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Overview

1. Introduction to Word Embeddings

2. Recurrent Neural Networks

3. LSTMs

4. A Few Notes About the Output Layer
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Introduction to Word

Embeddings



1-hot encodings

• 1-hot encoding is the “natural” way to encode symbolic

information (e.g. words)

• But:

• The encoding itself is arbitrary (e.g. first appearance of a

word in the training text)

• No useful information can be read from the vector

representation

• Example:

the green dog bites the cat

the (1, 0, 0, 0, 0)

green (0, 1, 0, 0, 0)

dog (0, 0, 1, 0, 0)

bites (0, 0, 0, 1, 0)

cat (0, 0, 0, 0, 1)
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Feed-forward LM

p(wn)

wn−2 wn−1
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Intuition

• A NN represents a flow of information

• A NN can be decomposed into smaller networks

• Each of these networks transforms the information, which

serves as input to the next network

• Can be seen in the recursive structure of the equations

y(l)(x) = f(W (l)y(l−1)(x) + b(l))
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The most “stupid” network
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The most “stupid” network

If the “stupid” network has no errors:

• We mapped an 12-dimensional (sparse?) vector into a

4-dimensional dense vector

However:

• The representation is still arbitrary, as no information

about the word themselves is taken into account

We can do better!
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Skip-gram model

wn

wn−2wn−1 wn+1 wn+2
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Skip-gram model

• Assumption: similar words appear in similar contexts

• Goal: similar words have similar representations (as they

will predict similar contexts)

• Indeed:

• vec(King)− vec(Man) + vec(Woman) results in a vector

that is closest to Queen

• vec(Madrid)− vec(Spain) + vec(France) results in a vector

that is closest to Paris
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Skip-gram model
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word2vec

• Different implementations available (many of them open

source)

• (One of) The most widely used: word2vec by Mikolov et al.

• Efficient implementation, can deal with big datasets

• https://code.google.com/archive/p/word2vec/

• Normally used pre-training for embedding layer

• May be further refined by task-specific training
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Recurrent Neural Networks



Recap

• Language model

p(wN
1 )

• Chain rule (mathematical equality)

p(wN
1 ) =

N∏
n=1

p(wn|wn−1
1 )

• k-th order Markov assumption: (k + 1)-grams

p(wN
1 ) ≈

N∏
n=1

p(wn|wn−1
n−k)
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Recap

Advantage of NNLMs we encountered up to this point:

• FF language models deal with the sparsity problem (by

projecting into a continuous space)

• but they still are under the Markov chain assumption

We would like to be able to take into account the whole history!

→ Let the network remember everything it has seen!
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Recurrent NNs

wn−1

p(wn)

R

In Equations: y[t] = f(Wx[t] +Ry[t−1] + b)
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Recurrent NNs

wn−1

p(wn)

R

x[t]

y[t]

W

R

In Equations: y[t] = f(Wx[t] +Ry[t−1] + b)
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Recurrent NNs

p(w4
1) =

p(w1|< s >)

×p(w2|w1, < s >)

×p(w3|w2, w1, < s >)

×p(w4|w3, w2, w1, < s >)

[< s >]
[w1]
[w2]

< s >w1

p(w4|w3, w2, w1, < s >)
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Recurrent NNs
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Backpropagation through time

How to train a RNN?

• Of course. . .

with backpropagation

• Unfold recurrent connections through time

• Results in a wide network, backpropagation can be used

• Use chain rule not only for layers, but also for time steps
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Backpropagation through time

x[4]

y[4]

x[3]

y[3]

x[2]

y[2]

x[1]

y[1]∂y[1]

∂θ

∂L
∂θ

=
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Exploding and vanishing gradient

Observation: sometimes the gradient “misbehaves”

• Sometimes vanishes (norm ≈ 0)

• Sometimes explodes (norm →∞)
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Exploding and vanishing gradient

What to do?

• Exploding gradient: clip the gradient (divide by the norm)

(Full vector or element-wise)

• Vanishing gradient: you have a problem!
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Exploding and vanishing gradient

Why does this happen?

Sequence of length T , y[t] = f(Wx[t] +Ry[t−1] + b).

Derivative of the loss function L:

∂L
∂θ

=
∑

1≤t2≤T

∂L[t2]
∂θ

=
∑

1≤t2≤T

∑
1≤t1≤t2

∂L[t2]
∂y[t2]

∂y[t2]

∂y[t1]
∂y[t1]

∂θ

and for
∂y[t2]

∂y[t1]
:

∂y[t2]

∂y[t1]
=

∏
t1<t≤t2

∂y[t]

∂y[t−1]
=

∏
t1<t≤t2

RT diag
(
f ′(Ry[t−1])

)
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Exploding and vanishing gradient

Why does this happen?

∥∥∥∥∥ ∂y[t]

∂y[t−1]

∥∥∥∥∥ ≤ ‖RT ‖
∥∥∥diag

(
f ′(Ry[t−1]

)∥∥∥ ≤ γσmax

with

• γ a maximal bound for f ′(Ry[t−1])

• e.g. | tanh′(x)| ≤ 1; |σ′(x)| ≤ 1
4

• σmax the largest singluar value of RT

More details: R. Pascanu, T. Mikolov, Y. Bengio On the difficulty of training

recurrent neural networks ICML 2013

(and previous work)
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Exploding and vanishing gradient

• Vanishing gradient: you have a problem!

• We cannot distinguish if

• There is no dependency in the data

• We have chosen the wrong parameters
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LSTMs



Intuition

• RNNs blindly pass information from one state to the other

• LSTMs include mechanisms for

• Ignoring the input

• Ignoring the “current” output

• Forgetting the history
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RNN units
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RNN units

25



LSTM Equations

Compute a “candidate value”, similar to RNNs:

C̃t = tanh(Wcxt + Ucht−1 + bc)

Input gate: control the influence of the current output

it = σ(Wixt + Uiht−1 + bi)

Forget gate: control the influence of the history

ft = σ(Wfxt + Ufht−1 + bf )

26



LSTM Equations

Compute a “candidate value”, similar to RNNs:

C̃t = tanh(Wcxt + Ucht−1 + bc)

Input gate: control the influence of the current output

it = σ(Wixt + Uiht−1 + bi)

Forget gate: control the influence of the history

ft = σ(Wfxt + Ufht−1 + bf )

26



LSTM Equations

Compute a “candidate value”, similar to RNNs:

C̃t = tanh(Wcxt + Ucht−1 + bc)

Input gate: control the influence of the current output

it = σ(Wixt + Uiht−1 + bi)

Forget gate: control the influence of the history

ft = σ(Wfxt + Ufht−1 + bf )

26



LSTM Equations

Memory cell state: combination of new and old state

Ct = itC̃t + ftCt−1

Output gate: how much we want to output to the exterior

ot = σ(Woxt + Uoht−1 + bo)

Output of the cell:

yt = ot · tanh(Ct)
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LSTM Visualization
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LSTM Visualization

Compute a “candidate value”, similar to RNNs

Input gate: control the influence of the current output

C̃t = tanh(Wcxt + Ucht−1 + bc)

it = σ(Wixt + Uiht−1 + bi)
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LSTM Visualization

Forget gate: control the influence of the history

ft = σ(Wfxt + Ufht−1 + bf )
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LSTM Visualization

Memory cell state: combination of new and old state

Ct = itC̃t + ftCt−1
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LSTM Visualization

Output gate: how much we want to output to the exterior

Output of the cell

ot = σ(Woxt + Uoht−1 + bo)

yt = ot · tanh(Ct)
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LSTM Visualization
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LSTMs: additional remarks

• LSTMs solve the vanishing gradient problem, but the

gradient can still explode

• Use gradient clipping

• Different variants of LSTMs. Basic idea is similar, but

• Different gates

• Different parametrization of the gates

• Pay attention when reading the literature

• Mathematically: “Constant Error Carousel”

• No repeated weight application in the derivative

• “The derivative is the forget gate”

34
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GRUs

Gated Recurrent Units:

• Combine forget and input gates into an “update gate”

• Suppress output gate

• Add a “reset gate”

Simpler than LSTMs (less parameters) and quite succesful

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Wxt + U(rtht−1) + b)

ht = zth̃t + (1− ztht−1)

35
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GRUs Visualization
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Experimental Results

Results on 1B Word Benchmark

Model Test PPL

RNN 68.3

Interpolated KN 5-gram, 1.1B N-Grams 67.6

RNN + MaxEnt 9-gram features 51.3

“Small” LSTM 54.1

“Big” LSTM with dropout 32.2

2 Layer LSTM with dropout 30.6

From R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, Y. Wu Exploring the

Limits of Lanugage Modelling, 2016
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The Output Layer

Computing a softmax is expensive

(specially for large vocabularies)

Possible approaches:

• Use a shortlist (and usually combine with standard n-gram

model)

• Use hierarchical output

• Use self-normalizing networks (e.g. NCE training)
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