

Neural Network models and Google Translate

Keith Stevens, Software Engineer - Google Translate kstevens@google.com

High quality translation when and where you need it.

CONSUME

Find information and understand it

COMMUNICATE

Share with others in real life

EXPLORE

Learn a new language

1.5B queries/day

more than 1 million books per day

users come back for more

225M 7-day actives

250M mobile app downloads

ΔΔ

Play Store rating

Android + iOS

Highest among popular Google apps

Goal: 100 languages 2015

The Model Until Today

Google

The Model Until Today

Google

Neural MT [Badhanau et al. 2014]

La chancelière Merkel a quitté le sommet et le chancelier a déclaré :

Can pure Phrase based models ever model this?

$$p(t_1...t_T|s,a) = \prod_{i=1}^T p(t_i|t_1...t_{i-1},s,a)$$

How can we deal with complex word forms with few observations?

Avrupalılaştıramadıklarımızdanmışsınızcasına

as if you are reportedly of those of ours that we were unable to Europeanize

New Neural Approaches to Machine Translation

Neural Networks for scoring

Google

* Not covered in this talk

Neural Networks as Phrase Based Features

(Devlin et al, ACL 2014)

Morphological Embeddings

Neural Network Joint Model

Neural Network Lexical Translation Model

Google

Neural Networks for all the translations

Google

Long Short-Term Memories

Morphological Embeddings

- 1. Project words in embedding space
- 2. Compute Prefix-Suffix transforms
- 3. Compute meaning preserving graph of related forms

Using Skip-Gram Embeddings

The cute dog from California <u>deserved</u> the gold medal.

$$\begin{split} \arg \max_{v_w, v_c} (\sum_{(w,c) \in D} \log \sigma(v_w \cdot v_c) + \sum_{(w,c) \in \overline{D}} \log \sigma(-v_w \cdot v_c)) \\ \sigma(x) = \frac{1}{1 + e^x} \end{split}$$

Using Skip-Gram Embeddings

output layer (softmax)

Google

Semantic Similarity

v(car) ~= v(automobile) v(car) != v(seahorse)

Syntactic Transforms

v(anti+) = v(anticorruption) - v(corruption)

Compositionality

v(unfortunate) + v(+ly) ~= v(unfortunately)

v(king) - v(man) + v(woman) ~= v(queen)

Rule	Hit Rate	Support
suffix:er:o	0.8	vote, voto

Rule	Hit Rate	Support
suffix:er:o	0.8	vote, voto
prefix:ɛ:in	28.6	competent, incompetent

Rule	Hit Rate	Support
suffix:er:o	0.8	vote, voto
prefix:ɛ:in	28.6	competent, incompetent
suffixed:ted:te	54.9	imitated, imitate

Rule	Hit Rate	Support
suffix:er:o	0.8	vote, voto
prefix:ɛ:in	28.6	competent, incompetent
suffixed:ted:te	54.9	imitated, imitate
suffix:y:ies	69.6	foundry, foundries

 $v(completely) - v(+ly) \sim = v(complete)$

 $v(only) - v(+ly) \sim = v(on)$

Confidential & Proprietary

suffix:ly:

32.1

Google

Google

Using Neural Networks as Features

Ideally, use a model that jointly captures source & target information:

$$p(t_1...t_T|s,a) = \prod_{i=1}^T p(t_i|t_1...t_{i-1},s,a)$$

But retaining entire target history explodes decoder's search space, so condition only on *n* previous words, like in n+1-gram LMs:

$$p(t_1...t_T|s,a) \approx \prod_{i=1}^T p(t_i|t_{i-n}...t_{i-1},s,a)$$

Google

Neural Network Joint Model

Model $p(t_i|t_{i-n}...t_{i-1},s_{a_i-m}...s_{a_i+m})$

- Input layer concatenates embeddings from
 - each word in n-gram target history
 - each word in 2m+1-gram source window
- Hidden layer weights input values, then applies tanh
- **Output layer** weights hidden activations:
 - scores every word in output vocabulary using its output embedding
 - softmax (exponentiate and normalize) scores to get probabilities
 - bottleneck due to softmax
 - O(voc-size) operations per target token in output vocabulary

NNJM *p*(happy | wish everyone a souhaiter un excellent jour de)

Neural Network Lexical Translation Model

Model
$$p(t_i | s_{a_i - m} \dots s_{a_i + m})$$

- Input layer concatenates embeddings from
 - each word in source window
- Hidden layer weights input values, then applies tanh
- **Output layer** weights hidden activations:
 - scores every word in output vocabulary using its output embedding
 - softmax (exponentiate and normalize) scores to get probabilities
 - bottleneck due to softmax
 - O(voc-size) operations per target token in output vocabulary

NNLTM p(happy | souhaiter un excellent jour de)

Making NNJM & NNLTM Fast

NNJM & NNLTM Gains

Obviamente, é necessário calcular também os custos não cobertos com os médicos e a ortodontia.

Obviously, you must also calculate the cost share with doctors and orthodontics.

Obviously, you must also calculate the costs not covered with doctors and orthodontics.

A coleira transmite um pequeno "choque" eletrônico quando o cão se aproxima do limite.

The collar transmits a small "shock" when the electronic dog approaches the boundary.

The collar transmits a small "shock" electronic when the dog approaches the boundary.

Replacing Phrase Based Models!

Ideally, use a model that jointly captures source & target information:

$$p(t_i|t_1\cdots t_{i-1},s_1\cdots s_L)$$

Let's actually do it!

Feedforward Neural Networks

fixed number of inputs

Recurrent Neural Networks

Google

fixed number of inputs

Long Short-Term Memory

A Single LSTM Cell

Model formulation

LSTMs can condition on everything; (theoretically) most powerful. No reliance on a phrase-based system.

Google

LSTM interlingua

Google

Summary

Google

NNJM:
$$p(t_i|t_{i-n} \dots t_{i-1}, s_{a_i} - m \dots s_{a_i+m})$$

NNLTM: $p(t_i|s_{a_i} - m \dots s_{a_i+m})$
LSTM: $p(t_i|t_1 \dots t_{i-1}, s_1 \dots s_L)$

prefix:re::<ZERO_VEC> rank=5,cosine=0.51

case::ll:<ZERO_VEC> suffix:e:ed:initiate rank=0,cosine=0.61 rank=0,cosine=0.67

created

recreations

suffix:ions:e:translations

rank=0, cosine=0.55

JOIN US!

HOW TO APPLY

- 1. Visit **google.com/careers/students** to find the best role(s) for you.
- Upload your resumé and transcript (unofficial is fine)
 Click submit!

