
Proceedings of the Joint 5th Workshop on Statistical Machine Translation and MetricsMATR, pages 409–417,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Improved Translation with Source Syntax Labels
Hieu Hoang

School of Informatics
University of Edinburgh

h.hoang@sms.ed.ac.uk

Philipp Koehn
School of Informatics

University of Edinburgh
pkoehn@inf.ed.ac.uk

Abstract

We present a new translation model
that include undecorated hierarchical-style
phrase rules, decorated source-syntax
rules, and partially decorated rules.

Results show an increase in translation
performance of up to 0.8% BLEU for
German–English translation when trained
on the news-commentary corpus, using
syntactic annotation from a source lan-
guage parser. We also experimented with
annotation from shallow taggers and found
this increased performance by 0.5% BLEU.

1 Introduction

Hierarchical decoding is usually described as a
formally syntactic model without linguistic com-
mitments, in contrast with syntactic decoding
which constrains rules and production with lin-
guistically motivated labels. However, the decod-
ing mechanism for both hierarchical and syntactic
systems are identical and the rule extraction are
similar.

Hierarchical and syntax statistical machine
translation have made great progress in the last
few years and can claim to represent the state of
the art in the field. Both use synchronous con-
text free grammar (SCFG) formalism, consisting
of rewrite rules which simultaneously parse the in-
put sentence and generate the output sentence. The
most common algorithm for decoding with SCFG
is currently CKY+ with cube pruning works for
both hierarchical and syntactic systems, as imple-
mented in Hiero (Chiang, 2005), Joshua (Li et al.,
2009), and Moses (Hoang et al., 2009)

Rewrite rules in hierarchical systems have gen-
eral applicability as their non-terminals are undec-
orated, giving hierarchical system broad coverage.
However, rules may be used in inappropriate sit-
uations without the labeled constraints. The gen-
eral applicability of undecorated rules create spu-
rious ambiguity which decreases translation per-
formance by causing the decoder to spend more
time sifting through duplicate hypotheses. Syntac-
tic systems makes use of linguistically motivated
information to bias the search space at the expense
of limiting model coverage.

This paper presents work on combining hier-
archical and syntax translation, utilizing the high
coverage of hierarchical decoding and the in-
sights that syntactic information can bring. We
seek to balance the generality of using undeco-
rated non-terminals with the specificity of labeled
non-terminals. Specifically, we will use syntac-
tic labels from a source language parser to label
non-terminal in production rules. However, other
source span information, such as chunk tags, can
also be used.

We investigate two methods for combining the
hierarchical and syntactic approach. In the first
method, syntactic translation rules are used con-
currently with a hierarchical phrase rules. Each
ruleset is trained independently and used concur-
rently to decode sentences. However, results for
this method do not improve.

The second method uses one translation model
containing both hierarchical and syntactic rules.
Moreover, an individual rule can contain both
decorated syntactic non-terminals, and undeco-
rated hierarchical-style non-terminals (also, the
left-hand-side non-terminal may, or may not be
decorated). This results in a 0.8% improvement
over the hierarchical baseline and analysis suggest
that long-range ordering has been improved.

We then applied the same methods but using
linguistic annotation from a chunk tagger (Abney,
1991) instead of a parser and obtained an improve-
ment of 0.5% BLEU over the hierarchical base-
line, showing that gains with additional source-
side annotation can be obtained with simpler tools.

2 Past Work

Hierarchical machine translation (Chiang, 2005)
extends the phrase-based model by allowing the
use of non-contiguous phrase pairs (’production
rules’). It promises better re-ordering of transla-
tion as the reordering rules are an implicit part of
the translation model. Also, hierarchical rules fol-
low the recursive structure of the sentence, reflect-
ing the linguistic notion of language.

However, the hierarchical model has several
limitations. The model makes no use of linguis-
tic information, thus creating a simple model with
broad coverage. However, (Chiang, 2005) also
describe heuristic constraints that are used during
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rule extraction to reduce spurious ambiguity. The
resulting translation model does reduces spurious
ambiguity but also reduces the search space in an
arbitrary manner which adversely affects transla-
tion quality.

Syntactic labels from parse trees can be used
to annotate non-terminals in the translation model.
This reduces incorrect rule application by restrict-
ing rule extraction and application. However,
as noted in (Ambati and Lavie, 2008) and else-
where,the naı̈ve approach of constraining every
non-terminal to a syntactic constituent severely
limits the coverage of the resulting grammar,
therefore, several approaches have been used to
improve coverage when using syntactic informa-
tion.

Zollmann and Venugopal (2006) allow rules to
be extracted where non-terminals do not exactly
span a target constituent. The non-terminals are
then labeled with complex labels which amalga-
mates multiple labels in the span. This increase
coverage at the expense of increasing data sparsity
as the non-terminal symbol set increases dramati-
cally. Huang and Chiang (2008) use parse infor-
mation of the source language, production rules
consists of source tree fragments and target lan-
guages strings. During decoding, a packed for-
est of the source sentence is used as input, the
production rule tree fragments are applied to the
packed forest. Liu et al. (2009) uses joint decod-
ing with a hierarchical and tree-to-string model
and find that translation performance increase for a
Chinese-English task. Galley et al. (2004) creates
minimal translation rules which can explain a par-
allel sentence pair but the rules generated are not
optimized to produce good translations or cover-
age in any SMT system. This work was extended
and described in (Galley et al., 2006) which cre-
ates rules composed of smaller, minimal rules, as
well as dealing with unaligned words. These mea-
sures are essential for creating good SMT systems,
but again, the rules syntax are strictly constrained
by a parser.

Others have sought to add soft linguistic con-
straints to hierarchical models using addition fea-
ture functions. Marton and Resnik (2008) add fea-
ture functions to penalize or reward non-terminals
which cross constituent boundaries of the source
sentence. This follows on from earlier work in
(Chiang, 2005) but they see gains when finer grain
feature functions which different constituency
types. The weights for feature function is tuned
in batches due to the deficiency of MERT when
presented with many features. Chiang et al. (2008)
rectified this deficiency by using the MIRA to tune

all feature function weights in combination. How-
ever, the translation model continues to be hierar-
chical.

Chiang et al. (2009) added thousands of
linguistically-motivated features to hierarchical
and syntax systems, however, the source syntax
features are derived from the research above. The
translation model remain constant but the parame-
terization changes.

Shen et al. (2009) discusses soft syntax con-
straints and context features in a dependency tree
translation model. The POS tag of the target head
word is used as a soft constraint when applying
rules. Also, a source context language model and
a dependency language model are also used as fea-
tures.

Most SMT systems uses the Viterbi approxi-
mation whereby the derivations in the log-linear
model is not marginalized, but the maximum
derivation is returned. String-to-tree models build
on this so that the most probable derivation, in-
cluding syntactic labels, is assumed to the most
probable translation. This fragments the deriva-
tion probability and the further partition the search
space, leading to pruning errors. Venugopal et al.
(2009) attempts to address this by efficiently es-
timating the score over an equivalent unlabeled
derivation from a target syntax model.

Ambati and Lavie (2008); Ambati et al. (2009)
notes that tree-to-tree often underperform models
with parse tree only on one side due to the non-
isomorphic structure of languages. This motivates
the creation of an isomorphic backbone into the
target parse tree, while leaving the source parse
unchanged.

3 Model

In extending the phrase-based model to the hier-
archical model, non-terminals are used in transla-
tion rules to denote subphrases. Hierarchical non-
terminals are undecorated so are unrestricted to the
span they cover. In contrast, SCFG-based syntac-
tic models restrict the extraction and application
of non-terminals, typically to constituency spans
of a parse tree or forest. Our soft syntax model
combine the hierarchical and source-syntactic ap-
proaches, allowing translation rules with undeco-
rated and decorated non-terminals with informa-
tion from a source language tool.

We give an example of the rules extracted from
an aligned sentence in Figure 1, with a parse tree
on the source side.

Lexicalized rules with decorated non-terminals
are extracted, we list five (non-exhaustive) exam-
ples below.
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Figure 1: Aligned parsed sentence

NP → Musharrafs letzter Akt

# Musharraf ′s Last Act

NP → NE1 letzter Akt # X1 Last Act

NP → NE1 ADJA2 Akt # X1 X2 Act

NP → NE1 letzter NN2 # X1 Last X2

TOP → NE1 ADJA2 Akt ? # X1 X2 Act ?

Hierarchical style rules are also extracted where
the span doesn’t exactly match a parse constituent.
We list 2 below.

X → letzter Akt # Last Act

X → letzter X1 # Last X1

Unlexicalized rules with decorated non-
terminals are also extracted:

TOP → NP1 PUNC2 # X1 X2

NP → NE1 ADJA2 NN3 # X1 X2 X3

Rules are also extracted which contains a mix-
ture of decorated and undecorated non-terminals.
These rules can also be lexicalized or unlexical-
ized. A non-exhaustive sample is given below:

X → ADJA1 Akt # X1 Act

NP → NE1 X2 # X1 X2

TOP → NE1 letzter X2 # X1 Last X2

At decoding time, the parse tree of the input
sentence is available to the decoder. Decorated
non-terminals in rules must match the constituent
span in the input sentence but the undecorated X
symbol can match any span.

Formally, we model translation as a string-
to-string translation using a synchronous CFG
that constrain the application of non-terminals to
matching source span labels. The source words
and span labels are represented as an unweighted
word lattice, < V,E >, where each edge in the
lattice correspond to a word or non-terminal label
over the corresponding source span. In the soft
syntax experiments, edges with the default source
label, X , are also created for all spans. Nodes
in the lattice represent word positions in the sen-
tence.

We encode the lattice in a chart, as described
in (Dyer et al., 2008). A chart is is a tuple of 2-
dimensional matrices < F,R >. Fi,j is the word
or non-terminal label of the jth transition starting
word position i. Ri,j is the end word position of
the node on the right of the jth transition leaving
word position i.

The input sentence is decoded with a set of
translation rules of the form

X →< αLs, γ,∼>

where α and γ and strings of terminals and non-
terminals. Ls and the string α are drawn from the
same source alphabet, ∆s. γ is the target string,
also consisting of terminals and non-terminals. ∼
is the one-to-one correspondence between non-
terminals in α and γ. Ls is the left-hand-side of
the source. As a string-to-string model, the left-
hand-side of the target is always the default target
non-terminal label, X .

Decoding follows the CKY+ algorithms which
process contiguous spans of the source sentence
bottom up. We describe the algorithm as inference
rules, below, omitting the target side for brevity.

Initialization

[X → •αLs, i, i]
(X → αLs) ∈ G

Terminal Symbol

[X → α • Fj,kβLs, i, j]
[X → αFj,k • βLs, i, j + 1]

Non-Terminal Symbol

[X → α • Fj,kβLs, i, j] [X, j,Rj,k]

[X → αFj,k • βLs, i, Rj,k]
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Left Hand Side

[X → α • Ls, i, Ri,j ] [Fi,j = Ls]

[X → αLs•, i, Ri,j ]

Goal
[X → αLs•, 0, |V | − 1]

This model allows translation rules to take ad-
vantage of both syntactic label and word context.
The presence of default label edges between every
node allows undecorated non-terminals to be ap-
plied to any span, allowing flexibility in the trans-
lation model.

This contrasts with the approach by (Zollmann
and Venugopal, 2006) in attempting to improve the
coverage of syntactic translation. Rather than cre-
ating ad-hoc schemes to categories non-terminals
with syntactic labels when they do not span syn-
tactic constituencies, we only use labels that are
presented by the parser or shallow tagger. Nor do
we try to expand the space where rules can ap-
ply by propagating uncertainty from the parser in
building input forests, as in (Mi et al., 2008), but
we build ambiguity into the translation rule.

The model also differs from (Marton and
Resnik, 2008; Chiang et al., 2008, 2009) by adding
informative labels to rule non-terminals and re-
quiring them to match the source span label. The
soft constraint in our model pertain not to a ad-
ditional feature functions based on syntactic infor-
mation, but to the availability of syntactic and non-
syntactic informed rules.

4 Parameterization

In common with most current SMT systems, the
decoding goal of finding the most probable target
language sentence t̂, given a source language sen-
tence s

t̂ = argmaxt p(t|s) (1)

The argmax function defines the search objec-
tive of the decoder. We estimate p(t|s) by decom-
posing it into component models

p(t|s) =
1

Z

∏
m

h′
m(t, s)λm (2)

where h′
m(t, s) is the feature function for compo-

nent m and λm is the weight given to component
m. Z is a normalization factor which is ignored in
practice. Components are translation model scor-
ing functions, language model, and other features.

The problem is typically presented in log-space,
which simplifies computations, but otherwise does

not change the problem due to the monotonicity of
the log function (hm = log h′

m)

log p(t|s) =
∑
m

λm hm(t, s) (3)

An advantage of our model over (Marton and
Resnik, 2008; Chiang et al., 2008, 2009) is the
number of feature functions remains the same,
therefore, the tuning algorithm does not need to be
replaced; we continue to use MERT (Och, 2003).

5 Rule Extraction
Rule extraction follows the algorithm described in
(Chiang, 2005). We note the heuristics used for hi-
erarchical phrases extraction include the following
constraints:

1. all rules must be at least partially lexicalized,
2. non-terminals cannot be consecutive,
3. a maximum of two non-terminals per rule,
4. maximum source and target span width of 10

word
5. maximum of 5 source symbols

In the source syntax model, non-terminals are re-
stricted to source spans that are syntactic phrases
which severely limits the rules that can be ex-
tracted or applied during decoding. Therefore, we
can adapt the heuristics, dropping some of the con-
straints, without introducing too much complexity.

1. consecutive non-terminals are allowed
2. a maximum of three non-terminals,
3. all non-terminals and LHS must span a parse

constituent

In the soft syntax model, we relax the constraint
of requiring all non-terminals to span parse con-
stituents. Where there is no constituency spans,
the default symbol X is used to denote an undeco-
rated non-terminal. This gives rise to rules which
mixes decorated and undecorated non-terminals.

To maintain decoding speed and minimize spu-
rious ambiguity, item (1) in the syntactic extrac-
tion heuristics is adapted to prohibit consecutive
undecorated non-terminals. This combines the
strength of syntactic rules but also gives the trans-
lation model more flexibility and higher coverage
from having undecorated non-terminals. There-
fore, the heuristics become:

1. consecutive non-terminals are allowed, but
consecutive undecorated non-terminals are
prohibited

2. a maximum of three non-terminals,
3. all non-terminals and LHS must span a parse

constituent
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5.1 Rule probabilities
Maximum likelihood phrase probabilities, p(̄t|̄s),
are calculated for phrase pairs, using fractional
counts as described in (Chiang, 2005). The max-
imum likelihood estimates are smoothed using
Good-Turing discounting (Foster et al., 2006). A
phrase count feature function is also create for
each translation model, however, the lexical and
backward probabilities are not used.

6 Decoding

We use the Moses implementation of the SCFG-
based approach (Hoang et al., 2009) which sup-
port hierarchical and syntactic training and decod-
ing used in this paper. The decoder implements
the CKY+ algorithm with cube pruning, as well as
histogram and beam pruning, all pruning param-
eters were identical for all experiments for fairer
comparison.

All non-terminals can cover a maximum of 7
source words, similar to the maximum rule span
feature other hierarchical decoders to speed up de-
coding time.

7 Experiments

We trained on the New Commentary 2009 cor-
pus1, tuning on a hold-out set. Table 1 gives more
details on the corpus. nc test2007 was used for
testing.

German English
Train Sentences 82,306

Words 2,034,373 1,965,325
Tune Sentences 2000
Test Sentences 1026

Table 1: Training, tuning, and test conditions

The training corpus was cleaned and filtered us-
ing standard methods found in the Moses toolkit
(Koehn et al., 2007) and aligned using GIZA++
(Och and Ney, 2003). Standard MERT weight tun-
ing was used throughout. The English half of the
training data was also used to create a trigram lan-
guage model which was used for each experiment.
All experiments use truecase data and results are
reported in case-sensitive BLEU scores (Papineni
et al., 2001).

The German side was parsed with the Bitpar
parser2. 2042 sentences in the training corpus
failed to parse and were discarded from the train-
ing for both hierarchical and syntactic models to

1http://www.statmt.org/wmt09/
2http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html

# Model % BLEU
Using parse tree

1 Hierarchical 15.9
2 Syntax rules 14.9
3 Joint hier. + syntax rules 16.1
4 Soft syntax rules 16.7

Using chunk tags
5 Hierarchical 16.3
6 Soft syntax 16.8

Table 2: German–English results for hierarchical
and syntactic models, in %BLEU

ensure that train on identical amounts of data.
Similarly, 991 out of 1026 sentences were parsable
in the test set. To compare like-for-like, the base-
line translates the same 991 sentences, but evalu-
ated over 1026 sentences. (In the experiments with
chunk tags below, all 1026 sentences are used).

We use as a baseline the vanilla hierarchical
model which obtained a BLEU score of 15.9%
(see Table 2, line 1).

7.1 Syntactic translation
Using the naı̈ve translation model constrained
with syntactic non-terminals significantly de-
creases translation quality, Table 2, line 2. We
then ran hierarchical concurrently with the syntac-
tic models, line 3, but see little improvement over
the hierarchical baseline. However, we see a gain
of 0.8% BLEU when using the soft syntax model.

7.2 Reachability
The increased performance using the soft syn-
tax model can be partially explained by studying
the effect of changes to the extraction and decod-
ing algorithms has to the capacity of the transla-
tion pipeline. We run some analysis in which we
trained the phrase models with a corpus of one
sentence and attempt to decode the same sentence.
Pruning and recombination were disabled during
decoding to negate the effect of language model
context and model scores.

The first thousand sentences of the training cor-
pus was analyzed, Table 3. The hierarchical model
successfully decode over half of the sentences
while a translation model constrained by a source
syntax parse tree manages only 113 sentences, il-
lustrating the severe degradation in coverage when
a naive syntax model is used.

Decoding with a hierarchical and syntax model
jointly (line 3) only decode one extra sentence
over the hierarchical model, suggesting that the
expressive power of the hierarchical model almost

413



# Model Reachable sentences
1 Hierarchical 57.8%
2 Syntax rules 11.3%
3 Joint hier. + syntax rules 57.9%
4 Soft syntax rules 58.5%

Table 3: Reachability of 1000 training sentences:
can they be translated with the model?

Figure 2: Source span lengths

completely subsumes that of the syntactic model.
The MERT tuning adjust the weights so that the
syntactic model is very rarely applied during joint
decoding, suggesting that the tuning stage prefers
the broader coverage of the hierarchical model
over the precision of the syntactic model.

However, the soft syntax model slightly in-
creases the reachability of the target sentences,
lines 4.

7.3 Rule Span Width
The soft syntactic model contains rules with three
non-terminals, as opposed to 2 in the hierarchical
model, and consecutive non-terminals in the hope
that the rules will have the context and linguistic
information to apply over longer spans. There-
fore, it is surprising that when decoding with a
soft syntactic grammar, significantly more words
are translated singularly and the use of long span-
ning rules is reduced, Figure 2.

However, looking at the usage of the glue rules
paints a different picture. There is significantly
less usage of the glue rules when decoding with
the soft syntax model, Figure 3. The use of
the glue rule indicates a failure of the translation
model to explain the translation so the decrease
in its usage is evidence of the better explanatory
power of the soft syntactic model.

An example of an input sentence, and the best
translation found by the hierarchical and soft syn-
tax model can be seen in Table 4. Figure 4 is the

Figure 3: Length and count of glue rules used de-
coding test set

Figure 4: Example input parse tree

parse tree given to the soft syntax model.

Input
laut János Veres wäre dies im ersten Quartal 2008

möglich .
Hierarchical output

according to János Veres this in the first quarter of 2008
would be possible .

Soft Syntax
according to János Veres this would be possible in the

first quarter of 2008 .

Table 4: Example input and best output found

Both output are lexically identical but the output
of the hierarchical model needs to be reordered to
be grammatically correct. Contrast the derivations
produced by the hierarchical grammar, Figure 5,
with that produced with the soft syntax model,
Figure 6. The soft syntax derivation makes use
of several non-lexicalized to dictate word order,
shown below.

X → NE1 NE2 # X1 X2

X → V AFIN1 PDS2 # X1 X2

X → ADJA1 NN2 # X1 X2

X → APPRART1 X2 CARD3 # X1 X2 X3

X → PP1 X2 PUNC3 # X2 X1 X3
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Figure 5: Derivation with Hierarchical model

Figure 6: Derivation with soft syntax model

The soft syntax derivation include several rules
which are partially decorated. Crucially, the last
rule in the list above reorders the PP phrase
and the non-syntactic phrase X to generate the
grammatically correct output. The other non-
lexicalized rules monotonically concatenate the
output. This can be performed by the glue rule, but
nevertheless, the use of empirically backed rules
allows the decoder to better compare hypotheses.
The derivation also rely less on the glue rules than
the hierarchical model (shown in solid rectangles).

Reducing the maximum number of non-
terminals per rule reduces translation quality but
increasing it has little effect on the soft syntax
model, Table 5. This seems to indicate that non-
terminals are useful as context when applying
rules up to a certain extent.

7.4 English to German
We experimented with the reverse language direc-
tion to see if the soft syntax model still increased

# non-terms % BLEU
2 16.5
3 16.8
5 16.8

Table 5: Effect on %BLEU of varying number of
non-terminals

# Model % BLEU
1 Hierarchical 10.2
2 Soft syntax 10.6

Table 6: English–German results in %BLEU

translation quality. The results were positive but
less pronounced, Table 6.

7.5 Using Chunk Tags

Parse trees of the source language provide use-
ful information that we have exploited to create a
better translation model. However, parsers are an
expensive resource as they frequently need manu-
ally annotated training treebanks. Parse accuracy
is also problematic and particularly brittle when
given sentences not in the same domain as the
training corpus. This also causes some sentences
to be unparseable. For example, our original test
corpus of 1026 sentences contained 35 unparsable
sentences. Thus, high quality parsers are unavail-
able for many source languages of interest.

Parse forests can be used to mitigate the accu-
racy problem, allowing the decoder to choose from
many alternative parses, (Mi et al., 2008).

The soft syntax translation model is not depen-
dent on the linguistic information being in a tree
structure, only that the labels identify contiguous
spans. Chunk taggers (Abney, 1991) does just
that. They offer higher accuracy than syntactic
parser, are not so brittle to out-of-domain data and
identify chunk phrases similar to parser-based syn-
tactic phrases that may be useful in guiding re-
ordering.

We apply the soft syntax approach as in the pre-
vious sections but replacing the use of parse con-
stituents with chunk phrases.

Figure 7: Chunked sentence
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7.6 Experiments with Chunk Tags
We use the same data as described earlier in
this chapter to train, tune and test our approach.
The Treetagger chunker (Schmidt and Schulte im
Walde, 2000) was used to tag the source (German)
side of the corpus. The chunker successfully pro-
cessed all sentences in the training and test dataset
so no sentences were excluded. The increase train-
ing data, as well as the ability to translate all sen-
tences in the test set, explains the higher hierar-
chical baseline than the previous experiments with
parser data. We use the noun, verb and preposi-
tional chunks, as well as part-of-speech tags, emit-
ted by the chunker.

Results are shown in Table 2, line 5 & 6. Using
chunk tags, we see a modest gain of 0.5% BLEU.

The same example sentence in Table 4 is shown
with chunk tags in Figure 7. The soft syntax
model with chunk tags produced the derivation
tree shown in Figure 8. The derivation make use
of an unlexicalized rule local reordering. In this
example, it uses the same number of glue rule as
the hierarchical derivation but the output is gram-
matically correct.

Figure 8: Translated chunked sentence

However, overall, the number of glue rules used
shows the same reduction that we saw using soft
syntax in the earlier section, as can be seen in Fig-
ure 9. Again, the soft syntax model, this time us-
ing chunk tags, is able to reduce the use of the glue
rule with empirically informed rules.

8 Conclusion

We show in this paper that combining the gener-
ality of the hierarchical approach with the speci-
ficity of syntactic approach can improve transla-

Figure 9: Chunk - Length and count of glue rules
used decoding test set

tion. A reason for the improvement is the bet-
ter long-range reordering made possible by the in-
crease capacity of the translation model.

Future work in this direction includes us-
ing tree-to-tree approaches, automatically created
constituency labels, and back-off methods be-
tween decorated and undecorated rules.
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