Spring School

Day 5: Factored Translation Models and Discriminative Training

MT Marathon 16 May 2008

MT Marathon Spring School, Lecture 5 16 May 2008

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

Statistical machine translation today

- Best performing methods based on phrases
 - short sequences of words
 - no use of explicit syntactic information
 - no use of morphological information
 - currently best performing method
- Progress in syntax-based translation
 - tree transfer models using syntactic annotation
 - still shallow representation of words and non-terminals
 - active research, improving performance

MT Marathon Spring School, Lecture 5 16 May 2008

One motivation: morphology

- Models treat *car* and *cars* as completely different words
 - training occurrences of car have no effect on learning translation of cars
 - if we only see *car*, we do not know how to translate *cars*
 - rich morphology (German, Arabic, Finnish, Czech, ...) → many word forms
- Better approach
 - analyze surface word forms into **lemma** and **morphology**, e.g.: car +plural
 - translate lemma and morphology separately
 - generate target surface form

Factored translation models

• Factored represention of words

	Input	Output	
word	\bigcirc	\bigcirc	word
lemma	\bigcirc	\bigcirc	lemma
part-of-speech	-	→ ()	part-of-speech
morphology	\bigcirc	\bigcirc	morphology
word class	\bigcirc	\bigcirc	word class

- Goals
 - Generalization, e.g. by translating lemmas, not surface forms
 - Richer model, e.g. using syntax for reordering, language modeling)

MT Marathon Spring School, Lecture 5 16 May 2008

Related work

- Back off to representations with richer statistics (lemma, etc.)
 [Nießen and Ney, 2001, Yang and Kirchhoff 2006, Talbot and Osborne 2006]
- Use of additional annotation in **pre-processing** (POS, syntax trees, etc.) [Collins et al., 2005, Crego et al, 2006]
- Use of additional annotation in re-ranking (morphological features, POS, syntax trees, etc.)
 [Och et al. 2004, Koehn and Knight, 2005]
- → we pursue an *integrated approach*
 - Use of syntactic tree structure
 [Wu 1997, Alshawi et al. 1998, Yamada and Knight 2001, Melamed 2004,
 Menezes and Quirk 2005, Chiang 2005, Galley et al. 2006]
- → may be combined with our approach

Factored Translation Models

B 4		
I//I 🔿	tɪv/a	tion

- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

MT Marathon Spring School, Lecture 5 16 May 2008

Decomposing translation: example

• Translate lemma and syntactic information separately

lemma -	\Rightarrow	lemma	
part-of-speech		part-of-speech	
morphology	\Rightarrow	morphology	

Decomposing translation: example

• Generate surface form on target side

MT Marathon Spring School, Lecture 5 16 May 2008

Translation process: example

Input: (Autos, Auto, NNS)

- 1. Translation step: lemma \Rightarrow lemma (?, car, ?), (?, auto, ?)
- 2. Generation step: lemma ⇒ part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NN), (?, auto, NNS)
- 3. Translation step: part-of-speech ⇒ part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NNP), (?, auto, NNS)
- 4. Generation step: lemma,part-of-speech \Rightarrow surface (car, car, NN), (cars, car, NNS), (auto, auto, NN), (autos, auto, NNS)

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

MT Marathon Spring School, Lecture 5 16 May 2008

Model

- Extension of phrase model
- Mapping of foreign words into English words broken up into steps
 - translation step: maps foreign factors into English factors (on the phrasal level)
 - generation step: maps English factors into English factors (for each word)
- Each step is modeled by one or more feature functions
 - fits nicely into log-linear model
 - weight set by discriminative training method
- Order of mapping steps is chosen to optimize search

Phrase-based training

• Establish word alignment (GIZA++ and symmetrization)

MT Marathon Spring School, Lecture 5 16 May 2008

16 May 2008

Phrase-based training

• Extract phrase

⇒ natürlich hat john — naturally john has

Factored training

Annotate training with factors, extract phrase

 \Rightarrow ADV V NNP — ADV NNP V

MT Marathon Spring School, Lecture 5 16 May 2008

O₁n3

Training of generation steps

- Generation steps map target factors to target factors
 - typically trained on target side of parallel corpus
 - may be trained on additional monolingual data
- Example: The/DET man/NN sleeps/VBZ
 - count collection
 - count(*the*,DET)++
 - count(man,NN)++
 - count(*sleeps*, VBZ)++
 - evidence for probability distributions (max. likelihood estimation)
 - p(DET|the), p(the|DET)
 - p(NN|man), p(man|NN)
 - p(VBZ|sleeps), p(sleeps|VBZ)

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

MT Marathon Spring School, Lecture 5 16 May 2008

Phrase-based translation

• Task: translate this sentence from German into English

er geht ja nicht nach hause

Translation step 1

• Task: translate this sentence from German into English

• Pick phrase in input, translate

MT Marathon Spring School, Lecture 5 16 May 2008

Our in its

Translation step 2

• Task: translate this sentence from German into English

- Pick phrase in input, translate
 - it is allowed to pick words out of sequence (reordering)
 - phrases may have multiple words: many-to-many translation

Translation step 3

• Task: translate this sentence from German into English

• Pick phrase in input, translate

MT Marathon Spring School, Lecture 5 16 May 2008

O1UZatrix O1UZ

Translation step 4

• Task: translate this sentence from German into English

• Pick phrase in input, translate

Translation options

- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

MT Marathon Spring School, Lecture 5 16 May 2008

Translation options

- The machine translation decoder does not know the right answer
- → Search problem solved by heuristic beam search

Decoding process: precompute translation options

MT Marathon Spring School, Lecture 5 16 May 2008

Euro

Decoding process: start with initial hypothesis

Decoding process: hypothesis expansion

MT Marathon Spring School, Lecture 5 16 May 2008

Decoding process: hypothesis expansion

Decoding process: hypothesis expansion

MT Marathon Spring School, Lecture 5 16 May 2008

Decoding process: find best path

Factored model decoding

- Factored model decoding introduces additional complexity
- Hypothesis expansion not any more according to simple translation table, but by *executing a number of mapping steps*, e.g.:
 - 1. translating of $lemma \rightarrow lemma$
 - 2. translating of part-of-speech, morphology → part-of-speech, morphology
 - 3. generation of surface form
- Example: haus|NN|neutral|plural|nominative
 → { houses|house|NN|plural, homes|home|NN|plural, buildings|building|NN|plural, shells|shell|NN|plural }
- Each time, a hypothesis is expanded, these mapping steps have to applied

MT Marathon Spring School, Lecture 5 16 May 2008

Our Satrix

Efficient factored model decoding

- Key insight: executing of mapping steps can be pre-computed and stored as translation options
 - apply mapping steps to all input phrases
 - store results as *translation options*
 - → decoding algorithm *unchanged*

Efficient factored model decoding

- Problem: *Explosion* of translation options
 - originally limited to 20 per input phrase
 - even with simple model, now 1000s of mapping expansions possible
- Solution: Additional pruning of translation options
 - keep only the best expanded translation options
 - current default 50 per input phrase
 - decoding only about 2-3 times slower than with surface model

MT Marathon Spring School, Lecture 5 16 May 2008

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Outlook

Adding linguistic markup to output

- Generation of POS tags on the target side
- Use of high order language models over POS (7-gram, 9-gram)
- Motivation: syntactic tags should enforce syntactic sentence structure model not strong enough to support major restructuring

MT Marathon Spring School, Lecture 5 16 May 2008

Some experiments

• English-German, Europarl, 30 million word, test2006

Model	BLEU
best published result	18.15
baseline (surface)	18.04
surface + POS	18.15

• German-English, News Commentary data (WMT 2007), 1 million word

Model	BLEU
Baseline	18.19
With POS LM	19.05

- Improvements under sparse data conditions
- Similar results with CCG supertags [Birch et al., 2007]

Sequence models over morphological tags

die	hellen	Sterne	erleuchten	das	schwarze	Himmel
(the)	(bright)	(stars)	(illuminate)	(the)	(black)	(sky)
fem	fem	fem	-	neutral	neutral	male
plural	plural	plural	plural	sgl.	sgl.	sgl
nom.	nom.	nom.	_	acc.	acc.	acc.

- Violation of noun phrase agreement in gender
 - das schwarze and schwarze Himmel are perfectly fine bigrams
 - but: das schwarze Himmel is not
- If relevant n-grams does not occur in the corpus, a lexical n-gram model would fail to detect this mistake
- Morphological sequence model: p(N-male|J-male) > p(N-male|J-neutral)

MT Marathon Spring School, Lecture 5 16 May 2008

Suro Suro

Local agreement (esp. within noun phrases)

- High order language models over POS and morphology
- Motivation
 - DET-sgl NOUN-sgl good sequence
 - DET-sgl NOUN-plural bad sequence

Agreement within noun phrases

• Experiment: 7-gram POS, morph LM in addition to 3-gram word LM

Results

Method	Agreement errors in NP	devtest	test
baseline	15% in NP ≥ 3 words	18.22 BLEU	18.04 BLEU
factored model	4% in NP \geq 3 words	18.25 BLEU	18.22 BLEU

• Example

- baseline: ... zur zwischenstaatlichen methoden ...

- factored model: ... zu zwischenstaatlichen methoden ...

Example

- baseline: ... das zweite wichtige änderung ...

- factored model: ... die zweite wichtige änderung ...

MT Marathon Spring School, Lecture 5 16 May 2008

Morphological generation model

- Our motivating example
- Translating lemma and morphological information more robust

Initial results

• Results on 1 million word News Commentary corpus (German-English)

System	In-doman	Out-of-domain
Baseline	18.19	15.01
With POS LM	19.05	15.03
Morphgen model	14.38	11.65

- What went wrong?
 - why back-off to lemma, when we know how to translate surface forms?
 - \rightarrow loss of information

MT Marathon Spring School, Lecture 5 16 May 2008

Solution: alternative decoding paths

- Allow both surface form translation and morphgen model
 - prefer surface model for known words
 - morphgen model acts as back-off

Results

• Model now beats the baseline:

System	In-doman	Out-of-domain
Baseline	18.19	15.01
With POS LM	19.05	15.03
Morphgen model	14.38	11.65
Both model paths	19.47	15.23

MT Marathon Spring School, Lecture 5 16 May 2008

Adding annotation to the source

- Source words may lack sufficient information to map phrases
 - English-German: what case for noun phrases?
 - Chinese-English: plural or singular
 - pronoun translation: what do they refer to?
- Idea: add additional information to the source that makes the required information available locally (where it is needed)
- see [Avramidis and Koehn, ACL 2008] for details

Case Information for English-Greek

- Detect in English, if noun phrase is subject/object (using parse tree)
- Map information into case morphology of Greek
- Use case morphology to generate correct word form

MT Marathon Spring School, Lecture 5 16 May 2008

Suro Suro

Obtaining Case Information

• Use syntactic parse of English input (method similar to semantic role labeling)

Results English-Greek

• Automatic BLEU scores

System	devtest	test07
baseline	18.13	18.05
enriched	18.21	18.20

• Improvement in verb inflection

System	Verb count	Errors	Missing
baseline	311	19.0%	7.4%
enriched	294	5.4%	2.7%

• Improvement in noun phrase inflection

System	NPs	Errors	Missing
baseline	247	8.1%	3.2%
enriched	239	5.0%	5.0%

• Also successfully applied to English-Czech

MT Marathon Spring School, Lecture 5 16 May 2008

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

Using POS in reordering

- Reordering is often due to syntactic reasons
 - French-English: NN ADJ → ADJ NN
 - Chinese-English: $NN1 F NN2 \rightarrow NN1 NN2$
 - Arabic-English: VB NN → NN VB
- Extension of lexicalized reordering model
 - already have model that learns p(monotone| bleue)
 - can be extended to p(monotone|ADJ)
- Gains in preliminary experiments

MT Marathon Spring School, Lecture 5 16 May 2008

O1UZatrix O1UZ

Shallow syntactic features

the	paintings	of	the	old	man	are	beautiful
-	plural	-	-	-	singular	plural	-
B-NP	I-NP	B-PP	I-PP	I-PP	I-PP	V	B-ADJ
SBJ	SBJ	OBJ	OBJ	OBJ	OBJ	V	ADJ

- Shallow syntactic tasks have been formulated as sequence labeling tasks
 - base noun phrase chunking
 - syntactic role labeling

Long range reordering

- Long range reordering
 - movement often not limited to local changes
 - German-English: SBJ AUX OBJ V → SBJ AUX V OBJ
- Asynchronous models
 - some factor mappings (POS, syntactic chunks) may have longer scope than others (words)
 - larger mappings form template for shorter mappings
 - computational problems with this

MT Marathon Spring School, Lecture 5 16 May 2008

Discriminative Training

Overview

- Evolution from generative to discriminative models
 - IBM Models: purely generative
 - MERT: discriminative training of generative components
 - More features → better discriminative training needed
- Perceptron algorithm
- Problem: overfitting
- Problem: matching reference translation

MT Marathon Spring School, Lecture 5 16 May 2008

OTUBATRIX

The birth of SMT: generative models

• The definition of translation probability follows a mathematical derivation

$$\mathrm{argmax}_{\mathbf{e}} p(\mathbf{e}|\mathbf{f}) = \mathrm{argmax}_{\mathbf{e}} p(\mathbf{f}|\mathbf{e}) \; p(\mathbf{e})$$

 Occasionally, some independence assumptions are thrown in for instance IBM Model 1: word translations are independent of each other

$$p(\mathbf{e}|\mathbf{f}, a) = \frac{1}{Z} \prod_{i} p(e_i|f_{a(i)})$$

- Generative story leads to straight-forward estimation
 - maximum likelihood estimation of component probability distribution
 - EM algorithm for discovering hidden variables (alignment)

Log-linear models

• IBM Models provided mathematical justification for factoring **components** together

$$p_{LM} \times p_{TM} \times p_D$$

• These may be weighted

$$p_{LM}^{\lambda_{LM}} imes p_{TM}^{\lambda_{TM}} imes p_D^{\lambda_D}$$

• Many components p_i with weights λ_i

$$\prod_{i} p_{i}^{\lambda_{i}} = exp(\sum_{i} \lambda_{i} log(p_{i}))$$

$$log \prod_{i} p_i^{\lambda_i} = \sum_{i} \lambda_i log(p_i)$$

MT Marathon Spring School, Lecture 5 16 May 2008

Suro Suro

Knowledge sources

- Many different knowledge sources useful
 - language model
 - reordering (distortion) model
 - phrase translation model
 - word translation model
 - word count
 - phrase count
 - drop word feature
 - phrase pair frequency
 - additional language models
 - additional features

Set feature weights

- ullet Contribution of components p_i determined by weight λ_i
- Methods
 - manual setting of weights: try a few, take best
 - automate this process
- Learn weights
 - set aside a development corpus
 - set the weights, so that optimal translation performance on this development corpus is achieved
 - requires *automatic scoring* method (e.g., BLEU)

MT Marathon Spring School, Lecture 5 16 May 2008

Discriminative training

Discriminative vs. generative models

- Generative models
 - translation process is broken down to steps
 - each step is modeled by a *probability distribution*
 - each probability distribution is estimated from the data by maximum likelihood
- Discriminative models
 - model consist of a number of *features* (e.g. the language model score)
 - each feature has a weight, measuring its value for judging a translation as correct
 - feature weights are optimized on development data, so that the system output matches correct translations as close as possible

MT Marathon Spring School, Lecture 5 16 May 2008

Euro Suro

Discriminative training

- Training set (*development set*)
 - different from original training set
 - small (maybe 1000 sentences)
 - must be different from test set
- Current model *translates* this development set
 - n-best list of translations (n=100, 10000)
 - translations in n-best list can be scored
- Feature weights are adjusted
- N-Best list generation and feature weight adjustment repeated for a number of iterations

Learning task

• Task: find weights, so that feature vector of the correct translations ranked first

	TRANSLATION	LM	TM	WP		SER
1	Mary not give slap witch green .	-17.2	-5.2	-7		1
2	Mary not slap the witch green .	-16.3	-5.7	-7		1
3	Mary not give slap of the green witch .	-18.1	-4.9	-9		1
4	Mary not give of green witch .	-16.5	-5.1	-8		1
5	Mary did not slap the witch green .	-20.1	-4.7	-8		1
6	Mary did not slap green witch .	-15.5	-3.2	-7		1
7	Mary not slap of the witch green .	-19.2	-5.3	-8		1
8	Mary did not give slap of witch green .	-23.2	-5.0	-9		1
9	Mary did not give slap of the green witch .	-21.8	-4.4	-10		1
10	Mary did slap the witch green .	-15.5	-6.9	-7		1
11	Mary did not slap the green witch .	-17.4	-5.3	-8		0
12	Mary did slap witch green .	-16.9	-6.9	-6	П	1
13	Mary did slap the green witch .	-14.3	-7.1	-7		1
14	Mary did not slap the of green witch .	-24.2	-5.3	-9		1
15	Mary did not give slap the witch green .	-25.2	-5.5	-9		1
rank	translation	featu	re vec	tor		

MT Marathon 16 May 2008 Spring School, Lecture 5

Och's minimum error rate training (MERT

• Line search for best feature weights

```
sentences with n-best list of
given:
translations
iterate n times
    randomize starting feature weights
        iterate until convergences
            for each feature
                find best feature weight
                update if different from current
return best feature weights found in any
iteration
```

Methods to adjust feature weights

- Maximum entropy [Och and Ney, ACL2002]
 - match expectation of feature values of model and data
- Minimum error rate training [Och, ACL2003]
 - try to rank best translations first in n-best list
 - can be adapted for various error metrics, even BLEU
- Ordinal regression [Shen et al., NAACL2004]
 - separate k worst from the k best translations

MT Marathon Spring School, Lecture 5 16 May 2008

OTUBATI.

16 May 2008

BLEU error surface

• Varying one parameter: a rugged line with many local optima

Unstable outcomes: weights vary

component	run 1	run 2	run 3	run 4	run 5	run 6
distance	0.059531	0.071025	0.069061	0.120828	0.120828	0.072891
lexdist 1	0.093565	0.044724	0.097312	0.108922	0.108922	0.062848
lexdist 2	0.021165	0.008882	0.008607	0.013950	0.013950	0.030890
lexdist 3	0.083298	0.049741	0.024822	-0.000598	-0.000598	0.023018
lexdist 4	0.051842	0.108107	0.090298	0.111243	0.111243	0.047508
lexdist 5	0.043290	0.047801	0.020211	0.028672	0.028672	0.050748
lexdist 6	0.083848	0.056161	0.103767	0.032869	0.032869	0.050240
lm 1	0.042750	0.056124	0.052090	0.049561	0.049561	0.059518
lm 2	0.019881	0.012075	0.022896	0.035769	0.035769	0.026414
lm 3	0.059497	0.054580	0.044363	0.048321	0.048321	0.056282
ttable 1	0.052111	0.045096	0.046655	0.054519	0.054519	0.046538
ttable 1	0.052888	0.036831	0.040820	0.058003	0.058003	0.066308
ttable 1	0.042151	0.066256	0.043265	0.047271	0.047271	0.052853
ttable 1	0.034067	0.031048	0.050794	0.037589	0.037589	0.031939
phrase-pen.	0.059151	0.062019	-0.037950	0.023414	0.023414	-0.069425
word-pen	-0.200963	-0.249531	-0.247089	-0.228469	-0.228469	-0.252579

MT Marathon Spring School, Lecture 5 16 May 2008

Unstable outcomes: scores vary

• Even different scores with different runs (varying 0.40 on dev, 0.89 on test)

run	iterations	dev score	test score
1	8	50.16	51.99
2	9	50.26	51.78
3	8	50.13	51.59
4	12	50.10	51.20
5	10	50.16	51.43
6	11	50.02	51.66
7	10	50.25	51.10
8	11	50.21	51.32
9	10	50.42	51.79

More features: more components

- We would like to add more components to our model
 - multiple language models
 - domain adaptation features
 - various special handling features
 - using linguistic information
- → MERT becomes even less reliable
 - runs many more iterations
 - fails more frequently

MT Marathon Spring School, Lecture 5 16 May 2008

More features: factored models

- Factored translation models break up phrase mapping into smaller steps
 - multiple translation tables
 - multiple generation tables
 - multiple language models and sequence models on factors
- → Many more features

Millions of features

- Why mix of discriminative training and generative models?
- Discriminative training of all components
 - phrase table [Liang et al., 2006]
 - language model [Roark et al, 2004]
 - additional features
- Large-scale discriminative training
 - millions of features
 - training of full training set, not just a small development corpus

MT Marathon Spring School, Lecture 5 16 May 2008

Perceptron algorithm

- Translate each sentence
- If no match with reference translation: update features

```
set all lambda = 0
do until convergence
    for all foreign sentences f
        set e-best to best translation according to model
        set e-ref to reference translation
        if e-best != e-ref
            for all features feature-i
                lambda-i += feature-i(f,e-ref)
                          - feature-i(f,e-best)
```

Problem: overfitting

- Fundamental problem in machine learning
 - what works best for training data, may not work well in general
 - rare, unrepresentative features may get too much weight
- Especially severe problem in phrase-based models
 - long phrase pairs explain well individual sentences
 - ... but are less general, suspect to noise
 - EM training of phrase models [Marcu and Wong, 2002] has same problem

MT Marathon Spring School, Lecture 5 16 May 2008

Olumbia

Solutions

- Restrict to short phrases, e.g., maximum 3 words (current approach)
 - limits the power of phrase-based models
 - ... but not very much [Koehn et al, 2003]
- Jackknife
 - collect phrase pairs from one part of corpus
 - optimize their feature weights on another part
- IBM direct model: **only one-to-many** phrases [Ittycheriah and Salim Roukos, 2007]

Problem: reference translation

• Reference translation may be anywhere in this box

- ullet If produceable by model o we can compute feature scores
- ullet If not \to we can not

MT Marathon Spring School, Lecture 5 16 May 2008

Suro Suro

Some solutions

- Skip sentences, for which reference can not be produced
 - invalidates large amounts of training data
 - biases model to shorter sentences
- Declare candidate translations closest to reference as surrogate
 - closeness measured for instance by smoothed BLEU score
 - may be not a very good translation: odd feature values, training is severely distorted

Experiment

• Skipping sentences with unproduceable reference hurts

Handling of reference	BLEU		
with skipping	25.81		
w/o skipping	29.61		

- When including all sentences: surrogate reference picked from 1000-best list using maximum *smoothed BLEU score* with respect to reference translation
- Czech-English task, only binary features
 - phrase table features
 - lexicalized reordering features
 - source and target phrase bigram
- See also [Liang et al., 2006] for similar approach

MT Marathon Spring School, Lecture 5 16 May 2008

Better solution: early updating?

- At some point the reference translation falls out of the search space
 - for instance, due to unknown words:

Reference: The group attended the meeting in Najaf ...

System: The group meeting was attended in UNKNOWN ...

only update features involved in this part

- Early updating [Collins et al., 2005]:
 - stop search, when reference translation is not covered by model
 - only update features involved in partial reference / system output

Conclusions

- Currently have proof-of-concept implementation
- Future work: Overcome various technical challenges
 - reference translation may not be produceable
 - overfitting
 - mix of binary and real-valued features
 - scaling up
- More and more features are unavoidable, let's deal with them

MT Marathon Spring School, Lecture 5 16 May 2008