for English—-German SMT, relies on how ac-
curate the identification of the subject—verb rela-
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Figure 3: Distribution of tense translations derived from the training corpora (news, europarl, crawl).
English tense/mood values are given on the x-axis, while the percentage of the German tense/moods for
the corresponding EN tense/mood is given on the y-axis.

tions in noisy MT output is. The better the transla-
tion, the higher the probability of acquiring correct
subject—verb pairs from the parse trees. However,
the quality of the translations varies greatly, even
within a single test set. Rosa et al. (2012) reported
on different results achieved for different test sets.
Another possibility is to use a classification model
which predicts agreement features of the verbs us-
ing various contextual information as successfully
applied on English—Spanish (Gispert and Marifio,
2008).

Our attempt to build such a model for German,
led to disappointing results: on the one hand, a
more accurate identification of the subjects in the
English constituent parse trees is required: the use
of the dependency trees combined with pronoun
resolution (similar to a simple pronoun resolution
described in (Avramidis and Koehn, 2008)) might
reduce this problem. More correct subject identi-
fication in the source language is however not suf-
ficient: due to syntactic divergences, the German
subject may match other constituents in the source
language (e.g. object or preposition phrase). A
prediction model having access to information ex-
tracted from both English dependency trees, as
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well as German MT parses (in combination with
clues on the reliability of the extracted informa-
tion) might give good results regarding the predic-
tion of agreement features for German finite verbs.

6.2 Tense and mood

Register/domain Looking at Figure 3, it be-
comes obvious that a single English tense can
translate into different German tenses. Always
choosing the most frequent German tense for a
given English tense does not lead to satisfying re-
sults (cf. Table 6). On the other hand, Schiehlen
(1998), who presented one of the first studies on
learning the tense translation from bilingual cor-
pora, stated that this simple tense mapping already
achieved the accuracy of 95%. We achieve 70%.
This is probably due to register and domain dif-
ference: while Schiehlen (1998) worked with cor-
pora related to appointment scheduling (spoken
language), we work with news data (written lan-
guage) which has important differences with re-
spect to tense translation.

Tense usage The correct choice of tense in both
human and automatic translation depends on fac-



tors which are beyond the scope of our approach
(we model the lexical choice of the verbs and syn-
tax). This is true even though some languages
have strict tense usage rules. One factor may sim-
ply be a rule such as the one found in the EC
guidelines for translation from English to Ger-
man*: “Protokolle oder Berichte von Sitzungen
werden in der deutschsprachigen Fassung stets im
Prisens verfasst...” | “It is required to use present
tense in the translation of protocols and reports, re-
gardless of the tense in the source language.” Such
a rule does not apply to the translation of news ar-
ticles. However, in news articles tense/moods are
used, in particular subjunctive mood, in which the
reporter does not present his own assessment of
a situation, but what someone else said (Csipak,
2015), which are almost never used in texts found
on the internet (see konjunktiv I + II in Table 3).

Language—pair specific features Ye et al
(2006) presented thoughts about the knowledge
that human translators use. The aim was to use this
knowledge to model tense translation for Chinese—
English. For this specific language pair (and pos-
sibly for the corpus used), the knowledge about
temporal ordering of the actions was the key in-
formation. On the other hand, for English—French,
Meyer et al. (2013) found that a narrativity feature
helps to translate the English past tense into one of
the possible French tenses.

Tense switch We observed sentence pairs in
which the English is written in past tense, while
in German, present tense is used. Obviously,
there are contexts in which tense switches are al-
lowed. We assume that these sentences are head-
lines which allow for this kind of tense variation.

Tense interchangeability It seems that in nu-
merous contexts, tense translation can sometimes
even be a matter of taste. Sammon (2002) states
that in German the imperfect and perfect are in-
terchangeable in many contexts, the difference be-
tween the two tenses being largely stylistic. A sim-
ilar example is reported speech where Konjunk-
tiv I, Konjunktiv II and indicative tenses are often
used interchangeably (Csipak, 2015).

Sequential problem It is also not very clear
whether the tense/mood is to be dealt with as a

*Guidelines for translations into German used by the
European Commission: http://ec.europa.eu/
translation/german/guidelines/documents/
german_style_guide_en.pdf
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Number of clauses per sentence in %
Il News

I Europarl|
I Crawl

0.6
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Figure 4: Percentage of sentences from different
corpora containing different number of clauses.

sequential problem or not. On the one hand, in the
monolingual context of correcting English tense,
Tajiri et al. (2012) argues for a sequential tense
model. On the other hand Ye et al. (2006) ob-
served that sequential dependence of the tenses is
not as strong as expected. In the bilingual con-
text, there seems to be a strong dependence on the
tense in the source language. Statistics about the
number of clauses in the sentences shown in Fig-
ure 4, shows that our data mostly consists of sim-
ple sentences containing only one clause (i.e. one
finite verb). In other words, for most of the sen-
tences, an intra-sentence tense sequence is sim-
ply not given. Inter-sentence tense modeling, i.e.,
across sentence boundaries, could be more rea-
sonable, as for example, presented by Gong et al.
(2012) for Chinese to English SMT.

Evaluation of the verbs The final question we
raise is how to evaluate translations with respect
to information related to discourse such as tense
and modality (or negation as discussed by Fan-
cellu and Webber (2014)). Automatic evaluation
such as BLEU is not appropriate since it com-
pares the translation with the reference mainly on
the lexical level. What about human evaluation?
Our evaluators have a Kappa score of 0.33 which
is rather low. The humans thus allow for a cer-
tain variance in tense/mood translation which met-
rics like BLEU cannot capture given only one ref-
erence translation. Ideally, we would have mul-
tiple references in which all possible tenses are
given. Creating such an evaluation test set could
be done by gap-filling method proposed by Hard-
meier (2014) for evaluation of pronoun translation.



Summary For modeling mood translation, fea-
tures such as reported speech, conditional context,
polite form, etc. would more clearly describe the
contexts in which a specific mood occurs. The
information about tense ordering proposed by Ye
et al. (2006) for Chinese—English would proba-
bly be helpful also for English—to—German trans-
lation. However, the extraction of such features is
more complicated than simply using surface fea-
tures such as words, POS tags, etc.

7 Future work

The verbal inflection handling that we present in
this paper is implemented as a post-processing
step to the translation. We use the words, i.e.
verbs, generated by the SMT system and change
them according to our inflection models. An
interesting approach would, however, be to use
a more abstract representation of German VPs
which would allow for generation of all of the
words in a VP as specified by the inflection model.
For example, we could handle inserting/deleting
verbs (auxiliaries), reflexives or even negation.

As for the modeling of tense and mood, we are
going to explore possibilities to include discourse
knowledge (which was discussed in the previous
section) into the classification model. Such a
model could also be used within the translation
step, for example, to rerank translation alterna-
tives.
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Modeling Selectional Preferences of Verbs and Nouns in String-to-Tree
Machine Translation
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Abstract

We address the problem of mistranslated
predicate-argument structures in syntax-
based machine translation. This paper ex-
plores whether knowledge about semantic
affinities between the target predicates and
their argument fillers is useful for translat-
ing ambiguous predicates and arguments.
We propose a selectional preference fea-
ture based on the selectional association
measure of Resnik (1996) and integrate it
in a string-to-tree decoder. The feature
models selectional preferences of verbs for
their core and prepositional arguments as
well as selectional preferences of nouns
for their prepositional arguments.

We compare our features with a variant of
the neural relational dependency language
model (RDLM) (Sennrich, 2015) and find
that neither of the features improves au-
tomatic evaluation metrics. We conclude
that mistranslated verbs, errors in the tar-
get syntactic trees produced by the de-
coder and underspecified syntactic rela-
tions are negatively impacting these fea-
tures.

1 Introduction

Syntax-based machine translation systems have
had some success when applied to language pairs
with major structural differences such as German-
English or Chinese-English. Modeling the target
side syntactic structure is important in order to
produce grammatical, fluent translations and could
be an intermediate step on which to build a se-
mantic representation of the target sentence. How-
ever these systems still suffer from errors such
as scrambled or mis-translated predicate-argument
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structures. We give a few examples of such er-
rors in Table 1. In example a) the baseline system
MT1 mistranslates the verb besichtigt as viewed.
The system MT2 which uses information about the
semantic affinity between the verb and its argu-
ment produces the correct translation visited. The
semantic affinity score , shown on the right, for
the verb viewed and argument trip in the syntac-
tic relation prep_on is indicating a stronger affinity
than for the baseline translation. In example b)
the baseline system MT1 mistranslates the noun
Aufnahmen as recordings while the system MT2
produces the correct translation images which is
a better fit for the prepositional modifier from the
telescope.

Syntax-based MT systems handle long distance
reordering with synchronous translation rules such
as:

root — (RB~°V BZ™sich nsubj™*prep™,
RB™nsubj~?VBZ~ prep™3)

This rule is useful for reordering the verb and
its arguments according to the target side word or-
der. However the rule does not contain the lexical
head for the verb, the subject and the prepositional
modifier. Therefore the entire predicate argument
structure is translated by subsequent independent
rules. The language model context will capture
at most the verb and one main argument. Due to
the lack of a larger source or target context the re-
sulting predicate-argument structures are often not
semantically coherent.

This paper explores whether knowledge about
semantic affinities between the target predicates
and their argument fillers is useful for translating
ambiguous predicates and arguments. We propose
a selectional preference feature for string-to-tree
statistical machine translation based on the infor-
mation theoretic measure of Resnik (1996). The
feature models selectional preferences of verbs for

Proceedings of the First Conference on Machine Translation, Volume 1: Research Papers, pages 3242,
Berlin, Germany, August 11-12, 2016. (©2016 Association for Computational Linguistics



(relation, predicate, argument)  Affinity

SRC Bei nur einer Reise konnen nicht alle davon besichtigt werden.

2) REF  You won’t be able to visit all of them on one trip .
MT1 Not all of them can be viewed on only one trip. (prep-on, viewed, trip) -0.154
MT2 Not all of them can be visited on only one trip. (prep-on, visited, trip) 1.042
SRC Eine der schirfsten Aufnahmen des Hubble-Teleskops

b) REF  One of the sharpest pictures from the Hubble telescope
MT1 One of the strongest recordings of the Hubble telescope (prep-of, recordings, telescope) -0.0004
MT2 One of the strongest images from the Hubble telescope (prep_from, images, telescope)  0.3917

Table 1: Examples of errors in the predicate-argument structure produced by a syntax-based MT system.
a) mistranslated verb b) mistranslated noun. Semantic affinity scores are shown on the right. Higher
scores indicate a stronger affinity. Negative scores indicate a lack of affinity.

their core and prepositional arguments as well as
selectional preferences of nouns for their preposi-
tional arguments.

Previous work has addressed the selectional
preferences of prepositions for noun classes
(Weller et al., 2014) but not the semantic affini-
ties between a predicate and its argument class.
Another line of research on improving translation
of predicate-argument structures includes model-
ing reordering and deletion of semantic roles (Wu
and Fung, 2009; Liu and Gildea, 2010; Li et al.,
2013). These models however do not encode in-
formation about the lexical semantic affinities be-
tween target predicates and their arguments. Sen-
nrich (2015) proposes a relational dependency lan-
guage model (RDLM) for string-to-tree machine
translation. One component of RDLM predicts
the head word of a dependent conditioned on a
wide syntactic context. Our feature is different
as it quantifies the amount of information that the
predicate carries about the argument class filling a
particular syntactic function.

For one variant of the proposed feature we
found a slight improvement in automatic evalua-
tion metrics when translating short sentences as
well as an increase in precision for verb transla-
tion. However the features generally did not im-
prove automatic evaluation metrics. We conclude
that mistranslated verbs, errors in the target syn-
tactic trees produced by the decoder and under-
specified syntactic relations are negatively impact-
ing these features.

The paper is structured as follows. Section 2
describes related work on improving translation
of predicate-argument structures. Section 3 intro-
duces the selectional preference feature. Section
4 describes the experimental setup and Section 5
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presents the results of automatic evaluation as well
as a qualitative analysis of the machine translated
output.

2 Related work

From a syntactic perspective, a correct
predicate-argument structure will have the
sub-categorization frame of the predicate filled
in. Weller et al. (2013) use sub-categorization
information to improve case-prediction for noun
phrases when translating into German. Case
prediction for noun phrases is important in the
German language as it indicates the grammat-
ical function. Their approach however did not
produce strong improvements over the baseline.
From a large corpus annotated with dependency
relations, they extract verb-noun tuples and their
associated syntactic functions: direct object,
indirect object, subject. They also extract triples
of verb-preposition-noun in order to predict
the case of noun-phrases within prepositional-
phrases. The probabilities of such tuples and
triples are computed using relative frequencies
and then used as a feature for a CRF classifier that
predicts the case of noun-phrases. Weller et al.
(2013) apply the CRF classifier to the output of
a word-to-stem phrased-based translation system
as a post-processing step. In contrast, our model
is used directly as a feature in the decoder. While
Weller et al. (2013) identify the arguments of the
verb and their grammatical function by projecting
the information from the source sentence we use
the dependency tree produced by the string-to-tree
decoder. We also consider prepositional modifiers
of nouns.

Weller et al. (2014) propose using noun class
information to model selectional preferences of



prepositions in a string-to-tree translation system.
They use the noun class information to annotate
PP translation rules in order to restrict their appli-
cability to specific semantic classes. In our work
we don’t impose hard constraints on the transla-
tion rules, but rather soft constraints using our
model as a feature in the decoder. While we
use word embeddings to cluster arguments, Weller
et al. (2014) experiment with a lexical seman-
tic taxonomy and clustering words based on co-
occurrences within a window or syntactic features
extracted from dependency-parsed data.
Modeling reordering and deletion of semantic
roles (Wu and Fung, 2009; Liu and Gildea, 2010;
Li et al., 2013) has been another line of research on
improving translation of predicate-argument struc-
tures. Liu and Gildea (2010) propose modeling
reordering of a complete semantic frame while Li
et al. (2013) propose finer grained features that
distinguish between predicate-argument reorder-
ing and argument-argument reordering. Gao and
Vogel (2011) and Bazrafshan and Gildea (2013)
annotate target non-terminals with the semantic
roles they cover in order to extract synchronous
grammar rules that cover the entire predicate argu-
ment structure. These models however do not en-
code information about the lexical semantic affini-
ties between target predicates and their arguments.
In this work we focus on using selectional pref-
erence over predicate and arguments in the tar-
get as this is a simple way of leveraging external
knowledge in the translation framework.

3 Selectional Preference Feature

3.1 Learning Selectional Preferences

Selectional preferences describe the semantic
affinities between predicates and their argument
fillers. For example, the verb drinks” has a strong
preference for arguments in the conceptual class of
“liquids”. Therefore the word “wine” can be dis-
ambiguated when it appears in relation to the verb
“drinks”. A corpus driven approach to modeling
selectional preferences usually involves extracting
triples of (syntactic relation, predicate, argument)
and computing co-occurrence statistics. The pred-
icate and argument are represented by their head
words and the triples are extracted from automati-
cally parsed data. Another typical step is general-
izing over seen arguments. Approaches to gener-
alization include using an ontology such as Word-
Net (Resnik, 1996), using distributional semantics
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similarity (Erk et al., 2010; S€aghdha, 2010; Ritter
etal., 2010), clustering (Sun and Korhonen, 2009),
multi-modal datasets (Shutova et al., 2015), and
neural networks (Cruys, 2014).

Our feature is based on the measure proposed
by Resnik (1996). It uses unsupervised clusters
to generalize over seen arguments. Resnik (1996)
uses selectional preferences of predicates for word
sense disambiguation. The information theoretic
measure for selectional preference proposed by
Resnik quantifies the difference between the pos-
terior distribution of an argument class given the
verb and the prior distribution of the class. For
instance, “person” has a higher prior probability
than “insect” to appear in the subject relation, but,
knowing the verb is "fly”, the posterior probability
becomes higher for “insect”.

Resnik’s model defines selectional preference
strength of a predicate as:

SelPref(p,r) = KL(P(c|p,r) || P(c[r))

P(cp,r)
—ZP clp, r)log—+—"= Plclr)

)

where K L is the Kullback - Leibler divergence,
r is the relation type, p is the predicate and c
is the conceptual class of the argument. Resnik
uses WordNet to obtain the conceptual classes of
arguments, therefore generalizing over seen ar-
guments. The selectional association or seman-
tic affinity between a predicate and an argument
class is quantified as the relative contribution of
the class towards the overall selectional strength
of the predicate:

Plclp,r)
P(clr)

P(clp, r)log =5
SelStr(p,r

2

SelAssoc(p,r,c) =

We give examples of the selectional preference
strength and selectional association scores for dif-
ferent verbs and their arguments in Table 2. The
verb see takes on many arguments as direct ob-
jects and therefore has a lower selectional prefer-
ence strength for this syntactic relation. In contrast
the predicate hereditary takes on fewer arguments
for which it has a stronger selectional preference.

Several selectional preference models have
been used as features in discriminative syntac-
tic parsing systems. Cohen et al. (2012) observe



Verb Relation | SelPref | Argument | SelAssoc
see dobj 0.56 | PRN 0.123
movie 0.022
episode 0.001
is—hereditary | nsubj 1.69 | disease 0.267
monarchy 0.148
title 0.082
drink dobj 3.90 | water 0.144
wine 0.061
glass 0.027

Table 2: Example of selectional preference (SelPref) and selectional association (SelAssoc) scores for

different verbs. PRN is the class of pronouns.

that when parsing out-of-domain data many at-
tachment errors occur for the following syntactic
configurations: head (V or N) — prep — obj and
head (N) — adj. The authors proposed a class-
based measure of selectional preferences for these
syntactic configurations and learn the argument
classes using Latent Dirichlet Allocation (LDA).
Kiperwasser and Goldberg (2015) compare differ-
ent measures of lexical association between head
word and modifier word for improving depen-
dency parsing. Their results show that the associa-
tion measure based on pointwise mutual informa-
tion (PMI) has similar generalization capabilities
as a measure of distributional similarity between
word embeddings. van Noord (2007) has shown
that bilexical association scores computed using
PMI for all types of dependency relations are a
useful feature for improving dependency parsing
in Dutch.

3.2 Adaptation of Selectional Preference
Models for Syntax-Based Machine
Translation.

We are interested in modeling selectional pref-
erences of verbs for their core and prepositional
arguments as well as selectional preferences of
nouns for their prepositional arguments. We iden-
tify the relation between a predicate and its mod-
ifier from the dependency tree produced by a
string-to-tree machine translation system. Since
we are interested in using the feature during de-
coding, we need the model to be fast to query and
have broad coverage.

Our selectional preference feature is a variant
of the information theoretic measure of Resnik
(1996) defined in Eq 2. While Resnik uses the
WordNet classes of the arguments, this is not ap-
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propriate for a machine translation task where the
vocabulary has millions of words and English is
not the only targeted language. Therefore we
adapt Resnik’s selectional association measure in
two ways.

In the first model SelAssoc_L we compute the
co-occurrence statistics defined in Eq 2 over lem-
mas of the predicate and argument head words.

In the second model SelAssoc_C we replace the
WordNet classes in Eq 2 with word clusters' . We
obtain the word clusters by applying the k-means
algorithm to the glovec word embeddings (Pen-
nington et al., 2014).

Prepositional phrase attachment remains a fre-
quent and challenging error for syntactic parsers
(Kummerfeld et al.,, 2012) and translation of
prepositions is a challenge for SMT (Weller et al.,
2014). Therefore we decide to use two separate
features: one for main arguments (nsubj, nsubj-
pass, dobj, iobj) and one for prepositional argu-
ments.

3.3 Comparison with a Neural Relational
Dependency Language Model.

Sennrich (2015) proposes a relational dependency
language model (RDLM) for string-to-tree ma-
chine translation, which he trains using a feed-
forward neural network. For a sentence S
with symbols wy, ws, ...w, and dependency labels
l1,1a, ...l with [; the label of the incoming arc at
position ¢, RDLM is defined as:

"We have not done experiments with WordNet classes.



root

nsubj VBD prep punct
det nn  NNP prep met IN pobj | relation predicate argument
‘ ‘ ‘ T ‘ | ‘ nsubj met Minister
DT NNP Minister IN pobj in  NNP . prep,in met TOkyO
‘ ‘ ‘ ‘ prep-of  Minister India
the Prime of NNP cc conj:and Tokyo
India CC  NNP
and  Japan

Figure 1: Example of a translation and its dependency tree in constituency representation produced by
the string-to-tree SMT system. Triples extracted during decoding are shown on the right.

n
~[[P6) x P
=1

P(li | hs(0)1, Ls(8)1, ha(0)7
l

Pi(i) = s (1)1, N/
P(wi | hs(D)7, L5(0)1, ha (i)

Py(i) =

a(i)1)
la (1)1{7 %)
3)
where for each of ¢ siblings and r ancestors of
w;, hg and h, are their head words and [ and [,
their dependency labels. The P, (i) distribution
models similar information as our proposed fea-
ture Sel Assoc. However we use h, (7)1, l; as con-
text and consider only a subset of dependency la-
bels: nsubj, nsubjpass, dobj, iobj, prep. The re-
duced context alleviates problems of data sparsity
and is more reliably extracted at decoding time.
The subset of dependency relations identify argu-
ments for which predicates might exhibit selec-
tional preferences. Our feature is different from
RDLM — P, as it quantifies the amount of infor-
mation that the predicate carries about the argu-
ment class filling a particular syntactic function.
We hypothesize that such information is useful
when translating arguments that appear less fre-
quently in the training data but are prototypical for
certain predicates. For example the triples (bus,
drive, dobj) and (van, drive, dobj) have the fol-
lowing log posterior probabilities and SelAssoc
scores: log P(bus | drive, dobj) = -5.44, log P(van |
drive, dobj)=-5.58 and SelAssoc(bus, drive, dobj)
=0.0079, SelAssoc(van, drive, dobj) = 0.0103.

4 Experimental setup

Our baseline system for translating German into
English is the Moses string-to-tree toolkit imple-
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menting GHKM rule extraction (Galley et al.,
2004, 2006; Williams and Koehn, 2012). The
string-to-tree translation model is based on a syn-
chronous context-free grammar (SCFG) that is
extracted from word-aligned parallel data with
target-side syntactic annotation. The system was
trained on all available data provided at WMT15
2 (Bojar et al., 2015). The number of sentences in
the training, tuning and test sets are shown in Ta-
ble 3. We use the following rule extraction param-
eters: Rule Depth = 5, Node Count = 20, Rule Size
= 5. At decoding time we give a high penalty to
glue rules and allow non-terminals to span a max-
imum of 50 words. We train a 5-gram language
model on all available monolingual data 3 using
the SRILM toolkit (Stolcke, 2002) with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998) for training and KenLM (Heafield, 2011) for
language model scoring during decoding.

Train ‘ Tune ‘ Test
4,472,694 | 2000 | 8172

Table 3: Number of sentences in the training, tun-
ing and test sets. The test set consists of the WMT
newstest2013, 2014 and 2015.

The English side of the parallel corpus is anno-
tated with dependency relations using the Stanford
dependency parser (Chen and Manning, 2014).
The dependency structure is then converted to a
constituency representation which is needed to run
the GHKM rule extraction. We use the conversion

Zhttp://www.statmt.org/wmt15/translation-task.html

3target side of the parallel corpus, the monolingual En-
glish News Crawl, Gigaword and news-commentary



algorithm and the head word extraction method
described in Sennrich (2015).

For training the selectional preference features
we extract triples of (dependency relation, predi-
cate, argument ) from parsed data, where the pred-
icate and argument are identified by their head
word. We use the english side of the parallel data
and the Gigaword v.5 corpus parsed with Stanford
typed dependencies (Napoles et al., 2012). We
use Stanford dependencies in the collapsed ver-
sion which resolves coordination 4 and collapses
the prepositions. Figure 1 shows an example of a
translated sentence, its dependency tree produced
by the string-to-tree system and the triples ex-
tracted at decoding time. We consider the fol-
lowing main arguments: nsubj, nsubjpass, dobj,
iobj and prep arguments attached to both verbs
and nouns. Table 4 shows the number of extracted
triples.

Type of relation | Number of triples
main 540,109,283
prep 810,118,653
nsubj 315,852,775
nsubjpass 32,111,962
dobj 188,412,178
iobj 3,732,368

Table 4: Number of relation triples extracted from
parsed data. The data consists of the English side
of the parallel data and Gigaword. main arguments
include: nsubj, nsubjpass, dobj, iobj.

We integrate the feature in a bottom-up chart de-
coder. The feature has several scores:

e A counter for the dependency triples covered
by the current hypothesis.

e A selectional association score aggregated
over all main arguments: nsubj, nsubjpass,
dobj, iobj.

e A selectional association score aggregated
over all prepositional arguments with no dis-
tinction between noun and verb modifiers.

For both tuning and evaluation of all machine
translation systems we use a combination of the
cased BLEU score and head-word chain metric
(HwcM ) (Liu and Gildea, 2005). The HWCM met-
ric implemented in the Moses toolkit computes

*Coordination is not resolved at decoding time.
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the harmonic mean of precision and recall over
head-word chains of length 1 to 4. The head-word
chains are extracted directly from the dependency
tree produced by the string-to-tree decoder and
from the parsed reference. Tuning is performed
using batch MIRA (Cherry and Foster, 2012) on
1000-best lists. We report evaluation scores av-
eraged over the newstest2013, newstest2014 and
newstest2015 data sets provided by WMT15.

5 Evaluation

5.1 Error analysis

We wanted to get an idea about how often the verb
and its arguments are mistranslated. For this pur-
pose we manually annotated errors in sentences
with more than 5 words and at most 15 words.
With this criterion we avoided translations with
scrambled predicate-argument structures. Each
sentence had roughly one main verb.

To have a more reliable error annotation we first
post-edited 100 translations from the baseline sys-
tem. We then compared the translations with their
post-editions and annotated error categories using
the BLAST tool (Stymne, 2011). We considered
a sense error category when there was a wrong
lexical choice for the head of a main argument, a
prepositional modifier or the main verb. We also
annotated mistranslated prepositions.

Error Category Error Count | Total
Preposition 18 143
Sense 53 388

Main argument 18 145
Prep modifier 9 143
Main verb 26 100

Table 5: Number of mistranslated words in 100
sentences manually annotated with error cate-
gories.

In Table 5 we can see that 26 percent of the
verbs are mistranslated and about 10 percent of
the arguments. Mistranslated verbs are problem-
atic since the feature produces the selectional as-
sociation scores for the wrong verb. Although the
semantic affinity is mutual, the formulation of the
score conditions on the verb. In the cases when
both the verb and the argument are mistranslated
the association score might be high although the
translation is not faithful to the source.



5.2 Evaluation of the Selectional Preference
Feature

First, we determine the effectiveness of our selec-
tional association features. We compare the two
different selectional association features described
in section 3.2: SelAssoc_L and SelAssoc_C . We re-
port the results of automatic evaluation in Table 6.
Neither of the features improved the automatic
evaluation scores. The SelAssoc_L suffers from
data sparsity while the SelAssoc_C feature is over-
generalizing due to noisy clustering. Adding both
features compensates for these issues, however we
only see a slight improvement in BLEU scores
for shorter sentences’: 25.59 compared to 25.40
for the baseline system. We further investigate
whether sparse features are more informative.

System BLEU -c HWCM
Baseline 26.45 24.47
+ SelAssoc_L 26.41_ 04 | 24.52 05
+ SelAssoc_C 26.481 03 | 24.544 o7
+ SelAssoc_L

+ SelAssoc_C 26.48, 03 | 24471+ 00
+ Bin (SelAssoc_L

+ SelAssoc_C) 26.37_0s | 24.534 6

+ RDLM-P,, (1,0,0) | 26.35_ 19 | 24.754 28
+ RDLM-P,, 2,1, 1) | 26.38_ g7 | 24.831 36

Table 6: Results for string-to-tree systems with Se-
[Assoc and RDLM-P,, features. The number of
clusters used with SelAssoc_C is 500. The triples
in parenthesis indicate the context size for ances-
tors, left siblings and right siblings respectively.
The RDLM-PF,, configuration (1, 0, 0) captures
similar syntactic context as the selectional prefer-
ence features.

We changed the format of the features in or-
der to experiment with sparse features. By us-
ing sparse features we let the tuning algorithm dis-
criminate between low and high values of the Se-
[Assoc score. For each of the SelAssoc features
we normalized the scores to have zero mean and
standard deviation one and mapped them to their
corresponding percentile. A sparse feature was
created for each percentile, below and above the
mean © resulting in a total of 20 sparse features.
However this formulation of the feature also did

32701 sentences with more than 5 words and at most 15
words

Up to two standard deviations below the mean and three
standard deviations above the mean.
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not improve the evaluation scores as shown in the
fifth row of Table 6.

The lack of variance in automatic evaluation
scores can be explained by: a) the feature touches
only a few words in the translation and b) the rela-
tion between a predicate and its argument is iden-
tified at later stages of the bottom-up chart-based
decoding when many lexical choices have already
been pruned out. The SelAssoc scores, similar to
mutual information scores, are sensitive to outlier
events with low frequencies in the training data. In
the next section we investigate whether a more ro-
bust model would mitigate some of these issues
and experiment with a neural relational depen-
dency language model (RDLM) (Sennrich, 2015).

5.3 Comparison with a Relational
Dependency LM

The RDLM (Sennrich, 2015) is a feed-forward
neural network which learns two probability dis-
tributions conditioned on a large syntactic context
described in Eq 3: P, predicts the head word of
the dependent and P, the dependency relation. We
compare our feature with RDLM-P,,.

For training the RDLM-P,, we use the parame-
ters for the feed-forward neural network described
in Sennrich (2015): 150 dimensions for input
layer, 750 dimensions for the hidden layer, a vo-
cabulary of 500 000 words and 100 noise samples.
We train the RDLM-P,, on the target side of the
parallel data. Although we use less data than for
training the SelAssoc features, the neural network
is inherently good at learning generalizations and
selecting the appropriate conditioning context.

We experiment with different configurations for
RDLM-P,, by varying the number of ancestors as
well as left and right siblings:

e ancestors = 1, left =0, right =0
e ancestors =2, left = 1, right = 1

The first configuration captures similar syntac-
tic context as the SelAssoc features. The only ex-
ception is the prep relation for which the head of
pobj, the actual preposition, is a sibling of the ar-
gument. The results are shown in the last two lines
of Table 6 and the configuration is marked be-
tween parentheses for the ancestors, left siblings
and right siblings respectively.

The RDLM-P,, performs slightly better than
the selectional preference feature in terms of the
HWCM scores. An increase in HWCM is to be
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Figure 2: Frequency and translation precision of triples with respect to the distance between the predicate
and its arguments. Frequency is computed for triples extracted from the reference sentences of the tests
sets. Translation precision is computed over triples extracted from the output of the two translation
systems: baseline system and the system with SelAssoc_L and SelAssoc_C features.

expected since the RDLM-F,, models all depen-
dency relations. However there is not a significant
contribution from having a larger syntactic con-
text.

5.4 Analysis

In this section we investigate possible reasons for
the low impact of our selectional preference fea-
tures. We look at how frequently our features are
triggered, and how precision is influenced by the
distance between predicates and arguments.

Firstly we are interested in how often the fea-
ture triggers and how it influences the overall se-
lectional association score of the test set. On av-
erage, 4.85 triples can be extracted per sentence
produced by our system. Out of these, 4.35 triples
get scored by the SelAssoc_C feature and 3.56 by
the SelAssoc_L feature. The selectional associa-
tion scores are higher on average for our system
than for the baseline as shown in Table 7. The Se-
[Assoc_C feature seems to overgeneralize for the
prep relations as the scores are on average higher
than for the reference triples. We therefore con-
clude that our feature is having an impact on the
translation system.

Secondly we want to understand the interaction
between the SelAssoc features and the language
model. For this purpose we compute the frequency
and translation precision of triples with respect to
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SelAssoc_LL SelAssoc_C
System main | prep | main | prep
Baseline 0.067 | 0.039 | 0.164 | 0.147
+ SelAssoc_L
+ SelAssoc_C | 0.074 | 0.041 | 0.175 | 0.305
Reference 0.077 | 0.043 | 0.186 | 0.163

Table 7: Average selectional association scores for
the test sets. Scores are aggregated over the main
and prep argument types. main arguments include:
nsubj, nsubjpass, dobj, iobj.

the distance between the predicate and its argu-
ments. Figure 2 shows the frequency of triples
extracted from the reference sentence as well as
the translation precision of triples extracted from
the output of the translation systems. For more
reliable precision scores we lemmatized all pred-
icates and arguments. Most arguments are within
a 5 word window from the predicate. Therefore
most triples are also scored by the language model.
For these triples we see only a slight increase in
precision for our system. This result indicates that
for predicates and arguments that are close to each
other, the feature is not adding much information.
As the distance increases the precision decreases
drastically for both systems. A longer distance
between predicates and arguments also implies a



Source
Reference
Baseline

Das 16-jahrige Midchen und der 19-jihrige Mann brachen kurz nach Sonntagmittag in Govetts Leap in Blackheath zu ihrer Tour auf.
The 16-year old girl and the 19-year old man went on their tour shortly after Sunday lunch at Govetts Leap in Blackheath.
The 16-year old girl and the 19-year old man broke shortly after Sunday lunch in Govetts Leap in Blackheath on their tour.

Figure 3: Examples of a complex sentence with multiple prepositional modifiers. Information about
semantic roles is needed to identify the relevant prepositional modifier.

more complex syntactic structure which will neg-
atively impact the quality of extracted triples and
the selectional association scores.

5.5 Discussion

One reason for the small impact of both SelAssoc
and RDLM-P,, features could be the poor qual-
ity of the syntactic trees produced by the decoder
for longer sentences. In the cases where the rela-
tion between predicate and argument can be reli-
ably extracted, such as the example in Fig 1, the
features are not adding more information than is
already covered by the language model.

In more complex sentences there are cases
where the features score modifiers that are not im-
portant for disambiguating the verb. The exam-
ple in Figure 3 has several prepositional modifiers
but only on four could help disambiguate the verb
brachen (went). In such cases identifying the se-
mantic roles of the modifiers in the source and pro-
jecting them on the target might be useful for bet-
ter estimation of semantic affinities.

The error analysis on short sentences showed
that translation of verbs is problematic for syntax-
based systems. This is confirmed by the low pre-
cision scores’ for verb translation shown in Table
8. Although there is a slight improvement in pre-
cision, generally mistranslated verbs impact our
features as the semantic affinity is scored for the
wrong verb. A solution would be to add the source
verbs in the conditioning context.

System Precision
baseline 46.10

+ SelAssoc_L + SelAssoc_C | 46.264 14
+RDLM-P, (2,1, 1) 46.314 91

Table 8: Evaluation of verb translation in the test
set. Precision scores are computed over verb lem-
mas against the reference translations.

"The precision scores were computed over verb lemmas
extracted automatically from the test sets. In total 21633
source verbs were evaluated.
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6 Conclusions

This paper explores whether knowledge about se-
mantic affinities between the target predicates and
their argument fillers is useful for translating am-
biguous predicates and arguments. We propose
three variants of a selectional preference feature
for string-to-tree statistical machine translation
based on the selectional association measure of
Resnik (1996). We compare our features with a
variant of the neural relational dependency lan-
guage model (RDLM) (Sennrich, 2015) and find
that neither of the features improves automatic
evaluation metrics. We conclude that mistrans-
lated verbs, errors in the target syntactic trees pro-
duced by the decoder and underspecified syntactic
relations are negatively impacting these features.
We propose to address these issues in future work
by augmenting the feature with source side infor-
mation such as the source verb and the semantic
roles of its arguments.
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Abstract

We explore two approaches to model com-
plement types (NPs and PPs) in an English-
to-German SMT system: A simple abstract
representation inserts pseudo-prepositions
that mark the beginning of noun phrases,
to improve the symmetry of source and tar-
get complement types, and to provide a
flat structural information on phrase bound-
aries. An extension of this representation
generates context-aware synthetic phrase-
table entries conditioned on the source side,
to model complement types in terms of
grammatical case and preposition choice.
Both the simple preposition-informed sys-
tem and the context-aware system signifi-
cantly improve over the baseline; and the
context-aware system is slightly better than
the system without context information.

1 Introduction

SMT output is often incomprehensible because it
confuses complement types (noun phrases/NPs vs.
prepositional phrases/PPs) by generating a wrong
grammatical case, by choosing an incorrect prepo-
sition, or by arranging the complements in a mean-
ingless way. However, the choice of complement
types in a translation represents important infor-
mation at the syntax-semantics interface: The case
of an NP determines its syntactic function and its
semantic role; similarly, the choice of preposition
in a PP sets the semantic role of the prepositional
phrase.

While the lexical content of a target-language
phrase is defined by the source sentence, the exact
choice of preposition and case strongly depends
on the target context, and most specifically on the
target verb. For example, the English verb phrase
to call for sth. can be translated into German by etw.
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erfordern (subcategorizing a direct-object NP but
no preposition) or by (nach) etw. verlangen (subcat-
egorizing either a direct-object NP or a PP headed
by the preposition nach). Differences in grammat-
ical case and syntactic functions between source
and target side include phenomena like subject-
object shifting: [I]syg; like [the book]ogy Vs. [das
Buch]sugy gefillt [mir]og;. Here, the English ob-
ject corresponds to a German subject, whereas the
English subject corresponds to the indirect object
in the German sentence.

Selecting the wrong complement type or an in-
correct preposition obviously has a major effect on
the fluency of SMT output, and also has a strong im-
pact on the perception of semantic roles. Consider
the sentence John looks for his book. When the
preposition for is translated literally by the prepo-
sition fiir, the meaning of the translated sentence
John sucht fiir sein Buch shifts, such that the book
is no longer the object that is searched, but rather
a recipient of the search. To preserve the source
meaning, the prepositional phrase headed by for
must be translated as a direct object of the verb
suchen, or as a PP headed by the preposition nach.

Since prepositions tend to be highly ambiguous,
the choice of a preposition depends on various fac-
tors. Often, there is a predominant translation, such
as for — fiir, which is appropriate in many con-
texts, but unsuitable in other contexts. Such trans-
lation options are often difficult to override, even
when there are clues that the translation is wrong.
Furthermore, even though prepositions are highly
frequent words, there can be coverage problems if
a preposition is not aligned with the specific prepo-
sition required by the context, due to structural
mismatches.

This paper presents two novel approaches to im-
prove the modeling of complement types. A sim-
ple approach introduces an abstract representation
of “placeholder prepositions” at the beginning of
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noun phrases on the source and target sides. The
insertion of these placeholder prepositions leads
to a more symmetric structure and consequently
to a better coverage of prepositions, as all NPs
are effectively transformed into PPs, and preposi-
tions in one language without a direct equivalent
in the other language can be aligned. Furthermore,
the placeholder prepositions function as explicit
phrase boundaries and are annotated with grammat-
ical case, so they provide flat structural information
about the syntactic function of the phrase. The
placeholder representation leads to a significant
improvement over a baseline system without prepo-
sitional placeholders.

Our second approach enhances the abstract
placeholder representation, and integrates source-
side context into the phrase table of the SMT sys-
tem to model different complement types. This
is done by generating synthetic phrase-table en-
tries containing contextually predicted prepositions.
With this process, we aim to (i) improve the prepo-
sition choice conditioned on the source sentence,
and to (ii) manipulate the scores in the generated
entries to favour context-appropriate translations.
Generating phrase-table entries allows to create
prepositions in contexts not observed in the paral-
lel training data. The resulting phrase-table entries
are unique for each context and provide the best
selection of translation options in terms of comple-
ment realization on token-level. This variant sig-
nificantly outperforms the baseline, and is slightly
better than the system with inserted placeholder
prepositions.

2 Related Work

Our work is related to three research areas: using
source-side information, previous approaches to
model case and prepositions and the synthesis of
phrase-table entries.

Source-side information has been applied to
SMT before, often for the purpose of word
sense disambiguation and improving lexical choice
(Carpuat and Wu, 2007; Gimpel and Smith, 2008;
Jeong et al., 2010; Tamchyna et al., 2014), but
without a focus on synthesis or syntactic-semantic
aspects such as subcategorization.

Prepositions are difficult to translate and respon-
sible for many errors, as has been shown in many
evaluations of machine translation. For example,
Williams et al. (2015) presented a detailed error
analysis of their shared task submissions, listing
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the number of missing/wrong content and function
words. For the language pair English—-German, the
combined number of missing/wrong/added prepo-
sitions is one of the most observed error types.
Agirre et al. (2009) were among the first to use rich
linguistic information to model prepositions and
grammatical case in Basque within a rule-based sys-
tem, leading to an improved translation quality for
prepositions. Their work is extended by Shilon et
al. (2012) with a statistical component for ranking
translations. Weller et al. (2013) use a combination
of source-side and target-side features to predict
grammatical case on the SMT output, but without
taking into account different complement types (NP
vs. PP). Weller et al. (2015) predict prepositions
as a post-processing step to a translation system
in which prepositions are reduced to placeholders.
They find, however, that the reduced representation
leads to a general loss in translation quality. Exper-
iments with annotating abstract information to the
placeholders indicated that grammatical case plays
an important role during translation. We build on
their observations, but in contrast with generating
prepositions in a post-processing step, prepositions
in our work are accessible to the system during de-
coding, and the phrase-table entries are optimized
with regard to the source-sentence. Finnish is a
highly inflective language with a very complex case
and preposition system. Tiedemann et al. (2015)
experimented with pseudo-tokens added to Finnish
data to account for the fact that Finnish morpholog-
ical markers (case) often correspond to a separate
English word (typically a preposition). Due to the
complexity of Finnish, only a subset of markers
is considered. The pseudo-tokens are applied to a
Finnish—English translation system, but a manual
evaluation remains inconclusive about the effective-
ness of their method. For the preposition-informed
representation in our work, we adapt both source
and target language to obtain more isomorphic par-
allel data. Also, we translate info the morphologi-
cally rich language, which requires morphological
modeling with regard to, e.g., grammatical case and
portmanteau prepositions (cf. section 3) to ensure
morphologically correct output.

Synthetic phrases have been implemented by
Chahuneau et al. (2013) to translate into morpho-
logically rich languages. They use a discriminative
model based on source-side features (dependency
information and word clusters) to predict inflected
target words based on which phrase-table entries



to aus[APPR-Dat] from

transform unedel[ADJA] base
nullprp Metall<Neut><PI>[NN] metals
base empty[APPR-Acc] emptyprep
metals Gold<Neut><Sg>[NN] gold
into zu[PTKZU] to
gold machen[VVINF] make

Figure 1: Example for preposition-informed repre-
sentation with empty placeholders heading NPs.

are generated. They report an improvement in trans-
lation quality for several language pairs. In con-
trast, our approach concentrates on the generation
of closed-class function words to obtain the most
appropriate complement type given the source sen-
tence. This includes generating word sequences not
observed in the training data, i.e. adding/changing
prepositions for a (different) PP or removing prepo-
sitions to form an NP. A task related to synthesizing
prepositions is that of generating determiners, the
translation of which is problematic when translat-
ing from a language like Russian that does not have
definiteness morphemes. Tsvetkov et al. (2013)
create synthetic translation options to augment the
phrase-table. They use a classifier trained on local
contextual features to predict whether to add or re-
move determiners for the target-side of translation
rules. In contrast with determiners, which are local
to their context, we model and generate function
words with semantic content which are subject to
complex interactions with verbs and other subcate-
gorized elements throughout the sentence.

3 Inflection Prediction System

We work with an inflection prediction system
which first translates into a stemmed representation
with a component for inflecting the SMT output in a
post-processing step. The stemmed representation
contains markup (POS-tags and number/gender on
nouns and case on prepositions, as can be seen in
figure 1) which is used as input to the inflection
component. Inflected forms are generated based
on the morphological features number, case, gen-
der and strong/weak, which are predicted on the
SMT output using a sequence model and a morpho-
logical tool (cf. section 6.1). Modeling morphol-
ogy is necessary when modifying German prepo-
sitions, as they determine grammatical case and
changing a preposition might require to adapt the
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inflection of the respective phrase, too. Portman-
teau prepositions (contracted forms of preposition
and determiner) are split during the synthesizing
and translation process, and are merged after the
inflection step. For more details about modeling
complex morphology, see for example Toutanova
et al. (2008), Fraser et al. (2012) or Chahuneau et
al. (2013).

4 Preposition-Informed Representation

Our first approach introduces a simple abstract rep-
resentation that inserts pseudo-preposition markers
to indicate the beginning of noun phrases. This
representation serves two purposes: to adjust the
source and target sides for structural mismatches
of different complement types, and to provide in-
formation about syntactic functions and semantic
roles via the annotation of grammatical case.

Placeholders for empty prepositions are inserted
at the beginning of noun phrases in both the source
and target language. Figure 1 provides an example
of the training data with two structural mismatches:
the PP on the source side into gold corresponds to
the NP Go1d<sg> [NN] on the target side, and the
NP on the source side (base metals) corresponds
to the PP aus unedel Metall on the target side.
Without the placeholders at the beginning of noun
phrases, the word alignment for these phrases con-
tains either unaligned overt prepositions!, or impre-
cise one-to-many alignments containing preposi-
tions such as “into gold — Gold<sg>[NN]”, which
are wrong in many contexts.

The placeholder prepositions lead to a cleaner
word alignment: the inserted empty preposition on
the source side (in nullprp base metals) is aligned
to the overt preposition aus on the target side,
whereas the overt source preposition in into gold
can be aligned to an empty preposition on the tar-
get side. As a consequence of the improved word
alignment, the resulting system has a better cover-
age of individual prepositions, and the amount of
prepositions being lumped together with an adja-
cent word via alignment is reduced. In addition, the
placeholder between Metall and Gold provides an
explicit phrase boundary between a PP and a direct
object NP. The annotation with grammatical case
provides information about the syntactic function
of a phrase, such as a subject (EMPTY-Nom) Or a
direct object (EMPTY-2Acc). For PPs, the case repre-

"'We use the term overt prepositions for actually present
prepositions, as opposed to “empty” prepositions.



[ sentence 1: nullprp beginners look for weapons in different ways . ]

[ sentence 2: nullprp screenshot of the site that accepts nullprp orders for weapons . ]

1 2 13 4 5 6 7 8 9 10 11

NP/PP | tag| word | func | head head parent | parV parV | parN parN best-5

src src| src src | src trg src src trg src trg predicted
- || PP IN | for prep | weapon Waffe | V look - - - nach-Dat 0.349
8 empty-Acc  0.224
5 empty-Nom  0.206
E von-Dat 0.067
2 fiir-Acc 0.064
« || PP IN | for prep | weapon Waffe | N - - order — fiir-Acc 0.559
3 empty-Nom  0.184
5 von-Dat 0.087
5 nach-Dat 0.078
i empty-Acc  0.053

Table 1: Source and target side features for the prediction of placeholders in the phrase for weapons —
PREP Waffe<P1>[NN] in two sentences, using the top-5 five predictions; appropriate prepositions are bold.
The prediction model corresponds to model (2) in table 7.

sents an indicator whether a preposition is part of a
directional (accusative) or a locational (dative) PP.

S Synthetic Phrase-Table Entries

Our second, extended approach generates synthetic
phrases from intermediate generic placeholders.
We combine source-side and target-side features to
synthesize phrase-table entries that are unique for
the respective source-side context.

5.1

The preposition-informed representation presents a
straightforward solution to handle different struc-
tures on the source and target side. However, there
are two remaining issues: first, the distribution
of translation probabilities might favour a comple-
ment realization that is invalid for the respective
context; and second, the required preposition might
not even occur in the parallel training data as a
translation of the source phrase. As a solution to
these problems, we explore the idea of synthesizing
phrase-table entries, in order to adjust the transla-
tion options to token-level requirements in a way
that allows to take into account relevant informa-
tion from the entire source sentence.

As a basis for the prediction of synthetic phrase-
table entries, all empty and overt prepositions are
replaced with a generic placeholder prep. In the
prediction step, generic placeholders are trans-
formed into an overt or an empty preposition. Ev-
ery phrase can thus be inflected as either PP or NP,
depending on the sentence context. The format
of the synthesized phrases corresponds to that of
the preposition-informed system, with one major
difference: for each source phrase, a unique set of

Motivation and Example
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target-phrases (possibly with new word sequences)
is generated to provide an optimal set of translation
options on token level.

Table 1 illustrates the first step of the process:
the two sentences above the table both contain
the phrase for weapons, which occur in different
contexts. The predominant literal translation of
for is fiir, which is however only correct in the
second sentence, modifying the noun order. In
the context of the verb look, the preposition nach
or the empty preposition are correct. Thus, for
the underlying target phrase PREP Waffe<P1>[NN],
different prepositions need to be available for
different contexts: for the first sentence, the in-
termediate placeholder entry should yield nach
Waffe<P1>[NN] and EMPTY-Acc Waffe<P1>[NN];
for the second sentence, it should yield fiir
Waffe<P1>[NN] (bold in table 1). In particular, it
is possible to generate target entries that have not
been observed in the training data in combination
with the source phrase. This is, for example, the
case for EMPTY-Acc Waffe<P1>[NN] which does
not occur as a possible translation option of for
weapons in the preposition-informed system.

5.2 Prediction Features

Table 1 shows the set of source-side and target-side
features used to train a maximum entropy classifier
for the prediction task. As phrase-table entries are
often short, we rely heavily on source-side features
centered around the placeholder preposition. Via
dependency parses (Choi and Palmer, 2012), rele-
vant information is gathered in the source sentence.
Source information comes from the entire sentence,
and may go beyond the phrase boundary, whereas



[ ] Target [ plelf) ]
B fiir [Acc] Waffe<Fem><P1> [NN] 0.333
g nach[Dat] Waffe<Fem><Pl>[NN] 0.148
E flir[Acc] nuklear<Pos>[ADJA] 0.037
? fiir[Acc] militdrisch<Pos>[ADJA] 0.037
A~ fiir [Acc] die<+ART>[ART] 0.037
nach[Dat] Waffe<Fem><P1>[NN] 0.192 v/
—s.l empty[Acc] Waffe<Fem><P1l>[NN] 0.131 v
$ |28 empty[Nom] Waffe<Fem><P1l>[NN] 0.121
_;E flir [Acc] Waffe<Fem><P1>[NN] 0.094
:: von[Dat] Waffe<Fem><P1l>[NN] 0.038
E o flrlAcc] Waffe<Fem><P1>[NN] 0.336 v
E 8 empty[Nom] Waffe<Fem><P1>[NN] 0.101
® |8 vyon[Dat] Waffe<Fem><P1>[NN] 0.045
nach[Dat] Waffe<Fem><P1l>[NN] 0.041
die<+ART>[ART] Waffe<Fem><pP1l>[NN] | 0.037

Table 2: The top-5 synthetic phrases according
to p(e| f) for the phrase for weapons based on the
predictions from table 1. Phrases marked with v are
correct in the respective context.

the target-side context is restricted to the phrase.

The source-side features comprise the type of
the aligned phrase (1), the tag (2) and the word
(3), as well as the syntactic function of that phrase
in the source sentence (4: subj, obj, prep), and
the governed noun (5: weapon). Furthermore, the
word (verb (8) or noun (10)) governing the aligned
preposition is identified and used as a feature along-
side with its tag information (7: V/N). The content
words from the source side, head-src (5) and parent-
V/N (9,11) are then projected to the target side, if
present in the phrase. In addition, up to three words
to the left or right of the placeholder provide target-
side context, depending on the length of the target
phrase. From these features, information about the
verb and the syntactic role in the source sentence
are probably most important. While the content
of an NP (e.g., to order weapons/cake/etc.) is not
necessarily relevant to determine the realization of
a placeholder?, the training also relies on feature
n-grams such as noun-verb tuples or preposition-
noun-verb triples, which contain important infor-
mation about subcategorizational preferences.

As training data for this model, we use all ex-
tracted source/target/alignment triples containing a
relevant preposition from the preposition-informed
system; the preposition with case annotation is
used as the label. We record which sentence was
used to extract each phrase in order to obtain the
token-level source-side context. For the prediction

20ur experiments indicated that using features (5) and (6)
as individual features tends to be harmful, whereas in combi-
nation with other features they provide useful information.
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task, the model is applied to phrase-table entries ob-
tained on the placeholder representation: For each
n-gram in the source sentence, the relevant phrase-
table entries are identified and the respective fea-
tures are extracted from the source sentence. Based
on the top-5 predictions, along with the prediction
scores, context-dependent phrase-table entries are
generated. Since the complement realization also
depends on lexical decisions in the target sentence
(such as the verb), there are often several valid op-
tions and there is no possibility to decide for one
particular realization without the actual target sen-
tence context during the prediction step. We thus
work with the set of n-best predictions to provide a
selection of probable phrase-table entries given the
source-sentence.

In this model, each preposition to be predicted
is treated as one instance; this means that each
preposition is predicted independently. In the case
of several prepositions occurring in a single phrase,
we consider all permutations of the respective n-
best predictions.

5.3 Building the Phrase Table

To build the phrase-table with synthesized target
phrases, we start by building a phrase table on
data with generic placeholders, using the word
alignments from the preposition-informed system.
The entries are then separated into two groups: en-
tries with and without placeholders. Entries with-
out placeholders do not need any further process-
ing, and are kept for the final phrase table, includ-
ing translation probabilities and lexical weights.
Phrase-table entries whose target side contains a
placeholder are then selected to undergo the predic-
tion step.

A prediction for all phrases is not feasible, so we
restrict the table to the top-20 entries according to
p(e|f). This filtering is applied to the phrase table
of the preposition-informed system; the phrase-
table entries containing generic placeholders are
then selected accordingly. With this process of
phrase selection, the synthetic-phrase system and
the preposition-informed system rely on the same
set of underlying phrase-table entries.

5.4 Scores in Phrase and Reordering Table

A phrase table typically contains the translation
probabilities p(f|e) and p(e| f), as well as the lex-
ical probabilities lex(f|e) and lex(e|f). For the
newly generated entries, new scores have to be
computed: the lexical weight of a phrase can be



calculated based on the lexical weights of the in-
dividual words. In contrast, the translation proba-
bility of a newly generated phrase cannot be cal-
culated. We consider the translation probability
from the placeholder representation table as an ap-
proximate translation probability independent of
the actual preposition; the classifier (ME) score
indicates how well a particular preposition fits into
the target-phrase. We present three variants to esti-
mate the translation probabilities and then explore
several ways to use the scores as features to be
optimized by MERT training.

SCORE-VARIANT 1: The placeholder translation
probability and the ME scores are used as sepa-
rate features. An indicator feature counts the pre-
dicted prepositions. Non-synthesized phrases get a
pseudo ME-score of 1, and exp(0) for the indicator
feature. In the case of n > 1 prepositions, the ME
scores are multiplied, and the indicator feature is
set to exp(n).

SCORE-VARIANT 2: Variant 1 is extended with the
product of the placeholder translation probabilities
and the ME score, to account for cases where lex-
ically bad translation options received a high ME
score and thus are boosted erroneously.

SCORE-VARIANT 3A: We consider the placeholder
translation probability as the probability of a
phrase to contain some preposition and use it as the
basis to calculate a score for the phrase to contain
the predicted preposition, using the ME score.
Note, however, that the prediction score does
not provide the probability of the target phrase
representing a translation of the source phrase, but
only how well the predicted preposition fits into
the target phrase; this leads to potentially high
ME scores for bad translation options. For this
reason, we “dampen” the prediction score with the
lexical probability as an indicator for the quality of
the source-target pair, resulting in the following
formula:

Pprep(e|f) = PPlaceHolder(e|f) *(ME + lex(e|f))

where ME is the prediction score and P pjqce rotder
is the translation probability based on the place-
holder representation. lex is the lexical probability
based on the phrase containing the generated prepo-
sitions. In a variant (3b), the resulting translation
probability scores are then normalized such that
they sum to 1 with the entries without prepositions,
whose probability mass remains unchanged and
corresponds to that in the preposition-informed sys-
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tem. This aims at obtaining a “real” probability dis-
tribution with context-dependent scores for phrases
containing prepositions that is as close as possible
to that in the preposition-informed system: proba-
bilities of phrases without prepositions remain the
same, whereas the scores for the generated phrases
are normalized to share the remaining probability
mass given a source phrase.

In variants 1 and 2, the ME-based scores are
used as additional features to the lexical and place-
holder translation probabilities, whereas in variant
3, new phrase-translation probabilities are com-
puted based on the placeholder probabilities and
the prediction scores to replace the placeholder
probabilities. Table 2 shows the generated entries
and the scores for p(e|f) according to score variant
3b for the predictions from table 1; suitable trans-
lation options are marked with «. For sentence 1,
the two possible variants nach and empty are top-
ranked, whereas the top entry from the preposition-
informed system, fiir, is unlikely to be selected in
this context. For sentence 2, the top-ranked preposi-
tion fiir is even more likely than in the preposition-
informed system. The entries for both sentence
1 and sentence 2 show that the previous two top-
ranked candidates (fiir Waffe<P1>[NN] and nach
Waffe<P1l>[NN]) are now expanded and take up the
top-5 positions for sentence 1 and the top-4 posi-
tions for sentence 2. As a result, the lexically in-
valid options on positions 3-5 from the preposition-
informed system are disfavoured.

For the reordering table, we use the statistics
from the placeholder representation. We assume
that no changes in the reordering are caused by
modifying the complement type or modifying
prepositions; this assumption was verified experi-
mentally (details are omitted).

6 Experiments and Results

We compare the preposition-informed system with
the synthetic-phrases system where we explore dif-
ferent ways to integrate the synthetic phrases.

6.1 Experimental Setup

All systems were built using the Moses phrase-
based framework. We used 4.592.139 parallel sen-
tences aligned with GIZA++ for translation model
training, and 45M sentences (Newsl4+parallel
data) to build a 5-gram language model. We used
NewsTest13 (3000 sentences) for development and
NewsTest14 (3003 sentences) as test set. These



System BLEU
baseline-1 Surface forms 19.17
baseline-2 Stemmed 19.35
prep-informed ]

system  (P-1) Stemmed + -CASE 19.76
prep-informed i o

system  (P-2) Stemmed + (-CASE-top-20 19.73

Table 3: Scores for baselines and preposition-
informed system.

System Features used for MERT tuning BLEU
SP-1  SCORE-VARIANT-1 19.76
SP-2 SCORE-VARIANT-2 19.83
SP-3a  SCORE-VARIANT-3 19.80
SP-3b SCORE-VARIANT-3, norm. Pp,cp(e|f) | 19.86%

Table 4: Variants of the synthetic-phrases system.
* marks significant improvement over system P-2
(with pair-wise bootstrap resampling with sample
size 1,000 and a p-value of 0.05)

datasets are from the WMT2015 shared task.

To predict the four morphological features num-
ber, gender, case and strong/weak for inflecting the
stemmed output, we trained 4 CRF sequence mod-
els on the target-side of the parallel data. These
features are predicted as a sequence of labels (i.e.
case/number/etc of consecutive words in an NP/PP)
at sentence level. For the prediction of the place-
holder prepositions, we trained a maximum entropy
model on the parallel training data. In contrast to
the morphological features, each preposition in a
phrase is predicted independently. For all models,
we used the toolkit Wapiti (Lavergne et al., 2010).
The German data was parsed with BitPar (Schmid,
2004) and German inflected forms were generated
with the morphological resource SMOR (Schmid
et al., 2004).

6.2 Baselines

We consider two baselines:

BASELINE-1: a standard phrase-based translation
system trained on surface forms without any form
of morphological modeling.

BASELINE-2: a system with morphological model-
ing, as described in section 3. Portmanteau prepo-
sitions are split into preposition and article prior to
translation and merged in a post-processing step.
Otherwise, prepositions are not modeled.

6.3 Results

The preposition-informed system contains overt
prepositions and empty prepositions annotated with
grammatical case at the beginning of noun phrases,
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as described in section 4. Empty prepositions are
simply deleted from the SMT output after trans-
lation before generating inflected forms. The in-
troduction of empty prepositions into the training
data leads to statistically significant improvements
in BLEU over both the surface system (baseline-1)
and the inflection prediction system (baseline-2),
cf. Table 3. Furthermore, restricting the phrase-
table to the top-20 entries according to p(e| f) (sys-
tem P-2) does not decrease performance.

Table 4 shows the results for the variants of the
synthetic-phrases systems, which all significantly
outperform baseline-2. Even though the difference
is small, the best system (SP-3b) is significantly
better than system P-2, the preposition-informed
system using the top-20 translation table entries.
It is, however, not significantly better than system
P-1, which uses all phrase-table entries. This is rea-
sonable considering that SP-3b is built from place-
holder entries based on the same phrase inventory
as system P-2.

The system with the lowest score (SP-1) uses
lexical and placeholder phrase probabilities com-
bined with the ME prediction scores and the count
feature. System SP-2, extended with the product
of the phrase translation probability and the ME
score, yields a slightly better result. For system
SP-3, in which new phrase-translation probabilities
replace the placeholder probabilities, we compare a
version with and without normalized p(e|f) scores:
the normalization leads to a best overall score; all
synthetic-phrases systems score in a similar range,
however.

7 Discussion

In this section, we summarize the results and in par-
ticular, discuss the use of newly generated phrases.
We also attempt to analyze potential side-effects on
the phrase table and present additional experiments
to better handle these effects.

7.1 Summary of Results

The insertion of placeholder prepositions leads to
an improvement over both baselines due to the
cleaner alignment enabled by the more similar
source and target sides. Furthermore, the empty
prepositions can function as phrase boundaries and
provide “flat structural” information in the form of
annotated grammatical case.

The synthetic-phrases approach aims at generat-
ing a context-sensitive variant of the preposition-



SP-1 SP-2 | SP-3a | SP-3b
new 1489 1507 1391 1398
regular | 38132 | 34541 | 35101 | 33571

Table 5: Number of newly generated and regular
phrase-table entries used to translate the test set
(3003 sentences).

informed system that is able to generate new entries
if needed. We explored different score settings,
either as separate features (variants 1/2) or com-
bined into a translation probability score in (variant
3). While all variants perform similarly, the best
system is significantly better than the preposition-
informed system built on the top-20 phrase-table
entries. This shows that the proposed method of
synthetic phrases indeed improves translation qual-
ity. However, the difference is very small and only
applies to one pair of system variants, which makes
it difficult to draw a solid conclusion.

7.2 Use of Newly Generated Phrases

An important property in the presented method
is the ability to generate new phrases. Table 5
shows the distribution of phrases used to translate
the test set. For the 3003 sentences, roughly 1500
new phrases have been applied; on average, this
corresponds to about one new phrase in one out of
two sentences. Given that function words usually
are thought to be well-covered in NLP training data,
this number is substantial.

The following example illustrates how newly
generated translation options can improve trans-
lations by closing coverage gaps. Table 6 shows
the translations for an input sentence (EN) of the
preposition-informed system P-2 and the synthetic-
phrases system SP-2. The two outputs are identical
and both correct, except for the wrong preposition
zur in system P-2. To translate the sentence with
the synthetic-phrases system, these new translation
options® have been used:

the deutsche bahn — die (-Nom deutsche Bahn

to improve () the — auf-Acc eine Verbesserung (-Gen der
railway linein =~ — Eisenbahnlinie in-Dat

In particular, the phrase pair “to improve () the —
auf-Acc eine Verbesserung ()-Gen der” enables a
translation with the correct preposition. Due to
the segmentation of the sentence, the English verb
hope is translated as part of another phrase, which
excludes a translation as one unit such as hope

3Shown in inflected format for better readability.
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nullprp the deutsche bahn hopes to improve nullprp
EN L . S .

the kinzigtal railway line in the coming year.
P2 die deutsche Bahn hofft zur Verbesserung

der kinzigtal Eisenbahnlinie im kommenden Jahr.
Sp-2 die deutsche Bahn hoftt auf eine Verbesserung

der kinzigtal Eisenbahnlinie im kommenden Jahr.

Table 6: Improved translation output by applying a
newly generated translation option.

to — hoffen auf. Furthermore, there is a struc-
tural shift between the source side phrase “hope to
improvey”, and the German sentence with the
structure “hofft PREP Verbesserungyoun”. The incor-
rect zu in the preposition-informed system would
be a valid connection to a following verb, but can-
not be used to introduce a PP in this context.

7.3 Side-Effects on the Phrase-Table

A recurring problem in the synthetic-phrases sys-
tem are lexically wrong translations that are
boosted due to unreasonably high ME scores in
comparison to lexically more correct options. In
particular, this is the case when infrequent words
occur within a lexically wrong translation, which
also happens to have lexical and phrase translation
probabilities in a similar range as better transla-
tion candidates. When predicting prepositions for
such phrases, the ME model is often overly con-
fident and outputs comparatively high prediction
scores based on an insufficient amount of training
examples®.

Consider as an example the English phrase for
bags and two of its translation options: “PREP
Taschen” ("bags’) and “prEP Miillsdcke” (' garbage
bags’), which have similar translation and lexical
probabilities. In the ME training data, there are
only very few occurrences of PREP Miillsiicke. As
a result, the ME very confidently reproduces the
seen training instances with a score around 0.9 for
the top-ranked preposition. In comparison, the pre-
dictions for prREP Taschen are more balanced due
to more occurrences of this word, with a score of
around 0.55 for the top-ranked preposition. Thus,
the incorrect fiir Miillsdcke option is boosted by its
prediction score and consequently gets chosen by
the synthetic-phrases system.

Lexical features, e.g., in verb-noun tuples, are
important for the prediction power of our ME
model. However, the example above illustrates how
infrequent words can be harmful. We addressed

“Note that the model must be trained on parallel data only
as it makes use of source-side features.



SP-1 | SP-2 | SP-3a | SP-3b prep-informed synth-phrases

(1) no infreq nouns | 19.59 | 19.85 | 19.71 | 19.94* missing wrong | missing wrong
(2) reduced data 19.82 | 19.58 | 19.73 19.64 verbs 32 11 23 10
nouns 2 15 2 17

Table 7: Results when filtering out infrequent prepositions 6 6 3 8
gram. case - 4 - 3

nouns in the ME training data (1) or reducing the
amount of source-target-alignment triples used for
ME training (2). * marks significant improvement
over system P-2.

this problem by weighting down the prediction
scores using lexical and/or phrase translation prob-
abilities. In addition, we also experimented with
replacing infrequent words with dummy tokens to
still benefit from lexical information while exclud-
ing insufficiently represented words. The first line
in table 7 shows the results for prediction models
trained on data where infrequent nouns (freq <
25) occurring in the NP/PP (features 5 and 6 in
table 1) are omitted when training the prediction
ME. The general outcome is similar to the experi-
ments reported in table 4, with variants SP-2 and
SP-3b being slightly better. The result for system
SP-3b is the overall best result. This suggests that
a careful representation of infrequent lexical items
in training data benefits the prediction quality.

In an attempt to reduce the training data to
relevant entries, we restricted the source-target-
alignment triples used to train the prediction ME to
those occurring in the top-20 filtered table. Thus,
all entries in the phrase-table are covered by the
model, while infrequent and non-relevant training
instances are mostly omitted. The results are listed
in the second line in table 7; however, this model
leads to generally worse results than the previous
ones. We assume that removing a subset of training
triples leads to a somewhat unbalanced training set.

7.4 Distribution in Phrase Table

Another, potentially negative, effect on the phrase
distribution in the phrase table stems from integrat-
ing the n-best predictions per place-holder entry:
an already dominant translation option can be fur-
ther reinforced if it does not only represent the
top-most translation option (as in the preposition-
informed or place-holder table), but can be ex-
panded to several entries. An equally valid, but
less probable translation option is then less acces-
sible if its prediction scores are in the same range,
as this translation is then dispreferred by its trans-
lation scores and has to compete with several en-
tries stemming from the original top translation
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Table 8: Manual error analysis of 50 randomly
selected sentences.

option. Consider the example of the phrase “ex-
pand nullprp their”: in the preposition-informed
system, the lexically correct translation erweitern
EMPTY-Acc ihre is ranked third according to p(e|f),
with two meaningless translations (only determiner
or only preposition) as the two top-ranked transla-
tions, which is already a bad starting point for trans-
lation of the verb. In the synthetic-phrases system,
“descendants” of the previously top-2 meaningless
translations now are expanded and fill the positions
1-5, resulting in the correct translation option being
ranked 6th.

This effect can also be positive by promoting
lexically correct translation options (in cases where
the leading translation is correct, but is closely fol-
lowed by a less suited translation). For example,
it can be seen in the example in table 2 where the
lexically incorrect phrases are moved to lower po-
sitions. However, it might also happen that literal
translations are preferred over less common senses
in cases of word sense ambiguities. A small manual
evaluation (cf. next section) showed that slightly
more verbs are translated with the synthetic phrases
system. Verbs in English-to-German translation are
often omitted during translation; the effect of en-
hancing literal translations might be responsible for
the observed tendency to translate more verbs.

The different score variants explored in the previ-
ous section aim to find a combination that considers
these factors, but the results show that it is a diffi-
cult task to account for all possible interactions.

7.5 Manual Evaluation

We carried out a small manual evaluation for 50 sen-
tences (length 10-20 words) randomly chosen from
system SP-3b in table 7, the best overall system, in
comparison to the preposition-informed system P-
2. Two native speakers annotated errors concerning
missing or incorrect verbs, nouns and prepositions,
as well as incorrect grammatical case. Table 8 de-
picts the outcome: The number of errors found in
the categories preposition and grammatical case
are similar for both systems. A slight improvement



EN this is mainly due to the higher contribution
from the administrative budget ...

P2 das ist hauptsachlich auf die hiheren Beitrige
aus dem Verwaltungshaushalt ...

SP-3b das ist vor allem wegen den hoheren Beitrigen
aus dem Verwaltungshaushalt ...

Table 9: Example for unclear error categories.

is found, however, for the number of translated
verbs, which are known to be generally difficult
for the language pair English-to-German. We as-
sume that this is due to a tendency to strengthen
literal translations, from which verbs might benefit
as they are generally less well represented in the
phrase-table.

Note, however, that there are other relevant fac-
tors that this manual evaluation does not take into
account, such as, e.g., the overall structure of the
sentence. Furthermore, the evaluation of verbs
and its subcategorized elements is often difficult as
there might be several valid options for annotation,
which is illustrated by the example in table 9. The
translations of the two systems are nearly identi-
cal, except for the prepositions heading the trans-
lation for due to the higher contribution (and con-
sequently the realization of grammatical case in
the respective phrases, which is correct given the
respective preposition). The sentence produced by
the synthetic-phrases system is correct, preserving
the structure of the English sentence by translating
due to as wegen+Dative (wegen+Genitive would
be correct, too.). Thus, replacing the preposition
auf and adjusting the grammatical case in the sen-
tence produced by the preposition-informed system
would lead to the same, valid, translation. However,
the preposition auf strongly triggers the reader to
expect the verb zuriickfiihren (auf) (’to attribute
(to)”) which also would lead to a valid translation.
Such cases make the evaluation of prepositions and
complement types difficult, as the error category
(missing verb or wrong preposition) is not always
clear.

8 Conclusion and Future Work

We compared two approaches for modeling com-
plement types in English-to-German SMT. Our ex-
periments showed that explicit information about
different complement types (insertion of empty
placeholders) leads to improved SMT quality. The
results of the synthetic-phrases system are slightly
better than those of the preposition-informed sys-
tem, with two variants being significantly better.
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As the differences are rather small and apply only
to some system pairs, it is difficult to draw a
clear conclusion concerning the effectiveness of the
synthetic-phrases method. Our analysis showed,
however, that newly generated phrases are indeed
used within the systems and help to improve trans-
lation quality. We consider this a confirmation that
the generation of synthetic phrases for handling
subcategorization is a sound approach.

In future work, we plan to explore models that
predict the complete target phrase given the source
phrase and subcategorization-relevant features in-
stead of predicting the preposition in a target
phrase.

Acknowledgments

This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 644402
(HimL), from the European Research Council
(ERC) under grant agreement No 640550, from the
DFG grants Distributional Approaches to Semantic
Relatedness and Models of Morphosyntax for Sta-
tistical Machine Translation (Phase Two) and from
the DFG Heisenberg Fellowship SCHU-2580/1.

References

Eneko Agirre, Aitziber Atutxa, Gorka Labaka, Mikel
Lersundi, Aingeru Mayor, and Kepa Sarasola. 2009.
Use of Rich Linguistic Information to Translate
Prepositions and Grammatical Cases to Basque. In
Proceedings of the 13th Annual Conference of the
EAMT, Barcelona, Spain.

Marine Carpuat and Dekai Wu. 2007. Improving Sta-
tistical Machine Translation using Word Sense Dis-
ambiguation. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, Prague, Czech Republic.

Victor Chahuneau, Eva Schlinger, Noah A. Smith, and
Chris Dyer. 2013. Translating into Morphologically
Rich Languages with Synthetic Phrases. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Seattle,
Washington.

Jinho D. Choi and Martha Palmer. 2012. Getting the
Most out of Transition-Based Dependency Parsing.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, Portland, Oregon.

Alexander Fraser, Marion Weller, Aoife Cahill, and Fa-
bienne Cap. 2012. Modeling Inflection and Word-



Formation in SMT. In Proceedings of the the Euro-
pean Chapter of the Association for Computational
Linguistics (EACL), Avignon, France.

Kevin Gimpel and Noah A. Smith. 2008. Rich Source-
Side Context for Statistical Machine Translation. In
Proceedings of the Third Workshop on Statistical
Machine Translation, Columbus, Ohio.

Minwoo Jeong, Kristina Toutanova, Hisami Suzuki,
and Chris Quirk. 2010. A Discriminative Lexicon
Model for Complex Morphology. In In Proceed-
ings of the Ninth Conference of the Association for
Machine Translation in the Americas., Denver, Col-
orado.

Thomas Lavergne, Olivier Cappé, and Francgois Yvon.
2010. Practical very large scale CRFs. In Proceed-
ings the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), Uppsala, Sweden.

Helmut Schmid, Arne Fitschen, and Ulrich Heid. 2004.
SMOR: a German Computational Morphology Cov-
ering Derivation, Composition, and Inflection. In
Proceedings LREC 2004, Lisbon, Portugal.

Helmut Schmid. 2004. Efficient Parsing of Highly
Ambiguous Context-Free Grammars with Bit Vec-
tors. In Proceedings of the International Conference
on Computational Linguistics.

Reshef Shilon, Hanna Fadida, and Shuly Wintner.
2012. Incorporating Linguistic Knowledge in Statis-
tical Machine Translation: Translating Prepositions.
In Proceedings of the Workshop on Innovative Hy-
brid Approaches to the Processing of Textual Data,
EACL 2012, Avignon, France.

Ale§ Tamchyna, Fabienne Braune, Alexander Fraser,
Marine Carpuat, Hal Daumé III, and Chris Quirk.
2014. Integrating a Discriminative Classifier into
Phrase-based and Hierarchical Decoding. In The
Prague Bulletin of Mathematical Linguistics, Num-
ber 101, pages 29-41.

Jorg Tiedemann, Filip Ginter, and Jenna Kanerva.
2015. Morphological Segmentation and OPUS for
Finnish-English Machine Translation. In Proceed-
ings of the Tenth Workshop on Statistical Machine
Translation, Lisbon, Portugal.

Kristina Toutanova, Hisami Suzuki, and Achim Ruopp.
2008. Applying Morphology Generation Models
to Machine Translation. In Proceedings of ACLOS-
HLT, Columbus, Ohio.

Julia Tsvetkov, Chris Dyer, Lori Levin, and Archna
Bhatia. 2013. Generating English Determiners in
Phrase-Based Translation with Synthetic Translation
Options. In Proceedings of the Eighth Workshop on
Statistical Machine Translation, Sofia, Bulgaria.

Marion Weller, Alexander Fraser, and Sabine Schulte
im Walde. 2013. Using Subcategorization Knowl-
edge to Improve Case Prediction for Translation to
German. In Proceedings of the Association for Com-
putational Linguistics (ACL), Sofia, Bulgaria.

53

Marion Weller, Alexander Fraser, and Sabine Schulte
im Walde. 2015. Target-Side Generation of Prepo-
sitions for SMT. In Proceedings of EAMT 2015, An-
talya, Turkey.

Philip Williams, Rico Sennrich, Maria Nadejde,
Matthias Huck, and Philpp Koehn. 2015. Edin-
burgh’s Syntax-Based Systems at WMT 2015. In
Proceedings of the Tenth Workshop on Statistical
Machine Translation, Lisbon, Portugal.



Alignment-Based Neural Machine Translation

Tamer Alkhouli, Gabriel Bretschner,
Jan-Thorsten Peter, Mohammed Hethnawi, Andreas Guta and Hermann Ney
Human Language Technology and Pattern Recognition Group
RWTH Aachen University, Aachen, Germany
{surname}@cs.rwth-aachen.de

Abstract

Neural machine translation (NMT) has
emerged recently as a promising statis-
tical machine translation approach. In
NMT, neural networks (NN) are directly
used to produce translations, without re-
lying on a pre-existing translation frame-
work. In this work, we take a step to-
wards bridging the gap between conven-
tional word alignment models and NMT.
We follow the hidden Markov model
(HMM) approach that separates the align-
ment and lexical models. We propose
a neural alignment model and combine
it with a lexical neural model in a log-
linear framework. The models are used
in a standalone word-based decoder that
explicitly hypothesizes alignments during
search. We demonstrate that our system
outperforms attention-based NMT on two
tasks: IWSLT 2013 German—English and
BOLT Chinese—English. We also show
promising results for re-aligning the train-
ing data using neural models.

1 Introduction

Neural networks have been gaining a lot of at-
tention recently in areas like speech recognition,
image recognition and natural language process-
ing. In machine translation, NNs are applied in
two main ways: In N-best rescoring, the neural
model is used to score the first-pass decoding out-
put, limiting the model to a fixed set of hypotheses
(Le et al., 2012; Sundermeyer et al., 2014a; Hu et
al., 2014; Guta et al., 2015). The second approach
integrates the NN into decoding, potentially allow-
ing it to directly determine the search space.
There are two approaches to use neural mod-
els in decoding. The first integrates the mod-
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els into phrase-based decoding, where the mod-
els are used to score phrasal candidates hypothe-
sized by the decoder (Vaswani et al., 2013; Devlin
et al., 2014; Alkhouli et al., 2015). The second
approach is referred to as neural machine trans-
lation, where neural models are used to hypoth-
esize translations, word by word, without relying
on a pre-existing framework. In comparison to the
former approach, NMT does not restrict NNs to
predetermined translation candidates, and it does
not depend on word alignment concepts that have
been part of building state-of-the-art phrase-based
systems. In such systems, the HMM and the IBM
models developed more than two decades ago are
used to produce Viterbi word alignments, which
are used to build standard phrase-based systems.
Existing NMT systems either disregard the no-
tion of word alignments entirely (Sutskever et al.,
2014), or rely on a probabilistic notion of align-
ments (Bahdanau et al., 2015) independent of the
conventional alignment models.

Most recently, Cohn et al. (2016) designed neu-
ral models that incorporate concepts like fertility
and Markov conditioning into their structure. In
this work, we also focus on the question whether
conventional word alignment concepts can be used
for NMT. In particular, (1) We follow the HMM
approach to separate the alignment and translation
models, and use neural networks to model align-
ments and translation. (2) We introduce a lexical-
ized alignment model to capture source reorder-
ing information. (3) We bootstrap the NN training
using Viterbi word alignments obtained from the
HMM and IBM model training, and use the trained
neural models to generate new alignments. The
new alignments are then used to re-train the neural
networks. (4) We design an alignment-based de-
coder that hypothesizes the alignment path along
with the associated translation. We show com-
petitive results in comparison to attention-based
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models on the IWSLT 2013 German— English and
BOLT Chinese—English task.

1.1 Motivation

Attention-based NMT computes the translation
probability depending on an intermediate compu-
tation of an alignment distribution. The alignment
distribution is used to choose the positions in the
source sentence that the decoder attends to dur-
ing translation. Therefore, the alignment model
can be considered as an implicit part of the trans-
lation model. On the other hand, separating the
alignment model from the lexical model has its
own advantages: First, this leads to more flexi-
bility in modeling and training: not only can the
models be trained separately, but they can also
have different model types, e.g. neural models,
count-based models, etc. Second, the separation
avoids propagating errors from one model to the
other. In attention-based systems, the translation
score is based on the alignment distribution, which
risks propagating errors from the alignment part to
the translation part. Third, using separate models
makes it possible to assign them different weights.
We exploit this and use a log-linear framework
to combine them. We still retain the possibility
of joint training, which can be performed flexibly
by alternating between model training and align-
ment generation. The latter can be performed us-
ing forced-decoding.

In contrast to the count-based models used in
HMMs, we use neural models, which allow cov-
ering long context without having to explicitly ad-
dress the smoothing problem that arises in count-
based models.

2 Related Work

Most recently, NNs have been trained on large
amounts of data, and applied to translate indepen-
dent of the phrase-based framework. Sutskever et
al. (2014) introduced the pure encoder-decoder ap-
proach, which avoids the concept of word align-
ments. Bahdanau et al. (2015) introduced an atten-
tion mechanism to the encoder-decoder approach,
allowing the decoder to attend to certain source
words. This method was refined in (Luong et al.,
2015) to allow for local attention, which makes the
decoder attend to representations of source words
residing within a window. These translation mod-
els have shown competitive results, outperforming
phrase-based systems when using ensembles on

55

tasks like IWSLT English—German 2015 (Luong
and Manning, 2015).

In this work, we follow the same standalone
neural translation approach. However, we have
a different treatment of alignments. While the
attention-based soft-alignment model computes
an alignment distribution as an intermediate step
within the neural model, we follow the hard align-
ment concept used in phrase extraction. We sepa-
rate the alignment model from the lexical model,
and train them independently. At translation time,
the decoder hypothesizes and scores the alignment
path in addition to the translation.

Cohn et al. (2016) introduce several modifi-
cations to the attention-based model inspired by
traditional word alignment concepts. They mod-
ify the network architecture, adding a first-order
dependence by making the attention vector com-
puted for a target position directly dependent on
that of the previous position. Our alignment model
has a first-order dependence that takes place at the
input and output of the model, rather than an ar-
chitectural modification of the neural network.

Yang et al. (2013) use NN-based lexical and
alignment models, but they give up the probabilis-
tic interpretation and produce unnormalized scores
instead. Furthermore, they model alignments us-
ing a simple distortion model that has no depen-
dence on lexical context. The models are used to
produce new alignments which are in turn used
to train phrase systems. This leads to no sig-
nificant difference in terms of translation perfor-
mance. Tamura et al. (2014) propose a lexicalized
RNN alignment model. The model still produces
non-probabilistic scores, and is used to generate
word alignments used to train phrase-based sys-
tems. In this work, we develop a feed-forward
neural alignment model that computes probabilis-
tic scores, and use it directly in standalone de-
coding, without constraining it to the phrase-based
framework. In addition, we use the neural models
to produce alignments that are used to re-train the
same neural models.

Schwenk (2012) proposed a feed-forward net-
work that computes phrase scores offline, and the
scores were added to the phrase table of a phrase-
based system. Offline phrase scoring was also
done in (Alkhouli et al., 2014) using semantic
phrase features obtained using simple neural net-
works. In comparison, our work does not rely on
the phrase-based system, rather, the neural net-



works are used to hypothesize translation candi-
dates directly, and the scores are computed online
during decoding.

We use the feed-forward joint model introduced
in (Devlin et al., 2014) as a lexical model, and in-
troduce a lexicalized alignment model based on
it. In addition, we modify the bidirectional joint
model presented in (Sundermeyer et al., 2014a)
and compare it to the feed-forward variant. These
lexical models were applied in phrase-based sys-
tems. In this work, we apply them in a standalone
NMT framework.

Forced alignment was applied to train phrase ta-
bles in (Wuebker et al., 2010; Peitz et al., 2012).
We generate forced alignments using a neural de-
coder, and use them to re-train neural models.

Tackling the costly normalization of the out-
put layer during decoding has been the focus of
several papers (Vaswani et al., 2013; Devlin et
al., 2014; Jean et al., 2015). We propose a sim-
ple method to speed up decoding using a class-
factored output layer with almost no loss in trans-
lation quality.

3 Statistical Machine Translation

In statistical machine translation, the target word
sequence el = ey, ...,es of length I is assigned
a probability conditioned on the source word se-
quence f{ = fi,..., f; of length J. By introduc-
ing word alignments as hidden variables, the pos-
terior probability p(e! | f{) can be computed using
a lexical and an alignment model as follows.

pleil fi)
= wlet,bilf7)
I

I
= Z Hp(ei, bi|bi_17 ezi—l’ fi])

b{ =1
I
i i—1 pJ i—1 _i—1 pJ
= TIptelvi,ei™, 1) -poilp™" e 1)
b{ i=1 lexical model alignment model

where b{ = b1, ..., by denotes the alignment path,
such that b; aligns the target word e; to the source
word f;,. In this general formulation, the lexi-
cal model predicts the target word e; conditioned
on the source sentence, the target history, and the
alignment history. The alignment model is lexical-
ized using the source and target context as well.
The sum over alignment paths is replaced by the
maximum during decoding (cf. Section 5).
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4 Neural Network Models

There are two common network architectures used
in machine translation: feed-forward NNs (FFNN)
and recurrent NNs (RNN). In this section we will
discuss alignment-based feed-forward and recur-
rent neural networks. These networks are condi-
tioned on the word alignment, in addition to the
source and target words.

4.1 Feed-forward Joint Model

We adopt the feed-forward joint model (FFJM)
proposed in (Devlin et al., 2014) as the lexical
model. The authors demonstrate the model has
a strong performance when applied in a phrase-
based framework. In this work we explore its
performance in standalone NMT. The model was
introduced along with heuristics to resolve un-
aligned and multiply aligned words. We denote
the heuristic-based source alignment point corre-
sponding to the target position 7 by bi. The model
is defined as

i—1

pleslbl, el ) = pleilei ), (1)

b;+m
;)
and it computes the probability of a target word
e; at position ¢ given the n-gram target history
eijl = €i_n,...,6_1, and a window of 2m + 1
source words f;;j;n = fi;,.fmv - fEier centered
around the word lel-'

As the heuristics have implications on our
alignment-based decoder, we explain them by the
examples shown in Figure 1. We mark the source
and target context by rectangles on the x- and y-
axis, respectively. The left figure shows a sin-
gle source word ‘Jungen’ aligned to a single tar-
get word ‘offspring’, in which case, the original
source position is used, i.e., lA)Z = b;. If the tar-
get word is aligned to multiple source words, as
it is the case with the words ‘Mutter Tiere’ and
‘Mothers’ in the middle figure, then lA)Z is set to
the middle alignment point. In this example, the
left alignment point associated with ‘Mutter’ is se-
lected. The right figure shows the case of the un-
aligned target word ‘of’. b; is set to the source
position associated with the closest aligned tar-
get word ‘full’, preferring right to left. Note that
this model does not have special handling of un-
aligned source words. While these words can be
covered indirectly by source windows associated
with aligned source words, the model does not ex-
plicitly score them.
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Figure 1: Examples on resolving word alignments to obtain word affiliations.

Computing normalized probabilities is done us-
ing the softmax function, which requires comput-
ing the full output layer first, and then comput-
ing the normalization factor by summing over the
output scores of the full vocabulary. This is very
costly for large vocabularies. To overcome this,
we adopt the class-factored output layer consisting
of a class layer and a word layer (Goodman, 2001;
Morin and Bengio, 2005). The model in this case
is defined as

i—1 b
pledel=h, firtm) =
i—1 b, i—1 b,
pledle(es), €= h, £ - plefeq)lelh, £)

where ¢ denotes a word mapping that assigns each
target word to a single class, where the number
of classes is chosen to be much smaller than the
vocabulary size |C| << |V|. Even though the
full class layer needs to be computed, only a sub-
set of the significantly-larger word layer has to be
considered, namely the words that share the same
class c(e;) with the target word e;. This helps
speeding up training on large-vocabulary tasks.

4.2 Bidirectional Joint Model

The bidirectional RNN joint model (BJM) pre-
sented in (Sundermeyer et al., 2014a) is another
lexical model. The BJM uses the full source sen-
tence and the full target history for prediction, and
it is computed by reordering the source sentence
following the target order. This requires the com-
plete alignment information to compute the model
scores. Here, we introduce a variant of the model
that is conditioned on the alignment history in-
stead of the full alignment path. This is achieved
by computing forward and backward representa-
tions of the source sentence in its original order,
as done in (Bahdanau et al., 2015). The model is
given by

pleilbt, et fi) = pleilbi e ff)
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Note that we also use the same alignment heuris-
tics presented in Section 4.1. As this variant does
not require future alignment information, it can be
applied in decoding. However, in this work we
apply this model in rescoring and leave decoder
integration to future work.

4.3 Feed-forward Alignment Model

We propose a neural alignment model to score
alignment paths. Instead of predicting the abso-
lute positions in the source sentence, we model
the jumps from one source position to the next po-
sition to be translated. The jump at target posi-
tion 7 is defined as A; = l;,- - 131;1, which cap-
tures the jump from the source position bi_1 to b;.
We modify the FFNN lexical model to obtain a
feed-forward alignment model. The feed-forward
alignment model (FFAM) is given by

b;—1+m

A e?_l N
¢ bi—1

p(bilb e ) = p(Alel), ) (2)

—m

This is a lexicalized alignment model condi-
tioned on the n-gram target history and the
(2m + 1)-gram source window. Note that, dif-
ferent from the FFJM, the source window of this
model is centered around the source position 131-_1.
This is because the model needs to predict the
jump to the next source position b; to be translated.
The alignment model architecture is shown in Fig-
ure 2.

In contrast to the lexical model, the output vo-
cabulary of the alignment model is much smaller,
and therefore we use a regular softmax output
layer for this model without class-factorization.

4.4 Feed-forward vs. Recurrent Models

RNNs have been shown to outperform feed-
forward variants in language and translation mod-
eling. Nevertheless, feed-forward networks have
their own advantages: First, they are typically
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Figure 2: A feed-forward alignment NN, with 3
target history words, 5-gram source window, a
projection layer, 2 hidden layers, and a small out-
put layer to predict jumps.

faster to train due to their simple architecture,
and second, they are more flexible to integrate
into beam search decoders. This is because feed-
forward networks only depend on a limited con-
text. RNNs, on the other hand, are conditioned on
an unbounded context. This means that the com-
plete hypotheses during decoding have to be main-
tained without any state recombination. Since
feed-forward networks allow the use of state re-
combination, they are potentially capable of ex-
ploring more candidates during beam search.

5 Alignment-based Decoder

In this section we present the alignment-based de-
coder. This is a beam-search word-based decoder
that predicts one target word at a time. As the
models we use are alignment-based, the decoder
hypothesizes the alignment path. This is different
from the NMT approaches present in the literature,
which are based on models that either ignore word
alignments or compute alignments as part of the
attention-based model.

In the general case, a word can be aligned to
a single word, multiple words, or it can be un-
aligned. However, we do not use the general word
alignment notion, rather, the models are based on
alignments derived using the heuristics discussed
in Section 4. These heuristics simplify the task
of the decoder, as they induce equivalence classes
over the alignment paths, reducing the number of
possible alignments the decoder has to hypothe-
size significantly. As aresult of using these heuris-
tics, the task of hypothesizing alignments is re-

Algorithm 1 Alignment-based Decoder

1: procedure TRANSLATE(f{ , beamSize)

2:  hyps<+ initHyp
3: newHyps« 0
4: while GETBEST(hyps) not terminated do
5:
6:  alignDists <~ ALIGNMENTDISTRIBUTION(hyps)
7:
8:  for pos From 1 to J do
9:
10:
11: dists < LEXICALDISTRIBUTION(hyps, pos)
12:
13: for hyp in hyps do
14: jmpCost < SCORE(alignDists, hyp, pos)
15: dist < GETDISTRIBUTION(dists, hyp)
16: dist < PARTIALSORT(dist,beamSize)
17: cnt<— 0
18:
19: for word in dist do
20: if cnt > beamSize then
21: break
22: newHyp <—EXTEND(hyp,word,pos,jmpC ost)
23: newHyps.INSERT(new Hyp)
24: ent <—ent + 1

25:  PRUNE(newHyps, beamSize)
26:  hyps < newHyps

29: return GETBEST(hyps)

duced to enumerating all J source positions a tar-
get word can be aligned to. The following is a list
of the possible alignment scenarios and how the
decoder covers them.

e Multiply-aligned target words: the heuris-
tic chooses the middle link as an alignment
point. Therefore, the decoder is able to cover
these cases by hypothesizing J many source
positions for each target word hypothesis.

e Unaligned target words: the heuristic aligns
these words using the nearest aligned target
word in training (cf. Figure 1, right). In de-
coding, these words are handled as aligned
words.

e Multiply-aligned source words: covered by
revisiting a source position that has already
been translated.

e Unaligned source words: result if no target
word is generated using a source window
centered around the source word in question.

The decoder is shown in Algorithm 1. It in-
volves hypothesizing alignments and translation



words. Alignments are hypothesized in the loop
starting at line 8. Once an alignment point is set to
position pos, the lexical distribution over the full
target vocabulary is computed using this position
in line 11. The distribution is sorted and the best
candidate translations lying within the beam are
used to expand the partial hypotheses.

We batch the NN computations, calling the
alignment and lexical networks for all partial hy-
potheses in a single call to speed up computations
as shown in lines 6 and 11. We also exploit the
beam and apply partial sorting in line 16, instead
of completely sorting the list. Partial sorting has a
linear complexity on average, and it returns a list
whose first beamSize words have better scores
compared to the rest of the list.

We terminate translation if the best scoring par-
tial hypothesis ends with the sentence end symbol.
If a hypothesis terminates but it scores worse than
other hypotheses, it is removed from the beam, but
it still competes with non-terminated hypotheses.
Note that we do not have any explicit coverage
constraints. This means that a source position can
be revisited many times, hence generating one-to-
many alignment cases. This also allows having un-
aligned source words.

In the alignment-based decoder, an alignment
distribution is computed, and word alignments are
hypothesized and scored using this distribution,
leading alignment decisions to become part of
beam search. The search space is composed of
both alignment and translation decisions. In con-
trast, the search space in attention-based decoding
is composed of translation decisions only.

Class-Factored Output Layer in Decoding

The large output layer used in language and trans-
lation modeling is a major bottleneck in evaluating
the network. Several papers discuss how to evalu-
ate it efficiently during decoding using approxima-
tions. In this work, we exploit the class-factored
output layer to speed up training. At decoding
time, the network needs to hypothesize all target
words, which means the full output layer should
be evaluated. In the case of using a class-factored
output layer, this results in an additional compu-
tational overhead from computing the class layer.
In order to speed up decoding, we propose to use
the class layer to choose the top scoring k classes,
then we evaluate the word layer for each of these
classes only. We show this leads to a significant
speed up with minimal loss in translation quality.
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Model Combination

We embed the models in a log-linear framework,
which is commonly used in phrase-based systems.
The goal of the decoder is to find the best scoring
hypothesis as follows.

{

where )\, is the model weight associated with the
model h,,, and M is the total number of models.
The model weights are automatically tuned using
minimum error rate training (MERT) (Och, 2003).
Our main system includes a lexical neural model,
an alignment neural model, and a word penalty,
which is the count of target words. The word
penalty becomes important at the end of transla-
tion, where hypotheses in the beam might have
different final lengths.

¢l = argmax
I,e{

M
i S Al )
bl m=1

6 Forced-Alignment Training

Since the models we use require alignments for
training, we initially use word alignments pro-
duced using HMM/IBM models using GIZA++ as
initial alignments. At first, the FFIM and the
FFAM are trained separately until convergence,
then the models are used to generate new word
alignments by force-decoding the training data as
follows.

I
~ s b._ +
bi(fisel) = argmax [ [p™ (Alei = £ 00)
1 4=1
.
pM(eilel ), fr )

where A1 and \g are the model weights. We mod-
ify the decoder to only compute the probabilities
of the target words in the reference sentence. The
for loop in line 19 of Algorithm 1 collapses to a
single iteration. We use both the the feed-forward
joint model (FFJM) and the feed-forward align-
ment model (FFAM) to perform force-decoding,
and the new alignments are used to retrain the
models, replacing the initial GIZA+ alignments.
Retraining the neural models using the forced-
alignments has two benefits. First, since the align-
ments are produced using both of the lexical and
alignment models, this can be viewed as joint
training of the two models. Second, since the neu-
ral decoder generates these alignments, training
neural models based on them yields models that
are more consistent with the neural decoder. We
verify this claim in the experiments section.



IWSLT BOLT
De En Zh En
Sentences 4.32M 4.08M
Run. Words 108M 109M 78M 86M
Vocab. 836K 792K 384K 817K
FENN/BJM Vocab. 173K 149K 169K 128K
Attention Vocab. 30K 30K 30K 30K
FFIM params 17T 159M
BJM params 170M 153M
FFAM params 101M 94M
Attention params 84M 84M

Table 1: Corpora and NN statistics.

7 Experiments

We carry out experiments on two tasks: the
IWSLT 2013 German—English shared transla-
tion task,! and the BOLT Chinese—English task.
The corpora statistics are shown in Table 1. The
IWSLT phrase-based baseline system is trained on
all available bilingual data, and uses a 4-gram LM
with modified Kneser-Ney smoothing (Kneser and
Ney, 1995; Chen and Goodman, 1998), trained
with the SRILM toolkit (Stolcke, 2002). As ad-
ditional data sources for the LM, we selected parts
of the Shuffled News and LDC English Giga-
word corpora based on the cross-entropy differ-
ence (Moore and Lewis, 2010), resulting in a to-
tal of 1.7 billion running words for LM training.
The phrase-based baseline is a standard phrase-
based SMT system (Koehn et al., 2003) tuned with
MERT (Och, 2003) and contains a hierarchical re-
ordering model (Galley and Manning, 2008). The
in-domain data consists of 137K sentences.

The BOLT Chinese—English task is evaluated
on the “discussion forum” domain. We use a 5-
gram LM trained on 2.9 billion running words in
total. The in-domain data consists of a subset of
67.8K sentences. We used a set of 1845 sentences
as a tune set. The evaluation set test1 contains
1844 and test2 contains 1124 sentences.

We use the FFNN architecture for the lexical
and alignment models. Both models use a win-
dow of 9 source words, and 5 target history words.
Both models use two hidden layers, the first has
1000 units and the second has 500 units. The lex-
ical model uses a class-factored output layer, with
1000 singleton classes dedicated to the most fre-
quent words, and 1000 classes shared among the
rest of the words. The classes are trained using a
separate tool to optimize the maximum likelihood

"http://www.iwslt2013.0rg
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training criterion with the bigram assumption. The
alignment model uses a small output layer of 201
nodes, determined by a maximum jump length of
100 (forward and backward). 300 nodes are used
for word embeddings. Each of the FFNN models
is trained on CPUs using 12 threads, which takes
up to 3 days until convergence. We train with
stochastic gradient descent using a batch size of
128. The learning rate is halved when the devel-
opment perplexity increases.

Each BJM has 4 LSTM layers: two for the for-
ward and backward states, one for the target state,
and one after merging the source and target states.
The size of the word embeddings and hidden lay-
ers is 350 nodes. The output layers are identical to
those of the FFJM models.

We compare our system to an attention-based
baseline similar to the networks described in (Bah-
danau et al., 2015). All such systems use single
models, rather than ensembles. The word embed-
ding dimension is 620, each direction of the en-
coder and the decoder has a layer of 1000 gated
recurrent units (Cho et al., 2014). Unknowns and
numbers are carried out from the source side to the
target side based on the largest attention weight.

To speed up decoding of long sentences, the
decoder hypothesizes 21 and 41 source positions
around the diagonal, for the IWSLT and the BOLT
tasks, respectively. We choose these numbers
such that the translation quality does not degrade.
The beam size is set to 16 in all experiments.
Larger beam sizes did not lead to improvements.
We apply part-of-speech-based long-range verb
reordering rules to the German side in a pre-
processing step for all German—English systems
(Popovié¢ and Ney, 2006), including the baselines.
The Chinese—English systems use no such pre-
ordering. We use the GIZA++ word alignments
to train the models. The networks are fine-tuned
by training additional epochs on the in-domain
data only (Luong and Manning, 2015). The LMs
are only used in the phrase-based systems in both
tasks, but not in the NMT systems.

All translation experiments are performed with
the Jane toolkit (Vilar et al., 2010; Wuebker et al.,
2012). The alignment-based NN are trained using
an extension of the rwthim toolkit (Sundermeyer et
al., 2014b). We use an implementation based on
Blocks (van Merriénboer et al., 2015) and Theano
(Bergstra et al., 2010; Bastien et al., 2012) for the
attention-based experiments. All results are mea-



test 2010 eval 2011
# system BLEU TER BLEU TER
1 phrase-based system 2809 51.0 329 463
2 + monolingual data 304 495 354 442
3 attention-based RNN 279 514 318 465
4 +fine-tuning 29.8 489 329 45.1
5 FFIM+dp+wp 216 569 247 538
6 FFIM+FFAM+wp 26.1 53.1 299 494
7 +fine-tuning 293 505 332 465
8 +BJM Rescoring 30.0 48.7 338 448
9 BIM+FFAM+wp+fine-tuning  29.8 495 337 458

Table 2: IWSLT 2013 German—English results in
BLEU [%] and TER [%].

sured in case-insensitive BLEU [%] (Papineni et
al., 2002) and TER [%] (Snover et al., 2006) on
a single reference. We used the multeval toolkit
(Clark et al., 2011) for evaluation.

7.1 IWSLT 2013 German— English

Table 2 shows the IWSLT German—English re-
sults. FFIM refers to feed-forward lexical model.
We compare against the phrase-based system with
an LM trained on the target side of the bilin-
gual data (row #1), the phrase-based system with
an LM trained on additional monolingual data
(row #2), the attention-based system (row #3),
and the attention-based system after fine-tuning
towards the in-domain data (row #4). First, we ex-
periment with a system using the FFJM as a lex-
ical model and a linear distortion penalty (dp) to
encourage monotone translation as the alignment
model. We also include a word penalty (wp). This
system is shown in row #5. In comparison, if the
distortion penalty is replaced by the feed-forward
alignment model (FFAM), we observe large im-
provements of 4.5% to 5.2% BLEU (row #5 vs.
#6). This highlights the significant role of the
alignment model in our system. Moreover, it in-
dicates that the FFAM is able to model alignments
beyond the simple monotone alignments preferred
by the distortion penalty.

Fine-tuning the neural networks towards in-
domain data improves the system by up to 3.3%
BLEU and 2.9% TER (row #6 vs #7). The gain
from fine-tuning is larger than the one observed
for the attention-based system. This is likely due
to the fact that our system has two neural models,
and each of them is fine-tuned.

We apply the BJM in 1000-best list rescoring
(row #8). Which gives another boost, leading our
system to outperform the attention-based system
by 0.9% BLEU on eval 2011, while a compa-
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rable performance is achieved on test 2010.
In order to highlight the difference between us-
ing the FFIJM and the BJIM, we replace the FFIM
scores after obtaining the N-best lists with the
BJM scores and apply rescoring (row #9). In com-
parison to row #7, we observe up to 0.5% BLEU
and 1.0% TER improvement. This is expected
as the BJM captures unbounded source and tar-
get context in comparison to the limited context of
the FFJM. This calls for a direct integration of the
BJM into decoding, which we intend to do in fu-
ture work. Our best system (row #8) outperforms
the phrase-based system (row #1) by up to 1.1%
BLEU and 2.3% TER. While the phrase-based
system can benefit from training the LM on addi-
tional monolingual data (row #1 vs. #2), exploit-
ing monolingual data in NMT systems is still an
open research question.

7.2 BOLT Chinese—English

The BOLT Chinese—English experiments are
shown in Table 3. Again, we observe large im-
provements when including the FFAM in compar-
ison to the distortion penalty (row #5 vs #6), and
fine-tuning improves the results considerably. In-
cluding the BJM in rescoring improves the system
by up to 0.4% BLEU. Our best system (row #8)
outperforms the attention-based model by up to
0.4% BLEU and 2.8% TER. We observe that the
length ratio of our system’s output to the reference
is 93.3-94.9%, while it is 99.1-102.6% for the
attention-based system. In light of the BLEU and
TER scores, the attention-based model does not
benefit from matching the reference length. Our
system (row #8) still lags behind the phrase-based
system (row #1). Note, however, that in the WMT
2016 evaluation campaign,” it was demonstrated
that NMT can outperform phrase-based systems
on several tasks including German—English and
English—+German. Including monolingual data
(Sennrich et al., 2016) in training neural transla-
tion models can boost performance, and this can
be applied to our system.

7.3 Neural Alignments

Next, we experiment with re-aligning the train-
ing data using neural networks as described in
Section 6. We use the fine-tuned FFIM and
FFAM to realign the in-domain data of the IWSLT
German—English task. These models are initially

*http://matrix statmt.org/



testl test2
# system BLEU TER BLEU TER
1 phrase-based system 176 683 169 674
2 + monolingual data 179 679 170 67.1
3 attention-based RNN 148 76.1 136 769
4 +fine-tuning 16.1 731 154 723
5 FFIM+dp+wp 10.1 772 98 758
6 FFIM+FFAM+wp 144 719 137 713
7 +fine-tuning 158 703 154 694
8 +BJM Rescoring 16.0 703 158 69.5
9 BIJM+FFAM+wp+fine-tuning  16.0 704 157 69.7

Table 3: BOLT Chinese—English results in BLEU
[%] and TER [%].

test 2010 eval 2011
Alignment Source BLEU TEeER BLEU TER
GIZA+ 25.6  53.6 293 497
Neural Forced decoding 25.9 524 295 494

Table 4: Re-alignment results in BLEU [%] and
TER [%] on the IWSLT 2013 German—English
in-domain data. Each system includes FFIM,
FFAM and word penalty.

trained using GIZA+ alignments. We train new
models using the re-aligned data and compare the
translation quality before and after re-alignment.
We use 0.7 and 0.3 as model weights for the FFJIM
and FFAM, respectively. These values are based
on the model weights obtained using MERT. The
results are shown in Table 4. Note that the base-
line is worse than the one in Table 2 as the models
are only trained on the in-domain data. We ob-
serve that re-aligning the data improves translation
quality by up to 0.3% BLEU and 1.2% TER. The
new alignments are generated using the neural de-
coder, and using them to train the neural networks
results in training that is more consistent with de-
coding. As future work, we intend to re-align the
full bilingual data and use it for neural training.

7.4 Class-Factored Output Layer

Figure 3 shows the trade-off between speed and
performance when evaluating words belonging to
the top classes only. Limiting the evaluation to
words belonging to the top class incurs a perfor-
mance loss of 0.4% BLEU only when compared to
the full evaluation of the output layer. However,
this corresponds to a large speed-up. The system
is about 30 times faster, with a translation speed
of 0.4 words/sec. In conclusion, not only does
the class layer speed up training, but it can also be
used to speed up decoding considerably. We use
the top 3 classes throughout our experiments.
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Figure 3: Decoding speed-up and translation qual-
ity using top scoring classes in a class-factored
output layer. The results are computed for the
IWSLT German—English dev dataset.

factories

coal

other

of

proposal
the
and

Figure 4: A translation example produced by
our system. The shown German sentence is pre-
ordered.

8 Analysis

We show an example from the German—English
task in Figure 4, along with the alignment path.
The reference translation is ‘and the proposal has
been to build a lot more coal plants .. Our sys-
tem handles the local reordering of the word ‘was’,
which is produced in the correct target order. An
example on the one-to-many alignments is given
by the correct translation of ‘viele’ to ‘a lot of”.

As an example on handling multiply-aligned
target words, we observe the translation of ‘Nord
Westen’ to ‘northwest’ in our output. This is pos-
sible because the source window allows the FFNN
to translate the word ‘Westen’ in context of the
word ‘Nord’.

Table 5 lists some translation examples pro-
duced by our system and the attention-based sys-
tem, where maximum attention weights are used



source sie wiirden verhungern nicht , und wissen Sie was ?
1 reference they wouldn ’t starve , and you know what ?
attention NMT | you wouldn ’t interview , and guess what ?
our system they wouldn ’t starve , and you know what ?
source denn sie sind diejenigen , die sind auch Experten fiir Geschmack .
2 reference because they ’re the ones that are experts in flavor , too .
attention NMT | because they ’re the ones who are also experts .
our system because they 're the ones who are also experts in flavor .
source es ist ein Online Spiel , in dem Sie miissen iiberwinden eine Olknappheit .
3 reference this is an online game in which you try to survive an oil shortage .
attention NMT | it ’s an online game where you need to get through a UNKOWN .
our system it ’s an online game in which you have to overcome an astrolabe .
source es liegt daran , dass gehen nicht Moglichkeiten auf diesem Planeten zuriick, sie gehen vorwirts .
4 reference it ’s because possibilities on this planet , they don ’t go back , they go forward .
attention NMT | it ’s because there ’s no way back on this planet , they 're going to move forward .
our system it ’s because opportunities don ’t go on this planet , they go forward .

Table 5: Sample translations from the IWSLT German—English test set using the attention-based
system (Table 2, row #4) and our system (Table 2, row #7). We highlight the (pre-ordered) source words
and their aligned target words. We underline the source words of interest, italicize correct translations,

and use bold-face for incorrect translations.

as alignment. While we use larger vocabularies
compared to the attention-based system, we ob-
serve incorrect translations of rare words. E.g.,
the German word Olknappheit in sentence 3 oc-
curs only 7 times in the training data among 108M
words, and therefore it is an unknown word for
the attention system. Our system has the word in
the source vocabulary but fails to predict the right
translation. Another problem occurs in sentence
4, where the German verb “zuriickgehen” is split
into “gehen ... zuriick”. Since the feed-forward
model uses a source window of size 9, it cannot
include both words when it is centered at any of
them. Such insufficient context might be resolved
when integrating the bidirectional RNN in decod-
ing. Note that the attention-based model also fails
to produce the correct translation here.

9 Conclusion

This work takes a step towards bridging the gap
between conventional word alignment concepts
and NMT. We use an HMM-inspired factoriza-
tion of the lexical and alignment models, and em-
ploy the Viterbi alignments obtained using con-
ventional HMM/IBM models to train neural mod-
els. An alignment-based decoder is introduced
and a log-linear framework is used to combine the
models. We use MERT to tune the model weights.
Our system outperforms the attention-based sys-
tem on the German—English task by up to 0.9%
BLEU, and on Chinese—English by up to 2.8%
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TER. We also demonstrate that re-aligning the
training data using the neural decoder yields better
translation quality.

As future work, we aim to integrate alignment-
based RNNs such as the BJM into the alignment-
based decoder. We also plan to develop a bidirec-
tional RNN alignment model to make jump deci-
sions based on unbounded context. In addition, we
want to investigate the use of coverage constraints
in alignment-based NMT. Furthermore, we con-
sider the re-alignment experiment promising and
plan to apply re-alignment on the full bilingual
data of each task.
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Abstract

We present a simple neural network for
word alignment that builds source and tar-
get word window representations to com-
pute alignment scores for sentence pairs.
To enable unsupervised training, we use
an aggregation operation that summarizes
the alignment scores for a given target
word. A soft-margin objective increases
scores for true target words while de-
creasing scores for target words that are
not present. Compared to the popular
Fast Align model, our approach improves
alignment accuracy by 7 AER on English-
Czech, by 6 AER on Romanian-English
and by 1.7 AER on English-French align-
ment.

1 Introduction

Word alignment is the task of finding the cor-
respondence between source and target words in
a pair of sentences that are translations of each
other. Generative models for this task (Brown
etal., 1990; Och and Ney, 2003; Vogel et al., 1996)
still form the basis for many machine translation
systems (Koehn et al., 2003; Chiang, 2007).

Recent neural approaches include Yang et al.
(2013) who introduce a feed-forward network-
based model trained on alignments that were gen-
erated by a traditional generative model. This
treats potentially erroneous alignments as super-
vision. Tamura et al. (2014) sidesteps this issue by
negative sampling to train a recurrent-neural net-
work on unlabeled data. They optimize a global
loss that requires an expensive beam search to ap-
proximate the sum over all alignments.

'This work was conducted while the first author did an
internship at Facebook Al Research.
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In this paper we introduce a word alignment
model that is simpler in structure and which re-
lies on a more tractable training procedure. Our
model is a neural network that extracts context in-
formation from source and target sentences and
then computes simple dot products to estimate
alignment links. Our objective function is word-
factored and does not require the expensive com-
putation associated with global loss functions. The
model can be easily trained on unlabeled data via a
novel but simple aggregation operation which has
been successfully applied in the computer vision
literature (Pinheiro and Collobert, 2015). The ag-
gregation combines the scores of all source words
for a particular target word and promotes source
words which are likely to be aligned with a given
target word according to the knowledge the model
has learned so far. At test time, the aggregation op-
eration is removed and source words are aligned to
target words by choosing the highest scoring can-
didates (§2, §3).

We evaluate several forms for our aggregation
operation such as computing the sum, max and
LogSumExp over alignment scores. Results on
English-French, English-Romanian, and Czech-
English alignment show that our model signif-
icantly outperforms Fast Align, a popular log-
linear reparameterization of IBM Model 2 (Dyer
etal., 2013; §4).

2 Aggregation Model

In the following, we consider a target-source sen-
tence pair (e, f), with e = (e, ..., ¢) and
f = (f1, ..., figy)- Words are represented by
fj and e;, which are indices in source and target
dictionaries. For simplicity, we assume here that
word indices are the only feature fed to our archi-

tecture. Given a source word f; and a target word
f

e, our architecture embeds a window (of size d,;,,
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and df ;. , respectively) centered around each of
these words into a d.;,,;-dimensional vector space.
The embedding operation is performed with two
distinct neural networks:
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where we denote the window operator as

X = (icajor- - Titaye) -

The matching score between a source word f; and

a target word e; is then given by the dot-product:
dal .

) - mety ([f];) -

If e; is aligned to f,,, the score s(i, a;) should be
high, while scores s(, j) Vj # a; should be low.

.. de€ .
(i, j) = nete([e], ™™

(D

2.1 Unsupervised Training

In this paper, we consider an unsupervised setup
where the alignment is not known at training time.
We thus cannot minimize or maximize matching
scores (1) in a direct manner. Instead, given a tar-
get word e; we consider the aggregated matching
scores over the source sentence:

I£]

Saggr(iv f) = Ag%f S(iv ]) s
J:

2)
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where Aggr is an aggregation operator (§2.2).
Consider a matching (positive) sentence pair
(et,f) and a negative sentence pair (e, f).
Given a word at index T in the positive target
sentence, we want to maximize the aggregated
score Sqgqr(it,f) (1 < it < |e™|) because we
know it should be aligned to at least one source
word.! Conversely, given a word at index i~ in
the negative target sentence, we want to minimize
Saggr(i7,f) (1 <1~ < |e™|) because it is unlikely
that the source sentence can explain the negative
target word. Following these principles, we con-
sider a simple soft-margin loss:

let|
‘C(e+7 e, f) = Z log(l + 678&99T(i+’f))
it=1
le™| A
+ Z log(1 4 eTsassr 70y
i—=1

3)

Training is achieved by minimizing (3) and by
sampling over triplets (e*, e, f) from the train-
ing data.

"We discuss how we handle unaligned target words in
§2.3. Also, depending on the decoding algorithm the model
can be used to predict many-to-many alignments.



2.2 Choosing the Aggregation

The aggregation operation (2) is only present dur-
ing training and acts as a filter which aims to ex-
plain a given target word e; by one or more source
words. If we had the word alignments, then we
would sum over the source words f; aligned with
e;. However, in our setup alignments are not avail-
able at training time, so we must rely on what the
model has learned so far to filter the source words.
We consider the following strategies:

e Sum: ignore the knowledge learned so far,
and assign the same weight to all source
words f; to explain e;.2 In this case, we have

I£]
saggr(ia f) = Z 3<i7 .7) .
j=1

Max: encourage the best aligned source
word f;, according to what the model has
learned so far. In this case, the aggregation
is written as:

If]

SaggT(ia f) = I}lzalXS(Z, j) .

LSE: give similar weights to source words
with similar scores. This can be achieved
with a LogSumExp aggregation operation
(also called LogAdd), and is defined as:

Ifl

. 1 rs(i, g
Saggr (i, f) = ;log Ze (i,9) ,
j=1

where r is a positive scalar (to be chosen)
controlling the smoothness of the aggrega-
tion. For small r, the aggregation is equiva-
lent to a sum, and for large 7, the aggregation
acts as a max.

2.3 Decoding

At test time, we align each target word e; with
the source word f; for which the matching score
s(i, 7) in (1) is highest.> However, not every target
word is aligned, so we consider only alignments
with a matching score above a threshold:

(&)

2This can be seen by observing that the gradients for all
source words are the same.

3This may result in a source word being aligned to multi-
ple target words.

s(i, ) > p~(ei) + o (ei),
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where « is a tunable hyper-parameter, and

[s(k, 57)]

E,V ~
{er=ei €&, f,— ef-}

po(ei) =
is the expectation over all training sentences € con-
taining the word ¢;, and all words f ; belonging to

a corresponding negative source sentence f~, and
o~ (e;) is the respective variance.

3 Neural Network Architecture

Our model consists of two convolutional neural
networks net. and net; as shown in (1). Both of
them take the same form, so we detail only the tar-
get architecture.

3.1 Word embeddings

The discrete features [e]?m" are embedded into
a d¢ ,-dimensional vector space via a lookup-
table operation as first introduced in Bengio et al.
(2000):

dfu'm,)

Z‘f = LTWE([e]z
= (LTwe(ei-ac, s2)s ---» LTwe(€itac, 2))

where the lookup-table operation applied at index
k returns the k* column of the parameter matrix
we:

LTWe (k) — Wf,k .

The matrix W¢ is of size |V¢| x df, ,, where V°
is the target vocabulary, and df, , is the word em-

bedding size for the target words.

3.2 Convolutional layers

The word embeddings output by the lookup-table
are concatenated and fed through two successive
1-D convolution layers. The convolutions use a
step size of one and extract context features for
each word. The kernel sizes k{ and k§ determine
the size of the window d;; = ki + k5 — 1 over
which features will be extracted by net.. In order
to obtain windows centered around each word, we
add (k{+kS)/2—1 padding words at the beginning
and at the end of each sentence.

The first layer cnn® applies the linear transfor-
mation M®! exactly kS times to consecutive spans
of size k{ to the d; ;, words in a given window:

win

ke
LTwe(le];%,)
enn®(x§) = M©! : ,

LTy ([e]1,)



where a = L?j Mel € R X dem k) s a
matrix of parameters, and df  is the number of
hidden units (hu). The outputs of the first layer
cnn® are concatenated to form a matrix of size
k5 dj,, which is fed to the second layer:

nete(z$) = M%? tanh(cnn®(zf)) (6)

where M¢? € Remv*(k5 d7..) i5 a matrix of pa-
rameters, and the tanh(-) operation is applied el-
ement wise. The parameters W€, M! and M®?
are trained by stochastic gradient descent to mini-
mize the loss (3) introduced in §2.1.

3.3 Additional Features

In addition to the raw word indices, we consider
two additional discrete features which were han-
dled in the same way as word features by introduc-
ing an additional lookup-table for each of them.
The output of all lookup-tables was concatenated,
and fed to the two-layer neural network architec-
ture (6).

Distance to the diagonal. This feature can be
computed for a target word e; and a source word
E

L d
el If|
This feature allows the model to learn that aligned
sentence pairs use roughly the same word order
and that alignment links remain close to the di-
agonal. We use this feature only for the source
network because it encodes relative position infor-
mation which only needs to be encoded once. If
we would use absolute position instead, then we
would need to encode this information both on the
source and the target side.

diag(i, j) =

)

Part-of-speech Words pairs that are good transla-
tions of each other are likely to carry the same part
of speech in both languages (Melamed, 1995). We
therefore add the part-of-speech information to the
model.

Char n-gram. We consider unigram character
position features. Let K be the maximum size for
a word in a dictionary. We denote the dictionary
of characters as C. Every character is represented
by its index ¢ (with 1 < ¢ < |C|). We associate
every character c at position k with a vector at po-
sition ((k — 1) = |C|) + ¢ in a lookup-table. For a
given word, we extract all unigram character po-
sition embeddings, and average them to obtain a
character embedding for a given word.
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4 Experiments

4.1 Datasets

We use the English-French Hansards corpus as
distributed by the NAACL 2003 shared task (Mi-
halcea and Pedersen, 2003). This dataset con-
tains 1.1M sentence pairs and the test and vali-
dation sets contain 447 and 37 examples respec-
tively. We also evaluate on the Romanian-English
dataset of the ACL 2005 shared task (Martin et al.,
2005) comprising 48K sentence pairs for training,
248 for testing and 17 for validation. For English-
Czech experiments, we use the WMT news com-
mentary corpus for training (150K sentence pairs)
and a set of 515 sentences for testing (Bojar and
Prokopovd, 2006).

4.2 Evaluation

Our models are evaluated in terms of precision, re-
call, F-measure and Alignment Error Rate (AER).
We train models in each language direction and
then symmetrize the resulting alignments using
either the intersection or the grow-diag-final-and
heuristic (Och and Ney, 2003; Koehn et al., 2003).
We validated the choice of symmetrization heuris-
tic on each language pair and chose the best one
for each model considering the two aforemen-
tioned types as well as grow-diag-final and grow-
diag.

Additionally, we train phrase-based machine
translation models with our alignments using the
popular Moses toolkit (Koehn et al., 2007). For
English-French, we train on the news commentary
corpus v10, for English-Czech we used news com-
mentary corpus v11, and for Romanian-English
we used the Europarl corpus v8. We tuned our
models on the WMT2015 test set for English-
Czech as well as for Romanian-English; for
English-French we tuned on the WMT2014 test
set. Final results are reported on the WMT2016
test set for English-Czech as well as Romanian-
English, and for English-French we report results
on the WMT2015 test set (as there is no track for
this language-pair in 2016).

We compare our model to Fast Align, a popu-
lar log-linear reparameterization of IBM Model 2
(Dyer et al., 2013).

4.3 Setup

The kernel sizes of the target network net.(-) are
set to kf = k§ = 3 for all language pairs. The
kernel sizes of the source network nety(-) are set



to k{ = kg = 3 for Romanian-English as well as
English-Czech; and for English-French we used
k =kl =1

The number of hidden units are dj, = diu =
256 and dyyp is set to 256, The source Vy and tar-
get V. dictionaries consist of the 30K most com-
mon words for English, French and Romanian,
and 80K for Czech. All other words are mapped to
a unique UNK token. The word embedding sizes
dg, ., and dgmb, as well as the char-n-gram embed-
ding size is 128. For LSE, we set r = 1 in (4).

We initialize the word embeddings with a sim-
ple PCA computed over the matrix of word co-
occurrence counts (Lebret and Collobert, 2014).
The co-occurrence counts were computed over the
common crawl corpus provided by WMT16. For
part of speech tagging we used the Stanford parser
on English-French data, and MarMoT (Mueller
et al., 2013) for Romanian-English as well as
English-Czech.

We trained 4 systems for the ensembles, each
using a different random seed to vary the weight
initialization as well as the shuffling of the training
set. We averaged the alignment scores predicted
by each system before decoding. The alignment
threshold variables 1~ (e;) and o~ (e;) for decod-
ing (§2.3) were estimated on 1000 random training
sentences, using 100 negative sentences for each
of them. Words not appearing in this training sub-
set were assigned ;1 (e;) = o~ (e;) = 0.

For systems where d,;, > 1 and dﬁ;m > 1, we
saw a tendency of aligning frequent words regard-
less on if they appeared in the center of the context
window or not. For instance, a common mistake
would be to align “’the cat sat”, with "PADDING
le chat”. To prevent such behavior, we occasion-
ally replaced the center word in a target window
by a random word during training. We do this for
every second training example on average and we

tuned this rate on the validation set.

4.4 Results

We first explore different choices for the aggre-
gation operator (§2.2), followed by an ablation to
investigate the impact of the different additional
features (§3.3). Next we compare to the Fast
Align baseline. Finally, we evaluate our align-
ments within a full translation system for all lan-
guage pairs.
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4.4.1 Aggregation operation

Table 1 shows that the LogSumExp (LSE) aggre-
gator performs best on all datasets for every direc-
tion as well as in the symmetrized setting using the
grow-diag-final heuristic. All results are based on
a single model trained with the ’distance to the di-
agonal’ feature detailed above.* We therefore use
LSE for the remaining experiments.

Max Sum LSE
En-Fr 18.1 23.0 151
Fr-En 20.7 269 158
symmetrized 14.8 24.1 12.8
Ro-En 422 420 37.6
En-Ro 40.4 40.2 35.7
symmetrized 36.4 35.6 32.2
En-Cz 279 356 245
Cz-En 26.5 33.6 245
symmetrized 21.8 32.7 21.0

Table 1: Alignment error rates for different aggre-
gation operations in each language direction and
with grow-diag-final-and symmetrization.

4.4.2 Additional features

Table 2 shows the effect of the different input fea-
tures. Both POS and the distance to the diago-
nal feature significantly improve accuracy. Po-
sition information via the ’distance to the diago-
nal’ feature is helpful for all language pairs, and
POS information is more effective for Romanian-
English and English-Czech which involve mor-
phologically rich languages. We use the POS and
"distance to the diagonal feature’ for the remaining
experiments.

4.4.3 Comparison with the baseline

In the following results we label our model as
NNSA (Neural network score aggregation). On
English-French data (Table 3) our model outper-
forms the baseline (Dyer et al., 2013) in each indi-
vidual language direction as well as for the sym-
metrized setting. With an ensemble of four mod-
els, we outperform the baseline by 1.7 AER (from
11.4 t0 9.7), and with an individual model we out-
perform it by 1.2 AER (from 11.4 to 10.2). Note
that the choice of symmetrization heuristic greatly



English-French Romanian-English English-Czech
En-Fr | Fr-En | sym || Ro-En | En-Ro | sym || En-Cz | Cz-En | sym
words 222 | 242 | 157 || 47.0 455 | 403 || 369 36.3 | 295
+ POS 209 | 239 | 153 || 453 429 369 | 35.6 337 | 282
+ diag 15.1 158 | 12.8 || 37.6 357 | 322 | 248 245 | 21.0
+POS +diag | 13.2 | 12.1 | 10.2 || 33.1 322 | 278 || 24.6 229 | 199

Table 2: Alignment error rates using different input features in each language direction and with grow-

diag-final-and symmetrization.

P R F1 AER
English-French
Baseline 49.6 89.8 639 16.7
NNSA 64.7 80.7 71.8 13.2
+ ensemble 615 858 716 11.6
French-English
Baseline 529 884 662 162
NNSA 61.7 863 720 12.1
+ ensemble 62.6 86.7 7277 11.6
symmetrized
Baseline (inter) 69.6 84.0 76.1 114
NNSA (gdfa) 604 88.5 71.8 10.2
+ ensemble 593 899 714 9.7

Table 3: English-French results on the test set in
terms of precision (P), recall (R), F-score (F1) and
AER; ensemble denotes a combination of four sys-
tems and we use the intersection (inter) and grow-
diag-final-and symmetrization (gdfa) heuristics.

affects accuracy, both for the baseline and NNSA.

On Romanian-English (Table 4) our model out-
performs the baseline in both directions as well.
Adding ensembles further improves accuracy and
leads to a significant improvement of 6 AER over
the best symmetrized baseline result (from 32 to
26).

On English-Czech (Table 5) our model outper-
forms the baseline in both directions as well. We
added the character feature to better deal with the
morphologically rich nature of Czech and the fea-
ture reduced AER by 2.1 in the symmetrized set-
ting. An ensemble improved accuracy further and
led to a 7 AER improvement over the best sym-
metrized baseline result (from 22.8 to 15.8).

*We use kernel sizes k§ = k§ = 3and kJ = k = 1 for
all language pairs in this experiment.
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P R F1 AER
Romanian-English
Baseline 70.0 61.0 652 348
NNSA 75.1 652 69.8 30.2
+ ensemble 75.8 62.8 68.7 313
English-Romanian
Baseline 713 60.8 65.6 344
NNSA 78.1 61.7 69.0 31.1
+ ensemble 784 632 70.0 30.0
symmetrized
Baseline (gdfa) 69.5 66.5 68.0 32.0
NNSA (gdfa) 741 71.8 73.0 27.0
+ ensemble 73.0 745 73.7 26.0

Table 4: Romanian-English results (cf. Table 3).

4.4.4 BLEU evaluation

Table 6 presents the BLEU evaluation of our align-
ments. For each language-pair, we select the best
alignment model reported in Tables 3, 4 and 5, and
align the training data. We use the alignments to
run the standard phrase-based training pipeline us-
ing those alignments. Our BLEU results show the
average BLEU score and standard deviation for
five runs of minimum error rate training (MERT;
Och 2003).

Our alignments achieve slightly better results
for Romanian-English as well as English-Czech
while performing on par with Fast Align on
English-French translation.

5 Analysis

In this section, we analyze the word representa-
tions learned by our model. We first focus on the
source representations: given a source window,
we obtain its distributional representation and then
compute the Euclidean distance to all other source
windows in the training corpus. Table 7 shows
the nearest windows for two source windows; the
closest windows tend to have similar meanings.



P R F1 AER the voting process in working together

English-Czech the voting area for working together

Baseline 684 733 70.7 26.6 the voting power with working together

NNSA 72.0 743 73.1 246 the voting rules from working together

+charn-gram  73.8 754 74.6 232 the voting system | about working together

+ ensemble 788 772 78.0 20.0 the voting patterns by working together
Czech-English the voting ballots and working together

Baseline 68.6 740 712 257 their voting patterns | while working together

NNSA 741 740 740 229

+charn-gram  78.1 74.1 76.1 214 Table 7: Analysis of source window represen-

+ ensemble 791 777 784 18.7 tations. Each column shows a window over the
symmetrized source sentence followed by several close neigh-

Baseline (inter) 88.1 66.6 760 22.8 bors in terms of Euclidean distance (among the 30

NNSA (gdfa) 757 803 763 199  nearest.

+charn-gram 769 81.3 79,1 17.8 the voting process | in working together

+ ensemble 789 832 81.0 158

Table 5: Czech-English results (cf. Table 3).

Baseline ‘ NNSA
French-English 25.44+0.1 | 25.54+0.1
Romanian-English | 21.3+0.1 | 21.6 £0.1
Czech-English 172+0.1 | 176 £0.1

Table 6: Average BLEU score and standard devia-
tion for five runs of MERT.

We then analyze the relation between source
and target representations: given a source win-
dow we compute the alignment scores for all tar-
get sentences in the training corpus. Table 8 shows
for two source windows which target words have
the largest alignment scores. The example “in
working together” is particularly interesting since
the aligned target words collabore, coordonés,
and concertés mean collaborate, coordinated, and
concerted, which all carry the same meaning as
the source window phrase.

6 Conclusion

In this paper, we present a simple neural network
alignment model trained on unlabeled data. Our
model computes alignment scores as dot prod-
ucts between representations of windows around
source and target words. We apply an aggrega-
tion operation borrowed from the computer vi-
sion literature to make unsupervised training pos-
sible. The aggregation operation acts as a filter
over alignment scores and allows us to determine
which source words explain a given target word.
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vote
voteraient
votent
voter
votant
scrutin
suffrage
procédure
investiture
élections

travaillé
travailleront
collaboration

travaillant
oeuvrant
concerts
coordonés

concert
collabore

coopération

Table 8: Analysis of source and target represen-
tations. Each column shows a source window and
the target words which are most aligned according
to our model.

We improve over Fast Align, a popular log-
linear reparameterization of IBM Model 2 (Dyer
et al.,, 2013) by up to 6 AER on Romanian-
English, 7 AER on English-Czech data and 1.7
AER on English-French alignment. Furthermore,
we evaluated our model as part of a full machine
translation pipeline and showed that our align-
ments are better or on par compared to Fast Align
in terms of BLEU.
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Abstract

Neural network language and translation
models have recently shown their great po-
tentials in improving the performance of
phrase-based machine translation. At the
same time, word representations using dif-
ferent word factors have been translation
quality and are part of many state-of-the-
art machine translation systems. used in
many state-of-the-art machine translation
systems, in order to support better transla-
tion quality.

In this work, we combined these two ideas
by investigating the combination of both
techniques. By representing words in neu-
ral network language models using differ-
ent factors, we were able to improve the
models themselves as well as their impact
on the overall machine translation perfor-
mance. This is especially helpful for mor-
phologically rich languages due to their
large vocabulary size. Furthermore, it is
easy to add additional knowledge, such as
source side information, to the model.

Using this model we improved the trans-
lation quality of a state-of-the-art phrase-
based machine translation system by 0.7
BLEU points. We performed experiments
on three language pairs for the news trans-
lation task of the WMT 2016 evaluation.

1 Introduction

Recently, neural network models are deployed ex-
tensively for better translation quality of statisti-
cal machine translation (Le et al., 2011; Devlin et
al., 2014). For the language model as well as for
the translation model, neural network-based mod-
els showed improvements when used during de-
coding as well as when used in re-scoring.
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In phrase-based machine translation (PBMT),
word representation using different factors (Koehn
and Hoang, 2007) are commonly used in state-
of-the-art systems. Using Part-of-Speech (POS)
information or automatic word clusters is es-
pecially important for morphologically rich lan-
guages which often have a large vocabulary size.
Language models based on these factors are able
to consider longer context and therefore improve
the modelling of the overall structure. Further-
more, the POS information can be used to improve
the modelling of word agreement, which is often a
difficult task when handling morphologically rich
languages.

Until now, word factors have been used rela-
tively limited in neural network models. Auto-
matic word classes have been used to structure the
output layer (Le et al., 2011) and as input in feed
forward neural network language models (Niehues
and Waibel, 2012).

In this work, we propose a multi-factor recur-
rent neural network (RNN)-based language model
that is able to facilitate all available information
about the word in the input as well as in the out-
put. We evaluated the technique using the surface
form, POS-tag and automatic word clusters using
different cluster sizes.

Using this model, it is also possible to integrate
source side information into the model. By using
the model as a bilingual model, the probability of
the translation can be modelled and not only the
one of target sentence. As for the target side, we
use a factored representation for the words on the
source side.

The remaining of the paper is structured as fol-
lowing: In the following section, we first review
the related work. Afterwards, we will shortly de-
scribe the RNN-based language model used in our
experiments. In Section 4, we will introduce the
factored RNN-based language model. In the next
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section, we will describe the experiments on the
WMT 2016 data. Finally, we will end the paper
with a conclusion of the work.

2 Related Work

Additional information about words, encoded as
word factors, e.g. the lemma of word, POS
tags, etc., is employed in state-of-the-art phrase-
based systems. (Koehn and Hoang, 2007) decom-
poses the translation of factored representations
to smaller mapping steps, which are modelled by
translation probabilities from input factor to out-
put factor or by generating probabilities of addi-
tional output factors from existing output factors.
Then those pre-computed probabilities are jointly
combined in the decoding process as a standard
translation feature scores. In addition, language
models using these word factors have shown to
be very helpful to improve the translation qual-
ity. In particular, the aligned-words, POS or word
classes are used in the framework of modern lan-
guage models (Mediani et al., 2011; Wuebker et
al., 2013).

Recently, neural network language models have
been considered to perform better than standard
n-gram language models (Schwenk, 2007; Le et
al., 2011). Especially the neural language models
constructed in recurrent architectures have shown
a great performance by allowing them to take a
longer context into account (Mikolov et al., 2010;
Sundermeyer et al., 2013).

In a different direction, there has been a great
deal of research on bringing not only target words
but also source words into the prediction process,
instead of predicting the next target word based on
the previous target words (Le et al., 2012; Devlin
etal., 2014; Ha et al., 2014).

However, to the best of our knowledge, word
factors have been exploited in a relatively limited
scope of neural network research. (Le etal., 2011;
Le et al., 2012) use word classes to reduce the
output layer’s complexity of such networks, both
in language and translation models. In the work
of (Nichues and Waibel, 2012), their Restricted
Boltzmann Machines language models also en-
code word classes as an additional input feature in
predicting the next target word. (Tran et al., 2014)
use two separate feed forward networks to predict
the target word and its corresponding suffixes with
the source words and target stem as input features.

Our work exhibits several essential differences
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from theirs. Firstly, we leverage not only the target
morphological information but also word factors
from both source and target sides in our models.
Furthermore, we could use as many types of word
factors as we can provide. Thus, we are able to
make the most of the information encoded in those
factors for more accurate prediction.

3 Recurrent Neural Network-based
Language Models

In contrast to feed forward neural network-based
language models, recurrent neural network-based
language models are able to store arbitrary long
word sequences. Thereby, they are able to directly
model P(w|h) and no approximations by limiting
the history size are necessary. Recently, several
authors showed that RNN-based language models
could perform very well in phrase-based machine
translation. (Mikolov et al., 2010; Sundermeyer et
al., 2013)

In this work, we used the torch7! implementa-
tion of an RNN-based language model (Léonard
et al., 2015). First, the words were mapped to
their word embeddings. We used an input embed-
ding size of 100. Afterwards, we used two LSTM-
based layers. The first has the size of the word
embeddings and for the second we used a hidden
size of 200. Finally, the word probabilities were
calculated using a softmax layer.

The models were trained using stochastic gra-
dient descent. The weights were updated using
mini-batches with a batch size of 128. We used
a maximum epoch size of 1 million examples and
selected the model with the lowest perplexity on
the development data.

4 Factored Language Model

When using factored representation of words,
words are no longer represented as indices in the
neural network. Instead, they are represented a tu-
ples of indices w = (f1,..., fp), where D is the
number of different factors used to describe the
word. These factors can be the word itself, as well
as the POS, automatic learned classes (Och, 1999)
or other information about the word. Furthermore,
we can use different types of factors for the input
and the output of the neural network.

"http://torch.ch/



Figure 1: Factored RNN Layout
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4.1 Input Representation

In a first step, we obtained a factored representa-
tion for the input of the neural network. In the
experiments, we represented a word by its surface
form, POS-tags and automatic word class, but the
framework can be used for any number of word
factors. Although there are factored approaches
for n-gram based language models (Bilmes and
Kirchhoff, 2003), most n-gram language models
only use one factor. In contrast, in neural network
based language models, it is very easy to add ad-
ditional information as word factors. We can learn
different embeddings for each factor and represent
the word by concatenating the embeddings of sev-
eral factors. As shown in the bottom of Figure 1,
we first project the different factors to the contin-
uous factor embeddings. Afterwards, we concate-
nate these embeddings into a word embedding.

The advantage of using several word factors is
that we can use different knowledge sources to
represent a word. When a word occurs very rarely,
the learned embedding from its surface form might
not be helpful. The additional POS information,
however, is very helpful. While using POS-based
language models in PBMT may lead to losing the
information about high frequent words, in this ap-
proach we can have access to all information by
concatenating the factor embeddings.
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4.2 Output Representation

In addition to use different factors in the input of
the neural network, we can also use different fac-
tors on the output. In phrase-based machine trans-
lation, n-gram language models based on POS-
tags have been shown to be very successful for
morphologically rich languages.

Porting this idea to neural network lan-
guage models, we can not only train a
model to predict the original word f; given
the previous words in factor representation
h (fiis--s fup)y- s (fixs-- o fip), but
also train a model to predict he POS-tags (e.g. f2)
given the history h.

In a first step, we proposed to train individual
models for all factors 1, ..., D generating proba-
bilities P, . .., Pp for every sentence. Then these
probabilities can be used as features for example
in re-scoring of the phrase-based MT system.

Considering that it can be helpful to consider
all factors of the word in the input, it can be also
helpful to jointly train the models for predicting
the different output factors. This is motivated by
the fact that multi-task learning has shown to be
beneficial in several NLP tasks (Collobert et al.,
2011). Predicting all output features jointly re-
quires a modification of the output layer of the
RNN model. As shown in Figure 1, we replace the
single mapping from the LSTM-layer to the soft-
max layer, by D mappings. Each mapping then
learns to project the LSTM-layer output to the fac-
tored output probabilities. In the last layer, we use
D different softmax units. In a similar way as the
conventional network, the error between the out-
put of the network and the reference is calculated
during training.

Using this network, we will no longer pre-
dict the probability of one word factor Py, d €
{1,...D}, but D different probability distribu-
tions P, ..., Pp. In order to integrate this model
into the machine translation system we explored
two different probabilities. First, we used only the
joint probability P = H(?:l Py, as a feature in the
log-linear combination. In addition, we also used
the joint probability as well as all individual prob-
abilities P; as features.

4.3 Bilingual Model

Using the model presented before, it is possible to
add additional information to the model as well.
One example we explored in this work is to use



Figure 2: Bilingual Model

Target word wi Wi Wi,
Surface form  completed a pilot

POS VVD DT NN

Word class 87 37 17
Source word Sa(??<sam
Surface form ein Pilotproject  abgeschlossen
POS ART NN VVPP

the model as a bilingual model (BM). Instead of
using only monolingual information by consider-
ing the previous target factors as input, we used
source factors additionally. Thereby, we can now
model the probability of a word given the previ-
ous target words and information about the source
sentence. So in this case we model the transla-
tion probability and no longer the language model
probability.

When predicting the target word w; 1 with its
factors fi111,..., fi+1,p, the input to the RNN
is the previous target word w; = fi1,..., fiD.
Using the alignment, we can find the source word
Sq(i+1)> Which is aligned to the target word w .
When we add the features of source word

Sa(i+1) = (f(f(z'+1),1v e 7fas(i+1),Ds)

to the ones of the target word w; and create a new
bilingual token
bi = (fit1,1,---

7fi+1,D7 f;(i+1)715 ey f;(i+1)7Ds)

, we now can predict the target word given the pre-
vious target word and the aligned source word.

In the example in Figure 2, we would
insert (completed,VVD,87,ein,ART) to predict
(a,DT,37).

In this case the number of input factors and out-
put factors are no longer the same. In the input,
we have D + D, input factors, while we have only
D factors on the output of the network.

S Experiments

We evaluated the factored RNNLM on three dif-
ferent language pairs of the WMT 2016 News
Translation Task. In each language pair, we cre-
ated an n-best list using our phrase-based MT sys-
tem and used the factored RNNLM as an addi-
tional feature in rescoring. It is worth noting that
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the POS and word class information are already
present during decoding of the baseline system by
n-gram-based language models based on each of
these factors. First, we performed a detailed analy-
sis on the English-Romanian task. In addition, we
used the model in a German-English and English-
German translation system. In all tasks, we used
the model in re-scoring of a PBMT system.

5.1 System Description

The baseline system is an in-house implementa-
tion of the phrase-based approach. The system
used to generate n-best lists for the news tasks is
trained on all the available training corpora of the
WMT 2015 Shared Translation task. The system
uses a pre-reordering technique (Rottmann and
Vogel, 2007; Niehues and Kolss, 2009; Herrmann
et al., 2013) and facilitates several translation and
language models. As shown in Table 1, we use
two to three word-based language models and one
to two cluster-based models using 50, 100 or 1,000
clusters. The custers were trained as described
in (Och, 1999). In addition, we used a POS-
based language model in the English-Romainian
system and a bilingual language model (Niehues
et al.,, 2011) in English to German and German
to English systems. The POS tags for English-
Romanian were generated by the tagger described
in (Ion et al., 2012) and the ones for German by
RFTagger (Schmid and Laws, 2008).

Table 1: Features
EN-RO EN-DE DE-EN

wordLM 2 3 3
POSLM 1 0 0
clusterLM 2 1 2
BiLM 0 1 1
#features 22-23 20 22

In addition, we used discriminative word lex-
ica (Niehues and Waibel, 2013) during decoding
and source discriminative word lexica in rescoring
(Herrman et al., 2015).

A full system description can be found in (Ha et
al., 2016).

The German to English baseline system uses 20
features and the English to German systems uses
22 features.

The English-Romanian system was optimized
on the first part of news-dev2016 and the rescor-
ing was optimized on this set and a subset of 2,000



sentences from the SETimes corpus. This part of
the corpus was of course excluded for training the
model. The system was tested on the second half
of news-dev2016.

The English-German and German-English sys-
tems were optimized on news-test2014 and also
the re-scoring was optimized on this data. We
tested the system on news-test2015.

For English to Romanian and English to Ger-
man we used an n-best List of 300 entries and
for German to English we used an n-best list with
3,000 entries.

For decoding, for all language directions, the
weights of the system were optimized using mini-
mum error rate training (Och, 2003). The weights
in the rescoring were optimized using the List-
Net algorithm (Cao et al., 2007) as described in
(Niehues et al., 2015).

The RNN-based language models for English to
Romanian and German to English were trained on
the target side of the parallel training data. For En-
glish to German, we trained the model and the Eu-
roparl corpus and the News commentary corpus.

5.2 English - Romanian

In the first experiment on the English to Roma-
nian task, we only used the scores of the RNN lan-
guage models. The baseline system has a BLEU
score (Papineni et al., 2002) of 29.67. Using only
the language model instead of the 22 features, of
course, leads to a lower performance, but we can
see clear difference between the different language
models. All systems use a word vocabulary of SK
words and we used four different factors. We used
the word surface form, the POS tags and word
clusters using 100 and 1,000 classes.

The baseline model using words as input and
words as output reaches a BLEU score of 27.88.
If we instead represent the input words by factors,
we select entries from the n-best list that gener-
ates a BLEU score of 28.46. As done with the
n-gram language models, we can also predict the
other factors instead of the words themselves. In
all cases, we use all four factors as input factors.
As shown in Table 2, all models except for the
one with 100 classes perform similarly, reaching
up between 28.46 and 28.49. The language model
predicting only 100 classes only reaches a BLEU
score of 28.23. It suggests that this number of
classes is too low to disambiguate the entries in
the n-best list.
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Table 2: English - Romanian Single Score

Input Prediction  Single
Word Word 27.88
All factors Word 28.46
All factors POS 28.48
All factors 100 CI. 28.23
All factors 1,000 CI. 28.49
All factors ~ All factors  28.54

If we predict all factors together and use then
the joint probability, we can reach the best BLEU
score of 28.54 as shown in the last line of the ta-
ble. This is 0.7 BLEU points better than the initial
word based model.

After evaluating the model as the only knowl-
edge source, we also performed experiments using
the model in combination with the other models.
We evaluated the baseline and the best model in
three different configuration in Table 3 using only
the joint probability. The three baseline configu-
ration differ in the models used during decoding.
Thereby, we are able to generate different n-best
lists and test the models on different conditions.

Table 3: English - Romanian Language Models

Model Confl Conf2 Conf3
Baseline 29.86  30.00 29.75
LM 5K 29.79 29.84 29.73
LM 50K 29.64 29.84 29.83
Factored LM 5K 2994 30.01 30.01
Factored LM 50K 30.05 30.27 30.29

In Table 3, we tested the word-based and the
factored language model using a vocabulary of 5K
and 50K words. Features from each model are
used in addition to the features of the baseline sys-
tem. As shown in the table, the word-based RNN
language models perform similarly, but both could
not improve over the baseline system. One possi-
ble reason for this is that we already use several
language models in the baseline model and they
are partly trained on much larger data. While the
RNN models are trained using only the target lan-
guage model, one word-based language model is
trained on the Romanian common crawl corpus.
Furthermore, the POS-based and word cluster lan-
guage models use a 9-gram history and therefore,
can already model quite long dependencies.

But if we use a factored language model, we are



able to improve over the baseline system. Using
the additional information of the other word fac-
tors, we are able to improve the bilingual model in
all situations. The model using a surface word vo-
cabulary of 5,000 words can improve by 0.1 to 0.3
BLEU points. The model using a SOK vocabulary
can even improve by up to 0.6 BLEU points.

Table 4: English - Romanian Bilingual Models

Model Dev  Test
Baseline 40.12 29.75
+ Factored LM 50K  40.87 30.17
+ Factored BM 5K 41.11 30.44
+ Factored BM 50K 41.16 30.57

After analyzing the different language models,
we also evaluate how we can use the factored
representation to include source side information.
The results are summarized in Table 4. In these
experiments, we used not only the the joint proba-
bility, but also the four individual probabilities as
features. Therefore, we will add five scores for
every model, since each model is added to its pre-
vious configuration in this experiment.

Exploiting all five probabilities of the lan-
guage model brought us the similar improvement
we achieved using the joint probability from the
model. On the test set, the improvements are
slightly worse. When adding the model using
source side information based on a vocabulary of
5K and 50K words, however, we get additional im-
provements. Adopting the both bilingual models
(BM) along with a factored LM, we improved the
BLEU score further leading up to the best score of
30.57 for the test set.

5.3 English - German

In addition to the experiments on English to Ro-
manian, we also evaluated the models on the task
of translating English News to German. For the
English to German system, we use three factors
on the source side and four factors on the tar-
get side. In English, we used the surface forms
as well as automatic word cluster based on 100
and 1,000 classes. On the target side, we used
fine-graind POS-tags generated by the RFTagger
(Schmid and Laws, 2008), in addition to the fac-
tors for the source side.

The experiments using only the scores of the
model are summarized in Table 5. In this exper-
iment, we analyzed a word based- and a factored
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Table 5: English - German Single Score

Model Single
LM 5K 20.92
Factored LM 5K 21.69
BM 5K 21.33

Factored BM 5K 21.92

language models as well as bilingual models. As
described in section 4.3, the difference between
the language model and the bilingual model is that
the latter uses the source side information as addi-
tional factor.

Using only the word-based language model we
achieved a BLEU score of 20.92. Deploying a fac-
tored language model instead, we can improve the
BLEU score by 0.7 BLEU points to 21.69. While
we achieved a score of 21.33 BLEU points by us-
ing a proposed bilingual model, we improved the
score up to 21.92 BLEU points by adopting all fac-
tors for the bilingual model.

Table 6: English-German Language Model

Model Confl Conf2
Baseline 23.25 2340
Factored LM 5K 23.63 23.77
Factored BM 5K 23.43 2348

In addition to the analysis on the single model,
we also evaluated the model’s influence by com-
bining the model with the baseline features. We
tested the language model as well as the bilingual
model on two different configurations. Adopting
the factored language model on top of the base-
line features improved the translation quality by
around 0.4 BLEU points for both configurations,
as shown in Table 6. Although the bilingual model
could also improve the translation quality, it could
not outperform the factored language model. The
combination of the two models, LM and BM, did
not lead to further improvements. In summary,
the factored language model improved the BLEU
score by 0.4 points.

5.4 German - English

Similar experiments were conducted on the Ger-
man to English translation task. For this language
pair, we built models using a vocabulary size of
5,000 words. The models cover word surface
forms and two automatic word clusters, which are



based on 100 and 1,000 word classes respectively.
First, we will evaluate the performance of the sys-
tem using only this model in rescoring. The results
are summarized in Table 7.

Table 7: German - English Single Score

Model Single
LM 5K 26.11
Factored LM 5K 26.96
BM 5K 26.77

Factored BM 5K 26.81

The word based language model achieves a
BLEU score 26.11. Extending the model to in-
clude factors improves the BLEU score by 0.8
BLEU points to 26.96. If we use a bilingual
model, a word based model achieves a BLEU
score of 26.77 and the factored one a BLEU score
of 26.81. Although the factored model performed
better than the word-based models, in this case the
bilingual model cannot outperform the language
model.

Table 8: German - English Language Model

Model Single
Baseline 29.33
+ Factored BM 5K 29.51
+ Factored LM 5K 29.66

In a last series of experiments, we used the
scores combined with the baseline scores. The re-
sults are shown in Table 8. In this language pair,
we can improve over the baseline system by using
both models. The final BLEU score is 0.3 BLEU
points better than the initial system.

6 Conclusion

In this paper, we presented a new approach to
integrate additional word information into a neu-
ral network language model. This model is es-
pecially promising for morphologically rich lan-
guages. Due to their large vocabulary size, addi-
tional information such as POS-tags are expected
to model rare words effectively.

Representing words using factors has been suc-
cessfully deployed in many phrase-based machine
translation systems. Inspired by this, we repre-
sented each word in our neural network language
model using factors, facilitating all available in-
formation of the word. We showed that using the
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factored neural network language models can im-
prove the quality of a phrase-based machine trans-
lation system, which already uses several factored
language models.

In addition, the presented framework allows an
easy integration of source side information. By
incorporating the alignment information to the
source side, we were able to model the translation
process. In this model, the source words as well as
the target words can be represented by word fac-
tors.

Using these techniques, we are able to im-
prove the translation system on three different lan-
guage pairs of the WMT 2016 evaluation. We
performed experiments on the English-Romanian,
English-German and German-English translation
task. The suggested technique yielded up to 0.7
BLEU points of improvement on all three tasks.
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Abstract

Neural machine translation has recently
achieved impressive results, while using
little in the way of external linguistic in-
formation. In this paper we show that
the strong learning capability of neural
MT models does not make linguistic fea-
tures redundant; they can be easily incor-
porated to provide further improvements
in performance. We generalize the em-
bedding layer of the encoder in the at-
tentional encoder—decoder architecture to
support the inclusion of arbitrary features,
in addition to the baseline word feature.
We add morphological features, part-of-
speech tags, and syntactic dependency la-
bels as input features to English<+>German
and English—Romanian neural machine
translation systems. In experiments on
WMT16 training and test sets, we find that
linguistic input features improve model
quality according to three metrics: per-
plexity, BLEU and CHRF3. An open-
source implementation of our neural MT
system is available!, as are sample files

and configurations?.

1 Introduction

Neural machine translation has recently achieved
impressive results (Bahdanau et al., 2015; Jean
et al., 2015), while learning from raw, sentence-
aligned parallel text and using little in the way
of external linguistic information.> However, we
hypothesize that various levels of linguistic anno-
tation can be valuable for neural machine trans-
lation. Lemmatisation can reduce data sparse-

"https://github.com/rsennrich/nematus

https://github.com/rsennrich/
wmntl6-scripts

3Linguistic tools are most commonly used in preprocess-
ing, e.g. for Turkish segmentation (Giil¢ehre et al., 2015).
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ness, and allow inflectional variants of the same
word to explicitly share a representation in the
model. Other types of annotation, such as parts-
of-speech (POS) or syntactic dependency labels,
can help in disambiguation. In this paper we in-
vestigate whether linguistic information is benefi-
cial to neural translation models, or whether their
strong learning capability makes explicit linguistic
features redundant.

Let us motivate the use of linguistic features us-
ing examples of actual translation errors by neu-
ral MT systems. In translation out of English,
one problem is that the same surface word form
may be shared between several word types, due to
homonymy or word formation processes such as
conversion. For instance, close can be a verb, ad-
jective, or noun, and these different meanings of-
ten have distinct translations into other languages.
Consider the following English—German exam-
ple:

1. We thought a win like this might be close.

2. Wir dachten, dass ein solcher Sieg nah sein

konnte.

. *Wir dachten, ein Sieg wie dieser konnte
schliefen.

For the English source sentence in Example 1
(our translation in Example 2), a neural MT sys-
tem (our baseline system from Section 4) mis-
translates close as a verb, and produces the Ger-
man verb schlieffen (Example 3), even though
close is an adjective in this sentence, which has
the German translation nah. Intuitively, part-
of-speech annotation of the English input could
disambiguate between verb, noun, and adjective
meanings of close.

As a second example, consider the following
German—English example:

4. Gefihrlich ist die Route aber dennoch .
dangerous is the route but still .

Proceedings of the First Conference on Machine Translation, Volume 1: Research Papers, pages 83-91,
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5. However the route is dangerous .
6. *Dangerous is the route , however .

German main clauses have a verb-second (V2)
word order, whereas English word order is gener-
ally SVO. The German sentence (Example 4; En-
glish reference in Example 5) topicalizes the pred-
icate gefdhrlich dangerous’, putting the subject
die Route ’the route’ after the verb. Our baseline
system (Example 6) retains the original word or-
der, which is highly unusual in English, especially
for prose in the news domain. A syntactic annota-
tion of the source sentence could support the atten-
tional encoder-decoder in learning which words in
the German source to attend (and translate) first.

We will investigate the usefulness of linguistic
features for the language pair German<>English,
considering the following linguistic features:

e lemmas

subword tags (see Section 3.2)

morphological features

POS tags

dependency labels

The inclusion of lemmas is motivated by the
hope for a better generalization over inflectional
variants of the same word form. The other lin-
guistic features are motivated by disambiguation,
as discussed in our introductory examples.

2 Neural Machine Translation

We follow the neural machine translation archi-
tecture by Bahdanau et al. (2015), which we will
briefly summarize here.

The neural machine translation system is imple-
mented as an attentional encoder-decoder network
with recurrent neural networks.

The encoder is a bidirectional neural network
with gated recurrent units (Cho et al.,, 2014)
that reads an input sequence x (T1y ey Tpn)
and calculates a forward sequence of hidden

states (ﬁl, ...,ﬁm), and a backward sequence
(%1, .oty h ). The hidden states ﬁj and %j are
concatenated to obtain the annotation vector h;.
The decoder is a recurrent neural network that
predicts a target sequence y = (1, ..., Yn). Each
word y; is predicted based on a recurrent hidden
state s;, the previously predicted word y;_1, and
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a context vector ¢;. ¢; is computed as a weighted
sum of the annotations h;. The weight of each
annotation h; is computed through an alignment
model «;;, which models the probability that y; is
aligned to xj. The alignment model is a single-
layer feedforward neural network that is learned
jointly with the rest of the network through back-
propagation.

A detailed description can be found in (Bah-
danau et al., 2015), although our implementation
is based on a slightly modified form of this archi-
tecture, released for the dl4mt tutorial*. Training
is performed on a parallel corpus with stochastic
gradient descent. For translation, a beam search
with small beam size is employed.

2.1 Adding Input Features

Our main innovation over the standard encoder-
decoder architecture is that we represent the en-
coder input as a combination of features (Alexan-
drescu and Kirchhoff, 2006).

We here show the equation for the forward
states of the encoder (for the simple RNN case;
consider (Bahdanau et al., 2015) for GRU):

Wy =tanh(WEx; + U hy) (1)

where E € R™* ¥z is a word embedding ma-
trix, IT/ e R™™ U € R™ "™ are weight matrices,
with m and n being the word embedding size and
number of hidden units, respectively, and K, be-
ing the vocabulary size of the source language.

We generalize this to an arbitrary number of fea-
tures | F|:

|F|

— — —

hj = tanh(W( || Bpajr) + 52hj—l) (2)
k=1

where || is the vector concatenation, Ej €
R™* K% are the feature embedding matrices, with

lkﬂl my, = m, and K}, is the vocabulary size of
the kth feature. In other words, we look up sepa-
rate embedding vectors for each feature, which are
then concatenated. The length of the concatenated
vector matches the total embedding size, and all

other parts of the model remain unchanged.

*nttps://github.com/nyu-dl/
dl4mt-tutorial



3 Linguistic Input Features

Our generalized model of the previous section
supports an arbitrary number of input features. In
this paper, we will focus on a number of well-
known linguistic features. Our main empirical
question is if providing linguistic features to the
encoder improves the translation quality of neu-
ral machine translation systems, or if the informa-
tion emerges from training encoder-decoder mod-
els on raw text, making its inclusion via explicit
features redundant. All linguistic features are pre-
dicted automatically; we use Stanford CoreNLP
(Toutanova et al., 2003; Minnen et al., 2001; Chen
and Manning, 2014) to annotate the English in-
put for English—German, and ParZu (Sennrich
et al., 2013) to annotate the German input for
German—English. We here discuss the individual
features in more detail.

3.1 Lemma

Using lemmas as input features guarantees shar-
ing of information between word forms that share
the same base form. In principle, neural mod-
els can learn that inflectional variants are semanti-
cally related, and represent them as similar points
in the continuous vector space (Mikolov et al.,
2013). However, while this has been demonstrated
for high-frequency words, we expect that a lem-
matized representation increases data efficiency;
low-frequency variants may even be unknown to
word-level models. With character- or subword-
level models, it is unclear to what extent they can
learn the similarity between low-frequency word
forms that share a lemma, especially if the word
forms are superficially dissimilar. Consider the
following two German word forms, which share
the lemma liegen ‘lie’:

o liegt ‘lies’ (3.p.sg. present)
e lige ‘lay’ (3.p.sg. subjunctive II)

The lemmatisers we use are based on finite-state
methods, which ensures a large coverage, even for
infrequent word forms. We use the Zmorge ana-
lyzer for German (Schmid et al., 2004; Sennrich
and Kunz, 2014), and the lemmatiser in the Stan-
ford CoreNLP toolkit for English (Minnen et al.,
2001).

3.2 Subword Tags

In our experiments, we operate on the level of sub-
words to achieve open-vocabulary translation with
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a fixed symbol vocabulary, using a segmentation
based on byte-pair encoding (BPE) (Sennrich et
al., 2016c). We note that in BPE segmentation,
some symbols are potentially ambiguous, and can
either be a separate word, or a subword segment
of a larger word. Also, text is represented as a
sequence of subword units with no explicit word
boundaries, but word boundaries are potentially
helpful to learn which symbols to attend to, and
when to forget information in the recurrent lay-
ers. We propose an annotation of subword struc-
ture similar to popular IOB format for chunking
and named entity recognition, marking if a sym-
bol in the text forms the beginning (B), inside (I),
or end (E) of a word. A separate tag (O) is used if
a symbol corresponds to the full word.

3.3 Morphological Features

For German—English, the parser annotates the
German input with morphological features. Dif-
ferent word types have different sets of features —
for instance, nouns have case, number and gender,
while verbs have person, number, tense and aspect
— and features may be underspecified. We treat
the concatenation of all morphological features of
a word, using a special symbol for underspecified
features, as a string, and treat each such string as a
separate feature value.

3.4 POS Tags and Dependency Labels

In our introductory examples, we motivated POS
tags and dependency labels as possible disam-
biguators. Each word is associated with one POS
tag, and one dependency label. The latter is the
label of the edge connecting a word to its syntac-
tic head, or 'TROOT” if the word has no syntactic
head.

3.5 On Using Word-level Features in a
Subword Model

We segment rare words into subword units using
BPE. The subword tags encode the segmentation
of words into subword units, and need no fur-
ther modification. All other features are originally
word-level features. To annotate the segmented
source text with features, we copy the word’s fea-
ture value to all its subword units. An example is
shown in Figure 1.

4 Evaluation

We evaluate our systems on the WMT16 shared
translation task English<>German. The parallel



root

root

pobj

Leonidas  begged in the  arena
NNP VBD IN DT NN
words Le: oni: das beg: ged in the arena
lemmas Leonidas Leonidas Leonidas  beg beg in the arena .
subword tags B I E B E O O (6] (0]
POS NNP NNP NNP VBD VBD IN DT NN
dep nsubj nsubj nsubj root root prep det pobj root

Figure 1: Original dependency tree for sentence Leonidas begged in the arena

sentation after BPE segmentation.

training data consists of about 4.2 million sentence
pairs.

To enable open-vocabulary translation, we en-
code words via joint BPE> (Sennrich et al.,
2016c), learning 89 500 merge operations on the
concatenation of the source and target side of the
parallel training data. We use minibatches of size
80, a maximum sentence length of 50, word em-
beddings of size 500, and hidden layers of size
1024. We clip the gradient norm to 1.0 (Pascanu
et al., 2013). We train the models with Adadelta
(Zeiler, 2012), reshuffling the training corpus be-
tween epochs. We validate the model every 10 000
minibatches via BLEU and perplexity on a valida-
tion set (newstest2013).

For neural MT, perplexity is a useful measure
of how well the model can predict a reference
translation given the source sentence. Perplex-
ity is thus a good indicator of whether input fea-
tures provide any benefit to the models, and we re-
port the best validation set perplexity of each ex-
periment. To evaluate whether the features also
increase translation performance, we report case-
sensitive BLEU scores with mteval-13b.perl on
two test sets, newstest2015 and newstest2016. We
also report CHRF3 (Popovic, 2015), a character n-
gram F3 score which was found to correlate well
with human judgments, especially for translations
out of English (Stanojevi¢ et al., 2015).% The two
metrics may occasionally disagree, partly because
they are highly sensitive to the length of the out-
put. BLEU is precision-based, whereas CHRF3
considers both precision and recall, with a bias for
recall. For BLEU, we also report whether differ-
ences between systems are statistically significant

Shttps://github.com/rsennrich/
subword—-nmt

SWe use the re-implementation included with the subword
code
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., and our feature repre-

input vocabulary embedding
feature EN DE model | all single
subword tags 4 4 41 5 5
POS tags 46 54 54| 10 10
morph. features - 1400 1400| 10 10
dependency labels 46 33 46| 10 10
lemmas 800000 1500000 85000115 167
words 78500 85000 85000 | * *

Table 1: Vocabulary size, and size of embedding
layer of linguistic features, in system that includes
all features, and contrastive experiments that add
a single feature over the baseline. The embedding
layer size of the word feature is set to bring the
total size to 500.

according to a bootstrap resampling significance
test (Riezler and Maxwell, 2005).

We train models for about a week, and report
results for an ensemble of the 4 last saved models
(with models saved every 12 hours). The ensem-
ble serves to smooth the variance between single
models.

Decoding is performed with beam search with a
beam size of 12.

To ensure that performance improvements are
not simply due to an increase in the number of
model parameters, we keep the total size of the
embedding layer fixed to 500. Table 1 lists the
embedding size we use for linguistic features —
the embedding layer size of the word-level fea-
ture varies, and is set to bring the total embedding
layer size to 500. If we include the lemma feature,
we roughly split the embedding vector one-to-two
between the lemma feature and the word feature.
The table also shows the network vocabulary size;
for all features except lemmas, we can represent
all feature values in the network vocabulary — in
the case of words, this is due to BPE segmenta-
tion. For lemmas, we choose the same vocabulary
size as for words, replacing rare lemmas with a



special UNK symbol.

Sennrich et al. (2016b) report large gains from
using monolingual in-domain training data, auto-
matically back-translated into the source language
to produce a synthetic parallel training corpus. We
use the synthetic corpora produced in these exper-
iments’ (3.6—4.2 million sentence pairs), and we
trained systems which include this data to compare
against the state of the art. We note that our exper-
iments with this data entail a syntactic annotation
of automatically translated data, which may be a
source of noise. For the systems with synthetic
data, we double the training time to two weeks.

We also evaluate linguistic features for
the lower-resourced translation  direction
English—Romanian, with 0.6 million sen-

tence pairs of parallel training data, and 2.2
million sentence pairs of synthetic parallel
data. We use the same linguistic features as for
English—German. We follow Sennrich et al.
(2016a) in the configuration, and use dropout for
the English—+Romanian systems. We drop out
full words (both on the source and target side)
with a probability of 0.1. For all other layers, the
dropout probability is set to 0.2.

4.1 Results
Table 2 shows our main results for
German—English, and English—German.

The baseline system is a neural MT system with
only one input feature, the (sub)words themselves.
For both translation directions, linguistic features
improve the best perplexity on the development
data (47.3 — 46.2, and 54.9 — 52.9, respectively).
For German—English, the linguistic features lead
to an increase of 1.5 BLEU (31.4—32.9) and
0.5 CHRF3 (58.0 — 58.5), on the newstest2016
test set. For English—+German, we observe
improvements of 0.6 BLEU (27.8 — 28.4) and 1.2
CHRF3 (56.0 — 57.2).

To evaluate the effectiveness of different lin-
guistic features in isolation, we performed con-
trastive experiments in which only a single feature
was added to the baseline. Results are shown in
Table 3. Unsurprisingly, the combination of all
features (Table 2) gives the highest improvement,
averaged over metrics and test sets, but most fea-
tures are beneficial on their own. Subword tags
give small improvements for English—German,

"The corpora are available at http://statmt.org/
rsennrich/wmtl6_backtranslations/
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but not for German—English. All other features
outperform the baseline in terms of perplexity, and
yield significant improvements in BLEU on at least
one test set. The gain from different features is not
fully cumulative; we note that the information en-
coded in different features overlaps. For instance,
both the dependency labels and the morphologi-
cal features encode the distinction between Ger-
man subjects and accusative objects, the former
through different labels (subj and obja), the lat-
ter through grammatical case (nominative and ac-
cusative).

We also evaluated adding linguistic features to a
stronger baseline, which includes synthetic paral-
lel training data. In addition, we compare our neu-
ral systems against phrase-based (PBSMT) and
syntax-based (SBSMT) systems by (Williams et
al., 2016), all of which make use of linguistic an-
notation on the source and/or target side. Results
are shown in Table 4. For German— English, we
observe similar improvements in the best devel-
opment perplexity (45.2 — 44.1), test set BLEU
(37.5—38.5) and CHRF3 (62.2 — 62.8). Our test
set BLEU is on par to the best submitted system
to this year’s WMT 16 shared translation task,
which is similar to our baseline MT system, but
which also uses a right-to-left decoder for rerank-
ing (Sennrich et al., 2016a). We expect that lin-
guistic input features and bidirectional decoding
are orthogonal, and that we could obtain further
improvements by combining the two.

For English—German, improvements in devel-
opment set perplexity carry over (49.7 — 48.4),
but we see only small, non-significant differences
in BLEU and CHRF3. While we cannot clearly ac-
count for the discrepancy between perplexity and
translation metrics, factors that potentially lower
the usefulness of linguistic features in this setting
are the stronger baseline, trained on more data,
and the low robustness of linguistic tools in the
annotation of the noisy, synthetic data sets. Both
our baseline neural MT systems and the systems
with linguistic features substantially outperform
phrase-based and syntax-based systems for both
translation directions.

In the previous tables, we have reported the best
perplexity. To address the question about the ran-
domness in perplexity, and whether the best per-
plexity just happened to be lower for the systems
with linguistic features, we show perplexity on
our development set as a function of training time



German—English English—German
system ppl BLEU 1 CHRF3 1 ppl ) BLEU 1 CHRF3 1
dev ‘ testl5  testl6 ‘ testl5  testl6 dev ‘ testl5  testl6 | testl5 testl6
baseline 473 | 279 314 54.0 58.0 549 | 23.0 27.8 52.6 56.0
all features | 46.2 ‘ 28.7%  329% | 54.8 58.5 H 529 ‘ 23.8% 284* | 539 57.2

Table 2: German<>English translation results: best perplexity on dev (newstest2013), and BLEU and
CHRF3 on testl5 (newstest2015) and test16 (newstest2016). BLEU scores that are significantly different
(p < 0.05) from respective baseline are marked with (¥).

German—English English—German

system ppl BLEU 1 CHRF3 1 ppl BLEU 1 CHRF3 1

dev | testl5 testl6 | testl5 testl6 dev | testl5 testl6 | testl5 testl6
baseline 473 | 279 314 54.0 58.0 549 | 23.0 27.8 52.6 56.0
lemmas 47.1 | 284 323% | 54.6 58.7 534 | 23.8% 28.5% | 537 56.7
subword tags 473 | 27.7 31.5 54.0 58.1 54.7 | 23.6% 28.1 532 56.4
morph. features 47.1 | 28.2 32.4% 54.3 58.4 - - - - -
POS tags 46.9 | 28.1 32.4*% | 54.1 57.8 532 | 24.0% 289* | 533 56.8
dependency labels | 46.9 | 28.1 31.8% | 542 58.3 54.0 | 234% 28.0 53.1 56.5

Table 3: Contrastive experiments with individual linguistic features: best perplexity on dev (new-
stest2013), and BLEU and CHRF3 on testl5 (newstest2015) and test16 (newstest2016). BLEU scores
that are significantly different (p < 0.05) from respective baseline are marked with (*).

German— English English—German
system ppl J BLEU T CHRF3 1 ppl 4 BLEU T CHRF3 1
dev | testl5 testl6 | testl5 testl6 dev | testl5 testl6 | testl5 testl6
PBSMT (Williams et al., 2016) - 29.9 35.1 56.2 60.9 - 23.7 28.4 52.6 56.6
SBSMT (Williams et al., 2016) - 29.5 34.4 56.0 61.0 - 24.5 30.6 55.3 59.9
baseline 452 | 31.5 37.5 57.0 62.2 49.7 | 275 33.1 56.3 60.5
all features 44.1 | 32.1*  38.5* 57.5 62.8 484 | 27.1 332 56.5 60.6

Table 4: German<>English translation results with additional, synthetic training data: best perplexity on
dev (newstest2013), and BLEU and CHRF3 on test15 (newstest2015) and test16 (newstest2016). BLEU
scores that are significantly different (p < 0.05) from respective baseline are marked with (¥).
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Figure 2: English—+German (black) and

German—English (red) development set per-
plexity as a function of training time (number of
minibatches) with and without linguistic features.

system ppll | BLEU T | CHRF3 1
(Peter et al., 2016) - 28.9 57.1
baseline 74.9 23.8 52.5
all features 72.7 24 8% 53.5
baseline (+synth. data) 50.9 28.2 56.1
all features (+synth. data) | 50.1 29.2% 56.6

Table 5: English—Romanian translation results:
best perplexity on newsdev2016, and BLEU and
CHRF3 on newstest2016. BLEU scores that are
significantly different (p < 0.05) from respective
baseline are marked with (*).

for different systems (Figure 2). We can see that
perplexity is consistently lower for the systems
trained with linguistic features.

Table 5 shows results for a lower-resourced
language pair, English—Romanian. With lin-
guistic features, we observe improvements of 1.0
BLEU over the baseline, both for the systems
trained on parallel data only (23.8—24.8), and
the systems which use synthetic training data
(28.2—29.2). According to BLEU, the best sub-
mission to WMT16 was a system combination by
Peter et al. (2016). Our best system is competitive
with this submission.

Table 6 shows translation examples of our base-
line, and the system augmented with linguis-
tic features. We see that the augmented neural
MT systems, in contrast to the respective base-
lines, successfully resolve the reordering for the
German—English example, and the disambigua-
tion of close for the English—German example.

&9

sentence

Gefihrlich ist die Route aber dennoch.
However the route is dangerous.
Dangerous is the route, however.
However, the route is dangerous.

system
source
reference
baseline
all features

source
reference
baseline
all features

[We thought] a win like this might be close.
[...] dass ein solcher Gewinn nah sein kdnnte.
[...] ein Sieg wie dieser konnte schliefSen.

[...] ein Sieg wie dieser konnte nah sein.

Table 6: Translation examples illustrating the ef-
fect of adding linguistic input features.

5 Related Work

Linguistic features have been used in neural lan-
guage modelling (Alexandrescu and Kirchhoff,
2006), and are also used in other tasks for which
neural models have recently been employed, such
as syntactic parsing (Chen and Manning, 2014).
This paper addresses the question whether linguis-
tic features on the source side are beneficial for
neural machine translation. On the target side, lin-
guistic features are harder to obtain for a gener-
ation task such as machine translation, since this
would require incremental parsing of the hypothe-
ses at test time, and this is possible future work.

Among others, our model incorporates infor-
mation from a dependency annotation, but is still
a sequence-to-sequence model. Eriguchi et al.
(2016) propose a tree-to-sequence model whose
encoder computes vector representations for each
phrase in the source tree. Their focus is on exploit-
ing the (unlabelled) structure of a syntactic anno-
tation, whereas we are focused on the disambigua-
tion power of the functional dependency labels.

Factored translation models are often used in
phrase-based SMT (Koehn and Hoang, 2007) as a
means to incorporate extra linguistic information.
However, neural MT can provide a much more
flexible mechanism for adding such information.
Because phrase-based models cannot easily gen-
eralize to new feature combinations, the individ-
ual models either treat each feature combination
as an atomic unit, resulting in data sparsity, or as-
sume independence between features, for instance
by having separate language models for words and
POS tags. In contrast, we exploit the strong gen-
eralization ability of neural networks, and expect
that even new feature combinations, e.g. a word
that appears in a novel syntactic function, are han-
dled gracefully.

One could consider the lemmatized representa-
tion of the input as a second source text, and per-



form multi-source translation (Zoph and Knight,
2016). The main technical difference is that in
our approach, the encoder and attention layers are
shared between features, which we deem appro-
priate for the types of features that we tested.

6 Conclusion

In this paper we investigate whether linguistic in-
put features are beneficial to neural machine trans-
lation, and our empirical evidence suggests that
this is the case.

We describe a generalization of the encoder
in the popular attentional encoder-decoder archi-
tecture for neural machine translation that al-
lows for the inclusion of an arbitrary number
of input features. We empirically test the in-
clusion of various linguistic features, including
lemmas, part-of-speech tags, syntactic depen-
dency labels, and morphological features, into
English<+>German, and English—+Romanian neu-
ral MT systems. Our experiments show that
the linguistic features yield improvements over
our baseline, resulting in improvements on new-
stest2016 of 1.5 BLEU for German—English, 0.6
BLEU for English—+German, and 1.0 BLEU for
English—Romanian.

In the future, we expect several developments
that will shed more light on the usefulness of lin-
guistic (or other) input features, and whether they
will establish themselves as a core component of
neural machine translation. On the one hand, the
machine learning capability of neural architectures
is likely to increase, decreasing the benefit pro-
vided by the features we tested. On the other hand,
there is potential to explore the inclusion of novel
features for neural MT, which might prove to be
even more helpful than the ones we investigated,
and the features we investigated may prove espe-
cially helpful for some translation settings, such as
very low-resourced settings and/or translation set-
tings with a highly inflected source language.
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Abstract

Training discriminative rule selection
models is usually expensive because of the
very large size of the hierarchical gram-
mar. Previous approaches reduced the
training costs either by (i) using mod-
els that are local to the source side of
the rules or (ii) by heavily pruning out
negative samples. Moreover, all previ-
ous evaluations were performed on small
scale translation tasks, containing at most
250,000 sentence pairs. We propose two
contributions to discriminative rule selec-
tion. First, we test previous approaches
on two French-English translation tasks in
domains for which only limited resources
are available and show that they fail to
improve translation quality. To improve
on such tasks, we propose a rule selec-
tion model that is (i) global with rich
label-dependent features (ii) trained with
all available negative samples. Our global
model yields significant improvements, up
to 1 BLEU point, over previously pro-
posed rule selection models. Second, we
successfully scale rule selection models
to large translation tasks but have so far
failed to produce significant improvements
in BLEU on these tasks.

1 Introduction

Hierarchical phrase-based machine translation
(Chiang, 2005) performs non-local reordering in
a formally syntax-based way. It allows flexible
rule extraction and application by using a grammar
without linguistic annotation. As a consequence,
many hierarchical rules can be used to translate
a given input segment even though only a subset
of these yield a correct translation. For instance,

92

rules r; to r3 can be applied to translate the French
sentence F7 below although only r; yields the cor-
rect translation E.

(r1) X — ( X pratique Xo, practical X; Xo )
(ro) X — ( Xy pratique Xo, X7 X practice )
(r3) X — ( X pratique X9, Xy X process )

Iy Une étude de 1’ (intérét) x, pratique (de notre
approche) x, .
A study on the (interest)x, practical (of our
approach)x,.

E A study on the practical (interest) x, (of our
approach) y, .

The rule scoring heuristics defined by (Chiang,
2005) do not handle rule selection in a satisfac-
tory way and many authors have come up with
solutions. Models that use the syntactic structure
of the source and target sentence have been pro-
posed by (Marton and Resnik, 2008; Marton et
al., 2012; Chiang et al., 2009; Chiang, 2010; Liu
et al.,, 2011). These approaches exclusively take
into account syntactic structure and do not model
rule selection (see Section 6 for a detailed discus-
sion). Following the work on phrase-sense disam-
biguation by (Carpuat and Wu, 2007), other au-
thors improve rule selection by defining features
on the structure of hierarchical rules and combin-
ing these with information about the source sen-
tence (Chan et al., 2007; He et al., 2008; He et al.,
2010; Cui et al., 2010). In these approaches, rule
selection is the task of selecting the target side of
a rule given its source side as well as contextual
information about the source sentence. This task
is modeled as a multiclass classification problem.

Because of the very large size of hierarchical
grammars, the training procedure for discrimina-
tive rule selection models is typically very expen-
sive: multiclass classification is performed over

Proceedings of the First Conference on Machine Translation, Volume 1: Research Papers, pages 92—-101,
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millions of classes (one for each possible target
side of a hierarchical rule). To overcome this
problem, previous approaches reduced the train-
ing costs by either (i) using models that are local
to the source side of hierarchical rules or (ii) heav-
ily pruning out negative samples from the train-
ing data. (Chan et al., 2007; He et al., 2008; He
et al., 2010) train one (local) classifier for each
source side or pattern of hierarchical rules instead
of defining a (global) model over all rules. Cui et
al. (2010) train global models but in addition to
rule table pruning, they heavily prune out negative
instances. Finally, in all previous approaches, a
small amount of fixed features is used for training
and prediction.

While previous approaches have been shown to
work on a small' English-Chinese news transla-
tion task, we show (in Section 4) that on French-
English tasks on domains for which only a limited
amount of training data is available (which we call
low resource tasks), they fail to improve over a hi-
erarchical baseline. This failure is caused by the
fact that the models proposed so far do not take
advantage of all information available in the train-
ing data. Local models prevent feature sharing
between rules with different source sides or pat-
terns (see Section 2.3) while aggressive pruning
removes important information from the training
data (see Section 3.2). On low resource translation
tasks, this loss hurts translation quality. Moreover,
the small set of features used in previous work
does not provide a representation of the training
data that is as powerful as it could be for classifi-
cation (see Section 2.2).

We improve on previous work in two ways.
First, we define a global rule selection model with
a rich set of feature combinations. Our global
model enables feature sharing while the large
amount of features we use offers a complete rep-
resentation of the available training data. We train
our model with all acquired training examples.
The exhaustive training of a feature rich global
model allows us to take full advantage of the train-
ing data. We show on two low-resource French-
English translation tasks that local and pruned
models often fail to improve over a hierarchical
baseline while our global model with exhaustive
training yields significant improvements on scien-
tific and medical texts (see Section 4). In a second

'In (He et al., 2008; Cui et al., 2010), the size of the train-
ing data is about 240k parallel sentences.
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contribution, we successfully scale rule selection
models to large scale translation tasks but fail to
produce significant improvements in BLEU over a
hierarchical baseline on these tasks.

Because our approach needs scaling to a large
amount of training examples, we need a classifier
that is fast and supports online streaming. We use
the high-speed classifier Vowpal Wabbit> (VW)
which we fully integrate in the syntax component
(Hoang et al., 2009) of the Moses machine trans-
lation toolkit (Koehn et al., 2007). To allow re-
searchers to replicate our results and improve on
our work, we make our implementation publicly
available as part of Moses.

2 Global Rule Selection Model

The goal of rule selection is to choose the correct
target side of a hierarchical rule, given a source
side as well as other sources of information such
as the shape of the rule or its context of applica-
tion in the source sentence. The latter includes
lexical features (e.g. the words surrounding the
source span of an applied rule) or syntactic fea-
tures (e.g. the position of an applied rule in the
source parse tree). The rule selection task can
be modeled as a multi-class classification problem
where each target-side corresponding to a source
side gets a label.

Contrary to (Chan et al., 2007; He et al., 2008;
He et al., 2010), we solve the classification prob-
lem by building a single global discriminative
model instead of using one maximum entropy
classifier for each source side or pattern. We
solve the rule selection problem through multi-
class classification while (Cui et al., 2010) approx-
imate the problem by using a binary classifier.

2.1 Model Definition

We denote SCFG rules by X — («, ), where «
is a source and v a target language string (Chi-
ang, 2005). By C(f,a) we denote information
of the source sentence f and the source side
a. R(a,7) represents features on hierarchical
rules. Our discriminative model estimates P (7 |
a,C(f,a), R(ce,7y)) and is normalized over the
set G’ of candidate target sides 4/ for a given a.
The function GTO : o« — G’ generates, given the
source side, the set G’ of all corresponding target
sides 4. The estimated distribution can be written

*http://hunch.net/~vw/. Implemented by John
Langford and many others.



as:
P(y|a,C(f, @), R(a, 7)) =
exp(D_; Aihi(a, C(f, @), R(,7)))
> yearo(e) P22 Aihi(a, C(f, @), R(a, 7))

In the same fashion as for local models, our global
model predicts the target side of a rule given its
source side and contextual features, meaning that
it still disambiguates between rules with the same
source side using rich context information. How-
ever, because the global model trains a single clas-
sifier over all rules, it captures information that
is shared among rules with different source sides
(see Section 2.3 for more details).

2.2 Feature Templates

We now present the feature templates R(«, ) and
C(f,«) in the equation presented in Section 2.1.
While in isolation the features composing the tem-
plates are similar to the features used in previ-
ous work (He et al., 2008; He et al., 2010; Cui
et al., 2010), we create powerful representations
by dividing our feature set into fixed and label-
dependent features and taking the cross product of
these.

We begin by presenting the features in our tem-
plates. To this aim suppose that rule r4 has been
extracted from sentence F,. The 1-best parse tree
of F5 is given in Figure 1.

(rq) X — ( pratique X; Xo, X9 X process )

F5 Une étude de la pratique (de 1’ingénérie) x,
(informatique) x,
A study on the process (of software)x,
(development)x.,.

Une elude de

/\\

la prathue P~ D

[ \ \
(de I’ ingenerie)X1 A

\
(informatique)X2

Figure 1: Parse tree of Sentence F»

The rule internal features R(cv, ) are given in Fig-
ure 2. The source context features C'(f,«) are
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divided into (i) lexical and (ii) syntactic features.
Lexical features are given in Figure 3 where the
term “factored form” denotes the surface form,
POS tag and lemma of a word. Syntactic features
are in Figure 4.

In order to create powerful representations, we
combine the features above into more complex
templates. To this aim, we distribute our features
into two categories:

1. A set of fixed features S on the source sen-
tence context and source side of the rule.

2. A set of features 1" which varies with the
target side of the rule, which we call label-
dependent.

The set .S includes the lexical and syntactic fea-
tures in Figures 3 and 4 as well as shape features
on the source side « (2 first rows of Figure 2). The
set T' contains all shape features involving the tar-
get side of the rules (5 last rows of Figure 2). Our
feature space consists of all source and target fea-
tures S and 7" as well as the cross product .S x T

The features resulting from the cross product
S x T capture many aspects of rule selection that
are lost when the features are considered in iso-
lation. For instance, the cross product of (i) the
lexical features (Figure 3) and source word shape
features (Figure 2, row 2) with (ii) the target word
shape features (Figure 2, row 4) create typical tem-
plates of a discriminative word lexicon. In the
same fashion, the cross product of (i) the syntactic
features (Figure 4) with (ii) the target alignment
shape feature (Figure 2, row 6) creates the tem-
plates of a reordering model using syntactic fea-
tures.

2.3 Feature Sharing

An advantage of global models over local ones is
that they allow feature sharing between rules with
different source sides. Through sharing, features
that do not depend on the source side of rules but
are nevertheless often seen across all rules can be
captured. As an illustration, assume that rules 75
and rg have been extracted from sentence F3 be-
low. The 1-best parse of F3 is given in Figure 5.

(rs) X — ( modeles X; de bas X5, X; X3 mod-
els )
(r¢) X — ( modeles X; de X2, X7 X2 models )

F3 Un article sur les modeles (statistiques) x, de
(bas niveau),.



Feature Template

Example ]

Source side «

pratique X1_X2 (one feature)

Words in o pratique X1 X2 (three features)
Target side ~ X2 X1 _process
Words in X2 X1 process

Aligned terminals in v and

pratique<-+process

Aligned non-terminals in « and y

X1+X2 X2++X1 (two features)

Best baseline translation probability

Most_Frequent

Figure 2: Rule shape features

Feature Template

Example
[ p

first factored form left of o

la, D, la

second factored form left of «

de, P, de

first factored form right of «

., PONCT, .

second factored form right of «

None, None, None

Figure 3: Lexical features

Feature Template

| Example |

Does o match a constituent

no_match

Type of matched constituent

None

Parent of matched constituent

None

Lowest parent of unmatched constituent

NP

Span width covered by o

5

Figure 4: Syntactic features

A paper on the models (statistical) x, of (low-
level)x,

Although r4, r5 and rg have completely differ-
ent source sides, they share many contextual fea-
tures such as:

(i) The POS tags of the first and second words
to the left of the segment where the rules are
applied (which are P and D)

(i1) The syntactic structure of this segment
(which is that (i) it is not a complete con-
stituent and (ii) it has a NP as its lowest par-
ent)

(iii) The rule span width (which is 5)

\ \ \
Un

SENT

NP/ \PP\ PONCT

D/ \N P/ \NP |
% \A\PP

article sur D

les modeles (statistiques)X1 P

\
(de A

bas (niveau)X2

NP

N

Figure 5: Parse tree of Sentence F3
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A global model would assign high weights to
features (i) to (iii) while local models fail to cap-
ture this generalization.

3 Exhaustive Model Training

Training examples for our classifier are generated
each time a hierarchical rule can be extracted from
the parallel corpus (see Section 3.1). This proce-
dure leads to a very large number of training ex-
amples. In contrast to (Cui et al., 2010), we do not
prune out negative samples and use all available
data to train our model.

3.1 Training procedure

We create training examples using the rule extrac-
tion procedure in (Chiang, 2005). We first extract
a rule-table in the standard way. Then, each time
arule a; : X — (a,7) can be extracted from the
parallel corpus, we create a new training example.
~ is the correct class and receives a cost of 0. We
create incorrect classes using the rules as, . .., a,
in the rule-table that have the same source side
as a; but different target sides. As an example,
suppose that rule r; introduced in Section 1 has
been extracted from sentence F3. The target side
“practical X; X" is a correct class and gets a cost



of 0. The target side of all other rules having the
same source side, such as r9 and r3, are incorrect
classes.

This process leads to a very large number of
training examples, and for each of these we gen-
erally have multiple incorrect classes. The to-
tal number of training examples for our French-
English data sets are displayed in Table 1. We do

[ Data_| Science | Medical | News |
Sentences 139,215 111,165 1,572,099
Examples 47,952,867 25,435,958 583,165,140

cost 0 50,718,190 26,458,411 597,575,905
cost 1 | 493,271,397 | 170,064,556 | 8,805,099,861
avg 1 10.28 6.68 15.09

Table 1: Number of training examples (Examp.)
The last line shows the average amount of negative
samples (avg 1) for each training example.

not prune out negative instances and use all ac-
quired examples for model training. To scale to
this amount of training samples, we use the high-
speed classifier Vowpal Wabbit (VW). For model
training, we use the cost-sensitive one-against-
all-reduction (Beygelzimer et al., 2005) of VW.
Specifically, the training algorithm which we use
is the label dependent version of Cost Sensitive
One Against All which uses classification.> Two
features of VW which are useful for our work
are feature hashing and quadratic feature expan-
sion. The quadratic expansion allows us to take
the cross-product of the simple source and target
features without having to actually write this ex-
pansion to disk, which would be prohibitive. Fea-
ture hashing (Weinberger et al., 2009) is also im-
portant for scaling the classifier to the enormous
number of features created by the cross-product
expansion.

We avoid overfitting to training data by em-
ploying early stopping once classifier accuracy de-
creases on a held-out dataset.* Our model is inte-
grated in the hierarchical framework as an addi-
tional feature of the log-linear model.

3.2 Training without Pruning of Negative
Examples

By not pruning negative samples, we keep impor-
tant information for model training. As an illustra-
tion, consider the example presented above (Sec-

3The command line parameter to VW is “csoaa_ldf mc”.

“We use the development set which is also used for tuning
with MIRA, as we will discuss later in the paper.
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tion 3.1) where rule r; is a positive instance and
ro and r3 are negative samples. The negative in-
stances indicate that in the context of sentence F1,
the internal features of r9 and r3 are not correct.
For instance, a piece of information that could be
paraphrased into [ is lost.

I In the syntactic and lexical context of F} the
terminal pratique should neither be translated
into practice nor into process

Consider sentence Fy, which has a similar con-
text to I in terms of the lexical and syntactic fea-
tures described in Section 2.2. To illustrate the
syntactic features common to F and Fy, we give
the 1-best parse trees of these sentences in Figures
6 and 7.

Fy Les avantages de 1’ (aspect)x, pratique (de
la robotique) x,.
The advantages of the (aspect)x, practical
(of robotics)x,.

In pruning-based approaches, if ro and r3 ap-
pear infrequently in the training data, they are
pruned out and information I is lost. If at decoding
time candidate rules that share features with ro and
rg are bad candidates to translate £ and F} then
their application is not blocked by the discrimina-
tive model basing on I. For instance, if rules r7
and rg have high scores in the hierarchical model
but are bad candidates in the context of sentences
F1 and Fy then a pruned model fails to block their
application. In other words, the discriminative
model does not learn that rules containing the lex-
ical items practice and process on the target lan-
guage side are bad candidates to translate F; and
F. As a consequence, the application of r7 and rg
to Fy generates the erroneous translations £7 and
E3 below.

(r7) X — ( X pratique X9, X9 X practice )
(rg) X — ( X, pratique X2, X; X5 process )

E} The advantages of the of robotics aspects
practice

E3 The advantages of the aspects of robotics pro-
cess

4 Experiments on small domains

In a first set of experiments, we evaluate our ap-
proach on two low resource French-English trans-



Une elude de

P
\ N
l’ (interet)X1 pratique P D N

\ \ \
(de notre approche)X2

Figure 6: Parse tree of Sentence F}

SENT

/ \
D/ \N / \
\ \ \ \
Les avantages de D% N\PP
\ \ /
I’ (aspect)X1 pratique P/D \N

[ \
(de la robotique)X2

NP

Figure 7: Parse tree of Sentence Fy

lation tasks: (i) a set of scientific articles and (ii) a
set of biomedical texts. As these data sets cover
small domains, they allow us to investigate the
usefulness of our approach in this context. The
goal of our experiments is to verify three hypothe-
ses:

h1 Our approach beats a hierarchical baseline.

ho Our global model outperforms its local vari-
ants.

hs Our exhaustive training procedure beats sys-
tems trained with pruned data.

4.1 Experimental Setup

Our scientific data consists of the scientific ab-
stracts provided by Carpuat et al. (2013). The
training data contains 139,215 French and En-
glish parallel sentences. The development and
test sets both consist of 3916 parallel sentences.
For the medical domain, we use the biomedical
data from EMEA (Tiedemann, 2009). As training
data, we used 472,231 sentence pairs from EMEA.
We removed duplicate sentences and constructed
development and test data by randomly selecting
4000 sentence-pairs. After removal of duplicate
sentences, development and test data, we obtain
111,165 parallel sentences for training. For all
data sets, we trained a 5-gram language model us-
ing the SRI Language Modeling Toolkit (Stolcke,
2002). The training data for the language model
is the English side of the training corpus for each
task.
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We train the model in the standard way, us-
ing GIZA++. After training, we reduce the num-
ber of translation rules using significance testing
(Johnson et al., 2007). For feature extraction, we
parse the French part of our training data using the
Berkeley parser (Petrov et al., 2006) and lemma-
tize and POS tag it using Morfette (Chrupata et
al., 2008). We train the rule-selection model us-
ing VW. All systems are tuned using batch MIRA
(Cherry and Foster, 2012). We measure the overall
translation quality using 4-gram BLEU (Papineni
et al., 2002), which is computed on tokenized and
lowercased data for all systems. Statistical signifi-
cance is computed with the pairwise bootstrap re-
sampling technique of (Koehn, 2004).

4.2 Compared Systems

We investigate systems including a discriminative
model in the three setups, given in Figure 4.2. For
each setup, we train a global model using a sin-
gle classifier. For instance, for the setup (Lex-
Glob) we train a classifier with the lexical and rule
shape features presented in Section 2.2 together
with their cross product.

[ Description | Name
Rule shape and lexical features LexGLob
Rule shape and syntactic features SyntGlob
Rule shape, lexical and syntactic features | LexSyntGlob

Figure 8: Setups of evaluated discriminative mod-
els.

In order to verify our first hypothesis (h1), we
show that our approach yields significant improve-
ments over the hierarchical model in (Chiang,
2005). The results of this experiment are given
in Table 2.

To verify our second hypothesis (h2), we show
that global rule selection models significantly im-
prove over their local variants. For this second
evaluation, we train local models with the feature
templates in Figure 4.2. Local models with rule
shape and lexical features are used in (He et al.,
2008). We further test the performance of local
rule selection models by also including syntactic
features and a combination of those with the lexi-
cal features. We report the results in Table 3 where
the local systems are denoted by LexLoc, SyntLoc
and LexSyntLoc.

For our third hypothesis (h3), we show that
pruning hurts translation quality. To this aim,
we take our best performing global model, which



uses syntactic and rule shape features and per-
form heavy pruning of negative examples in the
data used for classifier training. To exactly re-
produce the context-based target model in (Cui
et al., 2010), we pruned as many negative exam-
ples as necessary to obtain approximately the same
amount of positive and negative examples they re-
port. We removed negative instances created from
rules with target side frequency < 5000. In the
next section, we denote this system by SyntPrun
and compare it to the hierarchical baseline as well
as to our global model in Table 4.

4.3 Results

The outcome of our experiments confirm hypothe-
ses hi and hg on all data sets and ho on medical
data only.

The results of our first evaluation (Table 2) show
that on all data sets our global rule selection model
outperforms the hierarchical baseline (h1).

The results of our second evaluation (i.e. local
vs. global models in Table 3) show that A5 holds
on the medical domain only. On scientific data,
global rule selection models in all setups perform
slightly better than their local versions but the dif-
ference is not statistically significant. Note that
all rule selection models except LexLoc outper-
form the hierarchical baseline. The best perform-
ing system is a global model with syntactic fea-
tures (SyntGlob). On medical texts, global mod-
els outperform their local variants for all feature
templates. In each setup, the improvement of lo-
cal models over the global ones is statistically sig-
nificant. SyntGlob achieves the best performance
and yields significant improvements over the base-
line. The good performance of SyntGlob on scien-
tific and especially medical data can be explained
by the fact that syntactic features are less sparse
than lexical features and hence generalize better.
This is especially important within a global model
that allows feature sharing between source sides of
rules. Even a combination of lexical and syntactic
features underperforms syntactic features on their
own because of the sparse lexical features.

The results of our third evaluation are displayed
in Table 4. These show that on all data sets
our global model without pruning outperforms the
same model with pruned training data (h3). These
results also show that the pruned model fails to
outperform the hierarchical baseline. Note that
this result is consistent with the results reported
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’ System ‘ Science ‘ Medical ‘

| Hierarchical | 3122 | 48.67 |
LexGlob [ 31.69 | 48.94

LexSyntGlob 31.89 48.97
SyniGlob | 32.27 |  49.66

Table 2: Evaluation of global models against hi-
erarchical baseline. The results in bold are statis-
tically significant improvements over the Baseline
(at confidence p < 0.05).

] System \ Science \ Medical ‘

| Hierarchical | 3122 | 48.67 |
LexLoc 31.50 48.43
LexSyntLoc 31.74 48.51
SyntLoc 31.85 48.76
LexGlob 31.69 | 48.94*
LexSyntGlob 31.89 | 48.97%
SyntGlob 32.27 | 49.66*

Table 3: Evaluation of global models against local.
We use * to mark global systems that yield sta-
tistically significant (at confidence p < 0.05) im-
provements over their local variants. The results
in bold are statistically significant improvements
over the hierarchical baseline.

in (Cui et al., 2010): their Context-based target
model yields very low improvements when used
in isolation.

5 Large scale Experiments

In a second set of experiments, we evaluate the
usefulness of our approach on two large scale
translation tasks: (i) a French-to-English news
translation task trained on 1,500,000 parallel sen-
tences and (ii) an English-to-Romanian news
translation task trained on 600,000 parallel sen-
tences. The training data for the first task con-
sists of the French-English part of the Europarl-
v4 corpus. Development and test sets are from
the French-to-English news translation task of
WMT 2009 (Callison-Burch et al., 2009). For the
second task, we use the English-Romanian part
of the Europarl-v8 corpus. Development and test
sets are from the English-to-Romanian news trans-
lation task of WMT 2016. The setup of these
experiments is the same as described in Section
4.1 except for the language model of the English-
to-Romanian task, which was trained using Implz



System | Science Medical‘

| | |

| Hierarchical | 3122 | 48.67 |
| SyntGlob | 32.27 [ 49.66 |
| SyntPrun | 31.00 | 48.61 |

Table 4: Evaluation of global model against
pruned. The results in bold are statistically sig-
nificant improvements over the Baseline (at confi-
dence p < 0.05).

’ System \ Fr-En News \ En-Ro News ‘

| Hierarchical | 20.96 | 24.16 |
LexGlob 21.01 24.23
LexSyntGlob 21.04 24.19
SyntGlob 21.14 24.52

Table 5: Evaluation of large scale tasks. No signif-
icant difference in performance between the eval-
uated models.

(Heafield et al., 2013) on the Romanian part of the
Common Crawl corpus.

Our goal is to verify if on large scale translation
tasks our global rule selection model outperforms
a hierarchical baseline (hypothesis h; above). The
results, given in Table 5, show that on large scale
tasks, rule selection models with syntactic fea-
tures yield small improvements over the hierarchi-
cal baseline. However, none of these is statistically
significant. Hence hypothesis i1 does not hold on
large domains.

6 Related Work

(Marton and Resnik, 2008; Marton et al., 2012)
improve hierarchical machine translation by aug-
menting the translation model with fine-grained
syntactic features of the source sentence. The used
features reward rules that match syntactic con-
stituents and punish non-matching rules. (Chiang
et al., 2009) integrate these features into a transla-
tion model containing a large number of other fea-
tures such as discount or insertion features. (Chi-
ang, 2010) extends the approach in (Marton and
Resnik, 2008) by also including syntactic infor-
mation of the target sentence that is built during
decoding while (Liu et al., 2011) define a discrim-
inative model over source side constituent labels
instead of rewarding matching constituents. The
training data for their model is based on source
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sentence derivations.> In contrast to this work, we
define a rule selection model, i.e. a discriminative
model on the target side of hierarchical rules. The
training data for our model is based on the hierar-
chical rule extraction procedure: we acquire train-
ing instances by labeling candidate rules extracted
from the same sentence pairs.

Similar to our work, (He et al., 2008) define a
discriminative rule selection model including lex-
ical features, similar to the ones we presented in
Section 2.2. Their work bases on (Chan et al.,
2007) which integrate a word sense disambigua-
tion system into a hierarchical system. As opposed
to (He et al., 2008), this work focuses on hierar-
chical rules containing only terminal symbols and
having length 2. These approaches train rule se-
lection models that are local to the source side of
hierarchical rules. (He et al., 2010) generalize this
work by defining a model that is local to source
patterns instead of the source side of each rule.
We extend these approaches by defining a global
model that generalizes to all rules instead of rules
with the same source side or source pattern. We
also extend the feature set by defining models on
syntactic features.

(Cui et al., 2010) propose a joint rule selection
model over the source and target side of hierar-
chical rules. Our work is similar to their Con-
text Based Target Model (CBTM) but it integrates
much more information by not reducing the rule
selection problem to a binary classification prob-
lem and by not pruning the set of negative ex-
amples. We show empirically that the exhaustive
training of our model significantly improves over
their CBTM.

Finally, several authors train local rule selec-
tion models for different types of syntax- and
semantics- based systems. (Liu et al., 2008) train a
local discriminative rule selection model for tree-
to-string machine translation. (Zhai et al., 2013)
propose a discriminative model to disambiguate
predicate argument structures (PAS). In contrast,
our rule selection model uses syntactic features on
hierarchical rules and is a global model.

All® of the mentioned models are trained us-
ing the maximum entropy approach (Berger et al.,
1996) which seems not to scale well as reported in

>The training instances are obtained by performing bilin-
gual parsing on the training data and extracting the obtained
rules from the derivation forest.

®All of the models except (Chan et al., 2007) which uses
an SVM, which is also not efficient.



(Cui et al., 2010). By using a high-speed stream-
ing classifier we are able to train a global model
doing true multi-class classification without prun-
ing of training examples.

7 Conclusion and Future Work

We have presented two contributions to previous
work on rule selection. First, we improved trans-
lation quality on low resource translation tasks
by defining a global discriminative rule selection
model trained on all available training examples.
In a second contribution, we successfully scaled
our global rule selection model to large scale trans-
lation tasks and presented the first evaluation of
discriminative rule selection on such tasks. How-
ever, we failed so far to produce significant im-
provements in BLEU over a hierarchical baseline
on large scale French-to-English and English-to-
Romanian translation tasks. To allow researchers
to replicate our results and improve on our work,
we make our implementation publicly available as
part of Moses.
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Abstract

Speed of access is a very important prop-
erty for phrase tables in phrase based sta-
tistical machine translation as they are
queried many times per sentence. In this
paper we present a new standalone phrase
table, optimized for query speed and mem-
ory locality. The phrase table is cache free
and can optionally incorporate a reorder-
ing table within. We are able to achieve
two times faster decoding by using our
phrase table in the Moses decoder in place
of the current state-of-the-art phrase ta-
ble solution without sacrificing translation
quality. Using a new, experimental version
of Moses we are able to achieve 10 times
faster decoding using our novel phrase ta-
ble.

1 Introduction

Phrase tables are the most basic component of a
statistical machine translation decoder, containing
the parallel phrases necessary to perform phrase-
based machine translation. Due to the noisy na-
ture of phrase extraction and the large phrase vo-
cabulary, phrase tables’ size can reach hundreds of
gigabytes in size. Lopez (2008) describes phrase
tables of size of half of terabyte. A decade ago
it was prohibitively expensive for a phrase table
of this size to reside in memory, even if hardware
supported it: a gigabyte of RAM back in 2006
costed about a 100 USD, compared to 5 USD in
2016. Because of that for a long time Machine
Translation was considered a big data problem and
the engineering efforts were focused on reducing
the model size. This lead to the creation of sev-
eral binary phrase table implementations that tack-
led the memory usage problem: Zens and Ney
(2007) and Junczys-Dowmunt (2012b) developed
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memory mapped phrase tables which also reduce
memory usage using specific datastructures. The
former uses a trie (Fredkin, 1960) and the latter
uses specific for the purpose phrasal rank encod-
ing. Lopez (2007) and Germann (2015) developed
suffix array based phrase tables, which work di-
rectly with the parallel corpora in order to enable
easier addition of new data, avoid long binariza-
tion times and keep memory usage low, but tradi-
tional precomputed phrase tables offer better per-
formance. RAM prices have dropped 20 times
over the past 10 years and high performance server
machines have hundreds of gigabytes of memory.
For those machines it is no longer needed to sac-
rifice query performance in favour of compression
techniques such as the one in Junczys-Dowmunt
(2012a). Furthermore the machines nowadays are
highly parallel and locking caches which didn’t
hurt performance in the past now prevent imple-
mentations from scaling. We have designed a
new phrase table called ProbingPT based on lin-
ear probing hash (Heafield, 2011) for storage and
lock-free querying, in order to deliver the best
possible performance in modern use cases where
memory is not an issue.

2 Implementation

First, we will give a brief overview of Junczys-
Dowmunt’s (2012b) CompactPT which is cur-
rently the state of the art phrase table in terms of
both speed and space usage. It uses phrasal rank
compression (Junczys-Dowmunt, 2012a) which
can be viewed as a form of byte pair encoding
(Gage, 1994). The method recursively encodes
bigger strings as a composition of several smaller
ones until only small units remain. Minimum
perfect hashing (Nick Cercone, 1983) is used to
hash phrases to their expansions and on top of
that bit aligned Huffman encoding is used to fur-
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ther compress the phrases. This approach achieves
the smallest model size but it has several draw-
backs when it comes to lookup. First, minimum
perfect hashing requires a secondary hash func-
tion called fingerprinting in order to avoid false
positives which results in increased CPU usage.
Second, while phrasal rank encoding is extremely
space efficient, it is quite slow to compute, because
of the multitude of random memory accesses nec-
essary to reconstruct a single phrase. The reason is
that when a request to read a portion of memory is
submitted what is actually fetched is not only the
bytes that were requested but also the surrounding
bytes. This is because usually when one byte of
memory is accessed, the surrounding bytes would
also be necessary so memory has been designed to
fetch things in small burst, called DRAM bursts.
As such peak memory performance can only be
achieved by accessing consecutive memory and
random memory accesses reduce the total mem-
ory bandwidth, because some of fetched bytes are
not used.

In order to speed up querying in CompactPT,
extensive caching is used but it is not thread lo-
cal and causes a lot of locking for higher thread
count. In our experiments we found that more than
8 threads actually hurt CompactPT’s performance.
The phrase table also has a mode which disables
phrasal rank encoding and caching. In this mode
performance at higher thread count doesn’t de-
crease but instead flattens out, however it is un-
able to achieve better performance than the phrase
rank encoding version no matter the thread count.’
Even if caches don’t cause lock contention at
higher thread count, they carry additional over-
head during runtime. Our goal in design was to
eliminate the necessity for cache by using high
performance datastructures and eliminate random
memory accesses to maximize the memory band-
width.

2.1 ProbingPT

Our phrase table is based on an existing lin-
ear probing hash table implementation (Heafield,
2011). Linear probing hash provides O(1) search
time, has a very small overhead per entry stored
and is shown to be very fast in practice (Heafield,
2011). The phrase table consists of two byte ar-
rays: The first contains the probing hash table and
the second one contains the payloads (phrase prob-

'https://github.com/moses-smt/mosesdecoder/issues/39
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abilities, word alignments and optionally lexically
reordering scores) associated with each entry in
the hash table. Hashes of the source phrases are
used as keys. When the phrase table is queried, the
source phrase is hashed and we try to find it in the
probing hash table. If it is found inside the hash ta-
ble we are given a start and end index correspond-
ing to the location of the target phrases associated
with the source phrase queried inside the payloads
byte array. The payloads byte array stores con-
secutively in binary format each target phrase to-
gether with its scores and word alignment infor-
mation. We have also provided the option to store
lexical reordering information and sparse features.
Unlike previous phrase tables implementations,
this phrase table doesn’t employ any compression
method which allows for all target phrases asso-
ciated with a single source phrase to be fetched
in a single memory operation. In contrast, both
Junczys-Dowmunt’s (2012b) and Zens and Ney
(2007) employ pointer chasing during querying
in order to extract and reassemble the results.
Their approaches are more space-efficient but in-
cur higher memory cost due to increased number
of random memory accesses. Furthermore our im-
plementation doesn’t require any scratch memory
to decompress queries: they can be read directly
from the payloads byte array which contributes to
its speed and avoids extra memory operations (al-
locations/deallocations) or the need for caching.
Storing lexical reordering information inside the
phrase table reduces the memory usage, because
we no longer need to store a key for every lexical
reordering score, as we reuse the phrase table key.
Extracting lexical reordering scores no longer car-
ries an extra performance penalty as querying is
tied to the phrase table query and all related scores
would be fetched with the same DRAM burst, be-
cause they are stored consecutively in memory. To
our knowledge, this is the first phrase table im-
plementation that incorporates lexical reordering
table.

The phrase table is part of upstream Moses? but
it can also be used standalone.’

3 Experimental setup

For our performance evaluation we used French-
English model trained on 2 million EUROPARL
sentences. We used a KenLLM (Heafield, 2011)

2 Anonymous for submission
3 Anonymous for submission



language model and cube pruning algorithm (Chi-
ang, 2007) with a pop-limit of 400. We time the
end to end translation of 200,000 sentences from
the training set. All experiments were performed
on a machine with two Xeon E5-2680 processors
clocked at 2.7 Ghz with total of 16 cores and 16
hyperthreads and 290 GB of RAM. In all of our
figures “32 cores” means 16 cores and 16 hyper-
threads. Note that hyperthread do not provide ad-
ditional computational power but merely permit
better resource utilization by allowing more work
to be scheduled for the CPU by the OS. This al-
lows the CPU to already have scheduled work to
do while a scheduled process is waiting for 10. Us-
ing hyperthreads will not necessarily increase per-
formance and in cases with high lock contention it
can be detrimental for performance.

3.1 Decoders

We use two different decoders for our experi-
ments: The widely used moses machine transla-
tion decoder, available publically and Moses2, an
experimental faster version of Moses.* We per-
form some benchmarks using Moses to show the
speedup our implementation offers as a drop-in re-
placement to existing phrase tables in the widely
used decoder. Unfortunately Moses has known
multi-threading issues that come from the usage of
several functions which call std::locale as part of
their initiations, which carries a global lock.! As
such it is not entirely adequate to use it to measure
the performance of the phrase tables because it
serves as a bottleneck that might hide performance
issues. Thus we used the highly optimized Moses2
to show the speed our phrase table can achieve
when it is running on a fast decoder, optimized for
multi-threading. Furthermore because of their in-
trusive nature, integrated lexical reordering tables
are only implemented in Moses2. It is expected
that when Moses2 matures it will be merged back
into Moses master.

3.2 PhraseTables

In our experiments we focus on comparing Prob-
ingPT against CompactPT. There are currently
two other phrase tables: PhraseDictionaryOnDisk,
a multithreading enabled implementation of the
Zens and Ney (2007) phrase table and Phrase-
DictionaryMemory, an in-memory phrase table
which reads in the raw phrase table and puts it

4 Anonymous for submission

inside a hash map. Junczys-Dowmunt (2012b)
has shown that CompactPT is faster than Phrase-
DictionaryOnDisk under any condition, so we
do not run experiments against it. PhraseDic-
tionaryMemory comes with the downside that it
needs to parse in the phrase table first, before de-
coding can commence, which leads to long load-
ing times and huge memory usage. In our experi-
mental setup, the in-memory phrase table took 20
minutes to load and consumed 86 GBs of mem-
ory, more than ten times more memory than any
other phrase table. Even when disregarding load-
ing time, we found out that it is consistently 1-5%
slower than ProbingPT in various thread configu-
rations. We decided not to include those results, as
they do not show anything interesting and because
of the aforementioned shortcomings, PhraseDic-
tionaryMemory is seldom used in practice, unless
the dataset involved is really tiny.

ProbingPT and CompactPT produced identi-
cal translations under the same decoder. In our
tests 3 out of 200,000 sentences slightly differ in
their translation. This is expected according to
Junczys-Dowmunt (2012b) because CompactPT’s
fingerprinting leads to collisions and extracting the
wrong phrase in few rare cases. We conclude that
our implementation is correct and can be used as
drop-in replacement for CompactPT. We have pro-
vided the complete set of conducted experiments
on Figure 5 in the appendix. Those are useful if
the reader wishes to compare system/user time us-
age between different configurations.

3.3 Model sizes

Phrase table Size

ProbingPT 5.8 GB
ProbingPT + Reordering (RO) 8.2 GB
CompactPT 1.3 GB
CompactPT RO 0.6 GB

Table 1: Phrase table sizes

CompactPT which is designed to minimize
model size has naturally lower model size com-
pared to ProbingPT. However the extra RAM used
is only 2% of the available on our test system
which is insignificant. Using the extra memory is
justified by the increased performance.
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Figure 1: Real time comparison of Moses be-
tween ProbingPT and CompactPT together with
reordering models based on CompactPT.
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Figure 3: System time comparison of the sys-
tems on Figure 2. The comparison is in log
scale.

4 Evaluation

Figure 1 shows performance comparison of two
systems with CompactPT based reordering tables
that differ in the phrase table used. The best
performing ProbingPT system here delivers about
30% better performance compared to the corre-
sponding CompactPT system. We see that the
CompactPT system doesn’t improve its perfor-
mance when using more than 8 threads, but the
ProbingPT one continues to scale further until it
starts using hyperthreads.

We find it likely that the performance of the
ProbingPT system on Figure 1 is hampered by the
inclusion of CompactPT based reordering. Moses
doesn’t support ProbingPT based reordering and
in order to measure the head-to-head performance
of the two phrase tables we conducted the same
test using two systems that do not use reorder-
ing tables and only differ by the phrase table, as
shown on Figure 2. We can see that ProbingPT
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Figure 2: Real time comparison of Moses be-
tween ProbingPT and CompactPT

120 —— CompactRO
—=— ProbingRO
% 90
E]
.g
)
o 60
£
E
~ 30
0
1 2 4 8 16 32
Cores

Figure 4: Moses2 comparison between Prob-
ingPT integrated reordering and CompactPT
based reordering. Both systems use ProbingPT
as a phrase table.

consistently outperforms CompactPT by 10-20%
at lower thread count but the difference grows as
much as 5 times in favour of ProbingPT at the
maximum available thread count on the system. If
we compare the best performance achieved from
both system, ProbingPT is capable of delivering
twice the performance of CompactPT. It is impor-
tant to note that ProbingPT’s performance always
increases with the increase of the thread count,
whereas CompactPT’s performance doesn’t im-
prove past 8 threads. We can also see that the
ProbingPT based system can even take advantage
of hyperthreads, which is not possible with any
system that uses CompactPT based table (Figure
1). On Table 2 we can observe that removing the
reordering table from the CompactPT system has
a much smaller effect than removing it from the
ProbingPT system. This hints that lexicalized re-
ordering only slows down the decoder because it
is implemented in a inefficient manner. We can



conclude that Moses can achieve faster translation
times on highly parallel systems by using Prob-
ingPT.

4.1 Why is CompactPT slower?

In the single-threaded case it likely that Com-
pactPT’s many random memory accesses cause
it to be slower than ProbingPT, because consec-
utive memory accesses are much faster due to
the DRAM burst effect. When the thread count
grows, the performance gap between CompactPT
and ProbingPT widens, because of the locking that
goes on in the former’s cache. This can be seen
from Figure 3 which shows the system time used
during the execution of the phrase table only test.
System time shows how much time a process has
spent inside kernel routines, which includes but is
not limited to locking and memory allocation. The
ProbingPT system uses orders of magnitude less
system time compared to the CompactPT one. The
system time used in the CompactPT system grows
linearly until 8 threads and then the growth rate
starts increasing at a faster rate widening the gap
with ProbingPT. This is also the reason why Com-
pactPT’s performance severely degrades when us-
ing hyperthreads. The ProbingPT system on the
other hand (Figure 3) increases its usage of sys-
tem time at a linear rate even when using hyper-
threads. We can conclude that the simpler design
of ProbingPT scales very well with the increase of
number of threads and is suitable for use in mod-
ern translation systems running on contemporary
hardware.

4.2 Integrated reordering table

As integrated lexical reordering is only available
in Moses2 we conducted an experiment where we
compare systems using CompactPT based reorder-
ing and ProbingPT integrated reordering (Figure
4). The best ProbingPT based system is able to
translate all sentences in our test set in only 4 min-
utes, whereas the best CompactPT reordering sys-
tem took 39 minutes (Table 3). We also observed
limited scaling when using CompactPT based re-
ordering: the best performance was achieved at
8 threads. For contrast with Moses (Table 2) we
can see that lexicalized reordering has neglige-
ble impact on performance if it is used within
ProbingPT (We believe the reason we are getting
slightly worse results when not using a reordering
table are due to a bug in our implementation). We
are not entirely certain which factor contributed
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more to the increased performance: having a re-
ordering table based on the faster ProbingPT or
the reduced IO and computational resources that
the integrated reordering table requires. As we do
not currently have a standalone ProbingPT based
reordering table we can not say for sure. Never-
theless we achieve 10x speedup by using our novel
reordering table within Moses2.

4.3 Profiling the code

We were very surprised of the speedup our phrase
table offered, particularly in Moses2, because in
phrase based decoding, the number of phrase ta-
ble queries increases linearly with the length of
the sentence. They constitute a tiny fraction of
the number of language model queries, which are
about 1 million per sentence (Heafield, 2013). We
decided to investigate our results using Google’s
profiler.> We profiled the pair of systems, dis-
played on Figure 4, because they showed the high-
est relative difference between each other. In the
system which has ProbingPT based reordering, the
language model is responsible for about 40% of
the decoding runtime, compared with only 1%
in the Moses2 system with CompactPT based re-
ordering. In the latter system the runtime is domi-
nated by CompactPT search and std::locale lock-
ing due to the phrase table using string operations
during its search.

In Moses the difference between using Prob-
ingPT and CompactPT is not so apparent, before
we go to higher thread count, because the decoder
itself is very slow and hides the phrase table inef-
ficiencies. It is clear that even though the phrase
table queries are a small part of the full decod-
ing process, they are enough to slow it down 10
times if no other bottlenecks exist. Using Prob-
ingPT for both the phrase table and the reordering
model makes for a compelling combination.

5 Future work

In the future we will add support for hierarchi-
cal phrase tables inside ProbingPT. In hierarchi-
cal machine translation the burden on the phrase
table is a lot higher so the improved performance
would be even more noticeable. Given the differ-
ence between the systems with and without Prob-
ingPT based reordering in Table 3 we believe that
adding that feature to Moses will allow us to get
performance similar to that in the final column of

Shttps://github.com/gperftools/gperftools



Cores

1 327
2 197
4 116
8 80
16 106
32 218

3
1
1

1

CompactPT, RO CompactPT, NoRO ProbingPT, RO ProbingPT, NoRO

00 277 242
67 161 138
01 96 82
66 60 50
74 52 39
51 90 31

Table 2: Time (in minutes) it took to translate our test set with Moses with different number of cores
used. The systems differ by the type of phrase table used (ProbingPT or CompactPT) and whether they
use a reordering table (based on CompactPT). The fastest translation time for each system is highligthed.

Cores CompactRO ProbingRO NoRO
1 116 66 72

2 64 30 35

4 40 15 18

8 39 9 10

16 46 5 6

32 67 4 5

Table 3: Time (in minutes) it took to translate
our test set with Moses2 with different number of
cores used. Since the only phrase table that is used
is ProbingPT, the systems differ by the reordering
table used. The fastest translation time for each
system is highligthed.

Table 2, while maintaining the quality of the more
complex model described in the first column of the
same table.

6 Conclusion

As hardware evolves extremely fast, it may prove
useful to revisit old problems which are consid-
ered solved. The new available technology com-
pels us to reconsider our priorities and decisions
we took in the past.

We designed a faster phrase table that is able to
take full advantage of the modern highly parallel
CPUs. It shows better performance than related
work and also scales better with higher thread
count and it helped us expose performance issues
in Moses. We believe ProbingPT is useful to in-
dustry and researchers who use modern server ma-
chines with many cores and a lot of main memory.
Enthusiast machine translation users would proba-
bly prefer to use CompactPT as it is most suitable
when memory is limited and the thread count is
low.

107

Acknowledgements

This work was conducted within the
scope of the Horizon 2020 Innovation Ac-
tion Modern MT, which has received funding from
the European Unions Horizon 2020 research and
innovation programme under grant agreement No
645487.

This work is sponsored by the Air Force Re-
search Laboratory, prime contract FA8650-11-C-
6160. The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representative of the official poli-
cies, either expressed or implied, of the Air Force
Research Laboratory or the U.S. Government.

We thank Adam Lopez, Kenneth Heafield, Ul-
rich Germann, Rico Sennrich, Marcin Junczys-
Dowmunt, Nathan Schneider, Sorcha Gilroy,
Clara Vania and the anonymous reviewers for pro-
ductive discussion of this work and helpful com-
ments on previous drafts of the paper. Any errors
are our own.

References

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Comput. Linguist., 33(2):201-228, June.

Edward Fredkin. 1960. Trie memory. Commun. ACM,
3(9):490-499, sep.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users J., 12(2):23-38, February.

Ulrich Germann. 2015. Sampling phrase tables for
the moses statistical machine translation system.
Prague Bull. Math. Linguistics, 104:39-50.

Kenneth Heafield. 2011. KenLM: faster and smaller
language model queries. In Proceedings of the
EMNLP 2011 Sixth Workshop on Statistical Ma-
chine Translation, pages 187-197, Edinburgh, Scot-
land, United Kingdom, July.



Kenneth Heafield. 2013. Efficient Language Modeling
Algorithms with Applications to Statistical Machine
Translation. Ph.D. thesis, Carnegie Mellon Univer-
sity, September.

Marcin Junczys-Dowmunt. 2012a. Phrasal rank-
encoding: Exploiting phrase redundancy and trans-
lational relations for phrase table compression.
Prague Bull. Math. Linguistics, 98:63-74.

Marcin Junczys-Dowmunt. 2012b. A space-efficient
phrase table implementation using minimal perfect
hash functions. In Text, Speech and Dialogue - 15th
International Conference, TSD 2012, Brno, Czech
Republic, September 3-7, 2012. Proceedings, pages
320-327.

Adam Lopez. 2007. Hierarchical phrase-based trans-
lation with suffix arrays. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 976—
985, Prague, Czech Republic, June. Association for
Computational Linguistics.

Adam Lopez, 2008. Tera-Scale Translation Models via
Pattern Matching, pages 505-512. Coling 2008 Or-
ganizing Committee, 8.

John Boates Nick Cercone, Max Krause. 1983. Mini-
mal and almost minimal perfect hash function search
with application to natural language lexicon design.
CAMWA, 9(1):215-231.

Richard Zens and Hermann Ney. 2007. Efficient
phrase-table representation for machine translation
with applications to online mt and speech trans-
lation. In Human Language Technology Conf. /
North American Chapter of the Assoc. for Computa-
tional Linguistics Annual Meeting, pages 492-499,
Rochester, NY, April.

108



A Experiments Matrix

ducted.

f all experiments con:

A matrix o

Figure 5

Moses1 + compactpt

Cores/Variant + compactreord

real
user

1 sys
real
user

2 sys
real
user

4 sys
real
user

8 sys
real
user
16 sys
real
user
16 + 16 hyper sys

327m3.554s
318m46.127s
8m6.706s
197ml8.17s
374m27.39s
17m28.34s
116ml.57s
423m32.44s
36m47.68s
79m56.00s
501ml11.52s
127m49.32s
105m37.01s
600m33.02s
1072m12.89s
217m58.10s
779m59.18s
6175m37.16s

Moses1 + compactpt moses] + probing
+ compactreord

+ no reord

real 292m44.73s
user 287m36.13s
sys 5m6.16s
real 168m36.05s
user 325m28.96s
sys 10m43.95s
real 101m4.74s
user 378m36.98s
sys 22m9.95s
real 66m0.99s
user 449m3.61s
sys 70m31.53s
real 74m10.77s
user 562m59.64s
sys 607m53.22s
real 151m22.90s
user 709m57.34s
sys 4115m3.50s

real
user
sys
real
user
Sys
real
user
Sys
real
user
sys
real
user
Sys
real
user

sys

277m10.41s
273m16.02s
3m48.58s
161m24.43s
314m7.35s
Tm52.60s
95m55.83s
366m26.63s
14m48.15s
59m41.43s
433m34.24s
36m35.65s
52ml5.47s
612m47.32s
205m19.05s
89m46.79s
668m15.93s
2188m54.82s

moses]1 + probing

+ no reord

real 241m51.16s
user 240m23.27s
sys 1m26.12s
real 138m8.04s
user 272ml7.22s
sys 3m2l1.4ls
real 81m43.00s
user 319m20.53s
sys  5m42.96s
real 50m14.49s
user 383m49.20s
sys 12m32.91s
real 38m25.06s
user 557m28.61s
sys 36m28.92s
real 31m25.80s
user 752m32.02s
sys  135m58.88s

moses2 + probing
+ compactreord

real
user
sys
real
user
Sys
real
user
Sys
real
user
sys
real
user
sys
real
user

sys

115m35.32s
112m26.00s
3ml0.58s
63m33.20s
120m21.88s
6m36.93s
40m34.79s
150ml2.16s
11m50.91s
39m19.77s
288m40.73s
25m20.14s
46m43.13s
681m40.37s
64m17.28s
66m54.80s
233m23.18s
1903m43.26s

moses2 + probing

+ integratedRO
real 66m2.933s
user 63m18.006s
sys 2m33.317s
real 30m9.780s
user 59m27.849s
sys 0m48.234s
real 15m24.667s
user 61m>5.165s
sys 0m25914s
real 8m35.280s
user 67m57.790s
sys 0m26.249s
real 4m42.100s
user 74m3.060s
sys 0m30.157s
real 4m7.794s
user 129m38.242s
sys  0m57.126s

moses2 + probing

+ no reord

real 72m28.06s
user 71m27.24s
sys 1m3.68s
real 35ml8.24s
user 69m53.43s
sys 0m38.95s
real 18m30.99s
user 73m22.10s
sys 0m32.56s
real 10ml17.52s
user 81m25.37s
sys 0m32.35s
real 5m57.21s
user 93m42.05s
sys 0m42.36s
real 5ml2.37s
user 163m29.34s
sys 1m2l.1ls

109



A Comparative Study on Vocabulary Reduction
for Phrase Table Smoothing

Yunsu Kim, Andreas Guta, Joern Wuebker*, and Hermann Ney
Human Language Technology and Pattern Recognition Group
RWTH Aachen University, Aachen, Germany
{surname}@cs.rwth-aachen.de
*Lilt, Inc.
joern@lilt.com

Abstract

This work systematically analyzes the
smoothing effect of vocabulary reduction
for phrase translation models. We ex-
tensively compare various word-level vo-
cabularies to show that the performance
of smoothing is not significantly affected
by the choice of vocabulary. This result
provides empirical evidence that the stan-
dard phrase translation model is extremely
sparse. Our experiments also reveal that
vocabulary reduction is more effective for
smoothing large-scale phrase tables.

1 Introduction

Phrase-based systems for statistical machine trans-
lation (SMT) (Zens et al., 2002; Koehn et al.,
2003) have shown state-of-the-art performance
over the last decade. However, due to the huge size
of phrase vocabulary, it is difficult to collect robust
statistics for lots of phrase pairs. The standard
phrase translation model thus tends to be sparse
(Koehn, 2010).

A fundamental solution to a sparsity problem in
natural language processing is to reduce the vo-
cabulary size. By mapping words onto a smaller
label space, the models can be trained to have
denser distributions (Brown et al., 1992; Miller et
al., 2004; Koo et al., 2008). Examples of such la-
bels are part-of-speech (POS) tags or lemmas.

In this work, we investigate the vocabulary re-
duction for phrase translation models with respect
to various vocabulary choice. We evaluate two
types of smoothing models for phrase translation
probability using different kinds of word-level la-
bels. In particular, we use automatically gener-
ated word classes (Brown et al., 1992) to obtain
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label vocabularies with arbitrary sizes and struc-
tures. Our experiments reveal that the vocabulary
of the smoothing model has no significant effect
on the end-to-end translation quality. For exam-
ple, a randomized label space also leads to a de-
cent improvement of BLEU or TER scores by the
presented smoothing models.

We also test vocabulary reduction in transla-
tion scenarios of different scales, showing that the
smoothing works better with more parallel cor-
pora.

2 Related Work

Koehn and Hoang (2007) propose integrating a la-
bel vocabulary as a factor into the phrase-based
SMT pipeline, which consists of the following
three steps: mapping from words to labels, label-
to-label translation, and generation of words from
labels. Rishgj and S@gaard (2011) verify the ef-
fectiveness of word classes as factors. Assuming
probabilistic mappings between words and labels,
the factorization implies a combinatorial expan-
sion of the phrase table with regard to different
vocabularies.

Wuebker et al. (2013) show a simplified case of
the factored translation by adopting hard assign-
ment from words to labels. In the end, they train
the existing translation, language, and reordering
models on word classes to build the corresponding
smoothing models.

Other types of features are also trained on word-
level labels, e.g. hierarchical reordering fea-
tures (Cherry, 2013), an n-gram-based translation
model (Durrani et al., 2014), and sparse word pair
features (Haddow et al., 2015). The first and the
third are trained with a large-scale discriminative
training algorithm.

For all usages of word-level labels in SMT,
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a common and important question is which la-
bel vocabulary maximizes the translation quality.
Bisazza and Monz (2014) compare class-based
language models with diverse kinds of labels in
terms of their performance in translation into mor-
phologically rich languages. To the best of our
knowledge, there is no published work on sys-
tematic comparison between different label vocab-
ularies, model forms, and training data size for
smoothing phrase translation models—the most
basic component in state-of-the-art SMT systems.
Our work fulfills these needs with extensive trans-
lation experiments (Section 5) and quantitative
analysis (Section 6) in a standard phrase-based
SMT framework.

3 Word Classes

In this work, we mainly use unsupervised word
classes by Brown et al. (1992) as the reduced vo-
cabulary. This section briefly reviews the principle
and properties of word classes.

A word-class mapping c is estimated by a clus-
tering algorithm that maximizes the following ob-
jective (Brown et al., 1992):

£ XY pleten)

Izl

c(ei-1)) - p(eile(ei)) (1)

for a given monolingual corpus {e!}, where each
el is a sentence of length I in the corpus. The
objective guides c to prefer certain collocations of
class sequences, e.g. an auxiliary verb class should
succeed a class of pronouns or person names.
Consequently, the resulting ¢ groups words ac-
cording to their syntactic or semantic similarity.

Word classes have a big advantage for our com-
parative study: The structure and size of the class
vocabulary can be arbitrarily adjusted by the clus-
tering parameters. This makes it possible to pre-
pare easily an abundant set of label vocabularies
that differ in linguistic coherence and degree of
generalization.

4 Smoothing Models

In the standard phrase translation model, the trans-
lation probability for each segmented phrase pair
(f,€) is estimated by relative frequencies:

N(f,¢)
N(é)

paa(flé) = )
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where N is the count of a phrase or a phrase pair
in the training data. These counts are very low for
many phrases due to a limited amount of bilingual
training data.

Using a smaller vocabulary, we can aggregate
the low counts and make the distribution smoother.
We now define two types of smoothing models for
Equation 2 using a general word-label mapping c.

4.1 Mapping All Words at Once (map-all)

For the phrase translation model, the simplest for-
mulation of vocabulary reduction is obtained by
replacing all words in the source and target phrases
with the corresponding labels in a smaller space.
Namely, we employ the following probability in-
stead of Equation 2:

N(c(f), c(€))
N(c(€))
which we call map-all. This model resembles the
word class translation model of Wuebker et al.
(2013) except that we allow any kind of word-level

labels.

This model generalizes all words of a phrase
without distinction between them. Also, the same
formulation is applied to word-based lexicon mod-
els.

pan(fle) = 3)

4.2 Mapping Each Word at a Time
(map-each)

More elaborate smoothing can be achieved by gen-
eralizing only a sub-part of the phrase pair. The
idea is to replace one source word at a time with
its respective label. For each source position j, we
also replace the target words aligned to the source
word f;. For this purpose, we let a; C {1, ..., |€é|}
denote a set of target positions aligned to j. The
resulting model takes a weighted average of the
redefined translation probabilities over all source
positions of f:

I N (), de @)

Z“’J N (@) (&)

where the superscripts of ¢ indicate the positions
that are mapped onto the label space. w; is a
weight for each source position, where Wi =
1. We call this model map-each.

We illustrate this model with a pair of three-
word phrases: f = [f1, f2, f3] and € = [e1, €2, €3]
(see Figure 1 for the in-phrase word alignments).
The map-each model score for this phrase pair is:

“)

peach



€1 .
€2 .
€3 .

fi fo fs

Figure 1: Word alignments of a pair of three-word
phrases.

peach( [f17f27f3} ’ [61762763]) =

1
N(le(fr), f2, f3], [c(e1), e2, e3])
N([e(er), ea, e3])

N([flac(fz)vf?)]a [61762763])

e N([€1,€2,€3])
+ ws N([fhf?v (f?))] [617 ( )7 (63)])
N([e1, c(e2), c(e3)])

where the alignments are depicted by line seg-
ments.

First of all, we replace f; and also ey, which is
aligned to f1, with their corresponding labels. As
f2 has no alignment points, we do not replace any
target word accordingly. fs triggers the class re-
placement of two target words at the same time.
Note that the model implicitly encapsulates the
alignment information.

We empirically found that the map-each model
performs best with the following weight:

N (D (f), ) (2))
N(e)(f), e (@)

1

(&)

w; =

=

v

J

which is a normalized count of the generalized
phrase pair itself. Here, the count is relatively
large when f;, the word to be backed off, is less
frequent than other words in f . In contrast, if f;
is a very frequent word and one of the other words
in f is rare, the count becomes low due to that rare
word. The same logic holds for target words in é.
After all, Equation 5 carries more weight when a
rare word is replaced with its label. The intuition
is that a rare word is the main reason for unstable
counts and should be backed off above all. We use
this weight for all experiments in the next section.

In contrast, the map-all model merely replace

all words at one time and ignore alignments within
phrase pairs.
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5 Experiments

5.1 Setup

We evaluate how much the translation quality
is improved by the smoothing models in Sec-
tion 4. The two smoothing models are trained
in both source-to-target and target-to-source di-
rections, and integrated as additional features in
the log-linear combination of a standard phrase-
based SMT system (Koehn et al., 2003). We also
test linear interpolation between the standard and
smoothing models, but the results are generally
worse than log-linear interpolation. Note that vo-
cabulary reduction models by themselves cannot
replace the corresponding standard models, since
this leads to a considerable drop in translation
quality (Wuebker et al., 2013).

Our baseline systems include phrase transla-
tion models in both directions, word-based lexi-
con models in both directions, word/phrase penal-
ties, a distortion penalty, a hierarchical lexicalized
reordering model (Galley and Manning, 2008),
a 4-gram language model, and a 7-gram word
class language model (Wuebker et al., 2013). The
model weights are trained with minimum error
rate training (Och, 2003). All experiments are
conducted with an open source phrase-based SMT
toolkit Jane 2 (Wuebker et al., 2012).

To validate our experimental results, we mea-
sure the statistical significance using the paired
bootstrap resampling method of Koehn (2004).
Every result in this section is marked with 1 if it
is statistically significantly better than the base-
line with 95% confidence, or with 1 for 90% con-
fidence.

5.2 Comparison of Vocabularies

The presented smoothing models are dependent
on the label vocabulary, which is defined by the
word-label mapping c. Here, we train the models
with various label vocabularies and compare their
smoothing performance.

The experiments are done on the IWSLT 2012
German—English shared translation task. To
rapidly perform repetitive experiments, we train
the translation models with the in-domain TED
portion of the dataset (roughly 2.5M running
words for each side). We run the monolingual
word clustering algorithm of (Botros et al., 2015)
on each side of the parallel training data to obtain
class label vocabularies (Section 3).



We carry out comparative experiments regard-
ing the three factors of the clustering algorithm:

1) Clustering iterations. It is shown that the
number of iterations is the most influential
factor in clustering quality (Och, 1995). We
now verify its effect on translation quality
when the clustering is used for phrase table
smoothing.

As we run the clustering algorithm, we ex-
tract an intermediate class mapping for each
iteration and train the smoothing models with
it. The model weights are tuned for each it-
eration separately. The BLEU scores of the
tuned systems are given in Figure 2. We use
100 classes on both source and target sides.

29.4

—e— map-each
*— map-all
Baseline

i g

N
©
o

BLEU [%]

N
®
2

28'20 é 1b 15 Zb 55 Bb 35
clustering iterations

Figure 2: BLEU scores for clustering iterations

when using individually tuned model weights for

each iteration. Dots indicate those iterations in

which the translation is performed.

The score does not consistently increase or
decrease over the iterations; it is rather on a
similar level (£ 0.2% BLEU) for all settings
with slight fluctuations. This is an important
clue that the whole process of word clustering
has no meaning in smoothing phrase transla-
tion models.

To see this more clearly, we keep the
model weights fixed over different systems
and run the same set of experiments. In this
way, we focus only on the change of label
vocabulary, removing the impact of nonde-
terministic model weight optimization. The
results are given in Figure 3.

This time, the curves are even flatter, re-
sulting in only + 0.1% BLEU difference over
the iterations. More surprisingly, the models
trained with the initial clustering, i.e. when
the clustering algorithm has not even started
yet, are on a par with those trained with
more optimized classes in terms of transla-
tion quality.

29.4
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n
@
o

N
@®
2

28.20

G Baseline ||

—e— map-each
=— map-all

§+

[ES
|

[

5 10 15 20 25 30 35
clustering iterations

Figure 3: BLEU scores for clustering iterations
when using a fixed set of model weights. The
weights that produce the best results in Figure 2
are chosen.

2)

Initialization of the clustering. Since the
clustering process has no significant impact
on the translation quality, we hypothesize that
the initialization may dominate the cluster-
ing. We compare five different initial class
mappings:
e random: randomly assign words to
classes
e top-frequent (default):  top-frequent
words have their own classes, while all
other words are in the last class
e same-countsum: each class has almost
the same sum of word unigram counts
e same-#words: each class has almost the
same number of words
e count-bins: each class represents a bin
of the total count range

BLEU TER
Initialization [%] [%]

Baseline 28.3 52.2

+ map-each random 28.9% 51.7¢

top-frequent 29.0f  51.5%
same-countsum ~ 28.8%  51.7¢
same-#words ~ 28.9%  51.6%
count-bins 29.08  51.4%

Table 1: Translation results for various initializa-
tions of the clustering. 100 classes on both sides.
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Table 1 shows the translation results
with the map-each model trained with these
initializations—without running the cluster-
ing algorithm. We use the same set of model
weights used in Figure 3. We find that the
initialization method also does not affect the
translation performance. As an extreme case,



random clustering is also a fine candidate for
training the map-each model.

3) Number of classes. This determines the vo-
cabulary size of a label space, which even-
tually adjusts the smoothing degree. Table
2 shows the translation performance of the
map-each model with a varying number of
classes. Similarly as before, there is no se-
rious performance gap among different word
classes, and POS tags and lemmas also com-
form to this trend.

However, we observe a slight but steady
degradation of translation quality (=-0.2%
BLEU) when the vocabulary size is larger
than a few hundreds. We also lose statisti-
cal significance for BLEU in these cases. The
reason could be: If the label space becomes
larger, it gets closer to the original vocabulary
and therefore the smoothing model provides
less additional information to add to the stan-
dard phrase translation model.

TER
[%]

522

51.5%
51.6%
51.8%
51.8%
51.91

51.5%
51.7%

#vocab BLEU
(source) [%]

28.3

29.0%
28.9f
28.7
28.7
28.7

28.9f
28.8

Baseline

100
200
500
1000
10000

52
26744

+ map-each
(word class)

+ map-each (POS)
+ map-each (lemma)

Table 2: Translation results for different vocabu-
lary sizes.

The series of experiments show that the map-
each model performs very similar across vocab-
ulary size and its structure. From our internal ex-
periments, this argument also holds for the map-all
model. The results do not change even when we
use a different clustering algorithm, e.g. bilingual
clustering (Och, 1999). For the translation perfor-
mance, the more important factor is the log-linear
model training to find an optimal set of weights for
the smoothing models.

5.3 Comparison of Smoothing Models

Next, we compare the two smoothing models
by their performance in four different trans-
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lation tasks: IWSLT 2012 German—English,
WMT 2015 Finnish—English, WMT
2014 English—German, and WMT 2015
English—Czech. We train 100 classes on each
side with 30 clustering iterations starting from the
default (top-frequent) initialization.

Table 3 provides the corpus statistics of all
datasets used. Note that a morphologically rich
language is on the source side for the first two
tasks, and on the target side for the last two
tasks. According to the results (Table 4), the map-
each model, which encourages backing off infre-
quent words, performs consistently better (maxi-
mum +0.5% BLEU, -0.6% TER) than the map-all
model in all cases.

5.4 Comparison of Training Data Size

Lastly, we analyze the smoothing performance
for different training data sizes (Figure 4). The
improvement of BLEU score over the baseline
decreases drastically when the training data get
smaller. We argue that this is because the smooth-
ing models are only the additional scores for the
phrases seen in the training data. For smaller train-
ing data, we have more out-of-vocabulary (OOV)
words in the test set, which cannot be handled by
the presented models.

35

130

- S
213 —e— map-each Py
2 Baseline |{25 ®
4 >
a 12} OOV rate 8

120

15

10 15 20 25
running words [M]

Figure 4: BLEU scores and OOV rates for
the varying training data portion of WMT 2015
Finnish—English data.

6 Analysis

In Section 5.2, we have shown experimentally that
more optimized or more fine-grained classes do
not guarantee better smoothing performance. We
now verify by examining translation outputs that



IWSLT 2012 WMT 2015 WMT 2014 WMT 2015
German English Finnish English English German English Czech
Sentences 130k 1.1M 4M 0.9M
Running Words  2.5M 2.5M 23M 32M 104M 10SM  239M 21IM
Vocabulary 71k 49k 509k 88k 648k 659k 161k 345k
Table 3: Bilingual training data statistics for IWSLT 2012 German—English, WMT 2015

Finnish—English, WMT 2014 English—German, and WMT 2015 English—Czech tasks.

de-en fi-en en-de en-cs
BLEU TER BLEU TER BLEU TER BLEU TER
[%] [%] [%] [%] [%] [%] [%] [%]
Baseline 283 522 151 726 146 698 153 687
+ map-all 28.68 516t 153F 725  14.8F 69.4F  154F 6821
+map-each 29.0f 51.4% 158" 72.0f 151 69.0f 158" 67.6

Table 4: Translation results for IWSLT 2012 German—English, WMT 2015 Finnish—English, WMT
2014 English—German, and WMT 2015 English—Czech tasks.

Top 200 TER-improved Sentences

Common Input  Same Translation

Model Classes #vocab [%] [%]
map-each optimized 100 - -

non-optimized 100 89.5 89.9

random 100 88.5 89.8

lemma 26744 87.0 92.6

map-all optimized 100 56.0 54.5

Table 5: Comparison of translation outputs for the smoothing models with different vocabularies. “op-
timized” denotes 30 iterations of the clustering algorithm, whereas “non-optimized” means the initial

(default) clustering.

the same level of performance is not by chance but
due to similar hypothesis scoring across different
systems.

Given a test set, we compare its translations
generated from different systems as follows. First,
for each translated set, we sort the sentences by
how much the sentence-level TER is improved
over the baseline translation. Then, we select the
top 200 sentences from this sorted list, which rep-
resent the main contribution to the decrease of
TER. In Table 5, we compare the top 200 TER-
improved translations of the map-each model se-
tups with different vocabularies.

In the fourth column, we trace the input sen-
tences that are translated by the top 200 lists, and
count how many of those inputs are overlapped
across given systems. Here, a large overlap indi-

cates that two systems are particularly effective in
a large common part of the test set, showing that
they behaved analogously in the search process.
The numbers in this column are computed against
the map-each model setup trained with 100 opti-
mized word classes (first row). For all map-each
settings, the overlap is very large—around 90%.

To investigate further, we count how often the
two translations of a single input are identical (the
last column). This is normalized by the number
of common input sentences in the top 200 lists be-
tween two systems. It is a straightforward measure
to see if two systems discriminate translation hy-
potheses in a similar manner. Remarkably, all sys-
tems equipped with the map-each model produce
exactly the same translations for the most part of
the top 200 TER-improved sentences.
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We can see from this analysis that, even though
a smoothing model is trained with essentially dif-
ferent vocabularies, it helps the translation process
in basically the same manner. For comparison, we
also compute the measures for a map-all model,
which are far behind the high similarity among the
map-each models. Indeed, for smoothing phrase
translation models, changing the model structure
for vocabulary reduction exerts a strong influence
in the hypothesis scoring, yet changing the vocab-
ulary does not.

7 Conclusion

Reducing vocabulary using word-label mapping is
a simple and effective way of smoothing phrase
translation models. By mapping each word in a
phrase at a time, the translation quality can be im-
proved by up to +0.7% BLEU and -0.8% TER over
a standard phrase-based SMT baseline, which is
superior to Wuebker et al. (2013).

Our extensive comparison among various vo-
cabularies shows that different word-label map-
pings are almost equally effective for smoothing
phrase translation models. This allows us to use
any type of word-level label, e.g. a randomized
vocabulary, for the smoothing, which saves a con-
siderable amount of effort in optimizing the struc-
ture and granularity of the label vocabulary. Our
analysis on sentence-level TER demonstrates that
the same level of performance stems from the
analogous hypothesis scoring.

We claim that this result emphasizes the fun-
damental sparsity of the standard phrase transla-
tion model. Too many target phrase candidates
are originally undervalued, so giving them any
reasonable amount of extra probability mass, e.g.
by smoothing with random classes, is enough to
broaden the search space and improve translation
quality. Even if we change a single parameter in
estimating the label space, it does not have a sig-
nificant effect on scoring hypotheses, where many
other models than the smoothed translation model,
e.g. language models, are involved with large
weights. Nevertheless, an exact linguistic expla-
nation is still to be discovered.

Our results on varying training data show that
vocabulary reduction is more suitable for large-
scale translation setups. This implies that OOV
handling is more crucial than smoothing phrase
translation models for low-resource translation
tasks.
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For future work, we plan to perform a similar
set of comparative experiments on neural machine
translation systems.
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Abstract

We study the relationship between word
order freedom and preordering in statisti-
cal machine translation. To assess word
order freedom, we first introduce a novel
entropy measure which quantifies how dif-
ficult it is to predict word order given a
source sentence and its syntactic analysis.
We then address preordering for two target
languages at the far ends of the word order
freedom spectrum, German and Japanese,
and argue that for languages with more
word order freedom, attempting to predict
a unique word order given source clues
only is less justified. Subsequently, we ex-
amine lattices of n-best word order predic-
tions as a unified representation for lan-
guages from across this broad spectrum
and present an effective solution to a re-
sulting technical issue, namely how to se-
lect a suitable source word order from
the lattice during training. Our experi-
ments show that lattices are crucial for
good empirical performance for languages
with freer word order (English—German)
and can provide additional improvements
for fixed word order languages (English—
Japanese).

1 Introduction

Word order differences between a source and a tar-
get language are a major challenge for machine
translation systems. For phrase-based models,
the number of possible phrase permutations is so
large that reordering must be constrained locally
to make the search space for the best hypothe-
sis feasible. However, constraining the space lo-
cally runs the risk that the optimal hypothesis is
rendered out of reach. Preordering of the source
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sentence has been embraced as a way to ensure
the reachability of certain target word order con-
stellations for improved prediction of the target
word order. Preordering aims at predicting a per-
mutation of the source sentence which has min-
imal word order differences with the target sen-
tence; the permuted source sentence is passed on
to a backend translation system trained to translate
target-order source sentences into target sentences.
In essence, the preordering approach makes the as-
sumption that it is feasible to predict target word
order given only clues from the source sentence.
In the vast majority of work on preordering, a sin-
gle preordered source sentence is passed on to the
backend system, thereby making the stronger as-
sumption that it is feasible to predict a unique pre-
ferred target word order. But how reasonable are
these assumptions and for which target languages?

Intuitively, the assumption of a unique pre-
ordering seems reasonable for translating into
fixed word order languages such as Japanese, but
for translation into languages with less strict word
order such as German, this is unlikely to work.
In such languages there are multiple comparably
plausible target word orders per source sentence
because the underlying predicate-argument struc-
ture can be expressed with mechanisms other than
word order alone (e.g. morphological inflections
or intonation). For these languages, it seems rather
unlikely to be able to choose a unique word order
given only source sentence clues. In this paper, we
want to shed light on the relationship between the
target language’s word order freedom and the fea-
sibility of preordering. We start out by contribut-
ing an information-theoretic measure to quantify
the difficulty in predicting a preferred word order
given the source sentence and its syntax. Our mea-
sure provides empirical support for the intuition
that it is often not possible to predict a unique word
order for free word order languages, whereas it is
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more feasible for fixed word order languages such
as Japanese. Subsequently, we study the option of
passing the n-best word order predictions, instead
of 1-best, to the backend system as a lattice of pos-
sible word orders of the source sentence.

For the training of the backend system, the
use of such permutation lattices raises a question:
What should constitute the training corpus for a
lattice-preordered translation system? In previ-
ous work using single word order predictions, the
training data consists of pairs of source and target
sentences where the source sentence is either in
target order (i.e. order based on word alignments)
or preordered (i.e. predicted order). In this work
we contribute a novel approach for selecting train-
ing instances from the lattice of word order permu-
tations: We select the permutation providing the
best match with the target-order source sentence
(we call this process “lattice silver training”).

Our experiments show that for English—
Japanese and English—German lattice preordering
has a positive impact on the translation quality.
Whereas lattices enable further improvement for
preordering English into the strict word order lan-
guage Japanese, lattices in conjunction with our
proposed lattice silver training scheme turn out to
be crucial to reach satisfactory empirical perfor-
mance for English—-German. This result highlights
that when predicting word order of free word order
languages given source clues only, it is important
to ensure that the word order predictions and the
backend system are suitably fitted together.

2 Related Work

Preordering has been explored from the per-
spective of the upper-bound achievable transla-
tion quality in several studies, including Khalilov
and Sima’an (2012) and Herrmann et al. (2013),
which compare various systems and provide or-
acle scores for syntax-based preordering models.
Target-order source sentences, in which the word
order is determined via automatic alignments, en-
able translation systems great jumps in translation
quality and provide improvements in compactness
and efficiency of downstream phrase-based trans-
lation models. Approaches have largely followed
two directions: (1) predicting word order based
on some form of source-syntactic representation
and (2) approaches which do not depend on source
syntax.

119

2.1 Source Syntax-Based Preordering

Many approaches to preordering have made use
of syntactic representations of the source sentence,
including Collins et al. (2005) who restructure the
source phrase structure parse tree by applying a
sequence of transformation rules. More recently,
Jehl et al. (2014) learn to order sibling nodes in
the source-side dependency parse tree. The space
of possible permutations is explored via depth-first
branch-and-bound search (Balas and Toth, 1983).
In later work, the authors further improve this
model by replacing the logistic regression classi-
fier with a feed-forward neural network (de Gis-
pert et al., 2015), which results in improved em-
pirical results and eliminates the need for feature
engineering. Lerner and Petrov (2013) train clas-
sifiers to predict the permutations of up to 6 tree
nodes in the source dependency tree. The authors
found that by only predicting the best 20 permuta-
tions of n nodes, they could cover a large majority
of the reorderings in their data.

2.2 Preordering without Source Syntax

Tromble and Eisner (2009) learn to predict the ori-
entation of any two words (straight or inverted or-
der) using a perceptron. The search for the best re-
ordering is performed with a O(n?) chart parsing
algorithm. More basic approaches to syntax-less
preordering include the application of multiple
MT systems (Costa-jussa and Fonollosa, 2006),
where a first system learns preordering and a sec-
ond learns to translate the preordered sentence
into the target sentence. Finally, there have been
successful attempts at the automatic induction of
parse trees from aligned data (DeNero and Uszko-
reit, 2011) and the estimation of latent reordering
grammars (Stanojevi¢ and Sima’an, 2015) based
on permutation trees (Zhang and Gildea, 2007).

2.3 Lattice Translation

A lattice is an acyclic finite-state automaton defin-
ing a finite language. A more restricted class of
lattices, namely, confusion networks (Bertoldi et
al., 2007), has been extensively used to pack alter-
native input sequences for decoding.! However,
applications mostly focused on speech translation
(Ney, 1999; Bertoldi et al., 2007), or to account for
lexical and/or segmentation ambiguity due to pre-
processing (Xu et al., 2005; Dyer, 2007). In very

'A confusion network is a special case of a lattice where
every path from start to final state goes through every node.



few occasions, lattice input has been used to deter-
mine the space of permutations of the input con-
sidered by the decoder (Knight and Al-Onaizan,
1998; Kumar and Byrne, 2003). The effectiveness
of lattices of permutations was demonstrated by
Zhang et al. (2007). However, except in the cases
of n-gram based decoders (Khalilov et al., 2009)
this approach is not a common practice.

Dyer et al. (2008) formalized lattice transla-
tion both for phrase-based and hierarchical phrase-
based MT. The former requires a modification of
the standard phrase-based decoding algorithm as
to maintain a coverage vector over states, rather
than input word positions. The latter requires in-
tersecting a lattice and a context-free grammar,
which can be seen as a generalized form of pars-
ing (Klein and Manning, 2001). In this work, we
focus on phrase-based models.

The space of translation options in standard
phrase-based decoding with a distortion limit d
grows with O(stack size x n x 2¢) where n repre-
sents the input length, and the number of transla-
tion options is capped due to beam search (Koehn
et al., 2003). With lattice input, the dependency
on n is replaced by || where ( is the set of states
of the lattice. The stack size makes the number of
translation options explored by the decoder inde-
pendent of the number of transitions in the lattice.

As in standard decoding, the states of a lattice
can also be visited non-monotonically. However,
two states in a lattice are not always connected by
a path, and, in general, paths connecting two nodes
might differ in length. Dyer et al. (2008) proposed
to pick the shortest path between two nodes to be
representative of the distance between them.? Just
like in standard decoding, a distortion limit is im-
posed to keep the space of translations tractable.

In this work, we use lattice input to constrain the
space of permutations of the source allowed within
the decoder. Moreover, in most cases we com-
pletely disable the decoder’s further reordering ca-
pabilities. Because our models can perform global
permutation operations without ad hoc distortion
limits, we can reach far more complex word or-
ders. Crucially, our models are better predictors
of word order than standard distortion-based re-
ordering, thus we manage to decode with rela-
tively small permutation lattices.

2This is achieved by running an all-pairs shortest path al-
gorithm prior to decoding — see for example Chapter 25 of
(Cormen et al., 2001). MOSES uses the Floyd-Warshall algo-
rithm, which runs in time O(|Q|?).
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3 Quantifying Word Order Freedom

While varying degrees of word order freedom are
a well-studied topic in linguistics, word order free-
dom has only recently been studied from a quanti-
tative perspective. This has been enabled partly by
the increasing availability of syntactic treebanks.
Kuborii and Lopatkova (2015) propose a measure
of word order freedom based on a set of six com-
mon word order types (SVO, SOV, etc.). Futrell et
al. (2015) define various entropy measures based
on the prediction of word order given unordered
dependency trees. Both approaches require a de-
pendency treebank for each language.

In practical applications such as machine trans-
lation, it is difficult to quantify the influence of
word order freedom. For an arbitrary language
pair, our goal is to quantify a notion of the target
language’s word order freedom based only on par-
allel sentences and source syntax. In their head
direction entropy measure, Futrell et al. (2015)
approach the problem of quantifying word order
freedom by measuring the difficulty of recover-
ing the correct linear order from a sentence’s un-
ordered dependency tree. We approach the prob-
lem of quantifying a target language’s word order
freedom by measuring the difficulty of predicting
target word order based on the source sentence’s
dependency tree. Hence, we ask questions such
as: How difficult is it to predict French word or-
der based on the syntax of the English source sen-
tence?

3.1 Source Syntax and Target Word Order

We represent the target sentence’s word order as a
sequence of order decisions. Each order decision
encodes for two source words, a and b, whether
their translation equivalents are in the order (a, b)
or (b,a). The source sentences are parsed with a
dependency parser.® The target-language order of
the words in the source dependency tree is then
determined by comparing the target sentence po-
sitions of the words aligned to each source word.
Figure 1 shows the percentage of dependent-head
pairs in the source dependency tree whose target
order can be correctly guessed by always choos-
ing the more common decision.*

*http://cs.cmu.edu/-ark/TurboParser/

“For English-Japanese, we use manual word alignments
of 1,235 sentences from the Kyoto Free Translation Task
(Neubig, 2011) and for English—-German, we use a manu-
ally word-aligned subset of Europarl (Pad6 and Lapata, 2006)
consisting of 987 sentences.
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Figure 1: Source word pairs whose target order can be predicted using only the words’ labels.

German and Japanese Both language pairs dif-
fer significantly in how strictly the target lan-
guage’s word order is determined by the source
language’s syntax. English—German shows strict
order constraints within phrases, such as that ad-
jectives and determiners precede the noun they
modify in the vast majority of cases (Figure 1b).
However, English—German also shows more free-
dom on the clause level, where basic syntax-
based predictions for the positions of nouns rela-
tive to the main verb are insufficient. For English—
Japanese on the other hand, the position of the
nouns relative to the main verb is more rigid,
which is demonstrated by the high scores in Fig-
ure la. These results are in line with the linguistic
descriptions of both target languages. From a tech-
nical point of view, they highlight that any treat-
ment of English-German word order must take
into account information beyond the basic syntac-
tic level and must allow for a given amount of
word order freedom.

3.2 Bilingual Head Direction Entropy

While such a qualitative comparison provides in-
sight into the order differences of selected lan-
guage pairs, it is not straight-forward to compare
across many language pairs. From a linguistic per-
spective, Futrell et al. (2015) use entropy to com-
pare word order freedom in dependency corpora
across various languages. While the authors ob-
served that artifacts of the data such as treebank
annotation style can hamper comparability, they
found that a simple entropy measure for the pre-
diction of word order based on the dependency
structure provided a good quantitative measure of
word order freedom.

We follow Futrell et al. (2015) in basing our
measure on conditional entropy, which provides a
straight-forward way to quantify to which extent
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target word order is determined by source syntax.

HY|X) == p)>_ pyle) log p(ylz)

TEX yey

Conditional entropy measures the amount of infor-
mation required to describe the outcome of a ran-
dom variable Y given the value of a second ran-
dom variable X. Given a dependent-head pair in
the source dependency tree, X consists of the de-
pendent’s and the head’s part of speech, as well as
the dependency relation between them. Note that
as in all of our experiments the source language is
English, the space of outcomes of X is the same
across all language pairs.Y in this case is the word
pair’s target-side word order in the form of a (a, b)
or (b, a) decision. We estimate H (Y| X) using the
bootstrap estimator of DeDeo et al. (2013), which
is less prone to sample bias than maximum likeli-
hood estimation.’

Influence of word alignments Futrell et al.
(2015) use human-annotated dependency trees for
each language they consider. Our estimation only
involves word-aligned bilingual sentence pairs
with a source dependency tree. Manual align-
ments are available for a limited number of lan-
guage pairs and often only for a diminishingly
small number of sentences. Consequently the
question arises, whether automatic word align-
ments are sufficient for this task. To answer this
question, we apply our measure to a set of manu-
ally aligned as well as a larger set of automatically
aligned sentence pairs. In addition to the German
and Japanese alignments mentioned above, we use
manual alignments for English-Italian (Farajian et
al., 2014), English—French (Och and Ney, 2003),
English—Spanish (Graca et al., 2008) and English—
Portuguese (Graca et al., 2008).

SWe observe an average of 1,033 values for X per lan-
guage pair and perform 10,000 Monte-Carlo samples.
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Figure 2: Bilingual head direction entropy with
English source side.

Since a limited number of manually aligned
sentences are available, it is important to avoid
bias due to sample size. Hence, we randomly sam-
ple the same number of dependency relations from
each language pair. Considering only those lan-
guages for which we have both manual and au-
tomatic alignments, we can determine how well
their word order freedom rankings correlate. Even
though the number of samples for the manually
aligned sentences is limited to 500 due to the size
of the smallest set of manual alignments, we find a
high correlation of Spearman’s p = 0.77 between
the rankings of the 6 languages that occur in both
sets (Zwillinger and Kokoska, 1999).

Influence of source syntax Another factor that
may influence our estimated degree of word order
freedom is the form and granularity of the source
side’s syntactic representation: More detailed rep-
resentation