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Abstract

This paper describes one of the col-
laborative efforts within EU-BRIDGE to
further advance the state of the art in
machine translation between two Euro-
pean language pairs, German→English
and English→German. Three research
institutes involved in the EU-BRIDGE
project combined their individual machine
translation systems and participated with a
joint setup in the shared translation task of
the evaluation campaign at the ACL 2014
Eighth Workshop on Statistical Machine
Translation (WMT 2014).

We combined up to nine different machine
translation engines via system combina-
tion. RWTH Aachen University, the Uni-
versity of Edinburgh, and Karlsruhe In-
stitute of Technology developed several
individual systems which serve as sys-
tem combination input. We devoted spe-
cial attention to building syntax-based sys-
tems and combining them with the phrase-
based ones. The joint setups yield em-
pirical gains of up to 1.6 points in BLEU

and 1.0 points in TER on the WMT news-
test2013 test set compared to the best sin-
gle systems.

1 Introduction

EU-BRIDGE1 is a European research project
which is aimed at developing innovative speech
translation technology. This paper describes a

1http://www.eu-bridge.eu

joint WMT submission of three EU-BRIDGE
project partners. RWTH Aachen University
(RWTH), the University of Edinburgh (UEDIN)
and Karlsruhe Institute of Technology (KIT) all
provided several individual systems which were
combined by means of the RWTH Aachen system
combination approach (Freitag et al., 2014). As
distinguished from our EU-BRIDGE joint submis-
sion to the IWSLT 2013 evaluation campaign (Fre-
itag et al., 2013), we particularly focused on trans-
lation of news text (instead of talks) for WMT. Be-
sides, we put an emphasis on engineering syntax-
based systems in order to combine them with our
more established phrase-based engines. We built
combined system setups for translation from Ger-
man to English as well as from English to Ger-
man. This paper gives some insight into the tech-
nology behind the system combination framework
and the combined engines which have been used
to produce the joint EU-BRIDGE submission to
the WMT 2014 translation task.

The remainder of the paper is structured as fol-
lows: We first describe the individual systems by
RWTH Aachen University (Section 2), the Uni-
versity of Edinburgh (Section 3), and Karlsruhe
Institute of Technology (Section 4). We then
present the techniques for machine translation sys-
tem combination in Section 5. Experimental re-
sults are given in Section 6. We finally conclude
the paper with Section 7.

2 RWTH Aachen University

RWTH (Peitz et al., 2014) employs both the
phrase-based (RWTH scss) and the hierarchical
(RWTH hiero) decoder implemented in RWTH’s
publicly available translation toolkit Jane (Vilar
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et al., 2010; Wuebker et al., 2012). The model
weights of all systems have been tuned with stan-
dard Minimum Error Rate Training (Och, 2003)
on a concatenation of the newstest2011 and news-
test2012 sets. RWTH used BLEU as optimiza-
tion objective. Both for language model estima-
tion and querying at decoding, the KenLM toolkit
(Heafield et al., 2013) is used. All RWTH sys-
tems include the standard set of models provided
by Jane. Both systems have been augmented with
a hierarchical orientation model (Galley and Man-
ning, 2008; Huck et al., 2013) and a cluster lan-
guage model (Wuebker et al., 2013). The phrase-
based system (RWTH scss) has been further im-
proved by maximum expected BLEU training sim-
ilar to (He and Deng, 2012). The latter has been
performed on a selection from the News Commen-
tary, Europarl and Common Crawl corpora based
on language and translation model cross-entropies
(Mansour et al., 2011).

3 University of Edinburgh

UEDIN contributed phrase-based and syntax-
based systems to both the German→English and
the English→German joint submission.

3.1 Phrase-based Systems

UEDIN’s phrase-based systems (Durrani et al.,
2014) have been trained using the Moses toolkit
(Koehn et al., 2007), replicating the settings de-
scribed in (Durrani et al., 2013b). The features
include: a maximum sentence length of 80, grow-
diag-final-and symmetrization of GIZA++ align-
ments, an interpolated Kneser-Ney smoothed 5-
gram language model with KenLM (Heafield,
2011) used at runtime, a lexically-driven 5-gram
operation sequence model (OSM) (Durrani et al.,
2013a), msd-bidirectional-fe lexicalized reorder-
ing, sparse lexical and domain features (Hasler
et al., 2012), a distortion limit of 6, a maxi-
mum phrase length of 5, 100-best translation op-
tions, Minimum Bayes Risk decoding (Kumar and
Byrne, 2004), cube pruning (Huang and Chiang,
2007), with a stack size of 1000 during tuning and
5000 during testing and the no-reordering-over-
punctuation heuristic. UEDIN uses POS and mor-
phological target sequence models built on the in-
domain subset of the parallel corpus using Kneser-
Ney smoothed 7-gram models as additional factors
in phrase translation models (Koehn and Hoang,
2007). UEDIN has furthermore built OSM mod-

els over POS and morph sequences following
Durrani et al. (2013c). The English→German
system additionally comprises a target-side LM
over automatically built word classes (Birch et
al., 2013). UEDIN has applied syntactic pre-
reordering (Collins et al., 2005) and compound
splitting (Koehn and Knight, 2003) of the source
side for the German→English system. The sys-
tems have been tuned on a very large tuning set
consisting of the test sets from 2008-2012, with
a total of 13,071 sentences. UEDIN used news-
test2013 as held-out test set. On top of UEDIN
phrase-based 1 system, UEDIN phrase-based 2
augments word classes as additional factor and
learns an interpolated target sequence model over
cluster IDs. Furthermore, it learns OSM models
over POS, morph and word classes.

3.2 Syntax-based Systems

UEDIN’s syntax-based systems (Williams et al.,
2014) follow the GHKM syntax approach as pro-
posed by Galley, Hopkins, Knight, and Marcu
(Galley et al., 2004). The open source Moses
implementation has been employed to extract
GHKM rules (Williams and Koehn, 2012). Com-
posed rules (Galley et al., 2006) are extracted in
addition to minimal rules, but only up to the fol-
lowing limits: at most twenty tree nodes per rule,
a maximum depth of five, and a maximum size of
five. Singleton hierarchical rules are dropped.

The features for the syntax-based systems com-
prise Good-Turing-smoothed phrase translation
probabilities, lexical translation probabilities in
both directions, word and phrase penalty, a rule
rareness penalty, a monolingual PCFG probability,
and a 5-gram language model. UEDIN has used
the SRILM toolkit (Stolcke, 2002) to train the lan-
guage model and relies on KenLM for language
model scoring during decoding. Model weights
are optimized to maximize BLEU. 2000 sentences
from the newstest2008-2012 sets have been se-
lected as a development set. The selected sen-
tences obtained high sentence-level BLEU scores
when being translated with a baseline phrase-
based system, and each contain less than 30 words
for more rapid tuning. Decoding for the syntax-
based systems is carried out with cube pruning
using Moses’ hierarchical decoder (Hoang et al.,
2009).

UEDIN’s German→English syntax-based setup
is a string-to-tree system with compound splitting
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on the German source-language side and syntactic
annotation from the Berkeley Parser (Petrov et al.,
2006) on the English target-language side.

For English→German, UEDIN has trained var-
ious string-to-tree GHKM syntax systems which
differ with respect to the syntactic annotation. A
tree-to-string system and a string-to-string system
(with rules that are not syntactically decorated)
have been trained as well. The English→German
UEDIN GHKM system names in Table 3 denote:

UEDIN GHKM S2T (ParZu): A string-to-tree
system trained with target-side syntactic an-
notation obtained with ParZu (Sennrich et
al., 2013). It uses a modified syntactic label
set, target-side compound splitting, and addi-
tional syntactic constraints.

UEDIN GHKM S2T (BitPar): A string-to-tree
system trained with target-side syntactic
annotation obtained with BitPar (Schmid,
2004).

UEDIN GHKM S2T (Stanford): A string-to-
tree system trained with target-side syntactic
annotation obtained with the German Stan-
ford Parser (Rafferty and Manning, 2008a).

UEDIN GHKM S2T (Berkeley): A string-to-
tree system trained with target-side syntactic
annotation obtained with the German Berke-
ley Parser (Petrov and Klein, 2007; Petrov
and Klein, 2008).

UEDIN GHKM T2S (Berkeley): A tree-to-
string system trained with source-side syn-
tactic annotation obtained with the English
Berkeley Parser (Petrov et al., 2006).

UEDIN GHKM S2S (Berkeley): A string-to-
string system. The extraction is GHKM-
based with syntactic target-side annotation
from the German Berkeley Parser, but we
strip off the syntactic labels. The final gram-
mar contains rules with a single generic non-
terminal instead of syntactic ones, plus rules
that have been added from plain phrase-based
extraction (Huck et al., 2014).

4 Karlsruhe Institute of Technology

The KIT translations (Herrmann et al., 2014) are
generated by an in-house phrase-based transla-
tions system (Vogel, 2003). The provided News
Commentary, Europarl, and Common Crawl par-
allel corpora are used for training the translation

model. The monolingual part of those parallel
corpora, the News Shuffle corpus for both direc-
tions and additionally the Gigaword corpus for
German→English are used as monolingual train-
ing data for the different language models. Opti-
mization is done with Minimum Error Rate Train-
ing as described in (Venugopal et al., 2005), using
newstest2012 and newstest2013 as development
and test data respectively.

Compound splitting (Koehn and Knight, 2003)
is performed on the source side of the corpus for
German→English translation before training. In
order to improve the quality of the web-crawled
Common Crawl corpus, noisy sentence pairs are
filtered out using an SVM classifier as described
by Mediani et al. (2011).

The word alignment for German→English is
generated using the GIZA++ toolkit (Och and Ney,
2003). For English→German, KIT uses discrimi-
native word alignment (Niehues and Vogel, 2008).
Phrase extraction and scoring is done using the
Moses toolkit (Koehn et al., 2007). Phrase pair
probabilities are computed using modified Kneser-
Ney smoothing as in (Foster et al., 2006).

In both systems KIT applies short-range re-
orderings (Rottmann and Vogel, 2007) and long-
range reorderings (Niehues and Kolss, 2009)
based on POS tags (Schmid, 1994) to perform
source sentence reordering according to the target
language word order. The long-range reordering
rules are applied to the training corpus to create
reordering lattices to extract the phrases for the
translation model. In addition, a tree-based re-
ordering model (Herrmann et al., 2013) trained
on syntactic parse trees (Rafferty and Manning,
2008b; Klein and Manning, 2003) as well as a lex-
icalized reordering model (Koehn et al., 2005) are
applied.

Language models are trained with the SRILM
toolkit (Stolcke, 2002) and use modified Kneser-
Ney smoothing. Both systems utilize a lan-
guage model based on automatically learned
word classes using the MKCLS algorithm (Och,
1999). The English→German system comprises
language models based on fine-grained part-of-
speech tags (Schmid and Laws, 2008). In addi-
tion, a bilingual language model (Niehues et al.,
2011) is used as well as a discriminative word lex-
icon (Mauser et al., 2009) using source context to
guide the word choices in the target sentence.
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In total, the English→German system uses the
following language models: two 4-gram word-
based language models trained on the parallel data
and the filtered Common Crawl data separately,
two 5-gram POS-based language models trained
on the same data as the word-based language mod-
els, and a 4-gram cluster-based language model
trained on 1,000 MKCLS word classes.

The German→English system uses a 4-gram
word-based language model trained on all mono-
lingual data and an additional language model
trained on automatically selected data (Moore and
Lewis, 2010). Again, a 4-gram cluster-based
language model trained on 1000 MKCLS word
classes is applied.

5 System Combination

System combination is used to produce consen-
sus translations from multiple hypotheses which
are outputs of different translation engines. The
consensus translations can be better in terms of
translation quality than any of the individual hy-
potheses. To combine the engines of the project
partners for the EU-BRIDGE joint setups, we ap-
ply a system combination implementation that has
been developed at RWTH Aachen University.

The implementation of RWTH’s approach to
machine translation system combination is de-
scribed in (Freitag et al., 2014). This approach
includes an enhanced alignment and reordering
framework. Alignments between the system out-
puts are learned using METEOR (Banerjee and
Lavie, 2005). A confusion network is then built
using one of the hypotheses as “primary” hypoth-
esis. We do not make a hard decision on which
of the hypotheses to use for that, but instead com-
bine all possible confusion networks into a single
lattice. Majority voting on the generated lattice
is performed using the prior probabilities for each
system as well as other statistical models, e.g. a
special n-gram language model which is learned
on the input hypotheses. Scaling factors of the
models are optimized using the Minimum Error
Rate Training algorithm. The translation with the
best total score within the lattice is selected as con-
sensus translation.

6 Results

In this section, we present our experimental results
on the two translation tasks, German→English
and English→German. The weights of the in-

dividual system engines have been optimized on
different test sets which partially or fully include
newstest2011 or newstest2012. System combina-
tion weights are either optimized on newstest2011
or newstest2012. We kept newstest2013 as an un-
seen test set which has not been used for tuning
the system combination or any of the individual
systems.

6.1 German→English
The automatic scores of all individual systems
as well as of our final system combination sub-
mission are given in Table 1. KIT, UEDIN and
RWTH are each providing one individual phrase-
based system output. RWTH (hiero) and UEDIN
(GHKM) are providing additional systems based
on the hierarchical translation model and a string-
to-tree syntax model. The pairwise difference
of the single system performances is up to 1.3
points in BLEU and 2.5 points in TER. For
German→English, our system combination pa-
rameters are optimized on newstest2012. System
combination gives us a gain of 1.6 points in BLEU

and 1.0 points in TER for newstest2013 compared
to the best single system.

In Table 2 the pairwise BLEU scores for all in-
dividual systems as well as for the system combi-
nation output are given. The pairwise BLEU score
of both RWTH systems (taking one as hypothesis
and the other one as reference) is the highest for all
pairs of individual system outputs. A high BLEU

score means similar hypotheses. The syntax-based
system of UEDIN and RWTH scss differ mostly,
which can be observed from the fact of the low-
est pairwise BLEU score. Furthermore, we can
see that better performing individual systems have
higher BLEU scores when evaluating against the
system combination output.

In Figure 1 system combination output is com-
pared to the best single system KIT. We distribute
the sentence-level BLEU scores of all sentences of
newstest2013. To allow for sentence-wise evalu-
ation, all bi-, tri-, and four-gram counts are ini-
tialized with 1 instead of 0. Many sentences have
been improved by system combination. Neverthe-
less, some sentences fall off in quality compared
to the individual system output of KIT.

6.2 English→German
The results of all English→German system setups
are given in Table 3. For the English→German
translation task, only UEDIN and KIT are con-
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system newstest2011 newstest2012 newstest2013
BLEU TER BLEU TER BLEU TER

KIT 25.0 57.6 25.2 57.4 27.5 54.4
UEDIN 23.9 59.2 24.7 58.3 27.4 55.0
RWTH scss 23.6 59.5 24.2 58.5 27.0 55.0
RWTH hiero 23.3 59.9 24.1 59.0 26.7 55.9
UEDIN GHKM S2T (Berkeley) 23.0 60.1 23.2 60.8 26.2 56.9
syscom 25.6 57.1 26.4 56.5 29.1 53.4

Table 1: Results for the German→English translation task. The system combination is tuned on news-
test2012, newstest2013 is used as held-out test set for all individual systems and system combination.
Bold font indicates system combination results that are significantly better than the best single system
with p < 0.05.

KIT UEDIN RWTH scss RWTH hiero UEDIN S2T syscom
KIT 59.07 57.60 57.91 55.62 77.68
UEDIN 59.17 56.96 57.84 59.89 72.89
RWTH scss 57.64 56.90 64.94 53.10 71.16
RWTH hiero 57.98 57.80 64.97 55.73 70.87
UEDIN S2T 55.75 59.95 53.19 55.82 65.35
syscom 77.76 72.83 71.17 70.85 65.24

Table 2: Cross BLEU scores for the German→English newstest2013 test set. (Pairwise BLEU scores:
each entry is taking the horizontal system as hypothesis and the other one as reference.)

system newstest2011 newstest2012 newstest2013
BLEU TER BLEU TER BLEU TER

UEDIN phrase-based 1 17.5 67.3 18.2 65.0 20.5 62.7
UEDIN phrase-based 2 17.8 66.9 18.5 64.6 20.8 62.3
UEDIN GHKM S2T (ParZu) 17.2 67.6 18.0 65.5 20.2 62.8
UEDIN GHKM S2T (BitPar) 16.3 69.0 17.3 66.6 19.5 63.9
UEDIN GHKM S2T (Stanford) 16.1 69.2 17.2 67.0 19.0 64.2
UEDIN GHKM S2T (Berkeley) 16.3 68.9 17.2 66.7 19.3 63.8
UEDIN GHKM T2S (Berkeley) 16.7 68.9 17.5 66.9 19.5 63.8
UEDIN GHKM S2S (Berkeley) 16.3 69.2 17.3 66.8 19.1 64.3
KIT 17.1 67.0 17.8 64.8 20.2 62.2
syscom 18.4 65.0 18.7 63.4 21.3 60.6

Table 3: Results for the English→German translation task. The system combination is tuned on news-
test2011, newstest2013 is used as held-out test set for all individual systems and system combination.
Bold font indicates system combination results that are significantly (Bisani and Ney, 2004) better than
the best single system with p < 0.05. Italic font indicates system combination results that are significantly
better than the best single system with p < 0.1.

tributing individual systems. KIT is providing a
phrase-based system output, UEDIN is providing
two phrase-based system outputs and six syntax-
based ones (GHKM). For English→German, our
system combination parameters are optimized on
newstest2011. Combining all nine different sys-
tem outputs yields an improvement of 0.5 points
in BLEU and 1.7 points in TER over the best sin-
gle system performance.

In Table 4 the cross BLEU scores for all
English→German systems are given. The individ-
ual system of KIT and the syntax-based ParZu sys-
tem of UEDIN have the lowest BLEU score when
scored against each other. Both approaches are
quite different and both are coming from differ-
ent institutes. In contrast, both phrase-based sys-
tems pbt 1 and pbt 2 from UEDIN are very sim-
ilar and hence have a high pairwise BLEU score.
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pbt 1 pbt 2 ParZu BitPar Stanford S2T T2S S2S KIT syscom
pbt 1 75.84 51.61 53.93 55.32 54.79 54.52 60.92 54.80 70.12
pbt 2 75.84 51.96 53.39 53.93 53.97 53.10 57.32 54.04 73.75
ParZu 51.57 51.91 56.67 55.11 56.05 52.13 51.22 48.14 68.39
BitPar 54.00 53.45 56.78 64.59 65.67 56.33 56.62 49.23 62.08
Stanford 55.37 53.98 55.19 64.56 69.22 58.81 61.19 50.50 61.51
S2T 54.83 54.02 56.14 65.64 69.21 59.32 60.16 50.07 62.81
T2S 54.57 53.15 52.21 56.30 58.81 59.32 59.34 50.01 63.13
S2S 60.96 57.36 51.29 56.59 61.18 60.15 59.33 53.68 60.46
KIT 54.75 53.98 48.13 49.13 50.41 49.98 49.93 53.59 63.33
syscom 70.01 73.63 68.32 61.92 61.37 62.67 62.99 60.32 63.27

Table 4: Cross BLEU scores for the German→English newstest2013 test set. (Pairwise BLEU scores:
each entry is taking the horizontal system as reference and the other one as hypothesis.)
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Figure 1: Sentence distribution for the
German→English newstest2013 test set compar-
ing system combination output against the best
individual system.

As for the German→English translation direction,
the best performing individual system outputs are
also having the highest BLEU scores when evalu-
ated against the final system combination output.

In Figure 2 system combination output is com-
pared to the best single system pbt 2. We distribute
the sentence-level BLEU scores of all sentences
of newstest2013. Many sentences have been im-
proved by system combination. But there is still
room for improvement as some sentences are still
better in terms of sentence-level BLEU in the indi-
vidual best system pbt 2.

7 Conclusion

We achieved significantly better translation perfor-
mance with gains of up to +1.6 points in BLEU

and -1.0 points in TER by combining up to nine
different machine translation systems. Three dif-
ferent research institutes (RWTH Aachen Univer-
sity, University of Edinburgh, Karlsruhe Institute
of Technology) provided machine translation en-
gines based on different approaches like phrase-
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Figure 2: Sentence distribution for the
English→German newstest2013 test set compar-
ing system combination output against the best
individual system.

based, hierarchical phrase-based, and syntax-
based. For English→German, we included six
different syntax-based systems, which were com-
bined to our final combined translation. The au-
tomatic scores of all submitted system outputs for
the actual 2014 evaluation set are presented on the
WMT submission page.2 Our joint submission is
the best submission in terms of BLEU and TER for
both translation directions German→English and
English→German without adding any new data.
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