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Abstract

Supervised approaches to NLP tasks rely
on high-quality data annotations, which
typically result from expensive manual la-
belling procedures. For some tasks, how-
ever, the subjectivity of human judgements
might reduce the usefulness of the an-
notation for real-world applications. In
Machine Translation (MT) Quality Esti-
mation (QE), for instance, using human-
annotated data to train a binary classifier
that discriminates between good (useful
for a post-editor) and bad translations is
not trivial. Focusing on this binary task,
we show that subjective human judge-
ments can be effectively replaced with an
automatic annotation procedure. To this
aim, we compare binary classifiers trained
on different data: the human-annotated
dataset from the 7th Workshop on Statis-
tical Machine Translation (WMT-12), and
an automatically labelled version of the
same corpus. Our results show that human
labels are less suitable for the task.

1 Introduction

With the steady progress in the field of Statistical
Machine Translation (SMT), the translation indus-
try is now faced with the possibility of significant
productivity increases (i.e. amount of publishable
output per unit of time). One way to achieve this
goal, in Computer Assisted Translation (CAT) en-
vironments, is the integration of (precise, but of-
ten partial) suggestions obtained through “fuzzy
matches” from a Translation Memory (TM), with
(complete, but potentially less precise) translations
produced by an MT system. Such integration can
loosely consist in presenting translators with un-
ranked suggestions obtained from the MT and the
TM, or rely on tighter combination strategies. For

instance, MT and TM translations can be automat-
ically ranked to ease the selection of the most suit-
able one for post-editing (He et al., 2010), or the
TM can be used to constrain and improve MT sug-
gestions (Ma et al., 2011). In all cases, the ef-
fectiveness of the integration is conditioned by:
i) the quality of MT, and ii) the accuracy in au-
tomatically predicting such quality. Higher pro-
ductivity increases depend on the capability of the
MT system to output useful material that is close
to be publishable “as is” (Denkowski and Lavie,
2012), and the capability to automatically identify
and present to human translators only such sug-
gestions.

Recognizing good translations falls in the scope
of research on automatic MT Quality Estimation
(QE), which addresses the problem of estimating
the quality of a translated sentence at run-time,
without access to reference translations (Specia et
al., 2009; Soricut and Echihabi, 2010; Bach et al.,
2011; Specia, 2011; Mehdad et al., 2012b). In
recent years QE gained increasing interest in the
MT community, resulting in several datasets avail-
able for training and evaluation (Callison-Burch et
al., 2012), the definition of features showing good
correlation with human judgements (Soricut et al.,
2012), and the release of open-source software.1

The proposed solutions to the QE problem rely
on supervised methods that strongly depend on the
availability of labelled data. While early works
(Blatz et al., 2003) exploited annotations obtained
with automatic MT evaluation metrics like BLEU
(Papineni et al., 2002), the current trend is to
rely on human annotations, which seem to lead
to more accurate models (Quirk, 2004; Specia et
al., 2009). Along this direction, the QE task con-
sists in predicting scores that reflect human quality
judgements, by learning from manually annotated
datasets (e.g. collections of source-target pairs la-

1http://www.quest.dcs.shef.ac.uk/
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belled according to an n-point Likert scale or with
real numbers in a given interval). Within this dom-
inant supervised framework, we explore different
ways to obtain labelled data for training a bi-
nary QE classifier suitable for integration in a
CAT tool. Since, to the best of our knowledge,
labelled data with binary judgements are currently
not available, we consider two alternative options.

The first option is to adapt an existing dataset,
checking whether it can be partitioned in a way
that reflects the distinction between good (use-
ful for the translator, suitable for post editing)
and bad translations (that need complete rewrit-
ing).2 To this aim we experiment with the QE
data released within the 7th Workshop on Ma-
chine Translation (WMT-12). The corpus con-
sists of source-target pairs annotated with manual
QE labels (1-5 scores) indicating the post-editing
needed to correct the translations. Besides explicit
human judgements, the availability of post-edited
translations makes also possible to calculate the
actual HTER values (Snover et al., 2009), indicat-
ing the minimum edit distance between the ma-
chine translation and its manually post-edited ver-
sion in the [0,1] interval.

The second option is to automatically re-
annotate the same dataset, trying to produce labels
that reflect an objective and more reliable binary
distinction based on empirical observations.

Our analysis aims to answer the following ques-
tions:

1. Are human labels reliable and coherent
enough to train accurate binary models?

2. Are arbitrarily-set thresholds useful to parti-
tion QE data for this task?

3. Is it possible to obtain reliable binary annota-
tions from an automatic procedure?

Negative answers to the first two questions would
respectively call into question: i) the intuitive idea
that human labels are the most reliable for a super-
vised approach to binary QE, and ii) the possibility
that thresholds on a single metric (e.g. the HTER)
can be set to capture the subtle differences separat-
ing useful from useless translations. A positive an-
swer to the third question would open to the possi-
bility to create training datasets in a more coherent

2In the remainder of the paper we will consider as “good”
translations those for which post-editing requires a smaller
effort than translation from scratch. Conversely, we will label
as “bad” the translations that need complete rewriting.

and replicable way compared to current data anno-
tation methods. By answering these questions, this
paper provides the following main contributions:

• We show that training a binary classifier on
arbitrary partitions of an existing dataset is
difficult. Our experiments with the WMT-
12 corpus demonstrate that neither following
standard indications (e.g. “if more than 70%
of the MT output needs to be edited, a trans-
lation from scratch is necessary”)3, nor con-
sidering arbitrary HTER thresholds, it is pos-
sible to obtain accurate binary classifiers suit-
able for integration in a CAT environment;
• We propose a replicable automatic (hence

non subjective) method to re-annotate an ex-
isting dataset in a way that the resulting bi-
nary classifier outperforms those trained with
human labels.
• We show that, with our method, a smaller

amount of training data is sufficient to ob-
tain similar or better performance compared
to that of the human-annotated dataset used
for comparison.

2 Binary QE for CAT environments

QE has been mainly addressed as a classification
or regression task, where a quality score (respec-
tively an integer or a real value) has to be automat-
ically assigned to MT output sentences given their
source (Specia et al., 2010). Casting the problem
in this way, the integration of a QE component
in a CAT environment makes possible to present
translators with estimates of the expected quality
of each MT suggestion. Such intuitive solution,
however, disregards the fact that even precise QE
scores would not alleviate translators from the ef-
fort of reading useless MT output (or at least the
associated score).

A more effective alternative is to use the esti-
mated QE scores to filter out poor MT suggestions,
presenting only those worth for post-editing. Bi-
nary classification, however, has to confront with
the problem of setting reasonable cut-off criteria.
The arbitrary thresholds, used in several previous
works (Quirk, 2004; Specia et al., 2010; Specia
et al., 2011) are in fact hard to justify, and even
harder to learn from human-labelled training data.

3This was a guideline for the professional trans-
lators involved in the annotation of a previous ver-
sion of the dataset used for the WMT-12 evalua-
tion (see http://www.statmt.org/wmt12/
quality-estimation-task.html).
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On one side, for instance, there is no evi-
dence that the 70% HTER threshold used in some
datasets yields the optimal separation between ac-
ceptable and totally useless suggestions. Such ar-
bitrary criterion, based on the raw count of post-
editing operations, is likely to reflect a partial view
on a complex problem, disregarding important as-
pects such as the distribution of the corrections in
the MT output. However, in some cases, having
the first 30% of words correctly translated might
take less post-editing effort than having 50% of
correctly translated terms scattered throughout the
whole sentence. In these cases, a 70% HTER
threshold would wrongly consider useless trans-
lations as positive instances and vice-versa.

On the other side, when arbitrary thresholds are
used as annotation guidelines (Callison-Burch et
al., 2012), the moderate agreement between hu-
man judges might make manual labels ill-suited to
learn accurate models.

Under the constraints posed by a CAT envi-
ronment, where only useful suggestions can lead
to a significant productivity increase, the ideal
model should maximize the number of true posi-
tives (useful translations recognized as good) min-
imizing, at the same time, the number of false pos-
itives (useless translations recognized as good). To
this aim, the more the training data are partitioned
according to objective criteria, the higher the ex-
pected reliability of the corresponding cut-off and,
in turn, the higher the expected performance of the
binary classifier.

Focusing on these issues, the following sections
discuss various methods to obtain training data for
binary QE geared to the integration in a CAT en-
vironment. Partitions based on human judgements
from the WMT-12 dataset will be compared with
an automatic method to re-annotate the same cor-
pus. The suitability of the resulting training sets
for binary classification will be assessed by mea-
suring the performance of classifiers built from
each training set. Metrics sensitive to the number
of false positives will be used for this purpose.

3 Partitioning the WMT-12 dataset

Due to the lack of datasets annotated with ex-
plicit binary (good, bad) judgements about transla-
tion quality, the most intuitive way to obtain train-
ing data for our QE classifier is to adapt exist-
ing manually-labelled data. The reasonable size
of the WMT-12 dataset makes it a good candidate

for our purposes. The corpus consists of 2,254
English-Spanish news sentences (1,832 for train-
ing, 422 for test) produced by the Moses phrase-
based SMT system (Koehn et al., 2007) trained
on Europarl (Koehn, 2005) and News Commen-
taries corpora,4 along with their source sentences,
reference translations and post-edited translations.
Training and test instances have been annotated by
professional translators with scores (1 to 5) indi-
cating the estimated post-editing effort (percent-
age of MT output that has to be corrected). Ac-
cording to the proposed scheme, the highest score
indicates lowest effort (MT output requires little or
no editing), while the lowest score indicates that
the MT output needs to be translated from scratch.
To cope with systematic biases among the anno-
tators,5 the judgements were combined in a final
score obtained from their weighted average, re-
sulting in a labelled dataset with real numbers in
the [1, 5] interval as effort scores.

In order to obtain suitable data for binary QE,
the WMT-12 training set (1,832 instances) has
been partitioned in different ways, leaving the test
set for evaluation (see Section 5). The goal, for
each partition strategy, was to label as bad (the as-
signed label is -1) only the translations that need
complete rewriting, keeping all the other transla-
tions as good instances (labelled with +1). Consid-
ering the averaged effort scores, the actual human
judgements, and the HTER values calculated be-
tween the translations and the corresponding post-
edited version, we experimented with the follow-
ing three partition criteria.

Average effort scores (AES). Three partitions
have been generated based on the effort scores
of 2, 2.5, and 3, labelling the WMT-12 train-
ing instances with scores below or equal to each
threshold as negative examples (-1), and the in-
stances with scores above the threshold as posi-
tive examples (+1). Partitions with thresholds be-
low 2 were also considered, including the most
intuitive partition with cut-off set to 1. However,
the resulting number of negative instances, if any,
was too scarce, and the overall dataset too unbal-
anced, to make standard supervised learning meth-
ods effective The creation of highly unbalanced
data is a recurring issue for all the partition meth-

4http://www.statmt.org/wmt11/
translation-task.html#download

5Such biases support the idea that labelling translations
with quality scores is per se a highly subjective task.
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ods we applied to the WMT-12 corpus. Together
with the low homogeneity of human labels (even
for very poor translations the three judges do not
agree in assigning the lowest score), in most of
the cases the small number of low-quality transla-
tions in the dataset makes the negative class con-
siderably smaller than the positive one. This can
be observed in Table 1, which provides the to-
tal number of positive and negative instances for
each partition method. For instance, with our low-
est AES threshold (2) the total number of nega-
tive instances is 113, while the positive ones are
1,719. Although considering different cut-off cri-
teria aims to make our investigation more com-
plete, it’s also worth remarking that the higher the
threshold, the higher the distance of the result-
ing experimental setting from our target scenario.
While 2, as an effort score threshold, is likely
to reflect a reasonable separation between useless
and post-editable translations, higher values are in
principle more appropriate for “soft” separations
into worse versus better translations.

Human scores (HS). Five partitions have been
generated using the actual labels assigned by the
three annotators to each translation instead of the
average effort scores. In particular, we considered
the following score combinations (“X” stands for
any integer between 1 and 5): 1-X-X, 2-2-2, 2-
2-X, 2-3-3, 3-3-3. Also in this case, as shown
in Table 1, partitions based on lower scores lead
to highly unbalanced datasets of limited usability,
while those based on higher scores are increas-
ingly more distant to our application scenario.6

HTER scores (HTER). Seven partitions have
been generated considering the following HTER
thresholds: 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45.
In this case, being the HTER an error measure,
training instances with scores above or equal to
the threshold were labelled as negative examples
(-1), while instances with lower scores were la-
belled as positive examples (+1). Similar to the
other partition criteria, some of our threshold val-
ues reflect our task more closely than others, but
result in more unbalanced datasets. In particular,
thresholds around 0.7 substantially adhere to the
WMT-12 annotation guidelines (as far as transla-
tions that need complete rewriting are concerned)

6The partition most closely related to our task (i.e. 1-1-1)
was impossible to produce since none of the examples was
labelled with 1 by all the annotators. Even for 1-1-X, the
negative class contains only one example.

and produce training data with fewer negative in-
stances. Other thresholds, which is still worth ex-
ploring since we do not know the optimal cut-off
value, are in principle less suitable to our task but
produce more balanced training data.

Training instances
Average effort scores (AES) Positive Negative

2 1,719 113
2.5 1,475 357
3 1,194 638

Human scores (HS) Positive Negative
1-X-X 1,736 96
2-2-2 1,719 113
2-2-X 1,612 220
2-3-3 1,457 375
3-3-3 1,360 472

HTER scores (HTER) Positive Negative
0.75 1,798 34
0.7 1,786 46
0.65 1,756 76
0.6 1,708 124
0.55 1,653 179
0.5 1,531 301
0.45 1,420 412

Table 1: Number of positive/negative instances for
each partition of the WMT-12 training set.

4 Re-annotating the WMT-12 dataset

As an alternative to partitioning methods, we in-
vestigated the possibility to re-annotate the WMT-
12 training set with an automatic procedure.

4.1 Approach

Our approach, which does not involve subjec-
tive human judgements, is based on the observa-
tion of similarities and dissimilarities between an
automatic translation (TGT), its post-edited ver-
sion (PE) and the corresponding reference trans-
lation (RT). Such comparisons provide useful in-
dications about the behaviour of a post-editor
when correcting automatic translations and, in
turn, about MT output quality.

Typically, the PE version of a good-quality TGT
preserves some characteristics (e.g. lexical, struc-
tural) that indicate a moderate correction activity
by the post editor. Conversely, in the PE ver-
sion of a low-quality TGT, such characteristics
are more difficult to observe, indicating an in-
tense correction activity. At the two extremes, the
PE of a perfect TGT preserves all its characteris-
tics, while the PE of a useless TGT looses most
of them. In the first case TGT and PE are iden-
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tical, and their similarity is the highest possible
(i.e. sim(TGT, PE) = 1). In the second case,
TGT and PE show a degree of similarity close to
that of TGT and a completely rewritten transla-
tion featuring different lexical choices and struc-
ture. This is where reference translations come
into play: considering RT as a good example of
rewritten sentence,7 for low-quality TGT we will
have sim(TGT, PE) ≈ sim(TGT,RT ).

In light of these considerations, we hypothe-
size that the automatic re-annotation of WMT-12
training data can take advantage of a classifier that
learns a similarity threshold T such that:

• a PE sentence with sim(TGT, PE) ≤ T
will be considered as a rewritten translation
(hence TGT is useless, and the correspond-
ing source-TGT pair a negative example to
be labelled as “-1”);
• a PE sentence with sim(TGT, PE) > T

will be considered as a real post-edition
(hence TGT is useful for the post-editor, and
the corresponding source-TGT pair a positive
example to be labelled as “+1”).

Based on this hypothesis, to perform our au-
tomatic re-annotation procedure we: 1) create a
training set Z of positive and negative examples
(i.e. [TGT, correct translation] pairs, where cor-
rect translation is either a post-editing or a rewrit-
ten translation); 2) design a feature set capable
to capture different aspects of the similarity be-
tween TGT and correct translation; 3) build a bi-
nary classifier using Z; 4) use the classifier to label
the [TGT, PE] pairs as instances of post-editings
or rewritings; 5) assess the quality of the resulting
annotation.

4.2 Building the classifier

Training corpus. To build a classifier capable
of labelling PE sentences as rewritten/post-edited
material, we first created a set of positive and neg-
ative instances from the WMT-12 training set. For
each tuple [source, TGT, PE, RT] of the dataset,
one positive and one negative instance have been
respectively obtained as the combination of [TGT,
PE] and [TGT, RT]. Figure 1, which plots the dis-
tribution of positive and negative instances against
HTER, shows a fairly good separation between the

7Such assumption is supported by the fact that reference
sentences are, by definition, free translations manually pro-
duced without any influence from the target.
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Figure 1: Distribution of [TGT, PE] and [TGT,
RT] pairs plotted against the HTER.

two classes. This indicates that our use of the
references as examples of rewritten translations
builds on a reasonable assumption.

Features. Crucial to our classification task, a
number of features can be used to estimate sen-
tence similarity. Differently from the binary QE
task, where the possibility to catch common char-
acteristics between two sentences is limited by
language barriers, in our re-annotation task all the
features are extracted by comparing two monolin-
gual sentences (i.e. TGT and a correct translation,
either a PE or a RT). Although the problem of
measuring sentence similarity can be addressed
in many ways, the solutions should not overlook
the specificities of the task. In our case, for in-
stance, the scarce importance of the semantic as-
pect (TGT, PE and RT typically show a high se-
mantic similarity) makes features used for other
tasks (e.g. based on distributional similarity) less
effective than shallow features looking at the sur-
face form of the input sentences. Our problem
presents some similarities with the plagiarism de-
tection task, where subtle lexical and structural
similarities have to be identified to spot suspicious
plagiarized texts (Potthast et al., 2010). For this
reason, part of our features (e.g. ROUGE scores)
are inspired by research in such field (Chen et al.,
2010), while others have been designed ad-hoc,
based on the specific requirements of our task. The
resulting feature set aims to capture text similar-
ity by measuring word/n-gram matches, as well as
the level of sparsity and density of the common
words as a shallow indicator of structural similar-
ity. In total, from each [TGT, correct translation]
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pair, the following 22 features are extracted:

• Human-targeted Translation Error Rate –
HTER. The editing operations considered
are: shift, insertion, substitution and deletion.
• Number of words in common.
• Number of words in common, normalized by

TGT length and correct translation length (2
features).
• Number of words in TGT and in the cor-

rect translation (2 features).
• Size of the longest common subsequence.
• Size of the longest common subsequence,

normalized by TGT length.
• Aligned word density: total number of

aligned words,8 divided by the number of
aligned blocks (more than 1 aligned word).
• Unaligned word density: total number of un-

aligned words, divided by the number of un-
aligned blocks (more than 1 unaligned word).
• Normalized number of aligned blocks: total

number of aligned blocks, divided by TGT
length.
• Normalized number of unaligned blocks: to-

tal number of unaligned blocks, divided by
TGT length.
• Normalized density difference: difference

between aligned word density and unaligned
word density, divided by TGT length.
• Modified Lesk score (Lesk, 1986): sum of

the squares of the length of n-gram matches,
normalized by the product of the sentence
lengths.
• ROUGE-1/2/3/4: n-gram recall with n=1,...,4

(4 features).9

• ROUGE-L: size of longest common
subsequence, normalized by the cor-
rect translation length.
• ROUGE-W: the ROUGE-L using different

weights for consecutive matches of length L
(default weight = 1.2).
• ROUGE-S: the ROUGE-L allowing for the

presence of skip-bigrams (pairs of words,
even not adjacent, in their sentence order).
• ROUGE-SU: the extension of ROUGE-S

adding unigrams as counting unit.

8Monolingual stem-to-stem exact matches between TGT
and correct translation are inferred by computing the HTER,
as in (Blain et al., 2012).

9All ROUGE scores, described in (Lin, 2004), have been
calculated using the software available at http://www.
berouge.com.

To increase the capability of identifying simi-
lar sentences, all sentences are tokenized, lower-
cased and stemmed using the Snowball algorithm
(Porter, 2001).

Classifier. On the resulting corpus, an SVM
classifier has been trained using the LIBSVM tool-
box (Chang and Lin, 2011). The selection of the
kernel (linear) and the optimization of the param-
eters (C=0.8) were carried out through grid search
in 5-fold cross-validation.

Labelling the dataset. Using the best parameter
setting obtained, [TGT, PE] and [TGT, RT] pairs
have been re-labelled as post-editings or rewrit-
ings through 5 rounds of cross-validation. The fi-
nal label of each instance was set to the mode of
the predictions produced by each cross-validation
round. Since we assume that the quality of the tar-
get sentence can be inferred from the amount of
correction activity done by the post-editor, the la-
bels assigned to the [TGT, PE] pairs represent the
result of our re-annotation of the corpus into posi-
tive and negative instances.

At the end of the process, of the 1,832 [TGT,
PE] pairs of the WMT 2012 training set, 1.394 are
labelled as examples of post-editing (TGT is use-
ful), and 438 as examples of complete rewriting
(TGT is useless). Compared to the distribution
of positive and negative instances obtained with
most of the partition methods described in Section
3, our automatic annotation produces a fairly bal-
anced dataset. The resulting proportion of nega-
tive examples (∼1:3) is similar to what could be
reached only by partitions reflecting a “soft” sep-
aration into worse versus better translations rather
than a strict separation into useless versus useful
translations.10 In Figure 2, the labelling results
plotted against the HTER show that there is a quite
clear separation between [TGT, PE] pairs marked
as post-editings (lower HTER values) and pairs
marked as rewritings (higher HTER values). Such
separation corresponds to an HTER value around
0.4, which is significantly lower than the thresh-
old of 0.7 proposed by the WMT-12 guidelines as
a criterion to label sentences for which “a trans-
lation from scratch is necessary”. This confirms
that our separation differs from those produced by
partition methods based on human annotations or
arbitrary HTER thresholds. Furthermore, our au-

10Such partitions are: average effort scores = 3, human
scores = 3-3-3, HTER score = 0.45.
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Figure 2: TGT-PE classification in post-editings
and rewritings.

tomatic annotation procedure relies on the contri-
bution of features designed to capture different as-
pects of the similarity between the TGT and a cor-
rect translation, while some of the partition meth-
ods discussed in Section 3 rely on thresholds set on
a single score (e.g. HTER). Considering the many
facets of the binary QE problem, we expect that
our features are more effective to deal with latent
aspects disregarded by such thresholds.

5 Experiments and results

At this point, the question is: are the automatically
labelled data more suitable than partitions based
on human labels to train a binary QE classifier?
To answer this question, all the proposed separa-
tions of the WMT-12 training set have been eval-
uated on different test sets. For each separation
we trained a binary classifier able to assign a label
(good or bad) to unseen source-target pairs. Since
the classifiers use the same algorithm and feature
set, differences in performance will mainly depend
on the quality of the training data on which they
are built. Using task-oriented metrics sensitive to
the number of false positives, results highlighting
such differences will indicate the best separation.

5.1 Experimental Setting

Binary QE classifier. Each separation of the
WMT-12 training data was used to train a binary
SVM classifier. Different kernels and parameters
were optimized through a grid search in 5-fold
cross-validation on each training set. Being the
number of positive and negative training instances
highly unbalanced, the best models were selected

optimizing a metric that takes into account the
number of true and false positives (see below).

Seventeen features proposed in (Specia et al.,
2009) were extracted from each source-target pair.
This feature set, fully described in (Callison-
Burch et al., 2012), mainly takes into account the
complexity of the source sentence (e.g. number
of tokens, number of translations per source word)
and the fluency of the target translation (e.g. lan-
guage model probabilities). Results of the WMT
2012 QE task shown that these “baseline” features
are particularly competitive in the regression task,
with only few systems able to beat them. All the
features are extracted using the Quest software11

and the model files released by the organizers of
the WMT 2013 workshop.

Test sets. To obtain different separations be-
tween good and bad translations, artificial test sets
have been created using arbitrary thresholds on
the HTER (the same used to partition the train-
ing set on a HTER basis) and the post-editing time
(PET).12 Two different datasets were split: i) the
WMT-12 test (422 source, target, post-edited and
reference sentences); ii) the WMT-13 training set
for Task 1.3 (800 source, target and post-edited
sentences labelled with PET). The first dataset, the
most similar to the WMT-12 training set, should
better reflect (and reward) the HTER-based parti-
tions proposed in Section 3. The WMT-13 dataset
contains sentences translated with a different con-
figuration (data and parameters) of the SMT en-
gine. This can result in different HTER-based par-
titions in good and bad, useful to test the portabil-
ity of our automatic re-annotation method across
different datasets. Finally, testing on data parti-
tions based on PET allows us to check the stability
of the automatic re-annotation method when eval-
uated on a test set divided according to a different
concept of translation quality. In the end, the com-
bination of different partition methods, thresholds
and datasets results in 21 different test sets (see
Table 2).

Evaluation metrics. F-score and accuracy are
the classic evaluation metrics used in classifica-
tion. In our evaluation, however, they would al-
ways result in high uninformative values due to
the unbalanced nature of the test sets (positive in-
stances � negative instances). In order to bet-

11http://www.quest.dcs.shef.ac.uk/
12PET is the time spent by a post-editor to transform the

target into a publishable sentence.

246



Test instances
WMT-12 HTER Positive Negative

0.45 289 133
0.5 319 103
0.55 352 70
0.6 371 51
0.65 386 36
0.70 398 24
0.75 406 16

WMT-13 Task 1.3 HTER Positive Negative
0.45 582 218
0.5 622 178
0.55 695 105
0.6 724 76
0.65 748 52
0.70 763 37
0.75 773 27

WMT-13 Task 1.3 PET Positive Negative
4 499 301

4.16∗ 517 283
4.50 554 246

5 594 206
6 659 141
7 698 102
8 727 73

Table 2: Number of positive and negative in-
stances for each partition of the WMT-12 test set
and WMT-13 training set. “*”: Average PET com-
puted on all the instances in the WMT-13 dataset.

ter understand the real quality of the classifica-
tion, we hence opted for two task-oriented evalua-
tion metrics sensitive to the number of false posi-
tives (the main issue in a CAT environment, where
false positives and true positives should be re-
spectively minimized and maximized). These are:
i) the weighted combination of the false positive
rate (FPR) and false discovery rate (FDR) (Ben-
jamini and Hochberg, 1995), and ii) the weighed
average of sensitivity and specificity (also called
balanced/weighted accuracy). FPR measures the
level of false positives, but does not provide infor-
mation about the number of true positives. For this
reason, we combined it with FDR (1-precision),
which indirectly controls the level of true posi-
tives. FPR and FDR were equally weighted in
the average; lower values indicate good perfor-
mance. Furthermore, in our scenario it is desir-
able to have a classifier with high prediction ac-
curacy over the minority class (specificity), while
maintaining reasonable accuracy for the majority
class (sensitivity). Weighted accuracy is useful in
such situations. To better asses the performance on
the minority (negative) class, we hence gave more

importance to specificity (0.7 vs 0.3). As regards
weighted accuracy higher values in indicate bet-
ter performance. Penalizing majority voting clas-
sifiers, both metrics are particularly appropriate in
our framework. Besides evaluation, the weighted
average of FPR and FDR was also used to tune the
parameters of the SVM classifier.

5.2 Results
Table 3 presents the results achieved by classifiers
trained on different datasets, on the 21 splits pro-
duced from the test sets used for evaluation.

Although the total number of classifiers tested
is 16 (15 resulting from partitions based on human
labels, and 1 obtained with our automatic annota-
tion method), most of them are not present in the
table since they predict the majority class for all
the test points. These are, in general, trained on
highly unbalanced training sets where the number
of negative samples is really small. However, it
is interesting to note that increasing the number
of instances in the negative class does not always
result in a better classifier. For instance, the classi-
fier built on an HTER separation with threshold at
0.55 performs majority voting even if it is built on
a more balanced (but probably more noisy) train-
ing set than the classifier obtained with threshold
at 0.6. This suggests that the quality of the sep-
aration is as important as the actual proportion of
positive and negative instances.

On all test sets, and for both the evaluation met-
rics used, the results achieved by the classifier built
from the automatically annotated training set (AA)
produces lower error rates (Weighted FPR-FDR)
and higher accuracy (Weighted Accuracy), outper-
forming all the other classifiers. The effective-
ness of the automatic annotation is confirmed by
the fact that classifiers 3 (based on the average
of effort scores - AES) and 3-3-3 (based on the
actual human scores - HS), which are trained on
more balanced training sets, achieve worse perfor-
mances than the AA classifier.13

Results on the WMT-13 PET test set are not as
good as in the other two test sets. This shows that
test data labelled in terms of time are more dif-
ficult to be correctly classified compared to those
based on the HTER. This can be explained consid-
ering the intrinsic differences between the HTER
and the PET as approximations of the post-editing

13The distribution of positive/negative instances in the
training sets is: 1194/638 for classifier 3, 1360/472 for clas-
sifier 3-3-3, 1394/438 for classifier AA.
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Weighted Training: WMT-12 Separations
FPR-FDR 3 2-2-X 2-3-3 3-3-3 0.5 0.6 AA

AES HS HS HS HTER HTER
Te

st
:W

M
T-

12
H

T
E

R 0.45 0.61 0.66 0.66 0.66 0.66 0.66 0.55
0.5 0.57 0.62 0.62 0.62 0.62 0.62 0.49
0.55 0.52 0.58 0.58 0.58 0.58 0.58 0.42
0.6 0.5 0.56 0.56 0.56 0.56 0.56 0.4
0.65 0.5 0.54 0.54 0.54 0.54 0.54 0.39
0.7 0.49 0.53 0.53 0.53 0.53 0.53 0.39
0.75 0.49 0.52 0.52 0.52 0.52 0.52 0.35

Te
st

:W
M

T-
13

H
T

E
R 0.45 0.59 0.63 0.63 0.64 0.64 0.63 0.54

0.5 0.57 0.6 0.6 0.61 0.61 0.6 0.5
0.55 0.51 0.56 0.56 0.57 0.57 0.56 0.41
0.6 0.49 0.54 0.54 0.55 0.55 0.54 0.37
0.65 0.47 0.53 0.53 0.53 0.53 0.53 0.33
0.7 0.44 0.52 0.52 0.52 0.52 0.52 0.29
0.75 0.44 0.52 0.52 0.52 0.52 0.52 0.28

Te
st

:W
M

T-
13

PE
T

4 0.61 0.68 0.68 0.69 0.69 0.68 0.58
4.16 0.61 0.67 0.67 0.67 0.67 0.67 0.56
4.5 0.58 0.65 0.64 0.65 0.65 0.65 0.54
5 0.55 0.63 0.62 0.63 0.63 0.62 0.51
6 0.49 0.58 0.58 0.58 0.58 0.58 0.45
7 0.45 0.55 0.55 0.56 0.56 0.55 0.43
8 0.45 0.54 0.54 0.54 0.54 0.54 0.41

Weighted Training: WMT-12 Separations
Accuracy 3 2-2-X 2-3-3 3-3-3 0.5 0.6 AA

AES HS HS HS HTER HTER

Te
st

:W
M

T-
12

H
T

E
R 0.45 0.35 0.3 0.3 0.3 0.3 0.3 0.41

0.5 0.35 0.3 0.3 0.3 0.3 0.3 0.44
0.55 0.37 0.3 0.3 0.3 0.3 0.3 0.48
0.6 0.37 0.3 0.3 0.3 0.3 0.3 0.49
0.65 0.35 0.3 0.3 0.3 0.3 0.3 0.47
0.7 0.35 0.3 0.3 0.3 0.3 0.3 0.45
0.75 0.33 0.3 0.3 0.3 0.3 0.3 0.49

Te
st

:W
M

T-
13

H
T

E
R 0.45 0.33 0.31 0.31 0.3 0.3 0.31 0.4

0.5 0.34 0.31 0.31 0.3 0.3 0.31 0.42
0.55 0.35 0.31 0.31 0.3 0.3 0.31 0.48
0.6 0.35 0.31 0.31 0.3 0.3 0.31 0.51
0.65 0.36 0.3 0.3 0.3 0.3 0.3 0.54
0.7 0.39 0.3 0.3 0.3 0.3 0.3 0.56
0.75 0.38 0.3 0.3 0.3 0.3 0.3 0.59

Te
st

:W
M

T-
13

PE
T

4 0.37 0.3 0.31 0.3 0.3 0.3 0.4
4.16 0.37 0.3 0.31 0.3 0.3 0.3 0.4
4.5 0.37 0.3 0.31 0.3 0.3 0.3 0.4
5 0.38 0.31 0.31 0.3 0.3 0.31 0.41
6 0.41 0.31 0.31 0.3 0.3 0.31 0.43
7 0.42 0.31 0.31 0.3 0.3 0.31 0.44
8 0.4 0.31 0.31 0.3 0.3 0.31 0.43

Table 3: Weighted FPR-FDR (left table) and weighted Accuracy (right table) obtained by the binary QE
classifiers trained on different separations of the WMT-12 training set. Several arbitrary partitions of the
WMT-12 Test set and WMT-13 Training set are considered.

effort, as pointed out by several recent works (Spe-
cia, 2011; Koponen, 2012).

Comparing the results calculated with the two
metrics, we note that weighted accuracy seems to
be less sensible to small variations in terms of true
and false negatives returned by the classifier, even
if the specificity (accuracy on our minority class)
is weighted more than sensitivity (accuracy on our
majority class). This often results in scores very
close (differences ≤ 10−3) to the accuracy ob-
tained by majority voting classification (0.3).

Overall, our experiments demonstrate that the
proposed automatic separation method is more ef-
fective than arbitrary partitions of datasets anno-
tated with subjective human judgements.

5.3 Learning Curve

Our automatic re-annotation approach requires
post-edited and reference sentences. Although all
the datasets annotated for QE include post-edited
sentences, this is not always true for the refer-
ences. The cost of having both resources is in
fact not negligible. For this reason, we investi-
gated the minimal number of training data needed
to re-annotate the WMT-12 training set without
altering performance on binary classification. To
this aim, we selected two of the test sets on which
our re-annotation method produces classifiers with

high performance results (WMT-13 HTER 0.6 and
0.75), and measured score variations with increas-
ing amounts of data.

Nine subsets of the WMT-12 training set cor-
pus were created (with 10%, 20%,..., 100% of the
dataset) by sub-sampling sentences from a uni-
form distribution. The process was iterated 10
times. Then, for each subset, a new re-annotation
process was run, the resulting training set was used
to build the relative binary QE classifier, which
was eventually evaluated on the test set in terms of
weighted FPR-FDR. Figures 3 and 4 show the ob-
tained learning curves. Each point is the average
result of the 10 runs; the error bars show ±1std.

As can be seen from both curves, performance
results with 60% of the training data are already
comparable with those obtained using the whole
training data. Similar trends have been observed
for several learning curves created with different
test sets. This shows that, besides avoiding the
use of human labelled data, our approach allows
to drastically reduce the amount of training in-
stances. Considering the high costs of collecting
post-editions, and the fact that reference transla-
tions can be taken from parallel corpora, our solu-
tion represents a viable way to overcome the lack
of training data for binary QE geared towards in-
tegration in a CAT environment.
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Figure 3: Learning curve for WMT-13 HTER 0.60.
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Figure 4: Learning curve for WMT-13 HTER 0.75.

6 Conclusion

We presented a task-oriented analysis of the use-
fulness of human-labelled data for binary qual-
ity estimation. Our target scenario is computer-
assisted translation, which calls for solutions to
present human translators with useful MT sugges-
tions (i.e. easier to correct than to rewrite from
scratch). Within this framework, the integration
of binary classifiers capable to distinguish “good”
(useful) from “bad” (useless) suggestions would
make possible to significantly increase translators’
productivity. Such binary classifiers, however,
need labelled training data (possibly of good qual-
ity) that are currently not available.

An intuitive solution to fill this gap is to take
advantage of an existing dataset, adapting its man-
ual annotations to our task. Exploring this solu-
tion (the first contribution of this paper) has to
face problems related to the subjectivity of human
judgements about translation quality, and the re-
sulting variability in the annotation. In particular,
our experiments with the WMT-12 dataset show
that any adaptation (either based on human judge-
ments or arbitrarily-set HTER thresholds) collides
with the problem of setting reasonable partition
criteria. Our results suggest that the subtle dif-
ferences between useful and useless translations
make subjective human judgements inadequate to
learn effective models.

Instead of relying on manually-assigned qual-
ity labels, an alternative solution to the problem
is to re-annotate an existing dataset. Proposing
an automatic way to do that (the second contri-
bution of this paper), we argue that reliable data
separations into positive and negative examples

can be obtained by measuring the similarities be-
tween: i) automatic translations and post-editings,
and ii) automatic translations and their references.
Our results demonstrate that binary classifiers built
from training data produced with our supervised
method are less prone to the misclassification of
bad suggestions.

As in any supervised learning framework, the
amount of data needed to obtain good results is of
crucial importance. By analysing the demand of
our automatic annotation method in terms of train-
ing data (the third contribution of this paper), we
show that competitive results can be obtained with
a fraction of the data needed by methods based on
human labels. Our results indicate that a good-
quality training set for binary classification can
be obtained with 40% less instances of [training,
post edited sentence, reference sentence], totally
avoiding manually-assigned quality judgements.

Our future works will address the improvement
of the automatic annotation procedure using super-
vised methods suitable to learn from unbalanced
training sets (e.g. one-class SVM, weighted ran-
dom forests), and the integration of new features
(e.g. GTM, meteor) to refine our classification of a
correct sentence into rewritten/post-edited. Then,
to boost binary QE results on the resulting corpora,
the “baseline” features used for experiments in this
paper will be extended with new features explored
in recent works (Mehdad et al., 2012a; de Souza
et al., 2013; Turchi and Negri, 2013).
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