

Neural Machine Translation

Rico Sennrich

Institute for Language, Cognition and Computation University of Edinburgh

September 15 2016

Edinburgh's WMT Results Over the Years

Neural Machine Translation

Kyunghyun Cho http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

Attentional encoder-decoder

- - Evaluation results

 - Recent research in neural machine transla-

decomposition of translation problem (for NMT)

- a source sentence S of length m is a sequence x_1, \ldots, x_m
- a target sentence T of length n is a sequence y_1, \ldots, y_n

$$T^* = \arg \max_{t} p(T|S)$$
$$p(T|S) = p(y_1, \dots, y_n | x_1, \dots, x_m)$$
$$= \prod_{i=1}^{n} p(y_i | y_0, \dots, y_{i-1}, x_1, \dots, x_m)$$

Translation modelling

difference from language model

• target-side language model:

$$p(T) = \prod_{i=1}^{n} p(y_i | y_0, \dots, y_{i-1})$$

translation model:

$$p(T|S) = \prod_{i=1}^{n} p(y_i|y_0, \dots, y_{i-1}, x_1, \dots, x_m)$$

- we could just treat sentence pair as one long sequence, but:
 - we do not care about p(S) (S is given)
 - we do not want to use same parameters for S and T
 - · we may want different vocabulary, network architecture for source text

Translation modelling

difference from language model

• target-side language model:

$$p(T) = \prod_{i=1}^{n} p(y_i | y_0, \dots, y_{i-1})$$

translation model:

$$p(T|S) = \prod_{i=1}^{n} p(y_i|y_0, \dots, y_{i-1}, x_1, \dots, x_m)$$

- we could just treat sentence pair as one long sequence, but:
 - we do not care about p(S) (S is given)
 - we do not want to use same parameters for S and T
 - · we may want different vocabulary, network architecture for source text

- two RNNs (LSTM or GRU):
 - encoder reads input and produces hidden state representations
 - decoder produces output, based on last encoder hidden state
- joint learning (backpropagation through full network)

Kyunghyun Chohttp://devblogs.nvidia.com/parallelforall/ introduction-meural-machime-translation-gpus-part-2/

Summary vector

- last encoder hidden-state "summarizes" source sentence
- with multilingual training, we can potentially learn language-independent meaning representation

[Sutskever et al., 2014]

Summary vector as information bottleneck

- can fixed-size vector represent meaning of arbitrarily long sentence?
- empirically, quality decreases for long sentences
- reversing source sentence brings some improvement [Sutskever et al., 2014]

[Sutskever et al., 2014]

Attentional encoder-decoder [Bahdanau et al., 2015]

encoder

- goal: avoid bottleneck of summary vector
- use bidirectional RNN, and concatenate forward and backward states \rightarrow annotation vector h_i
- represent source sentence as vector of n annotations
 → variable-length representation

Attentional encoder-decoder [Bahdanau et al., 2015]

attention

- problem: how to incorporate variable-length context into hidden state?
- attention model computes context vector as weighted average of annotations
- weights are computed by feedforward neural network with softmax

Kyunghyun Cho ttp://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

simplifications of model by [Bahdanau et al., 2015] (for illustration)

- plain RNN instead of GRU
- simpler output layer
- we do not show bias terms

notation

• W, U, E, C, V are weight matrices (of different dimensionality)

- E one-hot to embedding (e.g. $50000\cdot512)$
- W embedding to hidden (e.g. $512 \cdot 1024$)
- U hidden to hidden (e.g. $1024 \cdot 1024$)
- C context (2x hidden) to hidden (e.g. $2048 \cdot 1024$)
- V_o hidden to one-hot (e.g. $1024 \cdot 50000$)
- separate weight matrices for encoder and decoder (e.g. E_x and E_y)
- input X of length T_x ; output Y of length T_y

encoder

$$\overrightarrow{h}_{j} = \begin{cases} 0, &, \text{ if } j = 0\\ \tanh(\overrightarrow{W}_{x}E_{x}x_{j} + \overrightarrow{U}_{x}\overrightarrow{h}_{j-1}) &, \text{ if } j > 0 \end{cases}$$

$$\overleftarrow{h}_{j} = \begin{cases} 0, &, \text{ if } j = T_{x} + 1\\ \tanh(\overleftarrow{W}_{x}E_{x}x_{j} + \overleftarrow{U}_{x}\overleftarrow{h}_{j+1}) &, \text{ if } j \leq T_{x} \end{cases}$$

$$h_{j} = (\overrightarrow{h}_{j}, \overleftarrow{h}_{j})$$

Attentional encoder-decoder: math

decoder

$$\begin{split} s_i &= \begin{cases} \tanh(W_s \overleftarrow{h}_i), &, \text{ if } i = 0\\ \tanh(W_y E_y y_i + U_y s_{i-1} + Cc_i) &, \text{ if } i > 0\\ t_i &= \tanh(U_o s_{i-1} + W_o E_y y_{i-1} + C_o c_i)\\ y_i &= \operatorname{softmax}(V_o t_i) \end{split}$$

attention model

$$\begin{split} e_{ij} &= v_a^\top \mathsf{tanh}(W_a s_{i-1} + U_a h_j) \\ \alpha_{ij} &= \mathsf{softmax}(e_{ij}) \\ c_i &= \sum_{j=1}^{T_x} \alpha_{ij} h_j \end{split}$$

Attention model

attention model

- side effect: we obtain alignment between source and target sentence
- information can also flow along recurrent connections, so there is no guarantee that attention corresponds to alignment
- applications:
 - visualisation
 - replace unknown words with back-off dictionary [Jean et al., 2015]
 - ...

Kyunghyun Cho http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

attention model also works with images:

[Cho et al., 2015]

Attention model

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word) [22]

[Cho et al., 2015]

score a translation

p(La, croissance, économique, s'est, ralentie, ces, dernières, années, . | Economic, growth, has, slowed, down, in, recent, year, .) = ?

generate the most probable translation of a source sentence $\rightarrow \text{decoding}$

 $y^* = \operatorname{argmax}_y p(y|\mathsf{Economic}, \mathsf{growth}, \mathsf{has}, \mathsf{slowed}, \mathsf{down}, \mathsf{in}, \mathsf{recent}, \mathsf{year}, .)$

exact search

- generate every possible sentence T in target language
- $\bullet \ \mbox{compute score} \ p(T|S)$ for each
- pick best one
- intractable: $|V|^N$ translations for vocabulary V and output length $N \to$ we need approximative search strategy

approximative search/1

- at each time step, compute probability distribution $P(y_i|X, y_{\leq i})$
- select y_i according to some heuristic:
 - sampling: sample from $P(y_i|X, y_{\leq i})$
 - greedy search: pick $\operatorname{argmax}_{y} p(y_i | X, y_{\leq i})$

continue until we generate <eos>

efficient, but suboptimal

approximative search/2: beam search

- maintain list of K hypotheses (beam)
- at each time step, expand each hypothesis k: $p(y_i^k|X, y_{< i}^k)$
- at each time step, we produce $|V| \cdot K$ translation hypotheses \rightarrow prune to *K* hypotheses with highest total probability:

$$\prod_{i} p(y_i^k | X, y_{< i}^k)$$

- relatively efficient
- currently default search strategy in neural machine translation
- small beam ($K \approx 10$) offers good speed-quality trade-off

- at each timestep, combine the probability distribution of *M* different ensemble components.
- combine operator: typically average (log-)probability

$$\log P(y_i|X, y_{< i}) = \frac{\sum_{m=1}^{M} \log P_m(y_i|X, y_{< i})}{M}$$

- requirements:
 - same output vocabulary
 - same factorization of \boldsymbol{Y}
- internal network architecture may be different
- source representations may be different (extreme example: ensemble-like model with different source languages [Junczys-Dowmunt and Grundkiewicz, 2016])

Ensembles

recent ensemble strategies in NMT

- ensemble of 8 independent training runs with different hyperparameters/architectures [Luong et al., 2015a]
- ensemble of 8 independent training runs with different random initializations [Chung et al., 2016]
- ensemble of 4 checkpoints of same training run [Sennrich et al., 2016a]
 - ightarrow probably less effective, but only requires one training run

Attentional encoder-decoder

Where are we now? Evaluation, challenges, future directions...

- Evaluation results
- Comparing neural and phrase-based machine translation
- Recent research in neural machine translation

- attentional encoder-decoder networks have become state of the art on various MT tasks...
- ...but this usually requires more advanced techniques to handle OOVs, use monolingual data, etc.
- your mileage may vary depending on
 - language pair and text type
 - amount of training data
 - type of training resources (monolingual?)
 - hyperparameters
- very general model: can be applied to other sequence-to-sequence tasks

system	BLEU	official rank
uedin-nmt	34.2	1
metamind	32.3	2
uedin-syntax	30.6	3
NYU-UMontreal	30.8	4
online-B	29.4	5-10
KIT/LIMSI	29.1	5-10
cambridge	30.6	5-10
online-A	29.9	5-10
promt-rule	23.4	5-10
KIT	29.0	6-10
jhu-syntax	26.6	11-12
jhu-pbmt	28.3	11-12
uedin-pbmt	28.4	13-14
online-F	19.3	13-15
online-G	23.8	14-15

Table: WMT16 results for EN \rightarrow DE

system	BLEU	official rank
uedin-nmt	38.6	1
online-B	35.0	2-5
online-A	32.8	2-5
uedin-syntax	34.4	2-5
KIT	33.9	2-6
uedin-pbmt	35.1	5-7
jhu-pbmt	34.5	6-7
online-G	30.1	8
jhu-syntax	31.0	9
online-F	20.2	10

Table: WMT16 results for DE \rightarrow EN

system	BLEU	official rank
uedin-nmt	34.2	1
metamind	32.3	2
uedin-syntax	30.6	3
NYU-UMontreal	30.8	4
online-B	29.4	5-10
KIT/LIMSI	29.1	5-10
cambridge	30.6	5-10
online-A	29.9	5-10
promt-rule	23.4	5-10
KIT	29.0	6-10
jhu-syntax	26.6	11-12
jhu-pbmt	28.3	11-12
uedin-pbmt	28.4	13-14
online-F	19.3	13-15
online-G	23.8	14-15

Table: WMT16 results for EN \rightarrow DE

system BLEU official rank 35.0 2-5 online-B online-A 32.8 2-5 uedin-syntax 34.4 2-5 KIT 33.9 2-6 uedin-pbmt 35.1 5-7 jhu-pbmt 34.5 6-7 online-G 8 30.1 9 ihu-svntax 31.0 online-F

Table: WMT16 results for DE \rightarrow EN

o pure NMT

system	BLEU	official rank
uedin-nmt	34.2	1
metamind	32.3	2
uedin-syntax	30.6	3
NYU-UMontreal	30.8	4
online-B	29.4	5-10
KIT/LIMSI	29.1	5-10
cambridge	30.6	5-10
online-A	29.9	5-10
promt-rule	23.4	5-10
KIT	29.0	6-10
jhu-syntax	26.6	11-12
jhu-pbmt	28.3	11-12
uedin-pbmt	28.4	13-14
online-F	19.3	13-15
online-G	23.8	14-15

Table: WMT16 results for EN \rightarrow DE

system	BLEU	official rank
uedin-nmt	38.6	1
online-B	35.0	2-5
online-A	32.8	2-5
uedin-syntax	34.4	2-5
KIT	33.9	2-6
uedin-pbmt	35.1	5-7
jhu-pbmt	34.5	6-7
online-G	30.1	8
jhu-syntax	31.0	9
online-F	20.2	10

Table: WMT16 results for DE \rightarrow EN

pure NMTNMT component

uedin-nmt	25.8	1
NYU-UMontreal	23.6	2
jhu-pbmt	23.6	3
cu-chimera	21.0	4-5
cu-tamchyna	20.8	4-5
uedin-cu-syntax	20.9	6-7
uedin-cu-syntax online-B	20.9 22.7	6-7 6-7
online-B online-A	20.9 22.7 19.5	6-7 6-7 15
online-B online-A cu-TectoMT	20.9 22.7 19.5 14.7	6-7 6-7 15 16

uedin-nmt	31.4	1
jhu-pbmt	30.4	2
online-B	28.6	3
PJATK	28.3	8-10
PJATK online-A	28.3 25.7	8-10 11

Table: WMT16 results for CS \rightarrow EN

uedin-nmt	28.1	1-2
QT21-HimL-SysComb	28.9	1-2
KIT	25.8	3-7
uedin-pbmt	26.8	3-7
online-B	25.4	3-7
uedin-Imu-hiero	25.9	3-7
RWTH-SYSCOMB	27.1	3-7
LIMSI	23.9	8-10
Imu-cuni	24.3	8-10
jhu-pbmt	23.5	8-11
usfd-rescoring	23.1	10-12
online-A	19.2	11-12

Table: WMT16 results for EN \rightarrow RO

Table: WMT16 results for EN \rightarrow CS

online-B	39.2	1-2
uedin-nmt	33.9	1-2
uedin-pbmt	35.2	3
uedin-syntax	33.6	4-5
online-A	30.8	4-6
jhu-pbmt	32.2	5-7
LIMSI	31.0	6-7

Table: WMT16 results for RO \rightarrow EN

PROMT-rule	22.3	1
amu-uedin	25.3	2-4
online-B	23.8	2-5
uedin-nmt	26.0	2-5
online-G	26.2	3-5
NYU-UMontreal	23.1	6
jhu-pbmt	24.0	7-8
LIMSI	23.6	7-10
LIMSI online-A	23.6 20.2	7-10 8-10
LIMSI online-A AFRL-MITLL-phr	23.6 20.2 23.5	7-10 8-10 9-10
LIMSI online-A AFRL-MITLL-phr AFRL-MITLL-verb	23.6 20.2 23.5 20.9	7-10 8-10 9-10 11

uedin-pbmt	23.4	1-4
online-G	20.6	1-4
online-B	23.6	1-4
UH-opus	23.1	1-4
PROMT-SMT	20.3	5
UH-factored	19.3	6-7
uedin-syntax	20.4	6-7
online-A	19.0	8
jhu-pbmt	19.1	9

Table: WMT16 results for FI \rightarrow EN

Table: WMT16 results for EN \rightarrow RU

amu-uedin	29.1	1-2
online-G	28.7	1-3
NRC	29.1	2-4
online-B	28.1	3-5
uedin-nmt	28.0	4-5
online-A	25.7	6-7
online-A AFRL-MITLL-phr	25.7 27.6	6-7 6-7
online-A AFRL-MITLL-phr AFRL-MITLL-contrast	25.7 27.6 27.0	6-7 6-7 8-9
online-A AFRL-MITLL-phr AFRL-MITLL-contrast PROMT-rule	25.7 27.6 27.0 20.4	6-7 6-7 8-9 8-9

Table: WMT16 results for RU \rightarrow EN

online-G	15.4	1-3
abumatra-nmt	17.2	1-4
online-B	14.4	1-4
abumatran-combo	17.4	3-5
UH-opus	16.3	4-5
NYU-UMontreal	15.1	6-8
abumatran-pbsmt	14.6	6-8
online-A	13.0	6-8
online-A jhu-pbmt	13.0 13.8	6-8 9-10
online-A jhu-pbmt UH-factored	13.0 13.8 12.8	6-8 9-10 9-12
online-A jhu-pbmt UH-factored aalto	13.0 13.8 12.8 11.6	6-8 9-10 9-12 10-13
online-A jhu-pbmt UH-factored aalto jhu-hltcoe	13.0 13.8 12.8 11.6 11.9	6-8 9-10 9-12 10-13 10-13

Table: WMT16 results for EN \rightarrow FI

Rico Sennrich

Neural Machine Translation

Attentional encoder-decoder

Where are we now? Evaluation, challenges, future directions...

- Evaluation results
- Comparing neural and phrase-based machine translation
- Recent research in neural machine translation

ambiguity

words are often polysemous, with different translations for different meanings

system	sentence
source	Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference	There he was attacked again by his original attacker and another male.
uedin-pbsmt	There, he was at the club and another male person attacked again.
uedin-nmt	There he was attacked again by the racket and another male person.

Schläger

ambiguity

words are often polysemous, with different translations for different meanings

system	sentence
source	Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.
reference	There he was attacked again by his original attacker and another male.
uedin-pbsmt	There, he was at the club and another male person attacked again.
uedin-nmt	There he was attacked again by the racket and another male person.
Ç	Schläger
ra	acket

ambiguity

words are often polysemous, with different translations for different meanings

system	sentence	
source	Dort wurde er von dem Schläger und einer weiteren männlichen Person erneut angegriffen.	
reference	There he was attacked again by his original attacker and another male.	
uedin-pbsmt	There, he was at the club and another male person attacked again.	
uedin-nmt	There he was attacked again by the racket and another male person.	
ra	Schläger	
	Rico Sennrich Neural Machine Translation	27/

ambiguity

words are often polysemous, with different translations for different meanings

word order

there are systematic word order differences between languages. We need to generate words in the correct order.

system	sentence
source	Unsere digitalen Leben haben die Notwendigkeit, stark, lebenslustig und erfolgreich zu erscheinen, verdoppelt []
reference	Our digital lives have doubled the need to appear strong, fun-loving and successful []
uedin-pbsmt	Our digital lives are lively, strong, and to be successful, doubled []
uedin-nmt	Our digital lives have doubled the need to appear strong, lifelike and successful []

grammatical marking system

grammatical distinctions can be marked in different ways, for instance through word order (English), or inflection (German). The translator needs to produce the appropriate marking.

> English ... because the dog chased the man. German ... weil der Hund den Mann jagte.

multiword expressions

the meaning of non-compositional expressions is lost in a word-to-word translation

system	sentence
source	He bends over backwards for the team, ignoring any pain.
reference	Er zerreißt sich für die Mannschaft, geht über Schmerzen drüber.
	(lit: he tears himself apart for the team)
uedin-pbsmt	Er macht alles für das Team, den Schmerz zu ignorieren.
	(lit: he does everything for the team)
uedin-nmt	Er beugt sich rückwärts für die Mannschaft, ignoriert jeden Schmerz.
	(lit: he bends backwards for the team)

Interlude: why is (machine) translation hard?

subcategorization

Words only allow for specific categories of syntactic arguments, that often differ between languages.

Englishhe remembers his medical appointment.Germaner erinnert sich an seinen Arzttermin.English*he remembers himself to his medical appointment.German*er erinnert seinen Arzttermin.

agreement

inflected forms may need to agree over long distances to satisfy grammaticality.

Englishthey can not be foundFrenchelles ne peuvent pas être trouvées

morphological complexity

translator may need to analyze/generate morphologically complex words that were not seen before.

German	Abwasserbehandlungsanlage		
English	waste water treatment plant		
French	station d'épuration des eaux résiduaire		

system	sentence
source	Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.
reference	The defending champions are SpVgg Unterhaching, who have been relegated to the third league.
uedin-pbsmt	Title defender Drittligaabsteiger Week 2.
uedin-nmt	Defending champion is third-round pick SpVgg Underhaching.

open vocabulary

languages have an open vocabulary, and we need to learn translations for words that we have only seen rarely (or never)

system	sentence
source	Titelverteidiger ist Drittligaabsteiger SpVgg Unterhaching.
reference	The defending champions are SpVgg Unterhaching, who have been relegated to the third league.
uedin-pbsmt	Title defender Drittligaabsteiger Week 2.
uedin-nmt	Defending champion is third-round pick SpVgg Underhaching.

discontinuous structures

a word (sequence) can map to a discontinuous structure in another language.

English	l do not know
French	Je ne sais pas

system	sentence
source	Ein Jahr später machten die Fed-Repräsentanten diese Kürzungen rückgängig.
reference	A year later, Fed officials reversed those cuts.
uedin-pbsmt	A year later, the Fed representatives made these cuts.
uedin-nmt	A year later, FedEx officials reversed those cuts.

discourse

the translation of referential expressions depends on discourse context, which sentence-level translators have no access to.

English	I made a decision.	Please respect it.
French	J'ai pris une décision.	Respectez-la s'il vous plaît.
French	J'ai fait un choix.	Respectez-le s'il vous plaît.

assorted other difficulties

- underspecification
- ellipsis
- lexical gaps
- Ianguage change
- language variation (dialects, genres, domains)
- ill-formed input

human analysis of NMT (reranking) [Neubig et al., 2015]

- NMT is more grammatical
 - word order
 - insertion/deletion of function words
 - morphological agreement
- minor degradation in lexical choice?

- human-targeted translation error rate (HTER) based on automatic translation and human post-edit
- 4 error types: substitution, insertion, deletion, shift

avetem	HTER (no <i>shift</i>)			HTER
System	word	lemma	$\%\Delta$	(<i>shift</i> only)
PBSMT [Ha et al., 2015]	28.3	23.2	-18.0	3.5
NMT [Luong and Manning, 2015]	21.7	18.7	-13.7	1.5

- word-level is closer to lemma-level performance: better at inflection/agreement
- improvement on lemma-level: better lexical choice
- fewer shift errors: better word order

- human-targeted translation error rate (HTER) based on automatic translation and human post-edit
- 4 error types: substitution, insertion, deletion, shift

avetem	HTER (no <i>shift</i>)			HTER
system	word	lemma	$\%\Delta$	(<i>shift</i> only)
PBSMT [Ha et al., 2015]	28.3	23.2	-18.0	3.5
NMT [Luong and Manning, 2015]	21.7	18.7	-13.7	1.5

- word-level is closer to lemma-level performance: better at inflection/agreement
- improvement on lemma-level: better lexical choice
- fewer shift errors: better word order

- human-targeted translation error rate (HTER) based on automatic translation and human post-edit
- 4 error types: substitution, insertion, deletion, shift

avetem	HTER (no <i>shift</i>)			HTER
system	word	lemma	$\%\Delta$	(<i>shift</i> only)
PBSMT [Ha et al., 2015]	28.3	23.2	-18.0	3.5
NMT [Luong and Manning, 2015]	21.7	18.7	-13.7	1.5

- word-level is closer to lemma-level performance: better at inflection/agreement
- improvement on lemma-level: better lexical choice
- fewer shift errors: better word order

- human-targeted translation error rate (HTER) based on automatic translation and human post-edit
- 4 error types: substitution, insertion, deletion, shift

avetem	HTER (no <i>shift</i>)			HTER
System	word	lemma	$\%\Delta$	(<i>shift</i> only)
PBSMT [Ha et al., 2015]	28.3	23.2	-18.0	3.5
NMT [Luong and Manning, 2015]	21.7	18.7	-13.7	1.5

- word-level is closer to lemma-level performance: better at inflection/agreement
- improvement on lemma-level: better lexical choice
- fewer shift errors: better word order

WMT16 direct assessment [Bojar et al., 2016]

- uedin-nmt is most fluent for all 4 evaluated translation directions
- in adequacy, ranked:
 - 1/6 (CS-EN)
 - 1/10 (DE-EN)
 - 2/7 (RO-EN)
 - 6/10 (RU-EN)

• relative to other systems, stronger contrast in fluency than adequacy

neural MT

- end-to-end trained model
- generalization via continuous space representation
- output conditioned on full source text and target history

phrase-based SMT

- log-linear combination of many "weak" features
- data sparsenesss triggers back-off to smaller units
- strong independence assumptions

Attentional encoder-decoder

Where are we now? Evaluation, challenges, future directions...

- Evaluation results
- Comparing neural and phrase-based machine translation
- Recent research in neural machine translation

speed bottlenecks

- matrix multiplication
 - \rightarrow use of highly parallel hardware (GPUs)
- softmax (scales with vocabulary size). Solutions:
 - LMs: hierarchical softmax; noise-contrastive estimation; self-normalization
 - NMT: approximate softmax through subset of vocabulary [Jean et al., 2015]

NMT training vs. decoding (on fast GPU)

- training: slow (1-3 weeks)
- decoding: fast (100 000–500 000 sentences / day)^a

^awith NVIDIA Titan X and amuNMT (https://github.com/emjotde/amunmt)

Why is vocabulary size a problem?

- size of one-hot input/output vector is linear to vocabulary size
- large vocabularies are space inefficient
- large output vocabularies are time inefficient
- typical network vocabulary size: 30 000-100 000

What about out-of-vocabulary words?

- training set vocabulary typically larger than network vocabulary (1 million words or more)
- at translation time, we regularly encounter novel words:
 - names: Barack Obama
 - morph. complex words: Hand/gepäck/gebühr ('carry-on bag fee')
 - numbers, URLs etc.

Solutions

- copy unknown words, or translate with back-off dictionary [Jean et al., 2015, Luong et al., 2015b, Gulcehre et al., 2016]
 → works for names (if alphabet is shared), and 1-to-1 aligned words
- use subword units (characters or others) for input/output vocabulary
 → model can learn translation of seen words on subword level
 → model can translate unseen words if translation is *transparent*
- active research area [Sennrich et al., 2016c, Luong and Manning, 2016, Chung et al., 2016, Ling et al., 2015, Costa-jussà and Fonollosa, 2016]

transparent translations

- some translations are semantically/phonologically transparent
- morphologically complex words (e.g. compounds):
 - solar system (English)
 - Sonnen|system (German)
 - Nap|rendszer (Hungarian)
- named entities:
 - Obama(English; German)
 - Обама (Russian)
 - オバマ (o-ba-ma) (Japanese)
- cognates and loanwords:
 - claustrophobia(English)
 - Klaustrophobie(German)
 - Клаустрофобия (Russian)

iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac

iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac ZabdZabac	Z=aa

iteratively replace most frequent byte pair in sequence with unused byte

aaabdaaabac	7
ZabdZabac	Z=da V_ab
ZYdZYac	Teab

iteratively replace most frequent byte pair in sequence with unused byte

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	frequency
'l o w '	5
'l o w e r '	2
'n e w e s t '	6
'w i d e s t '	3

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	frequency	('e', 's')	ightarrow 'es'	
'l o w '	5			
'l o w e r '	2			
'n e w es t '	6			
'widest'	3			

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	frequency	('e', 's')	ightarrow 'es'	
'l o w '	5	('es', 't')	ightarrow 'est'	
'l o w e r '	2			
'n e w est <∕w>'	6			
'w i d est '	3			

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	frequency	('e', 's')	\rightarrow	'es'
'l o w '	5	('es', 't')	\rightarrow	'est'
'l o w e r '	2	('est', '')	\rightarrow	'est'
'n e w est'	6			
'w i d est'	3			

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	frequency	('e', 's')	\rightarrow	'es'
'lo w '	5	('es', 't')	\rightarrow	'est'
'lo w e r <∕w>'	2	('est', '')	\rightarrow	'est'
'n e w est'	6	('l', 'o')	\rightarrow	'lo'
'w i d est'	3			

- iteratively replace most frequent pair of symbols ('A','B') with 'AB'
- apply on dictionary, not on full text (for efficiency)
- output vocabulary: character vocabulary + one symbol per merge

word	frequency	('e', 's')	\rightarrow	'es'
'low '	5	('es', 't')	\rightarrow	'est'
'low e r '	2	('est', '')	\rightarrow	'est'
'n e w est'	6	('l', 'o')	\rightarrow	'lo'
'w i d est'	3	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'lowest'	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'l o w es t '	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'l o w est '	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
'l o w est'	('es', 't')	\rightarrow	'est'
	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
	('es', 't')	\rightarrow	'est'
'lo w est'	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'
why BPE?

- on't waste time on frequent character sequences
 → trade-off between text length and vocabulary sizes
- open-vocabulary: learned operations can be applied to unknown words
- alternative view: character-level model on compressed text

	('e', 's')	\rightarrow	'es'
'low est'	('es', 't')	\rightarrow	'est'
	('est', '')	\rightarrow	'est'
	('l', 'o')	\rightarrow	'lo'
	('lo', 'w')	\rightarrow	'low'

Linguistic Features [Sennrich and Haddow, 2016] a.k.a. Factored Neural Machine Translation

motivation: disambiguate words by POS

English	German
close _{verb}	schließen
close _{adj}	nah
close _{noun}	Ende

sourceWe thought a win like this might be close_{adj}.referenceWir dachten, dass ein solcher Sieg nah sein könnte.baseline NMT*Wir dachten, ein Sieg wie dieser könnte schließen.

Linguistic Features: Architecture

use separate embeddings for each feature, then concatenate

baseline: only word feature $E(close) = \begin{bmatrix} 0.5\\ 0.2\\ 0.3\\ 0.1 \end{bmatrix}$

|F| input features

$$E_1(close) = \begin{bmatrix} 0.4\\ 0.1\\ 0.2 \end{bmatrix} \quad E_2(adj) = \begin{bmatrix} 0.1 \end{bmatrix} \quad E_1(close) \parallel E_2(adj) = \begin{bmatrix} 0.4\\ 0.1\\ 0.2\\ 0.1 \end{bmatrix}$$

Fo (7

Linguistic Features: Results

experimental setup

- WMT 2016 (parallel data only)
- source-side features:
 - POS tag
 - dependency label
 - lemma
 - morphological features
 - subword tag

an incomplete selection

- convolutional network as encoder [Kalchbrenner and Blunsom, 2013]
- TreeLSTM as encoder [Eriguchi et al., 2016]
- modifications to attention mechanism [Luong et al., 2015a, Feng et al., 2016]
- deeper networks [Zhou et al., 2016]
- coverage model [Mi et al., 2016, Tu et al., 2016b, Tu et al., 2016a]
- reward symmetry between source-to-target and target-to-source attention [Cohn et al., 2016, Cheng et al., 2015]

- problem: at training time, target-side history is reliable; at test time, it is not.
 - \rightarrow exposure bias
- solution: instead of using gold context, sample from the model to obtain target context
 [Shen et al., 2016, Ranzato et al., 2016, Bengio et al., 2015]
- more efficient cross entropy training remains in use to initialize weights

Trading-off target and source context

system	sentence
source	Ein Jahr später machten die Fed-Repräsentanten diese Kürzungen rückgängig.
reference	A year later, Fed officials reversed those cuts.
uedin-nmt	A year later, FedEx officials reversed those cuts.
uedin-pbsmt	A year later, the Fed representatives made these cuts.

problem

- RNN is locally normalized at each time step
- given Fed: as previous (sub)word, Ex is very likely in training data: p(Ex|Fed:) = 0.55
- label bias problem: locally-normalized models may ignore input in low-entropy state

potential solutions (speculative)

- sampling at training time
- bidirectional decoder [Liu et al., 2016, Sennrich et al., 2016a]
- context gates to trade-off source and target context [Tu et al., 2016]

Why train on monolingual data?

- cheaper to create/collect
- parallel data is scarce for many language pairs
- domain adaptation with *in-domain* monolingual data

Solutions/1 [Gülçehre et al., 2015]

shallow fusion: rescore beam with language model

deep fusion: extra, LM-specific hidden layer

[Gülçehre et al., 2015]

Training data: monolingual

Solutions/2 [Sennrich et al., 2016b]

- decoder is already a language model
 - \rightarrow mix monolingual data into training set
- problem: how to get c_i for monolingual training instances?
 - dummy source context c_i (moderately effective)
 - produce synthetic source sentence via back-translation \rightarrow get approximation of c_i

[Sennrich et al., 2016a]

Multi-source translation [Zoph and Knight, 2016]

we can condition on multiple input sentences

- benefits:
 - one source text may contain information that is unspecified in other
 - \rightarrow possible quality gains
- o drawbacks:
 - · we need multiple source sentences at training and decoding time

Multilingual models [Dong et al., 2015, Firat et al., 2016]

we can share layers of the model across language pairs

benefits:

- transfer learning from one language pair to the other
 - ightarrow possible quality gains, especially for low-resourced language pairs
- scalability: do we need $N^2 N$ independent models for N languages?
 - \rightarrow sharing of parameters allows linear growth
 - \rightarrow zero-shot translation?

Multi-task models [Luong et al., 2016]

- other tasks can be modelled with sequence-to-sequence models
- we can share layers between translation and other tasks

Log-linear models

- model ensembling is well-established
- reranking output of phrase-based/syntax-based with NMT [Neubig et al., 2015]
- incorporating NMT as a feature function into PBSMT [Junczys-Dowmunt et al., 2016]
 - \rightarrow results depend on relative performance of PBSMT and NMT
- log-linear combination of different neural models
 - left-to-right and right-to-left [Liu et al., 2016]
 - source-to-target and target-to-source [Li and Jurafsky, 2016]

- (better) solutions to new(ish) problems
 - OOVs, coverage, efficiency...
- work on "hard" translation problems
 - consider context beyond sentence boundary
 - reward semantic adequacy of translation
 - ...
- new opportunities
 - one model for many language pairs?
 - tight integration with other NLP tasks

secondary literature

- lecture notes by Kyunghyun Cho: [Cho, 2015]
- chapter on *Neural Network Models* in "Statistical Machine Translation" by Philipp Koehn http://mt-class.org/jhu/assets/papers/neural-network-models.pdf

NMT tools

- dl4mt-tutorial (theano) https://github.com/nyu-dl/dl4mt-tutorial (our branch: nematus https://github.com/rsennrich/nematus)
- nmt.matlab https://github.com/lmthang/nmt.matlab
- seq2seq (tensorflow) https://www.tensorflow.org/versions/r0.8/tutorials/seq2seq/index.html
- neural monkey (tensorflow) https://github.com/ufal/neuralmonkey

- sample files and instructions for training NMT model https://github.com/rsennrich/wmt16-scripts
- pre-trained models to test decoding (and for further experiments) http://statmt.org/rsennrich/wmt16_systems/

lab session this afternoon

- install Nematus
- use Nematus with existing model
- adapt existing model to new domain via continued training

Thank you!

Bibliography I

Bahdanau, D., Cho, K., and Bengio, Y. (2015).

Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the International Conference on Learning Representations (ICLR).

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015).

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. CoRR, abs/1506.03099.

Bentivogli, L., Bisazza, A., Cettolo, M., and Federico, M. (2016).

Neural versus Phrase-Based Machine Translation Quality: a Case Study. In $\underline{\mathsf{EMNLP}}$ 2016.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Jimeno Yepes, A., Koehn, P., Logacheva, V., Monz, C., Negri, M., Neveol, A., Neves, M., Popel, M., Post, M., Rubino, R., Scarton, C., Specia, L., Turchi, M., Verspoor, K., and Zampieri, M. (2016).

Findings of the 2016 Conference on Machine Translation (WMT16).

In <u>Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers</u>, pages 131–198, Berlin, Germany. Association for Computational Linguistics.

Cheng, Y., Shen, S., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2015).

Agreement-based Joint Training for Bidirectional Attention-based Neural Machine Translation. CoRR, abs/1512.04650.

Cho, K. (2015).

Natural Language Understanding with Distributed Representation. CoRR, abs/1511.07916.

Cho, K., Courville, A., and Bengio, Y. (2015).

Describing Multimedia Content using Attention-based Encoder-Decoder Networks.

Bibliography II

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational Linguistics.

Chung, J., Cho, K., and Bengio, Y. (2016).

A Character-level Decoder without Explicit Segmentation for Neural Machine Translation. CoRR, abs/1603.06147.

Cohn, T., Hoang, C. D. V., Vymolova, E., Yao, K., Dyer, C., and Haffari, G. (2016).

Incorporating Structural Alignment Biases into an Attentional Neural Translation Model. CoRR, abs/1601.01085.

Costa-jussà, R. M. and Fonollosa, R. J. A. (2016).

Character-based Neural Machine Translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 357–361. Association for Computational Linguistics.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015).

Multi-Task Learning for Multiple Language Translation.

```
In
```

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of pages 1723–1732, Beijing, China. Association for Computational Linguistics.

Eriguchi, A., Hashimoto, K., and Tsuruoka, Y. (2016).

Tree-to-Sequence Attentional Neural Machine Translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 823–833. Association for Computational Linguistics.

Bibliography III

Feng, S., Liu, S., Li, M., and Zhou, M. (2016).

Implicit Distortion and Fertility Models for Attention-based Encoder-Decoder NMT Model. <u>CoRR</u>, abs/1601.03317.

Firat, O., Cho, K., and Bengio, Y. (2016).

Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism.

Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Languages 866–875. Association for Computational Linguistics.

Gage, P. (1994).

A New Algorithm for Data Compression. C Users J., 12(2):23–38.

Gülçehre, c., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H., Bougares, F., Schwenk, H., and Bengio, Y. (2015).

On Using Monolingual Corpora in Neural Machine Translation. CoRR, abs/1503.03535.

Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., and Bengio, Y. (2016).

Pointing the Unknown Words.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 140–149. Association for Computational Linguistics.

Ha, T.-L., Niehues, J., Cho, E., Mediani, M., and Waibel, A. (2015).

The KIT translation systems for IWSLT 2015.

In Proceedings of the International Workshop on Spoken Language Translation (IWSLT), pages 62-69.

Haddow, B., Huck, M., Birch, A., Bogoychev, N., and Koehn, P. (2015).

The Edinburgh/JHU Phrase-based Machine Translation Systems for WMT 2015. In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 126–133, Lisbon, Portugal. Association for Comoutational Linquistics.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015).

On Using Very Large Target Vocabulary for Neural Machine Translation.

In

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of pages 1–10, Beijing, China. Association for Computational Linguistics.

Junczys-Dowmunt, M., Dwojak, T., and Sennrich, R. (2016).

The AMU-UEDIN Submission to the WMT16 News Translation Task: Attention-based NMT Models as Feature Functions in Phrase-based SMT.

In Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 316–322, Berlin, Germany. Association for Computational Linguistics.

Junczys-Dowmunt, M. and Grundkiewicz, R. (2016).

Log-linear Combinations of Monolingual and Bilingual Neural Machine Translation Models for Automatic Post-Editing. In <u>Proceedings of the First Conference on Machine Translation</u>, pages 751–758, Berlin, Germany. Association for Computational Linguistics.

Kalchbrenner, N. and Blunsom, P. (2013).

Recurrent Continuous Translation Models.

In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle. Association for Computational Linguistics.

Bibliography V

Li, J. and Jurafsky, D. (2016).

Mutual Information and Diverse Decoding Improve Neural Machine Translation. <u>CoRR</u>, abs/1601.00372.

Ling, W., Trancoso, I., Dyer, C., and Black, A. W. (2015).

Character-based Neural Machine Translation. ArXiv e-prints.

Liu, L., Utiyama, M., Finch, A., and Sumita, E. (2016).

Agreement on Target-bidirectional Neural Machine Translation . In $\underline{\sf NAACL}$ HLT 16, San Diego, CA.

Luong, M., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser, L. (2016).

Multi-task Sequence to Sequence Learning. In ICLR 2016.

Luong, M.-T. and Manning, C. D. (2015).

Stanford Neural Machine Translation Systems for Spoken Language Domains. In Proceedings of the International Workshop on Spoken Language Translation 2015, Da Nang, Vietnam.

Luong, M.-T. and Manning, D. C. (2016).

Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1054–1063. Association for Computational Linguistics.

Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1412–1421, Lisbon, Portugal, Association for Computational Linguistics.

Bibliography VI

Luong, T., Sutskever, I., Le, Q., Vinyals, O., and Zaremba, W. (2015b).

Addressing the Rare Word Problem in Neural Machine Translation.

In

Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of pages 11–19, Beijing, China. Association for Computational Linguistics.

Mi, H., Sankaran, B., Wang, Z., and Ittycheriah, A. (2016).

A Coverage Embedding Model for Neural Machine Translation. ArXiv e-prints.

Neubig, G., Morishita, M., and Nakamura, S. (2015).

Neural Reranking Improves Subjective Quality of Machine Translation: NAIST at WAT2015. In Proceedings of the 2nd Workshop on Asian Translation (WAT2015), pages 35–41, Kyoto, Japan.

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016).

Sequence Level Training with Recurrent Neural Networks. In ICLR 2016.

Sennrich, R. and Haddow, B. (2016).

Linguistic Input Features Improve Neural Machine Translation.

In <u>Proceedings of the First Conference on Machine Translation, Volume 1: Research Papers</u>, pages 83–91, Berlin, Germany. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016a).

Edinburgh Neural Machine Translation Systems for WMT 16. In Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers, pages 368–373, Berlin, Germany. Association for Computational Linguistics.

Bibliography VII

Sennrich, R., Haddow, B., and Birch, A. (2016b).

Improving Neural Machine Translation Models with Monolingual Data.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 86–96, Berlin, Germany. Association for Computational Linguistics.

Neural Machine Translation of Rare Words with Subword Units.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016).

Minimum Risk Training for Neural Machine Translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014).

Sequence to Sequence Learning with Neural Networks.

In

Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, pages 3104–3112, Montreal, Quebec, Canada.

Tu, Z., Liu, Y., Lu, Z., Liu, X., and Li, H. (2016).

Context Gates for Neural Machine Translation. ArXiv e-prints.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016a).

Coverage-based Neural Machine Translation. CoRR, abs/1601.04811.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016b).

Modeling Coverage for Neural Machine Translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 76–85. Association for Computational Linguistics.

Zhou, J., Cao, Y., Wang, X., Li, P., and Xu, W. (2016).

Deep Recurrent Models with Fast-Forward Connections for Neural Machine Translation. Transactions of the Association of Computational Linguistics – Volume 4, Issue 1, pages 371–383.

Zoph, B. and Knight, K. (2016). Multi-Source Neural Translation.

In NAACL HLT 2016.