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Miloš Stanojević
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Abstract

We present the UvA-ILLC submission of
the BEER metric to WMT 14 metrics task.
BEER is a sentence level metric that can
incorporate a large number of features
combined in a linear model. Novel con-
tributions are (1) efficient tuning of a large
number of features for maximizing corre-
lation with human system ranking, and (2)
novel features that give smoother sentence
level scores.

1 Introduction

The quality of sentence level (also called segment
level) evaluation metrics in machine translation is
often considered inferior to the quality of corpus
(or system) level metrics. Yet, a sentence level
metrics has important advantages as it:

1. provides an informative score to individual
translations

2. is assumed by MT tuning algorithms (Hop-
kins and May, 2011).

3. facilitates easier statistical testing using sign
test or t-test (Collins et al., 2005)

We think that the root cause for most of the diffi-
culty in creating a good sentence level metric is the
sparseness of the features often used. Consider the
n-gram counting metrics (BLEU (Papineni et al.,
2002)): counts of higher order n-grams are usu-
ally rather small, if not zero, when counted at the
individual sentence level. Metrics based on such
counts are brittle at the sentence level even when
they might be good at the corpus level. Ideally we
should have features of varying granularity that we
can optimize on the actual evaluation task: relative
ranking of system outputs.

Therefore, in this paper we explore two kinds of
less sparse features:

Character n-grams are features at the sub-word
level that provide evidence for translation ad-
equacy - for example whether the stem is cor-
rectly translated,

Abstract ordering patterns found in tree factor-
izations of permutations into Permutation
Trees (PETs) (Zhang and Gildea, 2007), in-
cluding non-lexical alignment patterns.

The BEER metric combines features of both kinds
(presented in Section 2).

With the growing number of adequacy and or-
dering features we need a model that facilitates ef-
ficient training. We would like to train for opti-
mal Kendall τ correlation with rankings by human
evaluators. The models in the literature tackle this
problem by

1. training for another similar objective – e.g.,
tuning for absolute adequacy and fluency
scores instead on rankings, or

2. training for rankings directly but with meta-
heuristic approaches like hill-climbing, or

3. training for pairwise rankings using learning-
to-rank techniques

Approach (1) has two disadvantages. One is the
inconsistency between the training and the testing
objectives. The other, is that absolute rankings are
not reliable enough because humans are better at
giving relative than absolute judgments (see WMT
manual evaluations (Callison-Burch et al., 2007)).

Approach (2) does not allow integrating a large
number of features which makes it less attractive.

Approach (3) allows integration of a large num-
ber of features whose weights could be determined
in an elegant machine learning framework. The
output of learning in this approach can be either a
function that ranks all hypotheses directly (global
ranking model) or a function that assigns a score
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to each hypothesis individually which can be used
for ranking (local ranking model) (Li, 2011). Lo-
cal ranking models are preferable because they
provide absolute distance between hypotheses like
most existing evaluation metrics.

In this paper we follow the learning-to-rank ap-
proach which produces a local ranking model in a
similar way to PRO MT systems tuning (Hopkins
and May, 2011).

2 Model

Our model is a fairly simple linear interpolation of
feature functions, which is easy to train and simple
to interpret. The model determines the similarity
of the hypothesis h to the reference translation r
by assigning a weight wi to each feature φi(h, r).
The linear scoring function is given by:

score(h, r) =
∑

i

wi × φi(h, r) = ~w · ~φ

2.1 Adequacy features
The features used are precision P , recall R and
F1-score F for different counts:

Pfunction, Rfunction, Ffunction on matched func-
tion words

Pcontent, Rcontent, Fcontent on matched content
words (all non-function words)

Pall, Rall, Fall on matched words of any type

Pchar n−gram, Rchar n−gram, Fchar n−gram

matching of the character n-grams

By differentiating function and non-function
words we might have a better estimate of which
words are more important and which are less. The
last, but as we will see later the most important,
adequacy feature is matching character n-grams,
originally proposed in (Yang et al., 2013). This
can reward some translations even if they did not
get the morphology completely right. Many met-
rics solve this problem by using stemmers, but us-
ing features based on character n-grams is more
robust since it does not depend on the quality
of the stemmer. For character level n-grams we
can afford higher-order n-grams with less risk of
sparse counts as on word n-grams. In our exper-
iments we used character n-grams for size up to
6 which makes the total number of all adequacy
features 27.

2.2 Ordering features

To evaluate word order we follow (Isozaki et al.,
2010; Birch and Osborne, 2010) in representing
reordering as a permutation and then measuring
the distance to the ideal monotone permutation.
Here we take one feature from previous work –
Kendall τ distance from the monotone permuta-
tion. This metrics on the permutation level has
been shown to have high correlation with human
judgment on language pairs with very different
word order.

Additionally, we add novel features with an
even less sparse view of word order by exploiting
hierarchical structure that exists in permutations
(Zhang and Gildea, 2007). The trees that represent
this structure are called PETs (PErmutation Trees
– see the next subsection). Metrics defined over
PETs usually have a better estimate of long dis-
tance reorderings (Stanojević and Sima’an, 2013).
Here we use simple versions of these metrics:

∆count the ratio between the number of different
permutation trees (PETs) (Zhang and Gildea,
2007) that could be built for the given per-
mutation over the number of trees that could
be built if permutation was completely mono-
tone (there is a perfect word order).

∆[ ] ratio of the number of monotone nodes in
a PET to the maximum possible number of
nodes – the lenght of the sentence n.

∆<> ratio of the number of inverted nodes to n

∆=4 ratio of the number of nodes with branching
factor 4 to n

∆>4 ratio of the number of nodes with branching
factor bigger than 4 to n

2.3 Why features based on PETs?

PETs are recursive factorizations of permutations
into their minimal units. We refer the reader to
(Zhang and Gildea, 2007) for formal treatment of
PETs and efficient algorithms for their construc-
tion. Here we present them informally to exploit
them for presenting novel ordering metrics.

A PET is a tree structure with the nodes deco-
rated with operators (like in ITG) that are them-
selves permutations that cannot be factorized any
further into contiguous sub-parts (called opera-
tors). As an example, see the PET in Figure 1a.
This PET has one 4-branching node, one inverted
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(a) Complex PET
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〈2, 1〉

2 1

〈2, 1〉

4 3
(b) PET with inversions

〈2, 1〉

〈2, 1〉

〈2, 1〉

4 3

2

1

(c) Fully inverted PET

Figure 1: Examples of PETs

node and one monotone. The nodes are decorated
by operators that stand for a permutation of the
direct children of the node.

PETs have two important properties that make
them attractive for observing ordering: firstly, the
PET operators show the minimal units of ordering
that constitute the permutation itself, and secondly
the higher level operators capture hidden patterns
of ordering that cannot be observed without fac-
torization. Statistics over patterns of ordering us-
ing PETs are non-lexical and hence far less sparse
than word or character n-gram statistics.

In PETs, the minimal operators on the node
stand for ordering that cannot be broken down any
further. The binary monotone operator is the sim-
plest, binary inverted is the second in line, fol-
lowed by operators of length four like 〈2, 4, 1, 3〉
(Wu, 1997), and then operators longer than four.
The larger the branching factor under a PET node
(the length of the operator on that node) the more
complex the ordering. Hence, we devise possi-
ble branching feature functions over the operator
length for the nodes in PETs:

• factor 2 - with two features: ∆[ ] and ∆<>

(there are no nodes with factor 3 (Wu, 1997))

• factor 4 - feature ∆=4

• factor bigger than 4 - feature ∆>4

All of the mentioned PETs node features, except
∆[ ] and ∆count, signify the wrong word order but
of different magnitude. Ideally all nodes in a PET
would be binary monotone, but when that is not
the case we are able to quantify how far we are
from that ideal binary monotone PET.

In contrast with word n-grams used in other
metrics, counts over PET operators are far less
sparse on the sentence level and could be more
reliable. Consider permutations 2143 and 4321
and their corresponding PETs in Figure 1b and
1c. None of them has any exact n-gram matched

(we ignore unigrams now). But, it is clear that
2143 is somewhat better since it has at least some
words in more or less the right order. These “ab-
stract n-grams” pertaining to correct ordering of
full phrases could be counted using ∆[ ] which
would recognize that on top of the PET in 1b there
is the monotone node unlike the PET in 1c which
has no monotone nodes at all.

3 Tuning for human judgment

The task of correlation with human judgment on
the sentence level is usually posed in the following
way (Macháček and Bojar, 2013):

• Translate all source sentences using the avail-
able machine translation systems

• Let human evaluators rank them by quality
compared to the reference translation

• Each evaluation metric should do the same
task of ranking the hypothesis translations

• The metric with higher Kendall τ correlation
with human judgment is considered better

Let us take any pair of hypotheses that have the
same reference r where one is better (hgood) than
the other one (hbad) as judged by human evaluator.
In order for our metric to give the same ranking as
human judges do, it needs to give the higher score
to the hgood hypothesis. Given that our model is
linear we can derive:

score(hgood, r) > score(hbad, r)⇔
~w · ~φgood > ~w · ~φbad ⇔

~w · ~φgood − ~w · ~φbad > 0⇔
~w · (~φgood − ~φbad) > 0

~w · (~φbad − ~φgood) < 0

The most important part here are the last two
equations. Using them we formulate ranking prob-
lem as a problem of binary classification: the pos-
itive training instance would have feature values
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~φgood − ~φbad and the negative training instance
would have feature values ~φbad−~φgood. This trick
was used in PRO (Hopkins and May, 2011) but for
the different task:

• tuning the model of the SMT system

• objective function was an evaluation metric

Given this formulation of the training instances
we can train the classifier using pairs of hypothe-
ses. Note that even though it uses pairs of hypothe-
ses for training in the evaluation time it uses only
one hypothesis – it does not require the pair of hy-
potheses to compare them. The score of the classi-
fier is interpreted as confidence that the hypothesis
is a good translation. This differs from the major-
ity of earlier work which we explain in Section 6.

4 Experiments on WMT12 data

We conducted experiments for the metric which
in total has 33 features (27 for adequacy and 6
for word order). Some of the features in the
metric depend on external sources of informa-
tion. For function words we use listings that are
created for many languages and are distributed
with METEOR toolkit (Denkowski and Lavie,
2011). The permutations are extracted using ME-
TEOR aligner which does fuzzy matching using
resources such as WordNet, paraphrase tables and
stemmers. METEOR is not used for any scoring,
but only for aligning hypothesis and reference.

For training we used the data from WMT13 hu-
man evaluation of the systems (Macháček and Bo-
jar, 2013). Before evaluation, all data was low-
ercased and tokenized. After preprocessing, we
extract training examples for our binary classifier.
The number of non-tied human judgments per lan-
guage pair are shown in Table 1. Each human
judgment produces two training instances : one
positive and one negative. For learning we use
regression implementation in the Vowpal Wabbit
toolkit 1.

Tuned metric is tested on the human evaluated
data from WMT12 (Callison-Burch et al., 2012)
for correlation with the human judgment. As base-
line we used one of the best ranked metrics on the
sentence level evaluations from previous WMT
tasks – METEOR (Denkowski and Lavie, 2011).
The results are presented in the Table 2. The pre-
sented results are computed using definition of

1https://github.com/JohnLangford/
vowpal_wabbit

language pair #comparisons
cs-en 85469
de-en 128668
es-en 67832
fr-en 80741
ru-en 151422
en-cs 102842
en-de 77286
en-es 60464
en-fr 100783
en-ru 87323

Table 1: Number of human judgments in WMT13

language
pair

BEER
with

paraphrases

BEER
without

paraphrases
METEOR

en-cs 0.194 0.190 0.152
en-fr 0.257 0.250 0.262
en-de 0.228 0.217 0.180
en-es 0.227 0.235 0.201
cs-en 0.215 0.213 0.205
fr-en 0.270 0.254 0.249
de-en 0.290 0.271 0.273
es-en 0.267 0.249 0.247

Table 2: Kendall τ correleation on WMT12 data

Kendall τ from the WMT12 (Callison-Burch et
al., 2012) so the scores could be compared with
other metrics on the same dataset that were re-
ported in the proceedings of that year (Callison-
Burch et al., 2012).

The results show that BEER with and without
paraphrase support outperforms METEOR (and
almost all other metrics on WMT12 metrics task)
on the majority of language pairs. Paraphrase sup-
port matters mostly when the target language is
English, but even in language pairs where it does
not help significantly it can be useful.

5 WMT14 evaluation task results

In Table 4 and Table 3 you can see the results of
top 5 ranked metrics on the segment level evalua-
tion task of WMT14. In 5 out of 10 language pairs
BEER was ranked the first, on 4 the second best
and on one third best metric. The cases where it
failed to win the first place are:

• against DISCOTK-PARTY-TUNED on * - En-
glish except Hindi-English. DISCOTK-
PARTY-TUNED participated only in evalua-
tion of English which suggests that it uses
some language specific components which is
not the case with the current version of BEER

• against METEOR and AMBER on English-
Hindi. The reason for this is simply that we
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Direction en-fr en-de en-hi en-cs en-ru
BEER .295 .258 .250 .344 .440

METEOR .278 .233 .264 .318 .427
AMBER .261 .224 .286 .302 .397

BLEU-NRC .257 .193 .234 .297 .391
APAC .255 .201 .203 .292 .388

Table 3: Kendall τ correlations on the WMT14 hu-
man judgements when translating out of English.

Direction fr-en de-en hi-en cs-en ru-en
DISCOTK-PARTY-TUNED .433 .381 .434 .328 .364
BEER .417 .337 .438 .284 .337
REDCOMBSENT .406 .338 .417 .284 .343
REDCOMBSYSSENT .408 .338 .416 .282 .343
METEOR .406 .334 .420 .282 .337

Table 4: Kendall τ correlations on the WMT14
human judgements when translating into English.

did not have the data to tune our metric for
Hindi. Even by treating Hindi as English we
manage to get high in the rankings for this
language.

From metrics that participated in all language
pairs on the sentence level on average BEER has
the best correlation with the human judgment.

6 Related work

The main contribution of our metric is a linear
combination of features with far less sparse statis-
tics than earlier work. In particular, we employ
novel ordering features over PETs, a range of char-
acter n-gram features for adequancy, and direct
tuning for human ranking.

There are in the literature three main approaches
for tuning the machine translation metrics.

Approach 1 SPEDE (Wang and Manning, 2012),
metric of (Specia and Giménez, 2010),
ROSE-reg (Song and Cohn, 2011), ABS met-
ric of (Padó et al., 2009) and many oth-
ers train their regression models on the data
that has absolute scores for adequacy, fluency
or post-editing and then test on the ranking
problem. This is sometimes called pointwise
approach to learning-to-rank. In contrast our
metric is trained for ranking and tested on
ranking.

Approach 2 METEOR is tuned for the ranking
and tested on the ranking like our metric but
the tuning method is different. METEOR has
a non-linear model which is hard to tune with

gradient based methods so instead they tune
their parameters by hill-climbing (Lavie and
Agarwal, 2008). This not only reduces the
number of features that could be used but also
restricts the fine tuning of the existing small
number of parameters.

Approach 3 Some methods, like ours, allow
training of a large number of parameters for
ranking. Global ranking models that di-
rectly rank hypotheses are used in ROSE-
rank (Song and Cohn, 2011) and PAIR met-
ric of (Padó et al., 2009). Our work is more
similar to the training method for local rank-
ing models that give score directly (as it is
usually expected from an evaluation metric)
which was originally proposed in (Ye et al.,
2007) and later applied in (Duh, 2008) and
(Yang et al., 2013).

7 Conclusion and future plans

We have shown the advantages of combining
many simple features in a tunable linear model
of MT evaluation metric. Unlike majority of the
previous work we create a framework for training
large number of features on human rankings and at
the same time as a result of tuning produce a score
based metric which does not require two (or more)
hypotheses for comparison. The features that we
used are selected for reducing sparseness on the
sentence level. Together the smooth features and
the learning algorithm produce the metric that has
a very high correlation with human judgment.

For future research we plan to investigate some
more linguistically inspired features and also ex-
plore how this metric could be tuned for better tun-
ing of statistical machine translation systems.
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