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t* = argmax p(t|s) = argmax P(sIt)P(t) = argmax p(s|t)p(t)
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= argmax [1 1] [Iogp(s\t)]
teT(s) log p(t)

= argmax A" h(s, t) end with linear discriminative model
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Why would we want to do this?
» We can add more indicators (features) of good translation
> We can give different weight to different features
» And all this done in a way to directly optimize desired metric

Disadvantage? Losing probabilistic interpretation



Optimize for BLEU directly

e

o 5 = = £ DA



Optimize for BLEU directly

-1l

o 5 = = £ DA



Optimize for BLEU directly

o 5 = = £ DA



Optimize for BLEU directly

o 5 = = £ DA



Optimize for BLEU directly

o 5 = = £ DA



MERT][Och, 2003]

v

MERT is the most often used algorithm for this task

Optimizes parameters one by one

v

v

Directly optimizes objective

v

Works well with systems with small number of features
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» Extract all threshold points where argmax changes
» Evaluate each set of threshold points with BLEU score

» Take the best one and then go again trough the decoding loop
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Few more tricks:

» We can speed up this by looking for top threshold points
start with the steepest line (smallest h.(s, t1))

score(x) = Ac he(s, t1) + uc(s, t1)
and find the most negative threshold point for that line

» Accumulate n-best lists over different decoder runs
> Average the weights of 3 MERT runs



MERT - good and bad sides

Good sides:
» Optimizes corpus level metrics directly.
Bad sides:

» Gets stuck in local minima

example of finding the highest point in San Francisco
[Koehn, 2010]

» Instable: BLEU varies a lot

requires at least 3 runs to make it significant
[Clark et al., 2011]

» Cannot handle more than a dozen of features
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PRO is a simple alternative that can allow training lots of features.
First sample from n-best list many hypotheses pairs

(tbetten tworse) where eval(tbettery r) > eval(tworsea r)
For each pair

score(s, tpetter) > score(s tworse)

T( h(s, tbetter) — (5 tworse)

)
)‘ (5 tbetter) (Sv tworse)
) >
T( h(57 tworse) h(s tbetter) )

Train linear classifier with these as positive and negative training
instance.

Repeat this many times until convergence in n-best list

Repeat this with the loop trough the decoder



MIRA

» MIRA is a large-margin online learning algorithm similar to
perceptron [Watanabe et al., 2007].

» Large margin is enforced between between hope and fear
translations [Chiang et al., 2008]

thope = argmax score(s, t) + eval(t,r)
t

tfear = argmax score(s, t) — eval(t, r)
t

» Batch version [Cherry and Foster, 2012] present in Moses.



MIRA

thope = argmax score(s, t) + eval(t,r)
t

trear = argmax score(s, t) — eval(t, r)
t



MIRA

thope = argmax score(s, t) + eval(t,r)
t

trear = argmax score(s, t) — eval(t, r)
t

margin = score(s, tfear) — score(s, thope)



MIRA

thope = argmax score(s, t) + eval(t,r)
t

trear = argmax score(s, t) — eval(t, r)
t

margin = score(s, tfear) — score(s, thope)
cost = BLEU(thope, r) — BLEU(tfear, r)



MIRA

thope = argmax score(s, t) + eval(t, r
t

trear = argmax score(s, t) — eval(t, r
t

cost = BLEU(thope, ) BLEU(tfeah r

)

)

margin = score(s, tfear) — score(s, thope)
)

A N+ 5(h(s7 thope) — (S tfear))



MIRA

thope = argmax score(s, t) + eval(t, r
t

trear = argmax score(s, t) — eval(t, r
t

cost = BLEU(thope, ) BLEU(tfeara r

)

)

margin = score(s, tfear) — score(s, thope)
)

A N+ 5(h(s7 thope) — (S tfear))

5 — min <C, margin + cost >

|lh(s, thOPe) — h(s, trear)||?

d changes (unlike in Perceptron) to increase the margin



MIRA

thope = argmax score(s, t) + eval(t, r
t

trear = argmax score(s, t) — eval(t, r
t

cost = BLEU(thope, ) BLEU(tfeara r

)

)

margin = score(s, tfear) — score(s, thope)
)

A N+ 5(h(s7 thope) — (S tfear))

5 — min <C, margin + cost >

|lh(s, thOPe) — h(s, trear)||?

d changes (unlike in Perceptron) to increase the margin
Repeat this many times until convergence in n-best list



MIRA

thope = argmax score(s, t) + eval(t, r
t

trear = argmax score(s, t) — eval(t, r
t

cost = BLEU(thope, ) BLEU(tfeara r

)

)

margin = score(s, tfear) — score(s, thope)
)

A N+ (5(h(s7 thope) — (S tfear))

5= min <C, margin + cost >

|lh(s, thOPe) — h(s, trear)||?

d changes (unlike in Perceptron) to increase the margin
Repeat this many times until convergence in n-best list
Repeat this with the loop trough the decoder



Lots of open problems

» Evaluation metrics related:



Lots of open problems

» Evaluation metrics related:

» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)



Lots of open problems

» Evaluation metrics related:

» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)
> use good metrics



Lots of open problems

» Evaluation metrics related:
» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)
> use good metrics
» but good metrics oftend are not good for tuning



Lots of open problems

» Evaluation metrics related:

» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)

> use good metrics

» but good metrics oftend are not good for tuning

» Representation of space of translations:



Lots of open problems

» Evaluation metrics related:

» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)

> use good metrics

» but good metrics oftend are not good for tuning

» Representation of space of translations:
» n-best list is too small (compared to exponential space)



Lots of open problems

» Evaluation metrics related:
» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)
> use good metrics
» but good metrics oftend are not good for tuning
» Representation of space of translations:
» n-best list is too small (compared to exponential space)
> lattice and hyper-graph are better options but too complicated
to use because metrics don't decompose to (hyper-)arcs



Lots of open problems

» Evaluation metrics related:
» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)
> use good metrics
» but good metrics oftend are not good for tuning

» Representation of space of translations:
» n-best list is too small (compared to exponential space)
> lattice and hyper-graph are better options but too complicated
to use because metrics don't decompose to (hyper-)arcs
> n-best is not really n-best because of pruning which breaks
convergence guarantees [Liu and Huang, 2014]



Lots of open problems

» Evaluation metrics related:
» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)
> use good metrics
» but good metrics oftend are not good for tuning
» Representation of space of translations:
» n-best list is too small (compared to exponential space)
> lattice and hyper-graph are better options but too complicated
to use because metrics don't decompose to (hyper-)arcs
> n-best is not really n-best because of pruning which breaks
convergence guarantees [Liu and Huang, 2014]

» Optimization itself:



Lots of open problems

» Evaluation metrics related:
» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)
> use good metrics
» but good metrics oftend are not good for tuning
» Representation of space of translations:
» n-best list is too small (compared to exponential space)
> lattice and hyper-graph are better options but too complicated
to use because metrics don't decompose to (hyper-)arcs
> n-best is not really n-best because of pruning which breaks
convergence guarantees [Liu and Huang, 2014]

» Optimization itself:



Lots of open problems

» Evaluation metrics related:
» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)
> use good metrics
» but good metrics oftend are not good for tuning
» Representation of space of translations:
» n-best list is too small (compared to exponential space)
> lattice and hyper-graph are better options but too complicated
to use because metrics don't decompose to (hyper-)arcs
> n-best is not really n-best because of pruning which breaks
convergence guarantees [Liu and Huang, 2014]
» Optimization itself:
> increase margin? minimize risk?



Lots of open problems

» Evaluation metrics related:
» MIRA, PRO and Perceptron require sentence level metric
(BLEU doesn't work well)
> use good metrics
» but good metrics oftend are not good for tuning
» Representation of space of translations:
» n-best list is too small (compared to exponential space)
> lattice and hyper-graph are better options but too complicated
to use because metrics don't decompose to (hyper-)arcs
> n-best is not really n-best because of pruning which breaks
convergence guarantees [Liu and Huang, 2014]
» Optimization itself:
> increase margin? minimize risk?
» latent variables (towards which derivation to optimize?)

machine translatio
machine|translation software
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Tuning task

» So many things to choose in tuning (metric, algorithm, data,
features...)

» Final performance usually measured by BLEU and not humans

» Organised Tuning Task on WMT15 to explore these options in
proper way
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Tuning task - system for tuning

» Hiero Moses trained both for English-Czech and
Czech-English on small dataset

> constrained version allowed 2000 sentence pairs for tuning
» constrained version allowed only dense features

» any tuning algorithm or metric tuning was allowed (even
manually setting weights)



Czech-English results

System Name  TrueSkill Score | BLEU
Tuning-Only All
BLEU-MIRA-DENSE 0.153 -0.182 12.28
ILLC-UVA 0.108 -0.189 12.05
BLEU-MERT-DENSE 0.087 -0.196 12.11
AFRL 0.070 -0.210 12.20
USAAR-TuNA 0.011 -0.220 12.16
DCU -0.027 -0.263 11.44
METEOR-CMU -0.101 -0.297 10.88
BLEU-MIRA-SPARSE -0.150 -0.320 10.84
HKUST -0.150 -0.320 10.99
HKUST-LATE — — | 12.20

Table: Results on Czech-English tuning



English-Czech results

System Name  TrueSkill Score | BLEU
Tuning-Only All
DCU 0.320 -0.342 4.96
BLEU-MIRA-DENSE 0.303 -0.346 5.31
AFRL 0.303 -0.342 5.34
USAAR-TUNA 0.214 -0.373 5.26
BLEU-MERT-DENSE 0.123 -0.406 5.24
METEOR-CMU -0.271 -0.563 4.37
BLEU-MIRA-SPARSE -0.992 -0.808 3.79
USAAR-BASELINE-MIRA — — 5.31
USAAR-BASELINE-MERT — — 5.25

Table: Results on English-Czech tuning




Word Penalty weights for English-Czech

04 T T « I T
X n
0.2 0 -
+
0r _
9
o _ - -
8 0.2 5
< -04F bleu MERT + _
2 DCU x
g -0.6 - bleu_MIRA_dense * 1
= sl USAAR-Tuna O i
) AFRL =
1k METEOR_CMU o ° _
bleu MIRA sparse o
1.2 T 1 1 1

-03 -025 -02 -015 -01 -0.05
Word Penalty (after L2 normalization)

» Difficult to analyse individual weights but if we have to...
> All non-sparse systems find similar weights for WP



English-Czech PCA

PC2

15 20
|

1.0

0.5

-1.0 -05 0.0

© DCU

& bleu_MIRA dense

& AFRL

8 USAAR-Tuna

® bleu_MERT
bleu_MIRA_sparse
METEOR_CMU

|

-15 -1.0

-0.5 0.0 0.5

PC1

1.0




Table of contents

PC1 | PC2
LMO -0.69 | 0.44
PhrasePenalty0 0.15 | -0.63

TranslationModel0_0 | -0.91 | -0.13
TranslationModel0_1 | 0.91 | -0.03
TranslationModel0_2 | -0.55 | 0.72
TranslationModel0_3 036 | 0.75
TranslationModell 0.42 | 0.84
WordPenalty0 0.84 | 0.27

Table: Loadings (correlations) of each component with each feature
function for English-Czech



Czech-English PCA
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> No obvious pattern
> Very similar systems perform complitely differently
» Very different systems perform similarly
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v

Tuning is a standard procedure of most modern MT systems

v

But still difficult in many respects

v

Tuning Task will happen on again WMT16

v

Questions?
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