NN Language Models

David Vilar david.vilar@nuance.com MT Marathon 2016 14. September 2016

About Myself

PhD on hierarchical MT Main author of Jane MT toolkit

Researcher. More work on MT, trying to make it usable for professional translators

Sr. Research Scientist: Language Modelling and Natural Language Understanding

- 1. Introduction to Word Embeddings
- 2. Recurrent Neural Networks
- 3. LSTMs
- 4. A Few Notes About the Output Layer

Introduction to Word Embeddings

1-hot encodings

- 1-hot encoding is the "natural" way to encode symbolic information (e.g. words)
- But:
 - The encoding itself is arbitrary (e.g. first appearance of a word in the training text)
 - No useful information can be read from the vector representation
 - Example:

Feed-forward LM

- A NN represents a *flow* of information
- A NN can be decomposed into smaller networks
- Each of these networks transforms the information, which serves as input to the next network
- Can be seen in the recursive structure of the equations

$$y^{(l)}(x) = f(W^{(l)}y^{(l-1)}(x) + b^{(l)})$$

The most "stupid" network

The most "stupid" network

The most "stupid" network

If the "stupid" network has no errors:

• We mapped an 12-dimensional (sparse?) vector into a 4-dimensional dense vector

If the "stupid" network has no errors:

• We mapped an 12-dimensional (sparse?) vector into a 4-dimensional dense vector

However:

• The representation is still arbitrary, as no information about the word themselves is taken into account

If the "stupid" network has no errors:

• We mapped an 12-dimensional (sparse?) vector into a 4-dimensional dense vector

However:

• The representation is still arbitrary, as no information about the word themselves is taken into account

We can do better!

Skip-gram model

- Assumption: similar words appear in similar contexts
- Goal: similar words have similar representations (as they will predict similar contexts)
- Indeed:
 - vec(King) vec(Man) + vec(Woman) results in a vector that is closest to Queen
 - vec(*Madrid*) vec(*Spain*) + vec(*France*) results in a vector that is closest to *Paris*

Skip-gram model

- Different implementations available (many of them open source)
- (One of) The most widely used: word2vec by Mikolov et al.
- Efficient implementation, can deal with big datasets
- https://code.google.com/archive/p/word2vec/
- Normally used pre-training for embedding layer
 - May be further refined by task-specific training

Recurrent Neural Networks

• Language model

 $p(w_1^N)$

• Chain rule (mathematical equality)

$$p(w_1^N) = \prod_{n=1}^N p(w_n | w_1^{n-1})$$

• k-th order Markov assumption: (k + 1)-grams

$$p(w_1^N) \approx \prod_{n=1}^N p(w_n | w_{n-k}^{n-1})$$

• FF language models deal with the sparsity problem (by projecting into a continuous space)

- FF language models deal with the sparsity problem (by projecting into a continuous space)
- but they still are under the Markov chain assumption

- FF language models deal with the sparsity problem (by projecting into a continuous space)
- but they still are under the Markov chain assumption

We would like to be able to take into account the *whole* history!

- FF language models deal with the sparsity problem (by projecting into a continuous space)
- but they still are under the Markov chain assumption

We would like to be able to take into account the *whole* history! \rightarrow Let the network remember everything it has seen!

Recurrent NNs

Recurrent NNs

Recurrent NNs

In Equations: $y^{[t]} = f(Wx^{[t]} + Ry^{[t-1]} + b)$

$p(w_1^4) =$

 $p(w_1^4) = p(w_1 | < s >)$

 $p(w_1^4) =$ $p(w_1 | < s >)$ $\times p(w_2 | w_1, < s >)$

 $\begin{array}{l} p(w_1^4) = \\ p(w_1 | < \mathbf{s} >) \\ \times p(w_2 | w_1, < \mathbf{s} >) \\ \times p(w_3 | w_2, w_1, < \mathbf{s} >) \end{array}$

 $p(w_1^4) = p(w_1|<s>) \\ \times p(w_2|w_1, <s>) \\ \times p(w_3|w_2, w_1, <s>) \\ \times p(w_4|w_3, w_2, w_1, <s>)$

 $\bullet~{\rm Of}~{\rm course.} \ldots$

• Of course... with backpropagation

- $\bullet~{\rm Of~course.} \ldots$ with backpropagation
- Unfold recurrent connections through time
- Results in a wide network, backpropagation can be used

- $\bullet~{\rm Of~course.} \ldots$ with backpropagation
- Unfold recurrent connections through time
- Results in a wide network, backpropagation can be used
- Use chain rule not only for layers, but also for time steps

Backpropagation through time

• Sometimes vanishes (norm ≈ 0)

- Sometimes vanishes (norm ≈ 0)
- Sometimes explodes (norm $\rightarrow \infty$)

- Sometimes vanishes (norm ≈ 0)
- Sometimes explodes (norm $\rightarrow \infty$)

What to do?

• Exploding gradient: clip the gradient (divide by the norm) (Full vector or element-wise)

What to do?

• Exploding gradient: clip the gradient (divide by the norm) (Full vector or element-wise)

What to do?

• Exploding gradient: clip the gradient (divide by the norm) (Full vector or element-wise)

• Vanishing gradient:

What to do?

• Exploding gradient: clip the gradient (divide by the norm) (Full vector or element-wise)

• Vanishing gradient: you have a problem!

Why does this happen?

Why does this happen?

Sequence of length $T, y^{[t]} = f(Wx^{[t]} + Ry^{[t-1]} + b).$

Why does this happen?

Sequence of length $T, y^{[t]} = f(Wx^{[t]} + Ry^{[t-1]} + b).$

Derivative of the loss function \mathcal{L} :

 $\frac{\partial \mathcal{L}}{\partial \theta}$

Why does this happen?

Sequence of length $T, y^{[t]} = f(Wx^{[t]} + Ry^{[t-1]} + b).$

$$\frac{\partial \mathcal{L}}{\partial \theta} = \sum_{1 \le t_2 \le T} \frac{\partial \mathcal{L}^{[t_2]}}{\partial \theta}$$

Why does this happen?

Sequence of length T, $y^{[t]} = f(Wx^{[t]} + Ry^{[t-1]} + b)$.

$$\frac{\partial \mathcal{L}}{\partial \theta} = \sum_{1 \le t_2 \le T} \frac{\partial \mathcal{L}^{[t_2]}}{\partial \theta} = \sum_{1 \le t_2 \le T} \sum_{1 \le t_1 \le t_2} \frac{\partial \mathcal{L}^{[t_2]}}{\partial y^{[t_2]}} \frac{\partial y^{[t_2]}}{\partial y^{[t_1]}} \frac{\partial y^{[t_1]}}{\partial \theta}$$

Why does this happen?

Sequence of length T, $y^{[t]} = f(Wx^{[t]} + Ry^{[t-1]} + b)$.

Why does this happen?

Sequence of length T, $y^{[t]} = f(Wx^{[t]} + Ry^{[t-1]} + b)$.

$$\frac{\partial \mathcal{L}}{\partial \theta} = \sum_{1 \le t_2 \le T} \frac{\partial \mathcal{L}^{[t_2]}}{\partial \theta} = \sum_{1 \le t_2 \le T} \sum_{1 \le t_1 \le t_2} \frac{\partial \mathcal{L}^{[t_2]}}{\partial y^{[t_2]}} \frac{\partial y^{[t_2]}}{\partial y^{[t_1]}} \frac{\partial y^{[t_1]}}{\partial \theta}$$

and for $\frac{\partial y^{[t_2]}}{\partial y^{[t_1]}}$:
 $\frac{\partial y^{[t_2]}}{\partial y^{[t_1]}} = \prod_{t_1 < t \le t_2} \frac{\partial y^{[t]}}{\partial y^{[t-1]}} = \prod_{t_1 < t \le t_2} R^T \operatorname{diag}\left(f'(Ry^{[t-1]})\right)$

Why does this happen?

$$\left\|\frac{\partial y^{[t]}}{\partial y^{[t-1]}}\right\| \le \|R^T\| \left\|\operatorname{diag}\left(f'(Ry^{[t-1]})\right\| \le \gamma \sigma_{\max}\right)$$

with

- γ a maximal bound for $f'(Ry^{[t-1]})$
 - e.g. $|\tanh'(x)| \le 1; |\sigma'(x)| \le \frac{1}{4}$
- σ_{\max} the largest singluar value of R^T

More details: R. Pascanu, T. Mikolov, Y. Bengio On the difficulty of training recurrent neural networks ICML 2013 (and previous work)

• Vanishing gradient: you have a problem!

- Vanishing gradient: you have a problem!
- We cannot distinguish if
 - There is no dependency in the data
 - We have chosen the wrong parameters

LSTMs

- RNNs blindly pass information from one state to the other
- LSTMs include mechanisms for

- RNNs blindly pass information from one state to the other
- LSTMs include mechanisms for
 - Ignoring the input

- RNNs blindly pass information from one state to the other
- LSTMs include mechanisms for
 - Ignoring the input
 - Ignoring the "current" output

- RNNs blindly pass information from one state to the other
- LSTMs include mechanisms for
 - Ignoring the input
 - Ignoring the "current" output
 - Forgetting the history

Compute a "candidate value", similar to RNNs:

$$\tilde{C}_t = \tanh(W_c x_t + U_c h_{t-1} + b_c)$$

Compute a "candidate value", similar to RNNs:

$$\tilde{C}_t = \tanh(W_c x_t + U_c h_{t-1} + b_c)$$

Input gate: control the influence of the current output

$$i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i)$$

Compute a "candidate value", similar to RNNs:

$$\tilde{C}_t = \tanh(W_c x_t + U_c h_{t-1} + b_c)$$

Input gate: control the influence of the current output

$$i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i)$$

Forget gate: control the influence of the history

$$f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f)$$

Memory cell state: combination of new and old state

$$C_t = i_t \tilde{C}_t + f_t C_{t-1}$$

Memory cell state: combination of new and old state

$$C_t = i_t \tilde{C}_t + f_t C_{t-1}$$

Output gate: how much we want to output to the exterior

$$o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o)$$

Memory cell state: combination of new and old state

$$C_t = i_t \tilde{C}_t + f_t C_{t-1}$$

Output gate: how much we want to output to the exterior

$$o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o)$$

Output of the cell:

 $y_t = o_t \cdot \tanh(C_t)$

Compute a "candidate value", similar to RNNs

Input gate: control the influence of the current output

$$\hat{C}_t = \tanh(W_c x_t + U_c h_{t-1} + b_c)$$
$$i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i)$$

Forget gate: control the influence of the history

 $f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f)$

Memory cell state: combination of new and old state

$$C_t = i_t \tilde{C}_t + f_t C_{t-1}$$

Output gate: how much we want to output to the exterior Output of the cell

$$o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o)$$

$$y_t = o_t \cdot \tanh(C_t)$$

LSTMs: additional remarks

- LSTMs solve the vanishing gradient problem, but the gradient can still explode
 - Use gradient clipping

LSTMs: additional remarks

- LSTMs solve the vanishing gradient problem, but the gradient can still explode
 - Use gradient clipping
- Different variants of LSTMs. Basic idea is similar, but
 - Different gates
 - Different parametrization of the gates
 - Pay attention when reading the literature

LSTMs: additional remarks

- LSTMs solve the vanishing gradient problem, but the gradient can still explode
 - Use gradient clipping
- Different variants of LSTMs. Basic idea is similar, but
 - Different gates
 - Different parametrization of the gates
 - Pay attention when reading the literature
- Mathematically: "Constant Error Carousel"
 - No repeated weight application in the derivative
 - "The derivative is the forget gate"

Gated Recurrent Units:

- Combine forget and input gates into an "update gate"
- Suppress output gate
- Add a "reset gate"

Simpler than LSTMs (less parameters) and quite succesful

Gated Recurrent Units:

- Combine forget and input gates into an "update gate"
- Suppress output gate
- Add a "reset gate"

Simpler than LSTMs (less parameters) and quite succesful

$$z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z)$$

$$r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r)$$

$$\tilde{h}_t = \tanh(W x_t + U(r_t h_{t-1}) + b)$$

$$h_t = z_t \tilde{h}_t + (1 - z_t h_{t-1})$$

GRUs Visualization

Model	Test PPL
RNN	68.3
Interpolated KN 5-gram, 1.1B N-Grams	67.6
RNN + MaxEnt 9-gram features	51.3
"Small" LSTM	54.1
"Big" LSTM with dropout	32.2
2 Layer LSTM with dropout	30.6

Results on 1B Word Benchmark

From R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, Y. Wu *Exploring the Limits of Lanugage Modelling*, 2016

A Few Notes About the Output Layer

Computing a softmax is expensive (specially for large vocabularies)

Computing a softmax is expensive (specially for large vocabularies)

Possible approaches:

• Use a shortlist (and usually combine with standard *n*-gram model)

Computing a softmax is expensive (specially for large vocabularies)

Possible approaches:

- Use a shortlist (and usually combine with standard *n*-gram model)
- Use hierarchical output

Computing a softmax is expensive (specially for large vocabularies)

Possible approaches:

- Use a shortlist (and usually combine with standard *n*-gram model)
- Use hierarchical output
- Use self-normalizing networks (e.g. NCE training)

Word embeddings:

- T. Mikolov, K. Chen, G. Corrado, J. Dean *Efficient Estimation of Word Representations in Vector Space* Workshop at ICLR. 2013
- T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean Distributed Representations of Words and Phrases and their Compositionality NIPS. 2013.
- https://code.google.com/archive/p/word2vec/

Recurrent NNs:

- First reference?
- T. Mikolov, M. Karafiát, L. Burget, J. Cernocký,
 S. Khudanpur *Recurrent Neural Network Based Language* Model Interspeech. 2010

Backpropagation through time:

- From wikipedia: The algorithm was independently derived by numerous researchers
- A. J. Robinson, F. Fallside, *The utility driven dynamic* error propagation network (Technical report). Cambridge University, Engineering Department, 1987
- P. J. Werbos Generalization of backpropagation with application to a recurrent gas market model Neural Networks. 1988

Vanishing gradient:

- Y. Bengio, P. Simard, P. Frasconi Learning long-term dependencies with gradient descent is difficult IEEE Transactions on Neural Networks. 1994
- R. Pascanu, T. Mikolov, Y. Bengio On the difficulty of training recurrent neural networks ICML. 2013

References

LSTMs:

- S. Hochreiter, J. Schmidhuber *Long short-term memory* Neural Computation. 1997
- K. Greff, R. K. Srivastava, J. Koutnk, B. R. Steunebrink, J Schmidhuber *LSTM: A Search Space Odyssey* IEEE Transactions on NN and Learning Systems 2015
- Pictures taken from http://colah.github.io/posts/ 2015-08-Understanding-LSTMs/

GRUs:

 K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, Y. Bengio Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation EMNLP 2014 Hierarchical Output:

• F. Morin, Y. Bengio *Hierarchical Probabilistic Neural* Network Language Models AISTATS. 2005

NCE:

• A. Mnih, Y. W. Teh A fast and simple algorithm for training neural probabilistic language models ICML. 2012

NN Language Models

David Vilar david.vilar@nuance.com MT Marathon 2016 14. September 2016