NN Language Models

David Vilar
david.vilar@nuance.com
MT Marathon 2016
14. September 2016

About Myself

Overview

1. Introduction to Word Embeddings
2. Recurrent Neural Networks
3. LSTMs
4. A Few Notes About the Output Layer

Introduction to Word

 Embeddings
1-hot encodings

- 1-hot encoding is the "natural" way to encode symbolic information (e.g. words)
- But:
- The encoding itself is arbitrary (e.g. first appearance of a word in the training text)
- No useful information can be read from the vector representation
- Example:

the green dog bites the cat	
the	$(1,0,0,0,0)$
green	$(0,1,0,0,0)$
dog	$(0,0,1,0,0)$
bites	$(0,0,0,1,0)$
cat	$(0,0,0,0,1)$

Feed-forward LM

Intuition

- A NN represents a flow of information
- A NN can be decomposed into smaller networks
- Each of these networks transforms the information, which serves as input to the next network
- Can be seen in the recursive structure of the equations

$$
y^{(l)}(x)=f\left(W^{(l)} y^{(l-1)}(x)+b^{(l)}\right)
$$

The most "stupid" network

The most "stupid" network

The most "stupid" network

The most "stupid" network

If the "stupid" network has no errors:

- We mapped an 12-dimensional (sparse?) vector into a 4-dimensional dense vector

The most "stupid" network

If the "stupid" network has no errors:

- We mapped an 12-dimensional (sparse?) vector into a 4-dimensional dense vector

However:

- The representation is still arbitrary, as no information about the word themselves is taken into account

The most "stupid" network

If the "stupid" network has no errors:

- We mapped an 12-dimensional (sparse?) vector into a 4-dimensional dense vector

However:

- The representation is still arbitrary, as no information about the word themselves is taken into account

We can do better!

Skip-gram model

Skip-gram model

- Assumption: similar words appear in similar contexts
- Goal: similar words have similar representations (as they will predict similar contexts)
- Indeed:
- $\operatorname{vec}($ King $)-\operatorname{vec}($ Man $)+\operatorname{vec}($ Woman $)$ results in a vector that is closest to Queen
- $\operatorname{vec}($ Madrid $)-\operatorname{vec}($ Spain $)+\operatorname{vec}($ France $)$ results in a vector that is closest to Paris

Skip-gram model

Country and Capital Vectors Projected by PCA

- Different implementations available (many of them open source)
- (One of) The most widely used: word2vec by Mikolov et al.
- Efficient implementation, can deal with big datasets
- https://code.google.com/archive/p/word2vec/
- Normally used pre-training for embedding layer
- May be further refined by task-specific training

Recurrent Neural Networks

Recap

- Language model

$$
p\left(w_{1}^{N}\right)
$$

- Chain rule (mathematical equality)

$$
p\left(w_{1}^{N}\right)=\prod_{n=1}^{N} p\left(w_{n} \mid w_{1}^{n-1}\right)
$$

- k-th order Markov assumption: $(k+1)$-grams

$$
p\left(w_{1}^{N}\right) \approx \prod_{n=1}^{N} p\left(w_{n} \mid w_{n-k}^{n-1}\right)
$$

Recap

Advantage of NNLMs we encountered up to this point:

- FF language models deal with the sparsity problem (by projecting into a continuous space)

Recap

Advantage of NNLMs we encountered up to this point:

- FF language models deal with the sparsity problem (by projecting into a continuous space)
- but they still are under the Markov chain assumption

Recap

Advantage of NNLMs we encountered up to this point:

- FF language models deal with the sparsity problem (by projecting into a continuous space)
- but they still are under the Markov chain assumption

We would like to be able to take into account the whole history!

Recap

Advantage of NNLMs we encountered up to this point:

- FF language models deal with the sparsity problem (by projecting into a continuous space)
- but they still are under the Markov chain assumption

We would like to be able to take into account the whole history!
\rightarrow Let the network remember everything it has seen!

Recurrent NNs

Recurrent NNs

Recurrent NNs

In Equations: $y^{[t]}=f\left(W x^{[t]}+R y^{[t-1]}+b\right)$

Recurrent NNs

$$
p\left(w_{1}^{4}\right)=
$$

Recurrent NNs

$$
\begin{aligned}
& p\left(w_{1}^{4}\right)= \\
& p\left(w_{1} \mid<\mathrm{s}>\right)
\end{aligned}
$$

Recurrent NNs

$$
\begin{aligned}
& p\left(w_{1}^{4}\right)= \\
& p\left(w_{1} \mid<\mathrm{s}>\right) \\
& \times p\left(w_{2} \mid w_{1},<\mathrm{s}>\right)
\end{aligned}
$$

Recurrent NNs

$$
\begin{aligned}
& p\left(w_{1}^{4}\right)= \\
& p\left(w_{1} \mid<\mathrm{s}>\right) \\
& \times p\left(w_{2} \mid w_{1},<\mathrm{s}>\right) \\
& \times p\left(w_{3} \mid w_{2}, w_{1},<\mathrm{s}>\right)
\end{aligned}
$$

Recurrent NNs

$$
\begin{aligned}
& p\left(w_{1}^{4}\right)= \\
& p\left(w_{1} \mid<\mathrm{s}>\right) \\
& \times p\left(w_{2} \mid w_{1},<\mathrm{s}>\right) \\
& \times p\left(w_{3} \mid w_{2}, w_{1},<\mathrm{s}>\right) \\
& \times p\left(w_{4} \mid w_{3}, w_{2}, w_{1},<\mathrm{s}>\right)
\end{aligned}
$$

Backpropagation through time

How to train a RNN?

- Of course...

Backpropagation through time

How to train a RNN?

- Of course... with backpropagation

Backpropagation through time

How to train a RNN?

- Of course. . . with backpropagation
- Unfold recurrent connections through time
- Results in a wide network, backpropagation can be used

Backpropagation through time

How to train a RNN?

- Of course... with backpropagation
- Unfold recurrent connections through time
- Results in a wide network, backpropagation can be used
- Use chain rule not only for layers, but also for time steps

Backpropagation through time

Exploding and vanishing gradient

Observation: sometimes the gradient "misbehaves"

Exploding and vanishing gradient

Observation: sometimes the gradient "misbehaves"

- Sometimes vanishes (norm ≈ 0)

Exploding and vanishing gradient

Observation: sometimes the gradient "misbehaves"

- Sometimes vanishes (norm ≈ 0)
- Sometimes explodes (norm $\rightarrow \infty$)

Exploding and vanishing gradient

Observation: sometimes the gradient "misbehaves"

- Sometimes vanishes (norm ≈ 0)
- Sometimes explodes (norm $\rightarrow \infty$)

Exploding and vanishing gradient

What to do?

- Exploding gradient: clip the gradient (divide by the norm) (Full vector or element-wise)

Exploding and vanishing gradient

What to do?

- Exploding gradient: clip the gradient (divide by the norm) (Full vector or element-wise)

Exploding and vanishing gradient

What to do?

- Exploding gradient: clip the gradient (divide by the norm) (Full vector or element-wise)

- Vanishing gradient:

Exploding and vanishing gradient

What to do?

- Exploding gradient: clip the gradient (divide by the norm) (Full vector or element-wise)

- Vanishing gradient: you have a problem!

Exploding and vanishing gradient

Why does this happen?

Exploding and vanishing gradient

Why does this happen?
Sequence of length $T, y^{[t]}=f\left(W x^{[t]}+R y^{[t-1]}+b\right)$.

Exploding and vanishing gradient

Why does this happen?
Sequence of length $T, y^{[t]}=f\left(W x^{[t]}+R y^{[t-1]}+b\right)$.
Derivative of the loss function \mathcal{L} :
$\frac{\partial \mathcal{L}}{\partial \theta}$

Exploding and vanishing gradient

Why does this happen?
Sequence of length $T, y^{[t]}=f\left(W x^{[t]}+R y^{[t-1]}+b\right)$.
Derivative of the loss function \mathcal{L} :

$$
\frac{\partial \mathcal{L}}{\partial \theta}=\sum_{1 \leq t_{2} \leq T} \frac{\partial \mathcal{L}^{\left[t_{2}\right]}}{\partial \theta}
$$

Exploding and vanishing gradient

Why does this happen?
Sequence of length $T, y^{[t]}=f\left(W x^{[t]}+R y^{[t-1]}+b\right)$.
Derivative of the loss function \mathcal{L} :

$$
\frac{\partial \mathcal{L}}{\partial \theta}=\sum_{1 \leq t_{2} \leq T} \frac{\partial \mathcal{L}^{\left[t_{2}\right]}}{\partial \theta}=\sum_{1 \leq t_{2} \leq T} \sum_{1 \leq t_{1} \leq t_{2}} \frac{\partial \mathcal{L}^{\left[t_{2}\right]}}{\partial y^{\left[t_{2}\right]}} \frac{\partial y^{\left[t_{2}\right]}}{\partial y^{\left[t_{1}\right]}} \frac{\partial y^{\left[t_{1}\right]}}{\partial \theta}
$$

Exploding and vanishing gradient

Why does this happen?
Sequence of length $T, y^{[t]}=f\left(W x^{[t]}+R y^{[t-1]}+b\right)$.
Derivative of the loss function \mathcal{L} :

$$
\frac{\partial \mathcal{L}}{\partial \theta}=\sum_{1 \leq t_{2} \leq T} \frac{\partial \mathcal{L}^{\left[t_{2}\right]}}{\partial \theta}=\sum_{1 \leq t_{2} \leq T} \sum_{1 \leq t_{1} \leq t_{2}} \frac{\partial \mathcal{L}^{\left[t_{2}\right]}}{\partial y^{\left[t_{2}\right]}} \frac{\partial y^{\left[t_{2}\right]}}{\partial y^{\left[t_{1}\right]}} \frac{\partial y^{\left[t_{1}\right]}}{\partial \theta}
$$

and for $\frac{\partial y^{\left[t_{2}\right]}}{\partial y^{\left[t_{1}\right]}}$:

$$
\frac{\partial y^{\left[t_{2}\right]}}{\partial y^{\left[t_{1}\right]}}=\prod_{t_{1}<t \leq t_{2}} \frac{\partial y^{[t]}}{\partial y^{[t-1]}}
$$

Exploding and vanishing gradient

Why does this happen?
Sequence of length $T, y^{[t]}=f\left(W x^{[t]}+R y^{[t-1]}+b\right)$.
Derivative of the loss function \mathcal{L} :

$$
\frac{\partial \mathcal{L}}{\partial \theta}=\sum_{1 \leq t_{2} \leq T} \frac{\partial \mathcal{L}^{\left[t_{2}\right]}}{\partial \theta}=\sum_{1 \leq t_{2} \leq T} \sum_{1 \leq t_{1} \leq t_{2}} \frac{\partial \mathcal{L}^{\left[t_{2}\right]}}{\partial y^{\left[t_{2}\right]}} \frac{\partial y^{\left[t_{2}\right]}}{\partial y^{\left[t_{1}\right]}} \frac{\partial y^{\left[t_{1}\right]}}{\partial \theta}
$$

and for $\frac{\partial y^{\left[t_{2}\right]}}{\partial y^{\left[t_{1}\right]}}$:

$$
\frac{\partial y^{\left[t_{2}\right]}}{\partial y^{\left[t_{1}\right]}}=\prod_{t_{1}<t \leq t_{2}} \frac{\partial y^{[t]}}{\partial y^{[t-1]}}=\prod_{t_{1}<t \leq t_{2}} R^{T} \operatorname{diag}\left(f^{\prime}\left(R y^{[t-1]}\right)\right)
$$

Exploding and vanishing gradient

Why does this happen?

$$
\left\|\frac{\partial y^{[t]}}{\partial y^{[t-1]}}\right\| \leq\left\|R^{T}\right\| \| \operatorname{diag}\left(f^{\prime}\left(R y^{[t-1]}\right) \| \leq \gamma \sigma_{\max }\right.
$$

with

- γ a maximal bound for $f^{\prime}\left(R y^{[t-1]}\right)$
- e.g. $\left|\tanh ^{\prime}(x)\right| \leq 1 ;\left|\sigma^{\prime}(x)\right| \leq \frac{1}{4}$
- $\sigma_{\max }$ the largest singluar value of R^{T}

More details: R. Pascanu, T. Mikolov, Y. Bengio On the difficulty of training recurrent neural networks ICML 2013
(and previous work)

Exploding and vanishing gradient

- Vanishing gradient: you have a problem!

Exploding and vanishing gradient

- Vanishing gradient: you have a problem!
- We cannot distinguish if
- There is no dependency in the data
- We have chosen the wrong parameters

LSTMs

Intuition

- RNNs blindly pass information from one state to the other
- LSTMs include mechanisms for

Intuition

- RNNs blindly pass information from one state to the other
- LSTMs include mechanisms for
- Ignoring the input

Intuition

- RNNs blindly pass information from one state to the other
- LSTMs include mechanisms for
- Ignoring the input
- Ignoring the "current" output

Intuition

- RNNs blindly pass information from one state to the other
- LSTMs include mechanisms for
- Ignoring the input
- Ignoring the "current" output
- Forgetting the history

RNN units

RNN units

LSTM Equations

Compute a "candidate value", similar to RNNs:

$$
\tilde{C}_{t}=\tanh \left(W_{c} x_{t}+U_{c} h_{t-1}+b_{c}\right)
$$

LSTM Equations

Compute a "candidate value", similar to RNNs:

$$
\tilde{C}_{t}=\tanh \left(W_{c} x_{t}+U_{c} h_{t-1}+b_{c}\right)
$$

Input gate: control the influence of the current output

$$
i_{t}=\sigma\left(W_{i} x_{t}+U_{i} h_{t-1}+b_{i}\right)
$$

LSTM Equations

Compute a "candidate value", similar to RNNs:

$$
\tilde{C}_{t}=\tanh \left(W_{c} x_{t}+U_{c} h_{t-1}+b_{c}\right)
$$

Input gate: control the influence of the current output

$$
i_{t}=\sigma\left(W_{i} x_{t}+U_{i} h_{t-1}+b_{i}\right)
$$

Forget gate: control the influence of the history

$$
f_{t}=\sigma\left(W_{f} x_{t}+U_{f} h_{t-1}+b_{f}\right)
$$

LSTM Equations

Memory cell state: combination of new and old state

$$
C_{t}=i_{t} \tilde{C}_{t}+f_{t} C_{t-1}
$$

LSTM Equations

Memory cell state: combination of new and old state

$$
C_{t}=i_{t} \tilde{C}_{t}+f_{t} C_{t-1}
$$

Output gate: how much we want to output to the exterior

$$
o_{t}=\sigma\left(W_{o} x_{t}+U_{o} h_{t-1}+b_{o}\right)
$$

LSTM Equations

Memory cell state: combination of new and old state

$$
C_{t}=i_{t} \tilde{C}_{t}+f_{t} C_{t-1}
$$

Output gate: how much we want to output to the exterior

$$
o_{t}=\sigma\left(W_{o} x_{t}+U_{o} h_{t-1}+b_{o}\right)
$$

Output of the cell:

$$
y_{t}=o_{t} \cdot \tanh \left(C_{t}\right)
$$

LSTM Visualization

LSTM Visualization

Compute a "candidate value", similar to RNNs
Input gate: control the influence of the current output

$$
\begin{aligned}
\tilde{C}_{t} & =\tanh \left(W_{c} x_{t}+U_{c} h_{t-1}+b_{c}\right) \\
i_{t} & =\sigma\left(W_{i} x_{t}+U_{i} h_{t-1}+b_{i}\right)
\end{aligned}
$$

LSTM Visualization

Forget gate: control the influence of the history

$$
f_{t}=\sigma\left(W_{f} x_{t}+U_{f} h_{t-1}+b_{f}\right)
$$

LSTM Visualization

Memory cell state: combination of new and old state

$$
C_{t}=i_{t} \tilde{C}_{t}+f_{t} C_{t-1}
$$

LSTM Visualization

Output gate: how much we want to output to the exterior Output of the cell

$$
\begin{aligned}
& o_{t}=\sigma\left(W_{o} x_{t}+U_{o} h_{t-1}+b_{o}\right) \\
& y_{t}=o_{t} \cdot \tanh \left(C_{t}\right)
\end{aligned}
$$

LSTM Visualization

LSTMs: additional remarks

- LSTMs solve the vanishing gradient problem, but the gradient can still explode
- Use gradient clipping

LSTMs: additional remarks

- LSTMs solve the vanishing gradient problem, but the gradient can still explode
- Use gradient clipping
- Different variants of LSTMs. Basic idea is similar, but
- Different gates
- Different parametrization of the gates
- Pay attention when reading the literature

LSTMs: additional remarks

- LSTMs solve the vanishing gradient problem, but the gradient can still explode
- Use gradient clipping
- Different variants of LSTMs. Basic idea is similar, but
- Different gates
- Different parametrization of the gates
- Pay attention when reading the literature
- Mathematically: "Constant Error Carousel"
- No repeated weight application in the derivative
- "The derivative is the forget gate"

GRUs

Gated Recurrent Units:

- Combine forget and input gates into an "update gate"
- Suppress output gate
- Add a "reset gate"

Simpler than LSTMs (less parameters) and quite succesful

GRUs

Gated Recurrent Units:

- Combine forget and input gates into an "update gate"
- Suppress output gate
- Add a "reset gate"

Simpler than LSTMs (less parameters) and quite succesful

$$
\begin{aligned}
z_{t} & =\sigma\left(W_{z} x_{t}+U_{z} h_{t-1}+b_{z}\right) \\
r_{t} & =\sigma\left(W_{r} x_{t}+U_{r} h_{t-1}+b_{r}\right) \\
\tilde{h}_{t} & =\tanh \left(W x_{t}+U\left(r_{t} h_{t-1}\right)+b\right) \\
h_{t} & =z_{t} \tilde{h}_{t}+\left(1-z_{t} h_{t-1}\right)
\end{aligned}
$$

GRUs Visualization

Experimental Results

Results on 1B Word Benchmark	
Model	Test PPL
RNN	68.3
Interpolated KN 5-gram, 1.1B N-Grams	67.6
RNN + MaxEnt 9-gram features	51.3
"Small" LSTM	54.1
"Big" LSTM with dropout	32.2
2 Layer LSTM with dropout	30.6

From R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, Y. Wu Exploring the Limits of Lanugage Modelling, 2016

A Few Notes About the Output Layer

The Output Layer

Computing a softmax is expensive (specially for large vocabularies)

The Output Layer

Computing a softmax is expensive (specially for large vocabularies)

Possible approaches:

- Use a shortlist (and usually combine with standard n-gram model)

The Output Layer

Computing a softmax is expensive (specially for large vocabularies)

Possible approaches:

- Use a shortlist (and usually combine with standard n-gram model)
- Use hierarchical output

The Output Layer

Computing a softmax is expensive (specially for large vocabularies)

Possible approaches:

- Use a shortlist (and usually combine with standard n-gram model)
- Use hierarchical output
- Use self-normalizing networks (e.g. NCE training)

References

Word embeddings:

- T. Mikolov, K. Chen, G. Corrado, J. Dean Efficient Estimation of Word Representations in Vector Space Workshop at ICLR. 2013
- T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean Distributed Representations of Words and Phrases and their Compositionality NIPS. 2013.
- https://code.google.com/archive/p/word2vec/

References

Recurrent NNs:

- First reference?
- T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, S. Khudanpur Recurrent Neural Network Based Language Model Interspeech. 2010

References

Backpropagation through time:

- From wikipedia: The algorithm was independently derived by numerous researchers
- A. J. Robinson, F. Fallside, The utility driven dynamic error propagation network (Technical report). Cambridge University, Engineering Department, 1987
- P. J. Werbos Generalization of backpropagation with application to a recurrent gas market model Neural Networks. 1988

References

Vanishing gradient:

- Y. Bengio, P. Simard, P. Frasconi Learning long-term dependencies with gradient descent is difficult IEEE Transactions on Neural Networks. 1994
- R. Pascanu, T. Mikolov, Y. Bengio On the difficulty of training recurrent neural networks ICML. 2013

References

LSTMs:

- S. Hochreiter, J. Schmidhuber Long short-term memory Neural Computation. 1997
- K. Greff, R. K. Srivastava, J. Koutnk, B. R. Steunebrink, J Schmidhuber LSTM: A Search Space Odyssey IEEE Transactions on NN and Learning Systems 2015
- Pictures taken from http://colah.github.io/posts/ 2015-08-Understanding-LSTMs/

GRUs:

- K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, Y. Bengio Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation EMNLP 2014

References

Hierarchical Output:

- F. Morin, Y. Bengio Hierarchical Probabilistic Neural Network Language Models AISTATS. 2005

NCE:

- A. Mnih, Y. W. Teh A fast and simple algorithm for training neural probabilistic language models ICML. 2012

NN Language Models

David Vilar
david.vilar@nuance.com
MT Marathon 2016
14. September 2016

