ListNet-based MT Rescoring

Jan Niehues, Quoc Khanh Do, Alexandre Allauzen and Alex Waibel
Motivation

- Log-linear model is widely used in SMT
 - Use during decoding
 - Use in MT rescoring
- MT Rescoring
 - Easy and efficient way to integrate of complex models
- Machine learning view
 - Ranking problem
 - Promising approach: ListNet algorithm
- Apply ListNet algorithm to SMT
Related Work

Optimization in Machine translation

- Minimum Error Rate Training (MERT) (Och, 2003)
 - Standard in most machine translation systems
- MIRA (Watanabe et al., 2007; Chiang et al., 2008)
- PRO (Hopkins and May, 2011)
- Expected BLEU (Rosti et al, 2011; He and Deng, 2012)

Ranking in machine learning

- ListNet algorithm (Cao et al., 2007)
- Overview over different ranking algorithms (Chen et al., 2009)
Overview

- Motivation
- ListNet Algorithm
- MT Rescoring
 - MT specific problems
- Evaluation
 - WMT
 - IWSLT - TED
ListNet - Ranking

- Input:
 - List
 - Model score
 - Metric for reference ranking

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Model</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.4</td>
<td>24.4</td>
</tr>
<tr>
<td>B</td>
<td>7.8</td>
<td>24.2</td>
</tr>
<tr>
<td>C</td>
<td>7.2</td>
<td>24.5</td>
</tr>
<tr>
<td>D</td>
<td>7.1</td>
<td>24.1</td>
</tr>
</tbody>
</table>
ListNet - Ranking

- Input:
 - List
 - Model score
 - Metric for reference ranking

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Model</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>7.8</td>
<td>24.2</td>
</tr>
<tr>
<td>A</td>
<td>7.4</td>
<td>24.4</td>
</tr>
<tr>
<td>C</td>
<td>7.2</td>
<td>24.5</td>
</tr>
<tr>
<td>D</td>
<td>7.1</td>
<td>24.1</td>
</tr>
</tbody>
</table>

According to the model
ListNet - Ranking

- Input:
 - List
 - Model score
 - Metric for reference ranking

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Model</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>7.2</td>
<td>24.5</td>
</tr>
<tr>
<td>A</td>
<td>7.4</td>
<td>24.4</td>
</tr>
<tr>
<td>B</td>
<td>7.8</td>
<td>24.2</td>
</tr>
<tr>
<td>D</td>
<td>7.1</td>
<td>24.1</td>
</tr>
</tbody>
</table>

According to the metric
ListNet - Ranking

- **Input:**
 - List
 - Model score
 - Metric for reference ranking

Input Metrics

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Model</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>7.8</td>
<td>24.2</td>
</tr>
<tr>
<td>A</td>
<td>7.4</td>
<td>24.4</td>
</tr>
<tr>
<td>C</td>
<td>7.2</td>
<td>24.5</td>
</tr>
<tr>
<td>D</td>
<td>7.1</td>
<td>24.1</td>
</tr>
</tbody>
</table>

Aim:

Learn a model to rank like the metric
ListNet - Idea

- Define a probability distribution over possible rankings
- Learn model that produces a distribution similar to the one defined by the metric
- Problem: large number of possible rankings
- Define a probability distribution associated to the model ranking based on first ranked object

\[
P_s(j) = \frac{\exp(s_j)}{\sum_{k=1}^{n} \exp(s_k)}
\]

(1)
ListNet - Distribution

- Minimize cross-entropy difference
Overview

- Motivation
- ListNet Algorithm
- MT Rescoring
 - MT specific problems
- Evaluation
 - WMT
 - IWSLT - TED
MT Rescoring

- Use ListNet to rescore N-Best list
 - Train log-linear model
- Input:
 - N-Best list
 - Additional features
- Learn new weights for log-linear model
Model

- Define probability distribution associated to the model ranking

\[P_s(j) = \frac{\exp(s_j)}{\sum_{k=1}^{n} \exp(s_k)} \]

(2)

- Problem:
 - Many scores are small probabilities
 - Log-probabilities are very small negative values
 - \(\exp(s) \) calculation may be erroneous

- Feature normalization:
 - Linear transform all features to the range \([-1, 1]\)

- Score normalization:
 - Linear transform the final score of the model to the range \([-r, r]\)
Define probability distribution associated to the reference ranking
- Reference ranking for every sentence needed
- Ranking induced by MT metric
- Sentence-wise MT metric
 - Metric: BLEU+1 (Liang et al. 2006)
 - Smoothed version of BLEU score

\[
P_{y^{(i)}(x_j^{(i)})} = \frac{\exp(\text{BLEU}(x_j^{(i)}))}{\sum_{j' = 1}^{n^i} \exp(\text{BLEU}(x_{j'}^{(i)}))}
\]
Minimize cross-entropy difference between model-based and BLEU+1-based probability distribution

- Use ListNet algorithm to calculate derivation

Stochastic gradient descent

- 100,000 batches
- Batch size of 10
Overview

- Motivation
- ListNet Algorithm
- MT Rescoring
 - MT specific problems
- Evaluation
 - WMT
 - IWSLT - TED
Evaluation

- WMT 2015 EN-DE
 - PBMT System
 - Additional features based on neural network translation models
- WMT 2015 DE-EN
 - PBMT System
 - Additional features using RBM-based translation models and source DWL
- TED 2014 EN-DE
 - Translation of TED talks
WMT – English to German

bleu

Baseline NCE SOUL SOUL+NCE

Feature

ListNet

PRO

KBMira

MERT

No Resco.
WMT – German to English

BLEU

Baseline SDWL SDWL+RBMTM

Feature

ListNet PRO KBMira MERT No Resco.
Convergence

![Graph showing convergence of BLEU+1 scores over samples (x1000) with Dev score range from 13 to 15.]
Score normalization

![Graph showing BLEU scores vs range with two curves: one for Score and one for Feature]
TED – English to German

Feature

Baseline extra Dev Data

BLEU

ListNet PRO KBMira MERT No Resco.
Conclusion

- Presented a new technique to train log-linear model
 - Scale to many features
 - Consider whole list
 - Technique can also be applied to more complex models
- Evaluated using different tasks and languages
 - WMT English – German
 - WMT German – English
 - IWSLT –TED English – German
- Translation quality improvements measured in BLEU score
 - Outperform MERT in all configurations
 - Less prone to overfitting
WMT – English to German

<table>
<thead>
<tr>
<th>System</th>
<th>Baseline</th>
<th>NCE</th>
<th>SOUL</th>
<th>SOUL+NCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dev</td>
<td>Test</td>
<td>Dev</td>
<td>Test</td>
</tr>
<tr>
<td>Baseline</td>
<td>20.19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WMT – German to English

<table>
<thead>
<tr>
<th>System</th>
<th>Baseline</th>
<th></th>
<th>SDWL</th>
<th></th>
<th>SDWL+RBMTM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dev</td>
<td>Test</td>
<td>Dev</td>
<td>Test</td>
<td>Dev</td>
</tr>
<tr>
<td>Baseline</td>
<td>27.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MERT</td>
<td>28.18</td>
<td>27.80</td>
<td></td>
<td>28.24</td>
<td>27.65</td>
<td>28.23</td>
</tr>
<tr>
<td>KB-MIRA</td>
<td>28.23</td>
<td>28.06</td>
<td></td>
<td>28.18</td>
<td>28.00</td>
<td>28.00</td>
</tr>
<tr>
<td>PRO</td>
<td>27.38</td>
<td>28.01</td>
<td></td>
<td>27.56</td>
<td>28.14</td>
<td>28.68</td>
</tr>
<tr>
<td>ListNet</td>
<td>28.00</td>
<td>27.87</td>
<td></td>
<td>27.89</td>
<td>28.18</td>
<td>27.94</td>
</tr>
</tbody>
</table>
TED – English to German

<table>
<thead>
<tr>
<th>System</th>
<th>Baseline Dev</th>
<th>Baseline Test</th>
<th>extra Dev Data Dev</th>
<th>extra Dev Data Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td>23.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MERT</td>
<td>27.69</td>
<td>23.46</td>
<td>25.63</td>
<td>23.36</td>
</tr>
<tr>
<td>KB-MIRA</td>
<td>27.47</td>
<td>23.19</td>
<td>25.65</td>
<td>23.76</td>
</tr>
<tr>
<td>PRO</td>
<td>26.67</td>
<td>23.10</td>
<td>25.00</td>
<td>23.65</td>
</tr>
<tr>
<td>ListNet</td>
<td>27.37</td>
<td>23.51</td>
<td>25.49</td>
<td>24.08</td>
</tr>
</tbody>
</table>