Domain Adaptation for Statistical Machine Translation

Amittai Axelrod

University of Maryland

MT Marathon in the Americas 2015
Domain??

- Not a well-defined concept.
- Should be based on some notion of textual similarity:
 - Lexical choice
 - Grammar
 - Topic
 - Style
 - Genre
 - Register
 - Intent
Domain Adaptation

- Domain = particular contextual setting. Here we use “domain” to mean “corpus”.

- Some domains have little available bilingual data:
 - Swiss Alpine route guides from the 1920’s
 - Text messages in Haitian Creole, Nepali, etc.

- Some have none:
 - Spanish-English travel guidebooks
 - Cookbooks
Examples of Domains

- Europarl
 - European parliamentary proceedings
- News-commentary
 - Analysis of current affairs
- Subtitles
 - Film subtitles
- TED
 - Short talks on technology, entertainment, design
Domain Adaptation

- Domain Adaptation:
 Build a system on one kind of data, and adjust it to apply to another.

[Often: retune parameters on new task’s data]
Domain Adaptation

- Domain Adaptation:
 Build a system on one kind of data, and **adjust** it to apply to another.

 [Often: retune parameters on new task’s data]

- In Natural Language Processing (NLP)
 Train a system on some language data, retune & apply it to a specific--different--task.

 [e.g. Build a speech recognition system using recorded phone calls, then tune it to use as an airline reservation hotline.]
Domain Adaptation

• Statistical machine translation (SMT) training data doesn’t always match desired tasks.

• Have bilingual:
 • Parliament proceedings
 • Newspaper articles
 • Web scrapings

• Want to translate:
 • Travel scenarios
 • Interesting talks
 • Facebook updates

• Sometimes want specificity, not just breadth!
Without Adaptation

- MT systems make errors in new domains [Carpuat et al, 2013]
- OOV words are a big problem
Without Adaptation

- MT systems make errors in new domains [Carpuat et al, 2013]
- OOV words are a big problem
- So are words with new senses
- Even known words with known translations can have wrong translation scores
Word Senses vs. Domains

- Many words have multiple senses
- Cross-lingual mapping difficult for all contexts
- Senses are often domain(?)-specific
Word Senses vs. Domains

- Fun with Tables and Chairs (into German):
 Table
 - Tisch -- General usage
 - Tabelle -- Tech usage

Chair
 - Stuhl -- General usage
 - Vorsitzende -- Governmental usage
Word Senses vs. Domains: Contexts

- **Table**

 The food is **on** the table = Das Essen ist auf dem Tisch.
 The results are **in** the table = Die Ergebnisse sind in der Tabelle.

- **Chair**

 He **sat on** the chair = Er saß auf dem Stuhl.
 He is chair **of the committee** = Er ist Vorsitzender des Ausschusses.
The Easiest Thing

Given corpora A and B for different domains...

Concatenate A+B, then train one system.

Advantage: No need to modify pipeline!
The Easiest Thing

Given corpora A and B for different domains...

Concatenate A+B, then train one system.

Advantage: No need to modify pipeline!

NO.
The Easiest Thing (2)

Given corpora A and B for different domains...

Concatenate A+B, \textcolor{green}{add a few more copies of B,} then train one system.
The Easiest Thing (2)

Given corpora A and B for different domains...

Concatenate A+B, add a few more copies of B, then train one system.

STILL NO.
Phrase Table Augmentation

Often called "Fill-Up".
Adds *only* new entries [Nakov, 2008]

\[PT_{\text{fillup}} = \{PT_{\text{in}}\} \cup \{PT_{\text{out}} - PT_{\text{in}}\} \]
Phrase Table Augmentation

Often called "Fill-Up".
Adds *only* new entries [Nakov, 2008]

$$PT_{\text{fillup}} = \{PT_{\text{in}}\} \cup \{PT_{\text{out}} - PT_{\text{in}}\}$$

Better:
Add provenance feature as scaling factor
[Bisazza et al, 2011]
Phrase Table Augmentation

Often called "Fill-Up".
Adds *only* new entries [Nakov, 2008]

\[
\text{PT}_{\text{fillup}} = \{\text{PT}_{\text{in}}\} \cup \{\text{PT}_{\text{out}} - \text{PT}_{\text{in}}\}
\]

Better:
Add provenance feature as scaling factor
[Bisazza et al, 2011]

Available in Moses: "combine-pteables"
Phrase Table Interpolation

Linear interpolation:
Works ok. Very easy with one weight per table.
[Finch and Sumita, 2008] [Yasuda et al, 2008]
Phrase Table Interpolation

Linear interpolation:
Works ok. Very easy with one weight per table. [Finch and Sumita, 2008] [Yasuda et al, 2008]

Better:
Interpolation weights set via perplexity minimization [Sennrich, 2011].
Phrase Table Interpolation

Linear interpolation:
Works ok. Very easy with one weight per table.
[Finch and Sumita, 2008] [Yasuda et al, 2008]

Better:
Interpolation weights set via perplexity
minimization [Sennrich, 2011].

Available in Moses: "tmcombine"
Multiple Phrase Tables

Let the system figure it out!

Train multiple models, add extra features for the other tables, then tune. [Birch et al, 2007]

Laziest approach; works well.
Multiple Phrase Tables

Let the system figure it out!

Train multiple models, add extra features for the other tables, then tune. [Birch et al, 2007]

Laziest approach; works well.

Bonus: LM combination for free!
Multiple Phrase Tables

Downsides:

Models can't reinforce each other.

Extra features to tune.
Multiple Phrase Tables

Downsides:
Models can't reinforce each other.
Extra features to tune.
Available in Moses and cdec.
Instance Weighting

- Not all training sentences are equally valuable.

- Weight their counts accordingly: A good sentence's n-grams receive a count of 1, a not-so-good one gets fractional counts.

- Done at either sentence level [Matsoukas et al, 2009] or n-gram [Foster et al, 2010].
Instance Weighting

- Not all training sentences are equally valuable.

- Weight their counts accordingly: A good sentence's n-grams receive a count of 1, a not-so-good one gets fractional counts.

- Done at either sentence level [Matsoukas et al, 2009] or n-gram [Foster et al, 2010].

- Available in Moses: "Alternate Weight Settings" (sentence-level).
Data Selection

• Don't change the pipeline, improve the input!
• Not all sentences are equally valuable...

• For a particular translation task:
 • Identify the most relevant training data.
 • Build a model on only this subset.

• Goal:
 • Better task-specific performance
 • Cheaper (computation, size, time)
Data Selection Algorithm

- Quantify the domain
- Compute similarity of sentences in pool to the in-domain corpus
- Sort pool sentences by score
- Select top n%
Data Selection Algorithm

- Quantify the domain
- Compute similarity of sentences in pool to the in-domain corpus
- Sort pool sentences by score
- Select top n%
- Feed n% into normal pipeline to build task-specific SMT system
- Combine with system trained on in-domain data (optional)
- Apply task-specific system to task.
Data Selection Algorithm

- Quantify the domain
- Compute similarity of sentences in pool to the in-domain corpus
- Sort pool sentences by score
- Select top n%
- Feed n% into normal pipeline to build task-specific SMT system
- Combine with system trained on in-domain data (optional) <-- multiple model scenario!
- Apply task-specific system to task
Perplexity-Based Filtering

- A language model LM_Q measures the likelihood of some text by its perplexity:

$$ppl_{LM_Q}(s) = 2^{-\frac{1}{N} \sum_{i=1}^{N} \log LM_Q(w_i|h_i)} = 2^{H_{LM_Q}(s)}$$

- Intuition: Average branching factor of LM
Perplexity-Based Filtering

- A language model LM_Q measures the likelihood of some text by its perplexity:

$$
\text{ppl}_{LM_Q}(s) = 2^{-\frac{1}{N} \sum_{i=1}^{N} \log LM_Q(w_i|h_i)} = 2^{H_{LM_Q}(s)}
$$

- Intuition: Average branching factor of LM
- Cross-entropy H (of a text w.r.t. an LM) is $\log(\text{ppl})$.

- Perplexity used as data selection similarity score [Yasuda et al, 2008]
Cross-Entropy Difference

• Perplexity-based filtering:
 Score sentences in pool by perplexity with in-domain LM.
 Then rank, select, etc.

• However:

 By construction, the data pool does not match the target task [Moore and Lewis, 2010]
Cross-Entropy Difference

- Score and rank by cross-entropy difference:

\[
\arg\min_{s \in \text{POOL}} H_{LM_{IN}}(s) - H_{LM_{POOL}}(s)
\]

- Moore-Lewis biases towards sentences that both:
 - Are *like* the target task
 - Are *unlike* the pool average.
Bilingual Cross-Entropy Difference

- Extend the Moore-Lewis similarity score for use with bilingual data [Axelrod et al, 2011]:

\[
(H_{L1}(s_1, LM_{IN}) - H_{L1}(s_1, LM_{POOL}))
+ (H_{L2}(s_2, LM_{IN}) - H_{L2}(s_2, LM_{POOL}))
\]
Bilingual Cross-Entropy Difference

- Extend the Moore-Lewis similarity score for use with bilingual data [Axelrod et al, 2011]:

\[
(H_{L1}(s_1, LM_{IN}) - H_{L1}(s_1, LM_{POOL})) + (H_{L2}(s_2, LM_{IN}) - H_{L2}(s_2, LM_{POOL}))
\]

- Downside:
 Find best n% via grid-search
 Not helpful for low-difference domains.
Bilingual Cross-Entropy Difference

- Available in Moses: "mml" ("Modified Moore-Lewis")

- Standalone tool: "XenC" from LIUM/Matecat.
• Cross-entropy difference more effective than perplexity-based and random baseline.

• Bilingual >> monolingual methods*
Bilingual Cross-Entropy Difference

- Bilingual >> monolingual methods*

* When there is a difference in morphological complexity between the languages.
* When there is enough data for a reasonable language model in both languages.
Similarity Ensembles

- Combine *de facto* standards:

 bilingual cross-entropy difference (SMT)

 tf-idf vector cosine similarity (IR)

 Levenshtein distance (string edit)

 [Wang et al, 2014]
[This slide intentionally left blank]
Quantifying Textual Similarity

- Several facets of language along which we can quantify relevance:
 - domain
 - topic
 - style

- What the text in a translation task is for,
 What it’s about,
 How it is expressed.

- These are not independent!
Difference Between Facets

- All use the surface words, but each captures a slightly different set of characteristics of text:

N-gram: local dependencies
Topical: longer-range dependencies
Structural: deeper dependencies.
Topic-Based Motivation

- Using all the words in the corpora helped. ...but are all words equally important?

- Often assumed that content words of a corpus matter more.
 - A noun conveys more information than "the"
 - Thematic vocabulary is subset of overall vocabulary
 - Translating content words suffices to provide gist

- Topic models are one way to find them.
Topic Modeling

• A topic is a cluster of co-occurring words (not necessarily adjacently!) interpreted as a theme.

• High-ranking words in TED topic model:
 - Technology: (design, computer, data, system)
 - Global: (Africa, dollars, business, market, food)
 - Planet: (water, earth, universe, ocean, trees)
 - Abstract: (life, love, god, stories, children)
Topic-Based Adaptation

- Incorporate additional topical features in decoder or phrase table. [Tam et al, 2007], [Gong, Zhou 2011], [Eidelman et al, 2012], [Hasler et al, 2014]
Close, But...

- Topic-based methods focused on thematic/content/important words.

- Do not require task/pool-specific models.

- Good for tiny domains (50 sentences): Model used for similarity is trained on general data.
Close, But...

- Topic-based methods focused on thematic/content/important words.

- Do not require task/pool-specific models.

- Good for tiny domains (50 sentences): Model used for similarity is trained on general data.

- **BUT** generally not better than n-gram based selection, which use all words.
New wrinkle

- Topic-based methods show importance of domain definition!

- Not only is not all data relevant, but the target domain is inherently not homogeneous.

- Potential impact of domain resolution.
Topic Drift

Take a fine-grained view of target task!

Min 50 words per chunk; 5 lines suffices.

Topic distributions drift within a TED talk:
- Primary topic: #33
- Secondary topics: #9, #63
Secondary Topics

• Topic 9 keywords:
 space satellite systems earth csa canadian technology light radar radio mission station remote satellites science sun band field stars

• Topic 63 keywords:
 equipment vehicle vehicles building materials such material using designed air light design parts devices off systems construction hand side area motor
The Case of Topic 33

· Most significant topic for TED is topic #33.

· Keywords:
 's t my me like know re just don very us now because get here think going go ve want back then m say am way really much things good right said let lot something look today come even take why did ll little got great last down

· Few nouns and action verbs...

· Q: What is topic 33 about?
The Case of Topic 33

- Most significant topic for TED is topic #33.

- Keywords:
 's t my me like know re just don very us now because get here think going go ve want back then m say am way really much things good right said let lot something look today come even take why did ll little got great last down

- Few nouns and action verbs...

- Q: What is topic 33 about?

- A: Well...

- Topic 33 seems to signal what TED talks are: semi-formal, spoken, first-person presentations.
Style

- Describes social context of language

- Related to:
 - register: variation between uses (not users)
 - genre: communicative purpose

- Amount of attention paid to speech [Labov, 1984]

- Approximated by formality [Joos, 1961]
 1. Static: Wording never changes (Miranda warning).
 2. Formal: One-way, no interruptions (presentations).
 5. Intimate: Private, wording/grammar less important.
Style in NLP

- Stylometry / Authorship Attribution

- Classification problems:
 match authors, group authors by gender, etc.

- Stylistic features claimed independent of topic

- Mostly lexical, frequency-based. e.g. who uses "and" how often, and where. [Mosteller and Wallace, 1964]

- Syntactic features help [Argamon et al 1998]

- syntactic structure = proxy for style
Stylistic Similarity for MT

- Stylistic similarity should be useful when the medium differs between corpora:
- Twitter, Facebook status updates, SMS, Speech transcripts
- How to use it is still open.
[This slide intentionally left blank]