
Neural Networks - Backpropagation and beyond

September 13, 2016

Out[1]: <IPython.core.display.HTML object>

1 A little bit of history: Linear Perceptron
Mark 1 perceptron (Frank Rosenblatt, 1957):

• An image recognition apparatus;
• 400 photo cells
• Weights are potentiometers;
• Weights are changed by electric motors.

The New York Times, 1958: > [. . . ] the embryo of an electronic computer that the Navy expects will be
able to walk, talk, see, write, reproduce itself and be conscious of its existence.

Out[2]: <IPython.lib.display.YouTubeVideo at 0x7f84f1e392e8>

1.1 Training the perceptron (no human guidance)
Training cycle (2000 “epochs”):

• holding an image in front of the digital camera (eg. triangle, circle, square,. . . );
• observing which of the two lamps lit up (binary classes);
• checking if the lamp is correct (arbitrarily chosen);
• sending “reward” or “penalty” signal.
• human operator only performs mechanical actions.

1



2 Multi-layer neural networks - Inference

• Given a n-layer neural network and its parameters Θ1, . . . ,ΘL oraz β1, . . . , βL, we calculate for l ∈
{1, . . . , L}:

al = gl
(
Θlal−1 + βl

)
.

• Parameters Θl, weights on connection between neurons of layers al−1 and al, have size dim(al) ×
dim(al−1).

• Bias vectors β replace columns with “1” in feature matrix. The size of βl is equal to the size of the
corresponding layer dim(al).

• Function gl is the so called activation function;
• For i = 0 we assume a0 = x (features or input layer) and g0(x) = x (identity);
• In the case of classifiers, for the last layer L often gL(x) = softmax(x);
• Other activation functions are often sigmoids (eg. logistic function or hyperbolic tangens, tanh);
• In the case of regression networks, the last layer consists often of a single neuron.

2.1 Training multi-layer networks
• Parameters:

Θ = (Θ1,Θ2,Θ3, β1, β2, β3)

• Model:

hΘ(x) = tanh(Θ3 tanh(Θ2 tanh(Θ1x+ β1) + β2) + β3)

2



* Cost function (MSE):

J(Θ) = 1
2m

m∑
i=1

(hΘ(x(i))− y(i))2

* How do we calculate the gradients?

∇ΘlJ(Θ) =? ∇βlJ(Θ) =? l ∈ {1, 2, 3}

3 Backpropagation
• A hypothetical change ∆zlj added to the j-th neuron in layer l propagates through the network and

causes cost change:

∂J(Θ)
∂zlj

∆zlj

• If ∂J(Θ)
∂zl

j

is large, ∆zlj with an opposite sign can reduce the cost.

• If ∂J(Θ)
∂zl

j

is close to zero, the cost cannot be much improved.

• We define the error δlj of neuron j in layer l:

δlj ≡
∂J(Θ)
∂zlj

δl ≡ ∇zlJ(Θ) (vectorized)

3.1 The four fundamental equations of Backpropagation (proofs anyone?)
δL = ∇aLJ(Θ)� (gL)′(zL) (BP1)

δl = ((Θl+1)T δl+1)� (gl)′(zl) (BP2)

∇βlJ(Θ) = δl (BP3)

∇ΘlJ(Θ) = al−1 � δl (BP4)

3.2 The Backpropagation Algorithm
For one training example (x,y):

1. Input: Set the activations of the input layers a0 = x

2. Forward step: for l = 1, . . . , L calculate

zl = Θ(l)al−1 + βl and al = gl(zl)

3. Output error δL: calculate vector

δL = ∇aLJ(Θ)� (gL)′(zL)

4. Error backpropagation: for l = L− 1, L− 2, . . . , 1 calculate

δl = ((Θl+1)T δl+1)� (gl)′(zl)

5. Gradients:
∇ΘlJ(Θ) = al−1 � δl and ∇βlJ(Θ) = δl

3



J(Θ) = 1
2(aL − y)2

∇aLJ(Θ) = aL − y
tanh′(x) = 1− tanh2(x)

3.3 SGD with Backpropagation
One iteration: * For all parameters Θ = (Θ1, . . . ,ΘL) create zero-valued helper matrices ∆ = (∆1, . . . ,∆L)
of the same size (β omitted for simplicity). * For m examples in the batch, i = 1, . . . ,m: * Perform
backpropagation for example (x(i), y(i)) and store the gradients ∇ΘJ

(i)(Θ) * ∆ := ∆ + 1
m
∇ΘJ

(i)(Θ) *
Update the weights: Θ := Θ− α∆

3.4 What about more complicated networks?
• Backprogagation is usually formulated in the language of (Feedforward) Neural Networks (layers,
weights, biases, activations, weighted inputs, . . . )

• Today’s NNs contain more complicated operation, e.g. concatenation of bidirectional RNN states, . . .
• But: what’s the derivation of the “concatenation” operation and where does that fit into the BP
equations?

4 Reverse-mode Autodiff
4.1 Let’s calculate gradients for anything . . . automatically!

f(x1, x2) = sin(x1) + x1x2

4



4.2 An example computation graph

4.3 Forward propagations of values

5



4.4 The idea of reverse-mode auto-differentiation:
• Repeatedly substitute the derivative of the outer functions in the chain rule;
• Sub-expression follow the structure of the computation graph.

∂f

∂x
= ∂f

∂w1

∂w1

∂x
=
(
∂f

∂w2

∂w2

∂w1

)
∂w1

∂x
=
((

∂f

∂w3

∂w3

∂w2

)
∂w2

∂w1

)
∂w1

∂x
= . . .

• We calculate the adjoint:

w̄ = ∂f

∂w

4.5 Back propagation of adjoints

4.6 2-layer Neural Network
auto x = input(shape={whatevs, 784});
auto y = input(shape={whatevs, 10});

6



auto w1 = param(shape={784, 100});
auto b1 = param(shape={1, 100});
auto l1 = tanh(dot(x, w1) + b1);

auto w2 = param(shape={100, 10});
auto b2 = param(shape={1, 10});
auto l2 = softmax(dot(l1, w2) + b2, axis=1);

auto graph = -mean(sum(y * log(l2), axis=1), axis=0);

x = Tensor({500, 784}, 1);
y = Tensor({500, 10}, 1);

graph.forward();
graph.backward();

auto dw = w.grad();
auto db = b.grad();

4.7 Unary node for Tanh operation in Marian
struct TanhNodeOp : public UnaryNodeOp {

template <typename ...Args>
TanhNodeOp(Args ...args)
: UnaryNodeOp(args...) { }

void forward() {
Element(_1 = Tanh(_2),

val_, a_->val());
}

void backward() {
Element(_1 += _2 * (1 - Tanh(_3) * Tanh(_3)),

a_->grad(), adj_, a_->val());
}

};

4.8 Binary node for Division operation in Marian
struct DivNodeOp : public BroadcastingNodeOp {

template <typename ...Args>
DivNodeOp(Args ...args) : BroadcastingNodeOp(args...) { }

void forward() {
Element(_1 = _2 / _3,

val_, a_->val(), b_->val());
}

void backward() {
Element(_1 += _2 * 1.0f / _3,

a_->grad(), adj_, b_->val());
Element(_1 -= _2 * _3 / (_4 * _4),

b_->grad(), adj_, a_->val(), b_->val());

7



}
};

4.9 Complex Softmax node defined by other operators
template <typename ...Args>
inline Expr softmax(Expr a, Args ...args) {

Expr e = exp(a);
return e / sum(e, args...);

}

8


	A little bit of history: Linear Perceptron
	Training the perceptron (no human guidance)

	Multi-layer neural networks - Inference
	Training multi-layer networks

	Backpropagation
	The four fundamental equations of Backpropagation (proofs anyone?)
	The Backpropagation Algorithm
	SGD with Backpropagation
	What about more complicated networks?

	Reverse-mode Autodiff
	Let's calculate gradients for anything … automatically!
	An example computation graph
	Forward propagations of values
	The idea of reverse-mode auto-differentiation:
	Back propagation of adjoints
	2-layer Neural Network
	Unary node for Tanh operation in Marian
	Binary node for Division operation in Marian
	Complex Softmax node defined by other operators


