Spring School

Day 2: Word-based models and the EM algorithm

MT Marathon 13 May 2008

MT Marathon Spring School, Lecture 2 13 May 2008

Lexical translation

- How to translate a word → look up in dictionary
 Haus house, building, home, household, shell.
- Multiple translations
 - some more frequent than others
 - for instance: house, and building most common
 - special cases: Haus of a snail is its shell
- Note: During all the lectures, we will translate from a foreign language into English

Collect statistics

• Look at a parallel corpus (German text along with English translation)

`	_
Translation of Haus	Count
house	8,000
building	1,600
home	200
household	150
shell	50

MT Marathon Spring School, Lecture 2 13 May 2008

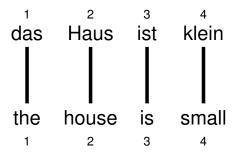
Estimate translation probabilities

• Maximum likelihood estimation

$$p_f(e) = \begin{cases} 0.8 & \text{if } e = \textit{house}, \\ 0.16 & \text{if } e = \textit{building}, \\ 0.02 & \text{if } e = \textit{home}, \\ 0.015 & \text{if } e = \textit{household}, \\ 0.005 & \text{if } e = \textit{shell}. \end{cases}$$

Alignment

• In a parallel text (or when we translate), we **align** words in one language with the words in the other



• Word *positions* are numbered 1–4

MT Marathon Spring School, Lecture 2 13 May 2008

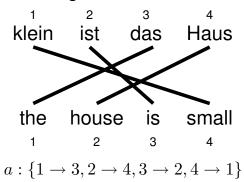
Alignment function

- Formalizing alignment with an alignment function
- ullet Mapping an English target word at position i to a German source word at position j with a function a:i o j
- Example

$$a: \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 4\}$$

Reordering

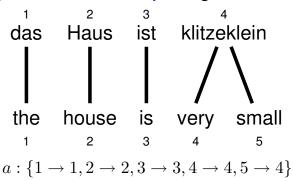
• Words may be reordered during translation



MT Marathon Spring School, Lecture 2 13 May 2008

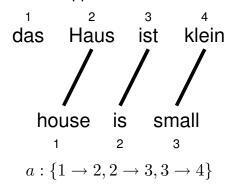
One-to-many translation

• A source word may translate into multiple target words



Dropping words

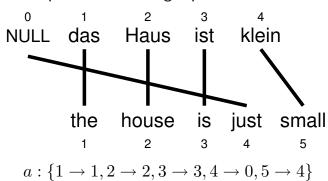
- Words may be dropped when translated
 - The German article *das* is dropped



MT Marathon Spring School, Lecture 2 13 May 2008

Inserting words

- Words may be added during translation
 - The English *just* does not have an equivalent in German
 - We still need to map it to something: special NULL token



IBM Model 1

- Generative model: break up translation process into smaller steps IBM Model 1 only uses lexical translation
- Translation probability

 - for a foreign sentence $\mathbf{f}=(f_1,...,f_{l_f})$ of length l_f to an English sentence $\mathbf{e}=(e_1,...,e_{l_e})$ of length l_e
 - with an alignment of each English word \boldsymbol{e}_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

- parameter ϵ is a normalization constant

MT Marathon Spring School, Lecture 2 13 May 2008

Example

aas		
e	t(e f)	
the	0.7	
that	0.15	
which	0.075	
who	0.05	
this	0.025	

Haus	
e	t(e f)
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

kleın		
e	t(e f)	
small	0.4	
little	0.4	
short	0.1	
minor	0.06	
petty	0.04	

$$\begin{split} p(e,a|f) &= \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein}) \\ &= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\ &= 0.0028 \epsilon \end{split}$$

MT Marathon Spring School, Lecture 2 13 May 2008

Suro Suro

Learning lexical translation models

- ullet We would like to $\it estimate$ the lexical translation probabilities $\it t(e|f)$ from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
 - if we had the alignments,
 - ightarrow we could estimate the *parameters* of our generative model
 - if we had the *parameters*,
 - \rightarrow we could estimate the *alignments*

EM algorithm

- Incomplete data
 - if we had *complete data*, would could estimate *model*
 - if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
 - initialize model parameters (e.g. uniform)
 - assign probabilities to the missing data
 - estimate model parameters from completed data
 - iterate

MT Marathon Spring School, Lecture 2 13 May 2008

Euro Suro

EM algorithm

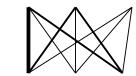
... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

EM algorithm

la maison ... la maison blue ... la fleur ...



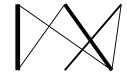
 \dots the house \dots the blue house \dots the flower \dots

- After one iteration
- Alignments, e.g., between *la* and *the* are more likely

MT Marathon Spring School, Lecture 2 13 May 2008

EM algorithm

... la maison ... la maison bleu ... la fleur ...



- After another iteration
- It becomes apparent that alignments, e.g., between *fleur* and *flower* are more likely (pigeon hole principle)

EM algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

- Convergence
- Inherent hidden structure revealed by EM

MT Marathon Spring School, Lecture 2 13 May 2008

Suro Suro

EM algorithm

... la maison ... la maison bleu ... la fleur ... la fle

p(maison|house) = 0.876p(bleu|blue) = 0.563

Parameter estimation from the aligned corpus

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
 - take assign values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
- Iterate these steps until convergence

MT Marathon Spring School, Lecture 2 13 May 2008

O LU Satrix

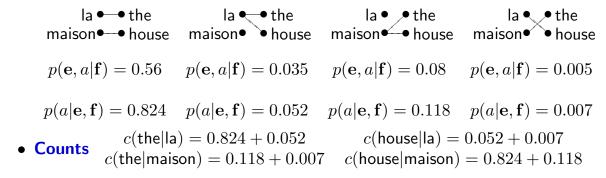
IBM Model 1 and EM

- We need to be able to compute:
 - Expectation-Step: probability of alignments
 - Maximization-Step: count collection

IBM Model 1 and EM

• Probabilities $p(\mathsf{the}|\mathsf{la}) = 0.7$ $p(\mathsf{house}|\mathsf{la}) = 0.05$ $p(\mathsf{the}|\mathsf{maison}) = 0.1$ $p(\mathsf{house}|\mathsf{maison}) = 0.8$

Alignments



MT Marathon Spring School, Lecture 2 13 May 2008

IBM Model 1 and EM: Expectation Step

- We need to compute $p(a|\mathbf{e},\mathbf{f})$
- Applying the *chain rule*:

$$p(a|\mathbf{e}, \mathbf{f}) = \frac{p(\mathbf{e}, a|\mathbf{f})}{p(\mathbf{e}|\mathbf{f})}$$

• We already have the formula for $p(\mathbf{e}, \mathbf{a}|\mathbf{f})$ (definition of Model 1)

IBM Model 1 and EM: Expectation Step

• We need to compute $p(\mathbf{e}|\mathbf{f})$

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a} p(\mathbf{e}, a|\mathbf{f})$$

$$= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} p(\mathbf{e}, a|\mathbf{f})$$

$$= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

MT Marathon Spring School, Lecture 2 13 May 2008

IBM Model 1 and EM: Expectation Step

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$= \frac{\epsilon}{(l_f+1)^{l_e}} \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$= \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)$$

- Note the trick in the last line
 - removes the need for an exponential number of products
 - → this makes IBM Model 1 estimation tractable

The trick

(case
$$l_e = l_f = 2$$
)

$$\begin{split} \sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} &= \frac{\epsilon}{3^{2}} \prod_{j=1}^{2} t(e_{j}|f_{a(j)}) = \\ &= t(e_{1}|f_{0}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{2}) + \\ &+ t(e_{1}|f_{1}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{2}) + \\ &+ t(e_{1}|f_{2}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{2}) = \\ &= t(e_{1}|f_{0}) \ (t(e_{2}|f_{0}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ &+ t(e_{1}|f_{1}) \ (t(e_{2}|f_{1}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ &+ t(e_{1}|f_{2}) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) = \\ &= (t(e_{1}|f_{0}) + t(e_{1}|f_{1}) + t(e_{1}|f_{2})) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) \end{split}$$

MT Marathon Spring School, Lecture 2 13 May 2008

IBM Model 1 and EM: Expectation Step

• Combine what we have:

$$\begin{split} p(\mathbf{a}|\mathbf{e},\mathbf{f}) &= p(\mathbf{e},\mathbf{a}|\mathbf{f})/p(\mathbf{e}|\mathbf{f}) \\ &= \frac{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})}{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)} \\ &= \prod_{i=1}^{l_e} \frac{t(e_j|f_{a(j)})}{\sum_{i=0}^{l_f} t(e_i|f_i)} \end{split}$$

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- Evidence from a sentence pair e,f that word e is a translation of word f:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{a} p(a|\mathbf{e}, \mathbf{f}) \sum_{i=1}^{l_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

• With the same simplication as before:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \frac{t(e|f)}{\sum_{i=0}^{l_f} t(e|f_i)} \sum_{j=1}^{l_e} \delta(e, e_j) \sum_{i=0}^{l_f} \delta(f, f_i)$$

MT Marathon Spring School, Lecture 2 13 May 2008

IBM Model 1 and EM: Maximization Step

• After collecting these counts over a corpus, we can estimate the model:

$$t(e|f;\mathbf{e},\mathbf{f}) = \frac{\sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}{\sum_{f} \sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}$$

IBM Model 1 and EM: Pseudocode

```
initialize t(e|f) uniformly
do until convergence
 set count(e|f) to 0 for all e,f
 set total(f) to 0 for all f
 for all sentence pairs (e_s,f_s)
   for all words e in e_s
     total_s(e) = 0
     for all words f in f_s
       total_s(e) += t(e|f)
    for all words e in e_s
     for all words f in f_s
        count(e|f) += t(e|f) / total_s(e)
       total(f) += t(e|f) / total_s(e)
 for all f
   for all e
     t(e|f) = count(e|f) / total(f)
```

MT Marathon Spring School, Lecture 2 13 May 2008

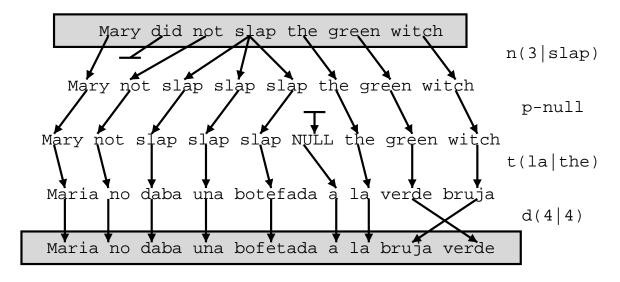
Suro Suro

Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Only IBM Model 1 has global maximum
 - training of a higher IBM model builds on previous model
- Computationally biggest change in Model 3
 - trick to simplify estimation does not work anymore
- → *exhaustive* count collection becomes computationally too expensive
 - sampling over high probability alignments is used instead

IBM Model 4

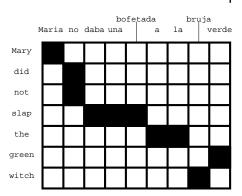


MT Marathon Spring School, Lecture 2 13 May 2008

Natri

Word alignment

- Notion of word alignment valuable
- Shared task at NAACL 2003 and ACL 2005 workshops



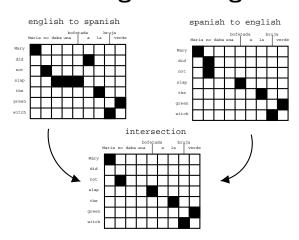
Word alignment with IBM models

- IBM Models create a many-to-one mapping
 - words are aligned using an alignment function
 - a function may return the same value for different input (one-to-many mapping)
 - a function can not return multiple values for one input (no many-to-one mapping)
- But we need many-to-many mappings

MT Marathon Spring School, Lecture 2 13 May 2008

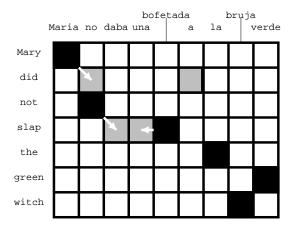
Suro

Symmetrizing word alignments



• Intersection of GIZA++ bidirectional alignments

Symmetrizing word alignments



• Grow additional alignment points [Och and Ney, CompLing2003]

MT Marathon Spring School, Lecture 2 13 May 2008

OTU

Growing heuristic

```
GROW-DIAG-FINAL(e2f,f2e):
 neighboring = ((-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1))
 alignment = intersect(e2f,f2e);
 GROW-DIAG(); FINAL(e2f); FINAL(f2e);
GROW-DIAG():
 iterate until no new points added
   for english word e = 0 \dots en
     for foreign word f = 0 ... fn
        if ( e aligned with f )
          for each neighboring point ( e-new, f-new ):
            if ( ( \mbox{e-new not aligned} and \mbox{f-new not aligned} ) and
                 ( e-new, f-new ) in union( e2f, f2e ) )
              add alignment point ( e-new, f-new )
FINAL(a):
 for english word e-new = 0 ... en
   for foreign word f-new = 0 ... fn
     if ( ( e-new not aligned or f-new not aligned ) and
           ( e-new, f-new ) in alignment a )
        add alignment point ( e-new, f-new )
```


More Recent Work

- Symmetrization during training
 - symmetrize after each iteration of IBM Models
 - integrate symmetrization into models
- Discriminative training methods
 - supervised learning based on labeled data
 - semi-supervised learning with limited labeled data
- Better generative models
 - see talk by Alexander Fraser