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Miloš Stanojević
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Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s)

= argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation
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MERT[Och, 2003]

I MERT is the most often used algorithm for this task

I Optimizes parameters one by one

I Directly optimizes objective

I Works well with systems with small number of features



MERT[Och, 2003]

MERT optimizes only one parameter while keeping others fixed.

score(s, t) = λTh(s, t)

=
∑
i

λihi (s, t)

= λchc(s, t) +
∑
i 6=c

λihi (s, t)

= λchc(s, t) + uc(s, t)
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MERT[Och, 2003]

I Extract all threshold points where argmax changes

I Evaluate each set of threshold points with BLEU score

I Take the best one and then go again trough the decoding loop
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MERT[Och, 2003]

score(s, t1) = score(s, t2)

λc hc(s, t1) + uc(s, t1) = λc hc(s, t2) + uc(s, t2)

λc =
uc(s, t1)− uc(s, t2)

hc(s, t2)− hc(s, t1)



MERT[Och, 2003]

Few more tricks:

I We can speed up this by looking for top threshold points
start with the steepest line (smallest hc(s, t1))

score(x) = λc hc(s, t1) + uc(s, t1)
and find the most negative threshold point for that line

I Accumulate n-best lists over different decoder runs

I Average the weights of 3 MERT runs
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MERT – good and bad sides

Good sides:

I Optimizes corpus level metrics directly.

Bad sides:

I Gets stuck in local minima
example of finding the highest point in San Francisco
[Koehn, 2010]

I Instable: BLEU varies a lot
requires at least 3 runs to make it significant
[Clark et al., 2011]

I Cannot handle more than a dozen of features



PRO[Hopkins and May, 2011]

PRO is a simple alternative that can allow training lots of features.

First sample from n-best list many hypotheses pairs
(tbetter , tworse) where eval(tbetter , r) > eval(tworse , r)
For each pair

score(s, tbetter ) > score(s, tworse)

λTh(s, tbetter ) > λTh(s, tworse)

λT (h(s, tbetter )− h(s, tworse)) > 0

λT (h(s, tworse)− h(s, tbetter )) < 0
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Repeat this with the loop trough the decoder
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MIRA

I MIRA is a large-margin online learning algorithm similar to
perceptron [Watanabe et al., 2007].

I Large margin is enforced between between hope and fear
translations [Chiang et al., 2008]

thope = argmax
t

score(s, t) + eval(t, r)

tfear = argmax
t

score(s, t)− eval(t, r)

I Batch version [Cherry and Foster, 2012] present in Moses.



MIRA

thope = argmax
t

score(s, t) + eval(t, r)

tfear = argmax
t

score(s, t)− eval(t, r)

margin = score(s, tfear )− score(s, thope)

cost = BLEU(thope , r)− BLEU(tfear , r)

λ← λ+ δ(h(s, thope)− h(s, tfear ))

δ = min

(
C ,

margin + cost

||h(s, thope)− h(s, tfear )||2

)
δ changes (unlike in Perceptron) to increase the margin
Repeat this many times until convergence in n-best list
Repeat this with the loop trough the decoder
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Lots of open problems

I Evaluation metrics related:

I MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn’t work well)

I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)
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Czech-English results

System Name TrueSkill Score BLEU
Tuning-Only All

bleu-MIRA-dense 0.153 -0.182 12.28
ILLC-UvA 0.108 -0.189 12.05

bleu-MERT-dense 0.087 -0.196 12.11
AFRL 0.070 -0.210 12.20

USAAR-Tuna 0.011 -0.220 12.16
DCU -0.027 -0.263 11.44

METEOR-CMU -0.101 -0.297 10.88
bleu-MIRA-sparse -0.150 -0.320 10.84

HKUST -0.150 -0.320 10.99
HKUST-LATE — — 12.20

Table: Results on Czech-English tuning



English-Czech results

System Name TrueSkill Score BLEU
Tuning-Only All

DCU 0.320 -0.342 4.96
bleu-MIRA-dense 0.303 -0.346 5.31

AFRL 0.303 -0.342 5.34
USAAR-Tuna 0.214 -0.373 5.26

bleu-MERT-dense 0.123 -0.406 5.24
METEOR-CMU -0.271 -0.563 4.37

bleu-MIRA-sparse -0.992 -0.808 3.79
USAAR-baseline-mira — — 5.31
USAAR-baseline-mert — — 5.25

Table: Results on English-Czech tuning



Word Penalty weights for English-Czech
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I Difficult to analyse individual weights but if we have to...
I All non-sparse systems find similar weights for WP



English-Czech PCA
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Table of contents

PC1 PC2
LM0 -0.69 0.44
PhrasePenalty0 0.15 -0.63
TranslationModel0 0 -0.91 -0.13
TranslationModel0 1 0.91 -0.03
TranslationModel0 2 -0.55 0.72
TranslationModel0 3 0.36 0.75
TranslationModel1 0.42 0.84
WordPenalty0 0.84 0.27

Table: Loadings (correlations) of each component with each feature
function for English-Czech



Czech-English PCA
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I No obvious pattern
I Very similar systems perform complitely differently
I Very different systems perform similarly
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