
Discriminative Training
MT Marathon lecture

Miloš Stanojević

ILLC, University of Amsterdam

September 11, 2015

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s)

= argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s) = argmax
t∈T (s)

p(s|t)p(t)

p(s)

= argmax
t∈T (s)

p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s) = argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s) = argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s) = argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]

= argmax
t∈T (s)

λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s) = argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s) = argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s) = argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s) = argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s) = argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Going from Generative to Discriminative models

Start with generative noisy channel model:

t∗ = argmax
t∈T (s)

p(t|s) = argmax
t∈T (s)

p(s|t)p(t)

p(s)
= argmax

t∈T (s)
p(s|t)p(t)

= argmax
t∈T (s)

log p(s|t) + log p(t)

= argmax
t∈T (s)

[
1 1

] [log p(s|t)
log p(t)

]
= argmax

t∈T (s)
λTh(s, t) end with linear discriminative model

Why would we want to do this?

I We can add more indicators (features) of good translation

I We can give different weight to different features

I And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation

Optimize for BLEU directly

Optimize for BLEU directly

Optimize for BLEU directly

Optimize for BLEU directly

Optimize for BLEU directly

MERT[Och, 2003]

I MERT is the most often used algorithm for this task

I Optimizes parameters one by one

I Directly optimizes objective

I Works well with systems with small number of features

MERT[Och, 2003]

MERT optimizes only one parameter while keeping others fixed.

score(s, t) = λTh(s, t)

=
∑
i

λihi (s, t)

= λchc(s, t) +
∑
i 6=c

λihi (s, t)

= λchc(s, t) + uc(s, t)

MERT[Och, 2003]

MERT optimizes only one parameter while keeping others fixed.

score(s, t) = λTh(s, t)

=
∑
i

λihi (s, t)

= λchc(s, t) +
∑
i 6=c

λihi (s, t)

= λchc(s, t) + uc(s, t)

MERT[Och, 2003]

MERT optimizes only one parameter while keeping others fixed.

score(s, t) = λTh(s, t)

=
∑
i

λihi (s, t)

= λchc(s, t) +
∑
i 6=c

λihi (s, t)

= λchc(s, t) + uc(s, t)

MERT[Och, 2003]

MERT optimizes only one parameter while keeping others fixed.

score(s, t) = λTh(s, t)

=
∑
i

λihi (s, t)

= λchc(s, t) +
∑
i 6=c

λihi (s, t)

= λchc(s, t) + uc(s, t)

MERT[Och, 2003]

I Extract all threshold points where argmax changes

I Evaluate each set of threshold points with BLEU score

I Take the best one and then go again trough the decoding loop

MERT[Och, 2003]

I Extract all threshold points where argmax changes

I Evaluate each set of threshold points with BLEU score

I Take the best one and then go again trough the decoding loop

MERT[Och, 2003]

I Extract all threshold points where argmax changes

I Evaluate each set of threshold points with BLEU score

I Take the best one and then go again trough the decoding loop

MERT[Och, 2003]

score(s, t1) = score(s, t2)

λchc(s, t1) + uc(s, t1) = λchc(s, t2) + uc(s, t2)

MERT[Och, 2003]

score(s, t1) = score(s, t2)

λchc(s, t1) + uc(s, t1) = λchc(s, t2) + uc(s, t2)

MERT[Och, 2003]

score(s, t1) = score(s, t2)

λc hc(s, t1) + uc(s, t1) = λc hc(s, t2) + uc(s, t2)

λc =
uc(s, t1)− uc(s, t2)

hc(s, t2)− hc(s, t1)

MERT[Och, 2003]

Few more tricks:

I We can speed up this by looking for top threshold points
start with the steepest line (smallest hc(s, t1))

score(x) = λc hc(s, t1) + uc(s, t1)
and find the most negative threshold point for that line

I Accumulate n-best lists over different decoder runs

I Average the weights of 3 MERT runs

MERT[Och, 2003]

Few more tricks:

I We can speed up this by looking for top threshold points
start with the steepest line (smallest hc(s, t1))

score(x) = λc hc(s, t1) + uc(s, t1)
and find the most negative threshold point for that line

I Accumulate n-best lists over different decoder runs

I Average the weights of 3 MERT runs

MERT[Och, 2003]

Few more tricks:

I We can speed up this by looking for top threshold points
start with the steepest line (smallest hc(s, t1))

score(x) = λc hc(s, t1) + uc(s, t1)
and find the most negative threshold point for that line

I Accumulate n-best lists over different decoder runs

I Average the weights of 3 MERT runs

MERT – good and bad sides

Good sides:

I Optimizes corpus level metrics directly.

Bad sides:

I Gets stuck in local minima
example of finding the highest point in San Francisco
[Koehn, 2010]

I Instable: BLEU varies a lot
requires at least 3 runs to make it significant
[Clark et al., 2011]

I Cannot handle more than a dozen of features

PRO[Hopkins and May, 2011]

PRO is a simple alternative that can allow training lots of features.

First sample from n-best list many hypotheses pairs
(tbetter , tworse) where eval(tbetter , r) > eval(tworse , r)
For each pair

score(s, tbetter) > score(s, tworse)

λTh(s, tbetter) > λTh(s, tworse)

λT (h(s, tbetter)− h(s, tworse)) > 0

λT (h(s, tworse)− h(s, tbetter)) < 0

PRO[Hopkins and May, 2011]

PRO is a simple alternative that can allow training lots of features.
First sample from n-best list many hypotheses pairs
(tbetter , tworse) where eval(tbetter , r) > eval(tworse , r)

For each pair

score(s, tbetter) > score(s, tworse)

λTh(s, tbetter) > λTh(s, tworse)

λT (h(s, tbetter)− h(s, tworse)) > 0

λT (h(s, tworse)− h(s, tbetter)) < 0

PRO[Hopkins and May, 2011]

PRO is a simple alternative that can allow training lots of features.
First sample from n-best list many hypotheses pairs
(tbetter , tworse) where eval(tbetter , r) > eval(tworse , r)
For each pair

score(s, tbetter) > score(s, tworse)

λTh(s, tbetter) > λTh(s, tworse)

λT (h(s, tbetter)− h(s, tworse)) > 0

λT (h(s, tworse)− h(s, tbetter)) < 0

PRO[Hopkins and May, 2011]

PRO is a simple alternative that can allow training lots of features.
First sample from n-best list many hypotheses pairs
(tbetter , tworse) where eval(tbetter , r) > eval(tworse , r)
For each pair

score(s, tbetter) > score(s, tworse)

λTh(s, tbetter) > λTh(s, tworse)

λT (h(s, tbetter)− h(s, tworse)) > 0

λT (h(s, tworse)− h(s, tbetter)) < 0

PRO[Hopkins and May, 2011]

PRO is a simple alternative that can allow training lots of features.
First sample from n-best list many hypotheses pairs
(tbetter , tworse) where eval(tbetter , r) > eval(tworse , r)
For each pair

score(s, tbetter) > score(s, tworse)

λTh(s, tbetter) > λTh(s, tworse)

λT (h(s, tbetter)− h(s, tworse)) > 0

λT (h(s, tworse)− h(s, tbetter)) < 0

PRO[Hopkins and May, 2011]

PRO is a simple alternative that can allow training lots of features.
First sample from n-best list many hypotheses pairs
(tbetter , tworse) where eval(tbetter , r) > eval(tworse , r)
For each pair

score(s, tbetter) > score(s, tworse)

λTh(s, tbetter) > λTh(s, tworse)

λT (h(s, tbetter)− h(s, tworse)) > 0

λT (h(s, tworse)− h(s, tbetter)) < 0

PRO[Hopkins and May, 2011]

PRO is a simple alternative that can allow training lots of features.
First sample from n-best list many hypotheses pairs
(tbetter , tworse) where eval(tbetter , r) > eval(tworse , r)
For each pair

score(s, tbetter) > score(s, tworse)

λTh(s, tbetter) > λTh(s, tworse)

λT (h(s, tbetter)− h(s, tworse)) > 0

λT (h(s, tworse)− h(s, tbetter)) < 0

Train linear classifier with these as positive and negative training
instance.

Repeat this many times until convergence in n-best list
Repeat this with the loop trough the decoder

PRO[Hopkins and May, 2011]

PRO is a simple alternative that can allow training lots of features.
First sample from n-best list many hypotheses pairs
(tbetter , tworse) where eval(tbetter , r) > eval(tworse , r)
For each pair

score(s, tbetter) > score(s, tworse)

λTh(s, tbetter) > λTh(s, tworse)

λT (h(s, tbetter)− h(s, tworse)) > 0

λT (h(s, tworse)− h(s, tbetter)) < 0

Train linear classifier with these as positive and negative training
instance.
Repeat this many times until convergence in n-best list

Repeat this with the loop trough the decoder

PRO[Hopkins and May, 2011]

PRO is a simple alternative that can allow training lots of features.
First sample from n-best list many hypotheses pairs
(tbetter , tworse) where eval(tbetter , r) > eval(tworse , r)
For each pair

score(s, tbetter) > score(s, tworse)

λTh(s, tbetter) > λTh(s, tworse)

λT (h(s, tbetter)− h(s, tworse)) > 0

λT (h(s, tworse)− h(s, tbetter)) < 0

Train linear classifier with these as positive and negative training
instance.
Repeat this many times until convergence in n-best list
Repeat this with the loop trough the decoder

MIRA

I MIRA is a large-margin online learning algorithm similar to
perceptron [Watanabe et al., 2007].

I Large margin is enforced between between hope and fear
translations [Chiang et al., 2008]

thope = argmax
t

score(s, t) + eval(t, r)

tfear = argmax
t

score(s, t)− eval(t, r)

I Batch version [Cherry and Foster, 2012] present in Moses.

MIRA

thope = argmax
t

score(s, t) + eval(t, r)

tfear = argmax
t

score(s, t)− eval(t, r)

margin = score(s, tfear)− score(s, thope)

cost = BLEU(thope , r)− BLEU(tfear , r)

λ← λ+ δ(h(s, thope)− h(s, tfear))

δ = min

(
C ,

margin + cost

||h(s, thope)− h(s, tfear)||2

)
δ changes (unlike in Perceptron) to increase the margin
Repeat this many times until convergence in n-best list
Repeat this with the loop trough the decoder

MIRA

thope = argmax
t

score(s, t) + eval(t, r)

tfear = argmax
t

score(s, t)− eval(t, r)

margin = score(s, tfear)− score(s, thope)

cost = BLEU(thope , r)− BLEU(tfear , r)

λ← λ+ δ(h(s, thope)− h(s, tfear))

δ = min

(
C ,

margin + cost

||h(s, thope)− h(s, tfear)||2

)
δ changes (unlike in Perceptron) to increase the margin
Repeat this many times until convergence in n-best list
Repeat this with the loop trough the decoder

MIRA

thope = argmax
t

score(s, t) + eval(t, r)

tfear = argmax
t

score(s, t)− eval(t, r)

margin = score(s, tfear)− score(s, thope)

cost = BLEU(thope , r)− BLEU(tfear , r)

λ← λ+ δ(h(s, thope)− h(s, tfear))

δ = min

(
C ,

margin + cost

||h(s, thope)− h(s, tfear)||2

)
δ changes (unlike in Perceptron) to increase the margin
Repeat this many times until convergence in n-best list
Repeat this with the loop trough the decoder

MIRA

thope = argmax
t

score(s, t) + eval(t, r)

tfear = argmax
t

score(s, t)− eval(t, r)

margin = score(s, tfear)− score(s, thope)

cost = BLEU(thope , r)− BLEU(tfear , r)

λ← λ+ δ(h(s, thope)− h(s, tfear))

δ = min

(
C ,

margin + cost

||h(s, thope)− h(s, tfear)||2

)
δ changes (unlike in Perceptron) to increase the margin
Repeat this many times until convergence in n-best list
Repeat this with the loop trough the decoder

MIRA

thope = argmax
t

score(s, t) + eval(t, r)

tfear = argmax
t

score(s, t)− eval(t, r)

margin = score(s, tfear)− score(s, thope)

cost = BLEU(thope , r)− BLEU(tfear , r)

λ← λ+ δ(h(s, thope)− h(s, tfear))

δ = min

(
C ,

margin + cost

||h(s, thope)− h(s, tfear)||2

)
δ changes (unlike in Perceptron) to increase the margin

Repeat this many times until convergence in n-best list
Repeat this with the loop trough the decoder

MIRA

thope = argmax
t

score(s, t) + eval(t, r)

tfear = argmax
t

score(s, t)− eval(t, r)

margin = score(s, tfear)− score(s, thope)

cost = BLEU(thope , r)− BLEU(tfear , r)

λ← λ+ δ(h(s, thope)− h(s, tfear))

δ = min

(
C ,

margin + cost

||h(s, thope)− h(s, tfear)||2

)
δ changes (unlike in Perceptron) to increase the margin
Repeat this many times until convergence in n-best list

Repeat this with the loop trough the decoder

MIRA

thope = argmax
t

score(s, t) + eval(t, r)

tfear = argmax
t

score(s, t)− eval(t, r)

margin = score(s, tfear)− score(s, thope)

cost = BLEU(thope , r)− BLEU(tfear , r)

λ← λ+ δ(h(s, thope)− h(s, tfear))

δ = min

(
C ,

margin + cost

||h(s, thope)− h(s, tfear)||2

)
δ changes (unlike in Perceptron) to increase the margin
Repeat this many times until convergence in n-best list
Repeat this with the loop trough the decoder

Lots of open problems

I Evaluation metrics related:

I MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn’t work well)

I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)

I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)
I use good metrics

I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)
I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)
I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:

I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)
I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)

I lattice and hyper-graph are better options but too complicated
to use because metrics don’t decompose to (hyper-)arcs

I n-best is not really n-best because of pruning which breaks
convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)
I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs

I n-best is not really n-best because of pruning which breaks
convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)
I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)
I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:

I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)
I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:

I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)
I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?

I latent variables (towards which derivation to optimize?)

Lots of open problems

I Evaluation metrics related:
I MIRA, PRO and Perceptron require sentence level metric

(BLEU doesn’t work well)
I use good metrics
I but good metrics oftend are not good for tuning

I Representation of space of translations:
I n-best list is too small (compared to exponential space)
I lattice and hyper-graph are better options but too complicated

to use because metrics don’t decompose to (hyper-)arcs
I n-best is not really n-best because of pruning which breaks

convergence guarantees [Liu and Huang, 2014]

I Optimization itself:
I increase margin? minimize risk?
I latent variables (towards which derivation to optimize?)

Tuning task

I So many things to choose in tuning (metric, algorithm, data,
features...)

I Final performance usually measured by BLEU and not humans

I Organised Tuning Task on WMT15 to explore these options in
proper way

Tuning task

I So many things to choose in tuning (metric, algorithm, data,
features...)

I Final performance usually measured by BLEU and not humans

I Organised Tuning Task on WMT15 to explore these options in
proper way

Tuning task

I So many things to choose in tuning (metric, algorithm, data,
features...)

I Final performance usually measured by BLEU and not humans

I Organised Tuning Task on WMT15 to explore these options in
proper way

Tuning task - system for tuning

I Hiero Moses trained both for English-Czech and
Czech-English on small dataset

I constrained version allowed 2000 sentence pairs for tuning

I constrained version allowed only dense features

I any tuning algorithm or metric tuning was allowed (even
manually setting weights)

Tuning task - system for tuning

I Hiero Moses trained both for English-Czech and
Czech-English on small dataset

I constrained version allowed 2000 sentence pairs for tuning

I constrained version allowed only dense features

I any tuning algorithm or metric tuning was allowed (even
manually setting weights)

Tuning task - system for tuning

I Hiero Moses trained both for English-Czech and
Czech-English on small dataset

I constrained version allowed 2000 sentence pairs for tuning

I constrained version allowed only dense features

I any tuning algorithm or metric tuning was allowed (even
manually setting weights)

Tuning task - system for tuning

I Hiero Moses trained both for English-Czech and
Czech-English on small dataset

I constrained version allowed 2000 sentence pairs for tuning

I constrained version allowed only dense features

I any tuning algorithm or metric tuning was allowed (even
manually setting weights)

Czech-English results

System Name TrueSkill Score BLEU
Tuning-Only All

bleu-MIRA-dense 0.153 -0.182 12.28
ILLC-UvA 0.108 -0.189 12.05

bleu-MERT-dense 0.087 -0.196 12.11
AFRL 0.070 -0.210 12.20

USAAR-Tuna 0.011 -0.220 12.16
DCU -0.027 -0.263 11.44

METEOR-CMU -0.101 -0.297 10.88
bleu-MIRA-sparse -0.150 -0.320 10.84

HKUST -0.150 -0.320 10.99
HKUST-LATE — — 12.20

Table: Results on Czech-English tuning

English-Czech results

System Name TrueSkill Score BLEU
Tuning-Only All

DCU 0.320 -0.342 4.96
bleu-MIRA-dense 0.303 -0.346 5.31

AFRL 0.303 -0.342 5.34
USAAR-Tuna 0.214 -0.373 5.26

bleu-MERT-dense 0.123 -0.406 5.24
METEOR-CMU -0.271 -0.563 4.37

bleu-MIRA-sparse -0.992 -0.808 3.79
USAAR-baseline-mira — — 5.31
USAAR-baseline-mert — — 5.25

Table: Results on English-Czech tuning

Word Penalty weights for English-Czech

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05

M
an

ua
l S

co
re

Word Penalty (after L2 normalization)

bleu_MERT
DCU

bleu_MIRA_dense
USAAR-Tuna

AFRL
METEOR_CMU

bleu_MIRA_sparse

I Difficult to analyse individual weights but if we have to...
I All non-sparse systems find similar weights for WP

English-Czech PCA

●

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

PC1

P
C

2

● DCU
bleu_MIRA_dense
AFRL
USAAR−Tuna
bleu_MERT
bleu_MIRA_sparse
METEOR_CMU

Table of contents

PC1 PC2
LM0 -0.69 0.44
PhrasePenalty0 0.15 -0.63
TranslationModel0 0 -0.91 -0.13
TranslationModel0 1 0.91 -0.03
TranslationModel0 2 -0.55 0.72
TranslationModel0 3 0.36 0.75
TranslationModel1 0.42 0.84
WordPenalty0 0.84 0.27

Table: Loadings (correlations) of each component with each feature
function for English-Czech

Czech-English PCA

●

−2 −1 0 1 2

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

PC1

P
C

2
● bleu_MIRA_dense

ILLC_UvA
bleu_MERT
AFRL
USAAR−Tuna
HKUST_MEANT
bleu_MIRA_sparse
METEOR_CMU
DCU

I No obvious pattern
I Very similar systems perform complitely differently
I Very different systems perform similarly

Conclusion

I Tuning is a standard procedure of most modern MT systems

I But still difficult in many respects

I Tuning Task will happen on again WMT16

I Questions?

Conclusion

I Tuning is a standard procedure of most modern MT systems

I But still difficult in many respects

I Tuning Task will happen on again WMT16

I Questions?

Conclusion

I Tuning is a standard procedure of most modern MT systems

I But still difficult in many respects

I Tuning Task will happen on again WMT16

I Questions?

Conclusion

I Tuning is a standard procedure of most modern MT systems

I But still difficult in many respects

I Tuning Task will happen on again WMT16

I Questions?

Bibliography I

Cherry, C. and Foster, G. (2012).

Batch tuning strategies for statistical machine translation.
In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL HLT ’12, pages 427–436, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Chiang, D., Marton, Y., and Resnik, P. (2008).

Online large-margin training of syntactic and structural translation features.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
224–233. Association for Computational Linguistics.

Clark, J. H., Dyer, C., Lavie, A., and Smith, N. A. (2011).

Better Hypothesis Testing for Statistical Machine Translation: Controlling for Optimizer Instability.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2, HLT ’11, pages 176–181, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Hopkins, M. and May, J. (2011).

Tuning As Ranking.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’11,
pages 1352–1362, Stroudsburg, PA, USA. Association for Computational Linguistics.

Koehn, P. (2010).

Statistical Machine Translation.
Cambridge University Press, New York, NY, USA, 1st edition.

Liu, L. and Huang, L. (2014).

Search-aware tuning for machine translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1942–1952, Doha, Qatar. Association for Computational Linguistics.

Bibliography II

Och, F. J. (2003).

Minimum error rate training in statistical machine translation.
In Proceedings of the 41st Annual Meeting on Association for Computational Linguistics - Volume 1, ACL
’03, pages 160–167, Stroudsburg, PA, USA. Association for Computational Linguistics.

Watanabe, T., Suzuki, J., Tsukada, H., and Isozaki, H. (2007).

Online large-margin training for statistical machine translation.
In In Proc. of EMNLP. Citeseer.

	Conclusion
	Bibliography

