> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Neural Networks in MT: Past, Present and Future

Holger Schwenk

September 12, 2016

Plan of the Talk

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Future Holger Schwenk

Neural Networks in

MT: Past, Present and

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

- Seq2Seq Attention Joint training
- Joint Training
- Representations
- FAIR
- FAIR
- Conclusion

- Machine translation: more than 60 years of research
- Deep neural networks: why, when and how
- The path from neural language models to fully neural machine translation
- Global Joint training and sentence representations
- Conclusion and perspectives

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations
- FAIR

FAIR

Conclusion

History of Machine Translation

• Machine Translation is one of the oldest domains in Computer Science

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

History of Machine Translation

• Machine Translation is one of the oldest domains in Computer Science

 First system by IBM in 1954 (Georgetown): translation of Russian into English of 60 sentences

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding:

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representation

FAIR

FAIR

Conclusion

History of Machine Translation

• Machine Translation is one of the oldest domains in Computer Science

 First system by IBM in 1954 (Georgetown): translation of Russian into English of 60 sentences
 ⇒ Great enthusiasm and multiple research projects

・ロト ・四ト ・ヨト ・ヨト ・ヨ

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architectur RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Hanning

Representation

FAIR

FAIR

Conclusion

Approaches in Machine Translation

1954 IBM Georgetown, rule-based system Ru/En

- 1966 ALPAC report stopped funding and research
- 1968 Creation of the company SYSTRAN
- 1981 Meteo system (used until 2001)
- 1993 Statistical MT: IBM1-5 word-based models
- 2003 Phrase-based MT
- 2005 Moses platform: fostered widespread research2005 Hierarchical systems
- 2005-16 Many incremental improvements of PBSMT
 - 2006 First use of neural networks in MT (LM rescoring)
 - 2014 First fully neural MT
 - 2016 NMT outperforms PBSMT in WMT evaluation

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training Joint Trainin

- Representation
- FAIR

FAIR

Conclusion

Incremental Improvements of Phrase-Based SMT

- MERT
- Lexicalized reordering models
- Language models trained on huge amounts of data
- Factored translation models
- Decoding: stack or cube pruning, MBR, ...
- Domain adaptation
- Data selection and instance weighting
- Sparse features + PRO/MIRA

- \Rightarrow State-of-the-art phrase-based systems:
 - combination of many individually optimized modules
 - many heuristics and "hacks" to resolve observed errors
 - increasingly complicated to train

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embeddings

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Neural Networks in Machine Translation

- Neural network language model [Bengio et al, NIST'02]
- CSLM rescoring for SMT [Schwenk et al, ACL'06]
- Neural tuple-based MT [Schwenk et al, EMNLP'07]
- First neural translation models: [Schwenk Coling'12, Le et al, NAACL'12, Auli et al EMNIP'13]
- Neural network joint models [Devlin et al, ACL'14]
- Sequence-to-sequence models [Kalchbrenner et al EMNLP'13, Cho et al, EMNLP'14, Sutskever et al NIPS'14]
- Attention mechanism [Bahdanau et al ICLR'15]
- Neural models outperform PBSMT in many language pairs at WMT'16

- Deep NMT systems [Baidu TACL'16]
- \Rightarrow Since 2014, the community definitely switched to NN

> Holger Schwenk

Plan

Neural Networks

Vision

NLP Embedding

CSLM

Architectur RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations
- FAIR
- FAIR
- Conclusion

Deep Neural Networks in Computer Vision

Image net challenge

- Train: 1.2M images with 1000 classes, test: 200k images
- Evolution of error rates:
 ILSVRC top-5 error on ImageNet

• The classification error decreased from 28 to less than 4% and reaches today human performance

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Deep neural networks are used since 2012

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations FAIR FAIR

Learning Hierarchical Representations

Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Mainstream Modern Pattern Recognition: Unsupervised mid-level features

Deep Learning: Representations are hierarchical and trained

(figure from Y. Le Cun)

> Holger Schwenk

Plan

Neural Networks

Vision

NLP Embeddings

CSLM

Architectur RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training Joint Trainin

Representations FAIR FAIR Conclusion

Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

> Holger Schwenk

Plan

Neural Networks

Vision NLP

Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Learning Hierarchical Representations

Image recognition

- pixel \rightarrow edge \rightarrow tecton \rightarrow motif \rightarrow part \rightarrow object

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Learning Hierarchical Representations

Image recognition

- pixel \rightarrow edge \rightarrow tecton \rightarrow motif \rightarrow part \rightarrow object

Text processing

• char \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Learning Hierarchical Representations

Image recognition

• pixel \rightarrow edge \rightarrow tecton \rightarrow motif \rightarrow part \rightarrow object

Text processing

• char \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

Speech recognition

- wave \rightarrow spectral band \rightarrow sound \rightarrow phone \rightarrow word \rightarrow sentence

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embeddings

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Learning Hierarchical Representations

Image recognition

- pixel \rightarrow edge \rightarrow tecton \rightarrow motif \rightarrow part \rightarrow object

Text processing

• char \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

Speech recognition

- wave \rightarrow spectral band \rightarrow sound \rightarrow phone \rightarrow word \rightarrow sentence

The intermediate features do not necessarily correspond to a well defined entity for humans !

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Network Architectures : ConvNet

Background

- In principle, any problem can be solved with a fully connected (deep) neural network
- However, it is very hard to learn the best solution due to the huge search space
- \Rightarrow Constrain the network architecture to be problem-specific

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Model

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations
- FAIR
- FAIR
- Conclusion

Network Architectures : ConvNet

Background

- In principle, any problem can be solved with a fully connected (deep) neural network
- However, it is very hard to learn the best solution due to the huge search space
- \Rightarrow Constrain the network architecture to be problem-specific

Convolutional networks

• Several layers of small feature detectors and pooling

> Holger Schwenk

Plan

Neural Networks

Vision

NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Network Architectures : ConvNet

Improved version: GoogleNet

Conv 1: Edge+Blob Conv 3: Texture

Conv 5: Object Parts

Fc8: Object Classes

> Holger Schwenk

Vision

NI P

Architecture

Attention

Network Architectures : ConvNet

Improved version: GoogleNet

Conv 1: Edge+Blob

Conv 5: Object Parts

Fc8: Object Classes

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Revolution of Depth

• ResNet with 150 layers (or even up to 1000 !)

> Holger Schwenk

Plan

Neural

Vision NLP Embeddin

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations

FAIR

FAIR

Conclusion

What about Deep Neural Networks in NLP ?

- Operate on a low level representation of the data
 - Vision: pixels
 - NLP: what is the fundamental unit words or characters ? discrete units !
- Use very deep architectures to learn hierachical representations of the data
 - Vision: feature detectors of increasing abstraction
 - NLP: how to structure the input ?
 - *n*-grams, syntactical or semantic graphs, ...?
- Structure the network to adapt it to the problem
 - Vision: ConvNets implement learnable feature detectors
 - NLP: Recurrent NN (LSTM, GRU) are very popular ConvNets can also be used
- Trained end-to-end
 - Vision: classification problems are well-defined
 - NLP: sentence generation is often ambigious, without unique solution

> Holger Schwenk

Plan

Neural

Vision NLP Embeddings

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Natural Language Processing

Handling words

- Detect relationships between words
- Associate categories to a (sequences of) words
- Estimate probability distributions over (sequence) of words

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Generate sentences

> Holger Schwenk

Plan

Neural

Vision NLP Embeddings

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representatio

FAIR

Conclusion

Natural Language Processing

Handling words

- Detect relationships between words
- Associate categories to a (sequences of) words
- Estimate probability distributions over (sequence) of words

Generate sentences

Old technique

- Define a vocabulary of V known words
- Represent each word by an integer index
- 1-out-of-N encoding, binary vector
- \Rightarrow There is no relation between the words
- \Rightarrow All the words are equally close or far

Word Embeddings

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Neural Networks in MT: Past, Present and Future

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embeddings

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training Joint Trainin Representatio

FAIR

FAIR

Conclusion

Idea

- Associate an arbitrary vector $x_i \in R^E$ to each word
- Learn these embeddings in a way that *similar* words are nearby in that space

- The notion of similarity may depend on the application (LM, MT, dialog, ...)
- ⇒ There is probably no *"universal word embedding"*

Holger Schwenk

Plan

Neural

- Networks
- Vision NLP Embeddings

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

- Seq2Seq Attention Joint training
- Joint Training

Representations

- FAIR
- FAIR
- Conclusion

Word Embeddings

How to learn word embeddings ?

- There are many techniques to learn word embeddings
- Some well known / frequently used techniques:
 - Neural language model [Bengio et al, 2001]
 - Word2Vec [Mikolov et al]
- It is usually best to learn the embeddings jointly with the task
- A good initialization may speed up training or help to cover unseen words

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Continuous Space LM

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theoretical drawbacks of back-off LM:

- Words are represented in a high-dimensional discrete space
- Probability distributions are not smooth functions
- Any change of the word indices can result in an arbitrary change of LM probability
- \Rightarrow True generalization is difficult to obtain

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

171111

FAIR

Conclusion

Continuous Space LM

Theoretical drawbacks of back-off LM:

- Words are represented in a high-dimensional discrete space
- Probability distributions are not smooth functions
- Any change of the word indices can result in an arbitrary change of LM probability
- \Rightarrow True generalization is difficult to obtain

Main idea [Y. Bengio, NIPS'01]:

- Project word indices onto a continuous space and use a probability estimator operating on this space
- Probability functions are smooth functions and better generalization can be expected

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations FAIR FAIR

CSLM - Probability Calculation

 Inputs = indices of the n-1 previous words

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations FAIR

CSLM - Probability Calculation

- Projection onto continuous space
- Inputs = indices of the n-1 previous words

イロト 不得 トイヨト イヨト

э

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representation FAIR

 $h_j = w_{j-n+1}, ..., w_{j-2}, w_{j-1}$

CSLM - Probability Calculation

- Context h_j = sequence of n-1 points in this space
- Word = point in the *P* dimensional space
- Projection onto continuous space
- Inputs = indices of the n-1 previous words

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Model

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representation: FAIR

CSLM - Probability Calculation

- Outputs = LM posterior probabilities of all words: $P(w_j = i|h_j) \quad \forall i \in [1, N]$
- Context h_j = sequence of n-1 points in this space
- Word = point in the *P* dimensional space
- Projection onto continuous space
- Inputs = indices of the n-1 previous words

イロト 不得 トイヨト イヨト

-

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations
- FAIR
- FAIR
- Conclusion

CSLM - Training

 Backprop training, cross-entropy error

$$E = \sum_{i=1}^{N} d_i \log p_i$$

+ weight decay

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations
- FAIR

FAIR

Conclusion

CSLM - Training

 Backprop training, cross-entropy error

$$E = \sum_{i=1}^{N} d_i \log p_i$$

 $+ \ {\rm weight} \ {\rm decay}$

 $\Rightarrow \text{ NN minimizes perplexity} \\ \text{ on training data}$

・ロト ・ 雪 ト ・ ヨ ト

э

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations
- FAIR

FAIR

Conclusion

CSLM - Training

 Backprop training, cross-entropy error

$$E = \sum_{i=1}^{N} d_i \log p_i$$

- + weight decay
- ⇒ NN minimizes perplexity on training data
 - continuous word codes are also learned (random initialization)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Recurrent Network for LM

Theoretical aspects

• Ideally, one should estimate:

$$P(w_1^p) = P(w_1) \prod_{i=2}^p P(w_i | w_1^{i-1})$$

- i.e. each word is conditioned on all preceding words
- A recurrent neural network seems to be the perfect choice

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 This was proposed by Mikolov et al in 2010, and many follow-up works

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training Joint Trainin Representatio

FAIR

FAIR

Conclusion

Recurrent Network for LM

Theoretical aspects

• Ideally, one should estimate:

$$P(w_1^p) = P(w_1) \prod_{i=2}^p P(w_i | w_1^{i-1})$$

- i.e. each word is conditioned on all preceding words
- A recurrent neural network seems to be the perfect choice

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 This was proposed by Mikolov et al in 2010, and many follow-up works

Practical issues

- Gradients tend to vanish for long sequences \rightarrow Long Short-Term Memory (LSTM) networks
- It is less obvious to optimize recurrent NN

> Holger Schwenk

Plan

Neural Network

Vision NLP Embedding

CSLM

Architectu RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations FAIR FAIR

CSLM-MLP with larger Context Windows

Advantages

- It is very easy to increase the size of the context window
- The number of parameter only increases slightly (the projections are shared)
- A special token NULL_WORD is used to handle shorter contexts
- The network always sees the full context, no vanishing of words which are far away
- But it may be more complicated to detect structure
CSLM-MLP with larger Context Windows

Neural Networks in

MT: Past, Present and Future

Holger

Schwenk

NI P

RNN

Architecture

- The perplexity decreases significantly: 4g=60, 16g=45
- The NN clearly benefits from longer contexts
- Significant gain w/r to back-off LM: -40%
- These gains in perplexity carry over to improvements in the BLEU score

イロト 不得 トイヨト イヨト

-

> Holger Schwenk

Plan

Neural

Vision NLP Embeddings

CSLM

Architectur RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Continuous Space Translation Models

Motivation

- Can we apply similar ideas to the translation model ?
- Good probability estimation seems to be very important for the translation model
 - Appropriate bitexts will be always a sparse resources

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• We have many rare and unseen events

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint trainin

Joint Training

Representation

FAIR

FAIR

Conclusion

Estimating Phrase-Pair Probabilities Definition (usually $p, q \in [1, 7]$):

$$P(\mathbf{\bar{t}}|\mathbf{\bar{s}}) = P(t_1 \dots t_p | s_1 \dots s_q)$$

This equation can be factorized as follows:

$$P(t_1, ..., t_p | s_1, ..., s_q)$$

$$= P(t_1 | t_2, ..., t_p, s_1, ..., s_q) \times P(t_2, ..., t_p | s_1, ..., s_q)$$

$$= P(t_1 | t_2, ..., t_p, s_1, ..., s_q) \times P(t_2 | t_3, ..., t_p, s_1, ..., s_q)$$

$$\times P(t_3, ..., t_p | s_1, ..., s_q)$$

$$= \prod_{k=1}^{p} P(t_k | t_{k+1}, ..., t_p, s_1, ..., s_q)$$

$$\approx \prod_{k=1}^{p} P(t_k | s_1, ..., s_q) = \prod_{k=1}^{p} P(t_k | \bar{\mathbf{s}})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

> Holger Schwenk

> > F

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

- Seq2Seq Attention Joint training
- Joint Training
- Representations
- FAIR
- FAIR
- Conclusion

Estimating Phrase-Pair Probabilities

$$P(t_1,\ldots,t_p|s_1,\ldots,s_q) = \prod_{k=1}^p P(t_k|t_{k+1},\ldots,t_p,s_1,\ldots,s_q)$$
$$\approx \prod_{k=1}^p P(t_k|s_1,\ldots,s_q) = \prod_{k=1}^p P(t_k|\bar{\mathbf{s}})$$

- We drop the dependence between the target words
- ⇒ p independent "n-gram models" which try to predict the kth word in the target phrase given all the words of the source phrase \bar{s} .
- Such a model is actually a generalization of the CSLM with multiple outputs (there are no constraints to use the same vocabulary at the input and the output of the NN)

Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations

FAIR

FAIR

Conclusion

イロト 不得 トイヨト イヨト

э

• Left: simple extension of the CSLM.

CSTM Architectures

Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations

FAIR

FAIR

Conclusion

CSTM Architectures

・ロト ・ 一 ト ・ モト ・ モト

э

- Left: simple extension of the CSLM.
- Middle: addition of a common hidden layer

Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations

FAIR

FAIR

Conclusion

CSTM Architectures

イロト 不得 トイヨト イヨト

э

- Left: simple extension of the CSLM.
- Middle: addition of a common hidden layer
- Right: hierarchical dependence

> Holger Schwenk

Plan

Neural

Vision NLP Embeddings

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representation FAIR

TAIN

FAIR

Conclusion

Improved Neural Translation Models

- Condition the next target word on the preceding target words and a source context
- Le et al, Continuous Space Translation Models with Neural Networks [NAACL'12]
- Auli et al, Joint Language and Translation Modeling with Recurrent Neural Networks [EMNLP'13]
- Devlin et al, Fast and Robust Neural Network Joint Models [ACL'14]
- All are integrated into an traditional phrase-based system
 - n-best rescoring
 - directly into the decoder (needs heavy optimisation)
- ⇒ Significant improvements

> Holger Schwenk

Plan

- Neural
- Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

- Seq2Seq Attention Joint training
- Joint Training
- Representations
- FAIR
- FAIR
- Conclusion

Fully Neural MT Systems

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Can we replace all the other parts of an phrase-based SMT system with neural networks ?
- There are indeed works to use neural networks for word alignment, MERT, etc
- $\Rightarrow\,$ we still rely on the independent development of many components
 - Let's get rid of everything and train one neural architecture end to end

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training Joint Trainin Representatio

Conclusio

Neural Machine Translation

Main idea

- Continuous Space Translation Models [Schwenk, 2012]
 - N-gram approach to map some source words to some target words \Rightarrow The joint layer in the middle encodes the phrases
- How to generalize this ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Representations

FAIR

FAIR

Conclusion

Neural Machine Translation

Main idea

- Continuous Space Translation Models [Schwenk, 2012]
 - N-gram approach to map some source words to some target words \Rightarrow The joint layer in the middle encodes the phrases

- replace short phrases by entire sentences
- condition next target word on preceding ones
- use two recurrent NNs instead of an N-gram approach (at the input and the output)

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training Joint Trainin

Representation: FAIR FAIR

Main idea

• Continuous Space Translation Models [Schwenk, 2012]

Neural Machine Translation

- N-gram approach to map some source words to some target words \Rightarrow The joint layer in the middle encodes the phrases

- replace short phrases by entire sentences
- condition next target word on preceding ones
- use two recurrent NNs instead of an N-gram approach (at the input and the output)
- ⇒ Encoder/Decoder approach

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training Joint Trainin

Representa

FAIR

FAIR

Conclusion

Main idea

• Continuous Space Translation Models [Schwenk, 2012]

Neural Machine Translation

- N-gram approach to map some source words to some target words \Rightarrow The joint layer in the middle encodes the phrases

- replace short phrases by entire sentences
- condition next target word on preceding ones
- use two recurrent NNs instead of an N-gram approach (at the input and the output)
- \Rightarrow Encoder/Decoder approach
 - also called Sequence-to-Sequence processing

> Holger Schwenk

Plan

Neural

- Vision NLP
- Embeddir

CSLM

Architecture RNN

CSTM

Architecture Joint Model

Neural MT

Seq2Seq

Attention Joint training

- Joint Training
- Representation
- FAIR
- FAIR
- Conclusion

Encoder/Decoder Approach

General idea

- An encoder processes the source sentence and creates an compact representation
- This representation is the input to the decoder which generates a sequence in the target sentence

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq

Attention Joint training

- Joint Training
- Representations
- FAIR
- FAIR
- Conclusion

Encoder/Decoder Approach

Instances of this idea (all published in 2014)

- A Convolutional Neural Network for Modeling Sentences Kalchbrenner et al, ACL, June 2014
 - encoder: convolutional n-gram model
 - decoder: hybrid of inverse convolutional model and RNN
 - rescoring of SMT *n*-best lists
- Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation Cho et al, EMNLP, Oct 2014
 - encoder/decoder: RNN with GRU
 - initially on phrases only and n-best rescoring
 - later applied to full sentences
- Sequence to Sequence Learning with Neural Networks Sutskever et al, NIPS, Dec 2014

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- encoder/decoder: huge stacked LSTM
- full sentences

> Holger Schwenk

Plan

- Neural Networks
- Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq

Attention Joint training

- Joint Training
- Representation
- FAIR
- FAIR
- Conclusion

RNN Encoder-Decoder for SMT, Cho et al

different representation

- (original figure from Cho et al.)
- Encoder/decoder: LSTM or GRU (gated recurrent NN)
- Encoder: no output layer, no loss function,
 - \rightarrow gradients are back-propagated from the decoder
- Initially used to calculate phrase translation probabilities (additional feature function in PBSMT system)
- \Rightarrow Improvement of 0.5 1 BLEU
 - Generalized in follow-up work to a fully neural MT system (trained directly on bitexts)

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq

Attention Joint training

- Joint Training
- Representations
- FAIR
- FAIR
- Conclusion

Sequence-to-Sequence Processing

Decoder

Some details:

- Huge LSTM: 4 layers with 1k neurons + vertical dropout
- Present source sentence in inverted order
- Beam size 12
- Rescoring an En/Fr SMT system: 33.30 \rightarrow 35.61 / 36.5
- NMT alone: 30.59, ensemble of 5 systems: 34.81

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Neural MT with Attention

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et al, ICLR 2015

Main idea

- Do not attempt to memorize the whole sequence
- But condition each target word on a subset of source words
- \Rightarrow The neural network learns itself which source words are important to predict the next target word
 - Notion of a soft alignment
 - Automatic attention mechanism (also very successful in vision)

> Holger Schwenk

Plan

- Neural Networks
- Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations
- FAIR
- FAIR
- Conclusion

Neural MT with Attention

(figure from Bahdanau, Cho et al.)

- Forward and backward LSTM
- $\rightarrow\,$ Sequence of concatenated vectors which summarizes past and future at a given time step
 - Attention mechanism:
 - each target word is conditioned on a linear combination of these vectors
 - in practice, this (soft) attention is focused on few words
 - the weights a_j are also learned by the neural network

Very Deep Neural MT

Deep Recurrent Models with Fast-Forward Connections for Neural Machine Translation. Jie Zhou et al. TACL'16

- Alternation between forward and backward LSTMs (2 blocks)
- ResNet-style fast-forward connections
- Significant improvements over vanilla NMT: +6 BLEU
- Does also work quite well without attention (-1.4 BLEU)

MT: Past, Present and Future Holger

Neural Networks in

Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architectur RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representation

FAIR

FAIR

Conclusion

> Holger Schwenk

Plan

- Neural
- Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training Joint Trainin

Representatior

FAIR

FAIR

Conclusion

Neural Machine Translation: Challenges

- Handling of the large output vocabulary and OOV
- What is the best basic unit: chars, subwords or words ?
- How to leverage unlabeled, eg. monolingual, data ?
- Deeper/other architectures for the encoder and decoder ?
- Mismatch between training criteria and inference
- Do we need the notion of coverage in the alignement model ?
- \Rightarrow Very active research field, continued improvements
 - But: Hopefully, we won't start adding many "indendent hacks" to address various issues

Let's keep a globally optimized approach with a well defined criterion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Holger Schwenk

Plan

- Neural
- Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representation: FAIR

FAIR

Conclusion

Neural MT Joint Training

Motivation

- In the standard approach, systems for several language pairs are developed independently
- No sharing of resources, models and development work
- Translation from one source language into several target languages
 - can we leverage knowledge extraction to improve the encoder ?
 - particularly intersting with unbalanced resources
- Translation from several languages into one target language
 - improved decoder by sharing resources, training, etc ?

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

NMT Joint Training: One-to-Many

Multi-Task Learning for Multiple Language Translation, Dong et al,

- Translate the same source language into several target languages
- Attention model specific to each language pair

(figure from Dong et al.)

▲□▼▲□▼▲□▼▲□▼ □ ● ●

- \Rightarrow we can expect an improved encoder
 - WMT task: English \rightarrow ES/Fr/NI and Pt
 - Improvements of 0.5 1.4 BLEU
 - Seems to help under-resourced language pairs

> Holger Schwenk

Plan

- Neural
- Vision

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representation: FAIR FAIR

NMT Joint Training: Many-to-One

Multi-Source Neural Translation, Zopf and Knight, NAACL'16

- Translate text which is simultaneously available in two language to a third one ⇒ Needs a trilingual corpus
- Combine representation of two source languages:

(figure from Zopf and Knight)

WMT task: French + German → English: +4.8 BLEU
 ⇒ The input in different language is clearly complementary

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations
- Conclusio

NMT Joint Training: Many-to-Many

Multi-Task Sequence to Sequence Learning, Luong et al, ICLR'16

- Investigated three settings (no attention model)
 - One-to-Many: En \rightarrow Ge / POS tags / En
 - Many-One-to: Ge / images / En \rightarrow En
 - Many-to-Many: En / Ge \rightarrow En / Ge

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Improvements are observed in all conditions
- Monolingual data:
 - auto-encoder didn't work
 - predict second half of sentence given the first one

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representatio FAIR

Conclusion

NMT Joint Training: Many-to-Many

Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism, Firat et al, NAACL'16

- Many-to-Many setting with attention mechanism
- The authors aim to use **one shared attention mechanism** for all language pairs
- Quite tricky and requires a complicated architecture

(figure from Orhan et al.)

• WMT task (4 languages): up to +1 BLEU point

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representation

FAIR

Conclusion

Generalized NMT Joint Training

What do we want

- Jointly train on many languages and modalities
- Efficient way to use unlabeled data in the encoder and decoder
- Low-resource language pairs benefit from other parallel data

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Zero-shot translation

> Holger Schwenk

Plan

Neural

Vision NLP Embeddings

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations FAIR FAIR Conclusion

Generalized NMT Joint Training

What do we want

- · Jointly train on many languages and modalities
- Efficient way to use unlabeled data in the encoder and decoder
- Low-resource language pairs benefit from other parallel data
- Zero-shot translation

Proposed architecture

• Joint language independent sentence representation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

⇒ Continuous Interlingua

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Model

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representation FAIR

FAIR

Conclusion

Generalized NMT Joint Training

Independently trained NMT systems

- Left figure: there is no reason that the same English sentence is represented the same way in both systems
- Use one joint encoder (right figure)
- Alternate between ${\rm En}/{\rm Fr}$ and ${\rm En}/{\rm Sp}$ data

Holger Schwenk

Plan

Neural Networks

Vision NLP Embeddin

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Generalized NMT Joint Training

Independently trained NMT systems

- Left figure: there is no reason that a sentence translated into the same English sentence is represented identical in the source representation
- Right figure: using one joint decoder **does not solve the problem !**

Holger Schwenk

Plan

Neural Networks

Vision NLP Embeddin

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Generalized NMT Joint Training

Joint source representation

• We need to perform some operation to force both encoders to learn the same representation

• Do we need trilingual data to achieve this ?

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Model

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations FAIR FAIR

Generalized NMT Joint Training

Learning joint source representations with bitexts

- Put source and target at the input
- Translate into one of the languages, or both simultaneously

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations FAIR

FAIR

Conclusion

Generalized NMT Joint Training

Training with labeled and unlabeled data

- The same architecture can be trained with monolingual data → sentence autoencoder (does not work well with attention !)
- \Rightarrow Alternate between many (partial) training paths in the architecture

> Holger Schwenk

Plan

Neural Networks

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations FAIR FAIR

Generalized NMT Joint Training

Zero-shot neural MT

- Train the architecture with En/Fr and En/Sp bitexts and monolingual data of all languages
- $\Rightarrow \text{ Since we have one joint representation we should be able to perform Fr} \leftrightarrow \text{Sp without using such bitexts } !$
 - The joint representation is the abstract pivot language

イロト 不得 トイヨト イヨト 三日

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representation FAIR

FAIR

Conclusion

Generalized NMT Joint Training

Pushing the idea to the limit

- Train jointly on many languages and modalities (images, speech, ...)
- Using bitexts and unlabeled data
- For some corpora, we also have *n*-wise parallel sentences (e.g. Europarl, TED, UN)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations FAIR

FAIR

Conclusion

Generalized NMT Joint Training

Pushing the idea to the limit

- Train jointly on many languages and modalities (images, speech, ...)
- Using bitexts and unlabeled data
- For some corpora, we also have *n*-wise parallel sentences (e.g. Europarl, TED, UN)

▲□▼▲□▼▲□▼▲□▼ □ ● ●

⇒ The joint representation necessarily captures the semantics of the input
> Holger Schwenk

Plan

Neural

- Networks
- NLP Embeddings

CSLM

Architectur RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Continuous Sentence Representations

Background

- The notion of a continuous representation of **words** is well motivated and understood
- The situation is less clear for a sequence of words
 - should we use a fixed-size vector or an attention-based approach ?
 - what are the syntactic and semantic relations in the space of sentences ?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Holger Schwenk

Plan

Neural

- Networks
- NLP Embeddings

CSLM

Architecture RNN

CSTM

Architecture Joint Model

Neural MT

- Seq2Seq Attention Joint training
- Joint Training

Representations

- FAIR
- FAIR
- Conclusion

Continuous Sentence Representations

Background

- The notion of a continuous representation of **words** is well motivated and understood
- The situation is less clear for a sequence of words
 - should we use a fixed-size vector or an attention-based approach ?
 - what are the syntactic and semantic relations in the space of sentences ?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Usage of sentence representations

- Connects encoder and decoder in NMT
- Joint representation enables zero-shot translation
- Search and compare sentences

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Continuous Sentence Representations Fixed size

- Can we compress a whole sentence into one vector ?
- How the sentence length is encoded ?
- + Makes learning a joint representation easier
- $+\,$ Enables comparison and search in that space
- Performance tends to decrease with sentence length

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の○○

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Model

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations FAIR

FAIR

Conclusion

Continuous Sentence Representations Fixed size

- Can we compress a whole sentence into one vector ?
- How the sentence length is encoded ?
- + Makes learning a joint representation easier
- $+\,$ Enables comparison and search in that space
- Performance tends to decrease with sentence length

Variable size / with attention

- + Performs better on long sentences
- + Attention mechanisms are very successful in many other areas

4 3 **b** 4 3 **b**

ъ

- $+\,$ Alignments are useful in practical applications
- The notion of a joint representation is tricky
- Complicates the comparison of sentences

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

FAIR: Facebook AI Research

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Every day on Facebook

- 10 billion text messages are sent
- 2 billion pictures are uploaded
- several millions of new videos are published
- 1.5 billion searches ar econducted

FAIR vision: AI will mediate communication

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations

FAIR

FAIR

Conclusion

FAIR: Facebook AI Research

Every day on Facebook

- 10 billion text messages are sent
- 2 billion pictures are uploaded
- several millions of new videos are published
- 1.5 billion searches ar econducted

FAIR vision: AI will mediate communication

- between people
 - feed ranking, suggestions, real-time translation, etc.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations

FAIR

FAIR

Conclusion

FAIR: Facebook AI Research

Every day on Facebook

- 10 billion text messages are sent
- 2 billion pictures are uploaded
- several millions of new videos are published
- 1.5 billion searches ar econducted

FAIR vision: AI will mediate communication

- between people
 - feed ranking, suggestions, real-time translation, etc.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- between people and the digital world
 - content search, Q&A, real-time dialog

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

FAIR: Facebook AI Research

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

FAIR: Overview

- \approx 40 research scientists
- \approx 20 research engineers
- NYC, MPK, Paris, Seattle
- still growing ...

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations

FAIR

FAIR

Conclusion

FAIR: Facebook AI Research

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

FAIR: Overview

- \approx 40 research scientists
- \approx 20 research engineers
- NYC, MPK, Paris, Seattle
- still growing ...

Some projects:

- Image captioning for the visual impaired
- Image analysis (hash tags, content, ...)
- Face recognition
- Video analysis
- Machine translation, Q&A

Conclusion

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Neural Networks in MT: Past, Present and Future

Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations

FAIR

FAIR

Conclusion

- Word embeddings are everywhere
- Very active and competitive research field
- Neural networks are *"invading"* traditional NLP conferences
- They achieve state-of-the-art or superior performance in many NLP applications
- Neural network LMs have basically replaced discrete approaches
- Neural MT is likely to replace phrase-based systems in the near future ...

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Open Questions and Challenges

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• How should we represent best entire sentences ?

• one unique huge vector or attention-based ?

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Open Questions and Challenges

• How should we represent best entire sentences ?

- one unique huge vector or attention-based ?
- Should we keep words as the basic token ?
 - sub-word (BPE) or even characters ?
 - should we explicitly handle morphology ?

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Open Questions and Challenges

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- How should we represent best entire sentences ?
 - one unique huge vector or attention-based ?
- Should we keep words as the basic token ?
 - sub-word (BPE) or even characters ?
 - should we explicitly handle morphology ?
- Is there a live beyond LSTMs ?

> Holger Schwenk

Plan

Neural

Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

Joint Training

Representations

FAIR

FAIR

Conclusion

Open Questions and Challenges

- How should we represent best entire sentences ?
 - one unique huge vector or attention-based ?
- Should we keep words as the basic token ?
 - sub-word (BPE) or even characters ?
 - should we explicitly handle morphology ?
- Is there a live beyond LSTMs ?
- How to integrate background knowledge ?

> Holger Schwenk

Plan

- Neural
- Vision NLP Embedding

CSLM

Architecture RNN

CSTM

Architecture Joint Models

Neural MT

Seq2Seq Attention Joint training

- Joint Training
- Representations

FAIR

FAIR

Conclusion

Open Questions and Challenges

- How should we represent best entire sentences ?
 - one unique huge vector or attention-based ?
- Should we keep words as the basic token ?
 - sub-word (BPE) or even characters ?
 - should we explicitly handle morphology ?
- Is there a live beyond LSTMs ?
- How to integrate background knowledge ?
- Solve tasks independently or use one big joint training ?