Language Modeling Kenneth Heafield ^{University of Edinburgh}

Introduction

Smoothing

Kneser-Ney 0000000 Implementation

p(type | Predictive) > p(Tyler | Predictive)

Introduction

Smoothing 00000000000 Kneser-Ney

Implementation 000000000000000

Win or luse, it was a great game. Win or lose, it were a great game. Win or loose, it was a great game.

$p(\text{lose} \mid \text{Win or}) \gg p(\text{loose} \mid \text{Win or})$

[Church et al, 2007]

Introduction

Smoothing

Kneser-Ney

Implementation

Heated indoor swimming pool

Introduction

Smoothing 00000000000 Kneser-Ney 0000000 Implementation

Introduction

Smoothing 00000000000 Kneser-Ney 0000000 Implementation

présidente de la Chambre des représentants chairwoman of the Bedroom of Representatives

Introduction

Smoothing 00000000000 Kneser-Ney 0000000 Implementation

Introduction

Smoothing 00000000000 Kneser-Ney

Implementation

p(chairwoman of the House of Representatives) > p(chairwoman of the Bedroom of Representatives)

Introduction

Smoothing 00000000000 Kneser-Ne

Implementation

p(Another one bites the dust.) > p(Another one rides the bus.)

Introduction 00000000000000 Smoothing 00000000000 Kneser-Ney

Implementation

Essential Component: Language Model p(in the raw) = ?

Introduction

Smoothing

Kneser-Ney

Implementation

Language model: fluency of output

X How well it translates the source**X** Ratio to source sentence

✓ Length✓ Ratio of letter "z" to letter "e"

Introduction

Smoothing 00000000000 Kneser-Neg 0000000 Implementation

Language model: fluency of output

X How well it translates the source**X** Ratio to source sentence

✓ Length
 ✓ Ratio of letter "z" to letter "e"
 ✓ Parsing
 ✓ Sequence Models

Introduction

Smoothing 0000000000 Kneser-Ne

Implementation

Parsing

Introduction

Smoothing

Kneser-Ney 0000000 Implementation

Sequence Models

Chain Rule

p(Moses compiles) = p(Moses)p(compiles | Moses)

Introduction	Smoothing	Kneser-Ney	Implementation	Conclusion	
00000000000000	00000000000		00000000000000		15

Sequence Model

log <i>p</i> (iran	<s>)</s>	
log <i>p</i> (is	<s> iran)</s>	
log <i>p</i> (one	<s> iran is)</s>	
log <i>p</i> (of	<s> iran is one)</s>	
log <i>p</i> (the	<s> iran is one of)</s>	
log <i>p</i> (few	<s> iran is one of the</s>	
log <i>p</i> (countries	<s $>$ iran is one of the few $)$	
log <i>p</i> (.	\mid <s> iran is one of the few countries $$)</s>	
$+ \log p($	$ <\!\!\mathrm{s}\!\!>$ iran is one of the few countries .)	
$= \log p(iran)$	is one of the few countries .	

Introduction

Smoothing 00000000000 Kneser-Ney

Implementation

Sequence Model

	log <i>p</i> (iran	<s>)</s>
	log <i>p</i> (is	│ <s> iran)</s>
	log <i>p</i> (one	│ <s> iran is)</s>
	log <i>p</i> (of	<s> iran is one)</s>
	log <i>p</i> (the	<s> iran is one of)</s>
	log <i>p</i> (few	<pre><s> iran is one of the</s></pre>)
	log <i>p</i> (countries	<pre><s> iran is one of the few</s></pre>
	log <i>p</i> (.	<s $>$ iran is one of the few countries $)$
+	log <i>p</i> (<pre><s> iran is one of the few countries .)</s></pre>
=	log p(<s> iran</s>	is one of the few countries .

Explicit begin and end of sentence.

Introduction

Smoothing 00000000000 Kneser-Ney

Implementation

Sequence Model

log <i>p</i> (iran	<s></s>)=	-3.33437
log <i>p</i> (is	<s> iran</s>)=	-1.05931
log <i>p</i> (one	<s> iran is</s>)=	-1.80743
log <i>p</i> (of	<s> iran is one</s>)=	-0.03705
log <i>p</i> (the	<s> iran is one of</s>)=	-0.08317
log <i>p</i> (few	<s $>$ iran is one of the)=	-1.20788
log <i>p</i> (countries	<s $>$ iran is one of the few)=	-1.62030
log <i>p</i> (.	$ <\!\!s\!\!>$ iran is one of the few countries)=	-2.60261
- log <i>p</i> ($ <\!\!s\!\!>$ iran is one of the few countries	.)=	-0.04688
= log p(<s> iran</s>	is one of the few countries .)=	-11.79900

Where do these probabilities come from?

Introduction

Smoothing 00000000000 Kneser-Ney 0000000 Implementation

Probabilities from Text

Introduction

Smoothing

Kneser-Ney

Implementation

Estimating from Text

help in the search for an answer . Copper burned in the raw wood . put forward in the paper Highs in the 50s to lower 60s .

 $p(raw \mid in the) \approx \frac{1}{4}$

Introduction

Smoothing 00000000000 Kneser-Ney

Implementation

Estimating from Text

help in the search for an answer . Copper burned in the raw wood . put forward in the paper Highs in the 50s to lower 60s . $p(\text{raw} | \text{ in the}) \approx \frac{1}{4}$ $p(\text{Ugrasena} | \text{ in the}) \approx 0$

Introduction

Smoothing

Kneser-Ney

Implementation 00000000000000

Estimating from Text

help in the search for an answer. Copper burned in the raw wood put forward in the paper Highs in the 50s to lower 60s.

 $p(\text{raw} \mid \text{in the}) \approx \frac{1}{6}$ $p(\text{Ugrasena} \mid \text{in the}) \approx \frac{1}{1000}$

Introduction 00000000000000 Smoothing

Kneser-Nev

Implementation

$$p(\text{Ugrasena} \mid \text{in the}) = \frac{\text{count(in the Ugrasena)}}{\text{count(in the)}} = 0?$$

Introduction Smoothing Kneser-Ney Implementation Conclusion

 Introduction
 Smoothing
 Kneser-Ney
 Implementation
 Conclusion

 00000000000
 •0000000000
 0000000000000
 0
 0

24

Stupid Backoff: Drop context until count is non-zero [Brants et al, 2007]

Can we be less stupid?

Introduction

Smoothing •00000000000 Kneser-Ne

Implementati 0000000000

Neural Networks: classifier predicts next word
 Backoff: maybe "the Ugrasena" was seen?

Introduction

Smoothing 000000000000 Kneser-Neg 0000000 Implementation

Language Modeling

Smoothing Neural Networks Backoff Kneser-Ney Smoothing Implementation

Introduction 0000000000000 Smoothing 0000000000000 Kneser-Ney

Implementation

Turning Words into Vectors

Assign each word a unique row.

Introduction 000000000000 Smoothing

Kneser-Ney 0000000 Implementation

Recurrent Neural Network

Introduction Smoothing

Kneser-Nev

Implementation

Recurrent Neural Network

 Introduction
 Smoothing
 Kneser-Ney
 Implementation

 000000000000
 000000000
 000000000
 000000000

Recurrent Neural Network Properties

Treat language modeling as a classification problem: Predict the next word.

State uses the entire context back to the beginning.

Introduction 00000000000000 Smoothing

Kneser-Ne

Implementation

Turning Words into Vectors

Vectors from a recurrent neural network ... or your favorite ACL paper.

Smoothing

Kneser-Ne

Implementation

Neural N-gram Models

p(raw | Vector(in), Vector(the))

Vectors for context words \rightarrow neural network classifier \rightarrow probability distribution over words

Introduction

Smoothing

Kneser-Ne

Implementation

Language Modeling

 Smoothing Neural Networks
 Backoff
 Kneser-Ney Smoothing
 Implementation

Introduction 000000000000 Smoothing

Kneser-Ney

Implementation

Backoff Smoothing

"in the Ugrasena" was not seen \rightarrow try "the Ugrasena" p(Ugrasena | in the $) \approx p($ Ugrasena | the)

35

Backoff Smoothing

"in the Ugrasena" was not seen \rightarrow try "the Ugrasena" p(Ugrasena | in the $) \approx p($ Ugrasena | the)

"the Ugrasena" was not seen \rightarrow try "Ugrasena" p(Ugrasena | the $) \approx p($ Ugrasena)

Introduction

Smoothing

Kneser-Ney 0000000 Implementation
Backoff Smoothing

"in the Ugrasena" was not seen \rightarrow try "the Ugrasena" $p(Ugrasena \mid in the) = p(Ugrasena \mid the)b(in the)$

"the Ugrasena" was not seen \rightarrow try "Ugrasena" $p(Ugrasena \mid the) = p(Ugrasena)b(the)$

Backoff b is a penalty for not matching context.

Introduction

Smoothing

Kneser-Ney 0000000 Implementation

Example Language Model

Unigrams			
Words	log p	log b	
<s></s>	$-\infty$	-2.0	
iran	-4.1	-0.8	
is	-2.5	-1.4	
one	-3.3	-0.9	
of	-2.5	-1.1	

Bigrams			
Words	log p	log b	
$<\!\!s\!\!>$ iran	-3.3	-1.2	
iran is	-1.7	-0.4	
is one	-2.0	-0.9	
one of	-1.4	-0.6	

Trigrams			
Words	$\log p$		
<s $>$ iran is	-1.1		
iran is one	-2.0		
is one of	-0.3		

38

Introduction	Smoothing	Kneser-Ney	Implementation	Conclusion
	000000000000000000000000000000000000000			

Example Language Model

Unigrams			
Words	log p	log b	
<s></s>	$-\infty$	-2.0	
iran	-4.1	-0.8	
is	-2.5	-1.4	
one	-3.3	-0.9	
of	-2.5	-1.1	

Bigrams			
Words	log p	log b	
$<\!\!\mathrm{s}\!\!>$ iran	-3.3	-1.2	
iran is	-1.7	-0.4	
is one	-2.0	-0.9	
one of	-1.4	-0.6	

Trigrams			
Words	log p		
<s $>$ iran is	-1.1		
iran is one	-2.0		
is one of	-0.3		

Query
$$\log p(is | ~~iran) = -1.1~~$$

Introduction

Smoothing

Kneser-Ney

Implementation

Example Language Model

Unigrams			
Words	log p	log b	
<s></s>	$-\infty$	-2.0	
iran	-4.1	-0.8	
is	-2.5	-1.4	
one	-3.3	-0.9	
of	-2.5	-1.1	

Bigrams			
Words	log p	log b	
$<\!\!\mathrm{s}\!\!>$ iran	-3.3	-1.2	
iran is	-1.7	-0.4	
is one	-2.0	-0.9	
one of	-1.4	-0.6	

Trigrams		
Words	$\log p$	
<s $>$ iran is	-1.1	
iran is one	-2.0	
is one of	-0.3	

Query :
$$p(of | iran is)$$
 $log p(of)$ -2.5 $log b(is)$ -1.4 $log b(iran is)$ $+-0.4$ $log p(of | iran is)$

Int	roc	luc	tio	n
00	00	~~	\sim	000

Close words matter more.

Though long-distance matters: Grammatical structure Topical coherence Words tend to repeat Cross-sentence dependencies

Alternative: skip over words in the context [Pickhardt et al, ACL 2014]

Introduction 0000000000000 Smoothing

Kneser-Ne

Implementation

Language Modeling

- 1 Smoothing Neural Networks Backoff
- 2 Kneser-Ney Smoothing

3 Implementation

Introduction 000000000000 Smoothing

Kneser-Ney ●000000 Implementation

Where do *p* and *b* come from? Text!

Kneser-Ney Witten-Bell Good-Turing

Introduction 000000000000 Smoothing

Kneser-Ney 0●00000 Implementation

Kneser-Ney

Common high-quality smoothing

- 1 Adjust
- 2 Normalize
- 3 Interpolate

Introd	uctio	n
0000	0000	00000

Smoothing 00000000000 Kneser-Ney 00●0000 Implementation

Adjusted counts are: Trigrams Count in the text. Others Number of unique words to the left.

Lower orders are used when a trigram did not match. How freely does the text associate with new words?

Introduction	Smoothing	Kneser-Ney	Implementation	Conclusion	
		0000000			

Adjusted counts are: Trigrams Count in the text. Others Number of unique words to the left.

Lower orders are used when a trigram did not match. How freely does the text associate with new words?

Introduction	Smoothing	Kneser-Ney	Implementation	Conclusion
		000000		0

Discounting and Normalization

Save mass for unseen events

$$\mathsf{pseudo}(w_n|w_1^{n-1}) = \frac{\mathsf{adjusted}(w_1^n) - \mathsf{discount}_n(\mathsf{adjusted}(w_1^n))}{\sum_x \mathsf{adjusted}(w_1^{n-1}x)}$$

Normalize

47

 Introduction
 Smoothing
 Kneser-Ney
 Implementation
 Conclusion

 00000000000
 0000●00
 00000000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Discounting and Normalization

Save mass for unseen events

$$\mathsf{pseudo}(w_n|w_1^{n-1}) = \frac{\mathsf{adjusted}(w_1^n) - \mathsf{discount}_n(\mathsf{adjusted}(w_1^n))}{\sum_x \mathsf{adjusted}(w_1^{n-1}x)}$$

Normalize

roduction	Smoothing	Kneser-Ney	Implementation	Conclusion
		0000000		

48

Interpolate: Sparsity vs. Specificity

Interpolate unigrams with the uniform distribution. $p(of) = pseudo(of) + backoff(\epsilon) \frac{1}{|vocabulary|}$

Interpolate: Sparsity vs. Specificity

Interpolate unigrams with the uniform distribution, $p(of) = pseudo(of) + backoff(\epsilon) \frac{1}{|vocabulary|}$

Interpolate bigrams with unigrams, etc. p(of|one) = pseudo(of | one) + backoff(one)p(of)

Interpolate: Sparsity vs. Specificity

Interpolate unigrams with the uniform distribution, $p(of) = pseudo(of) + backoff(\epsilon) \frac{1}{|vocabulary|}$

Interpolate bigrams with unigrams, etc. p(of|one) = pseudo(of | one) + backoff(one)p(of)

Introduction	Smoothing	Kneser-Ney	Implementation	Conclusion
		0000000		

Kneser-Ney Intuition

Adjust Measure association with new words. Normalize Leave space for unseen events. Interpolate Handle sparsity.

How do we implement it?

Introduction 0000000000000 Smoothing

Kneser-Ney 000000● Implementation

Language Modeling

 Smoothing Neural Networks Backoff
 Kneser-Ney Smoothing
 Implementation

Smoothing

Kneser-Ney

''LM queries often account for more than 50% of the CPU'' [Green et al, WMT 2014]

500 billion entries in my largest model

Need speed and memory efficiency

Introduction

Smoothing 00000000000 Kneser-Neg

Counting *n*-grams

Hash table?

Smoothing 0000000000 Kneser-Ney

Counting *n*-grams

Hash table? Runs out of RAM.

Introduction 000000000000 Smoothing

Kneser-Ney

Spill to Disk When RAM Runs Out

Introduction	Smoothing	Kneser-Ney	Implementation	Conclusion
			000000000000000000000000000000000000000	

Split Data

Introduction	Smoothing	Kneser-Ney	Implementation	Conclusion	
			000000000000000000000000000000000000000		58

Split and Merge

Introduction

Smoothing 00000000000 Kneser-Ney

e**r-Ney** 000 Implementation

Training Problem: Batch process large number of records.

Solution: Split/merge Stupid backoff in one pass Kneser-Ney in three passes

Introduction 0000000000000 Smoothing

Kneser-Ney 0000000 Implementation

Training Problem: Batch process large number of records.

Solution: Split/merge Stupid backoff in one pass Kneser-Ney in three passes

Training is designed for mutable batch access. What about queries?

Introduction 0000000000000 Smoothing

Kneser-Ne

Implementation

Query

$$\operatorname{stupid}(w_n \mid w_1^{n-1}) = \begin{cases} \frac{\operatorname{count}(w_1^n)}{\operatorname{count}(w_1^{n-1})} & \text{if } \operatorname{count}(w_1^n) > 0\\ 0.4 \operatorname{stupid}(w_n \mid w_2^{n-1}) & \text{if } \operatorname{count}(w_1^n) = 0 \end{cases}$$

stupid(few | is one of the)

count(is one of the few) = 5
$$\checkmark$$

$$count(is one of the) = 12$$

Introduction	Smoothing	Kneser-Ney	Implementation	Conclusion	~
			000000000000000000		62

Query

$$\operatorname{stupid}(w_n \mid w_1^{n-1}) = \begin{cases} \frac{\operatorname{count}(w_1^n)}{\operatorname{count}(w_1^{n-1})} & \text{if } \operatorname{count}(w_1^n) > 0\\ 0.4 \operatorname{stupid}(w_n \mid w_2^{n-1}) & \text{if } \operatorname{count}(w_1^n) = 0 \end{cases}$$

stupid(periwinkle | is one of the) count(is one of the periwinkle) = 0 X count(one of the periwinkle) = 0 X count(of the periwinkle) = 0 X count(the periwinkle) = 3 ✓ count(the periwinkle) = 1000

Smoothing 00000000

Introduction

Save Memory: Forget Keys

Giant hash table with *n*-grams as keys and counts as values.

Replace the *n*-grams with 64-bit hashes: Store hash(is one of) instead of "is one of". Ignore collisions.

Introduction 000000000000000 Smoothing 00000000000 Kneser-Ne

Implementation

Save Memory: Forget Keys

Giant hash table with *n*-grams as keys and counts as values.

Replace the *n*-grams with 64-bit hashes: Store hash(is one of) instead of "is one of". Ignore collisions.

Birthday attack: $\sqrt{2^{64}} = 2^{32}$. \implies Low chance of collision until \approx 4 billion entries.

Introduction 000000000000 Smoothing 00000000000 Kneser-Ne

Implementation

Default Hash Table

boost::unordered_map and __gnu_cxx::hash_map

Introduction

Smoothing 00000000000 Kneser-Ney 0000000 Implementation

Default Hash Table

boost::unordered_map and __gnu_cxx::hash_map

Lookup requires two random memory accesses.

Introduction

Smoothing 00000000000 Kneser-Ney 0000000

y Imp

Implementation

Linear Probing Hash Table

- 1.5 buckets/entry (so buckets = 6).
- Ideal bucket = hash mod buckets.
- Resolve *bucket* collisions using the next free bucket.

Bigrams					
Words	Ideal	Hash	Count		
iran is	0	0x959e48455f4a2e90	3		
		0x0	0		
is one	2	0x186a7caef34acf16	5		
one of	2	0xac66610314db8dac	2		
<s $>$ iran	4	0xf0ae9c2442c6920e	1		
		0x0	0		

68

Minimal Perfect Hash Table

Maps every *n*-gram to a unique integer [0, |n - grams|) \rightarrow Use these as array offsets.

 Introduction
 Smoothing
 Kneser-Ney

 000000000000
 0000000000
 00000000

Implementation

Minimal Perfect Hash Table

Maps every *n*-gram to a unique integer [0, |n - grams|) \rightarrow Use these as array offsets.

Entries not in the model get assigned offsets \rightarrow Store a fingerprint of each *n*-gram

ntroduction

Smoothing 00000000000 Kneser-Ne 0000000 Implementation

Minimal Perfect Hash Table

Maps every *n*-gram to a unique integer [0, |n - grams|) \rightarrow Use these as array offsets.

Low memory, but potential for false positives

Introduction 000000000000 Smoothing 00000000000 Kneser-Ney 0000000 Implementation

Less Memory: Sorted Array

Look up "zebra" in a dictionary.

Binary search Open in the middle. $O(n \log n)$ time.

Interpolation search Open near the end. $O(n \log \log n)$ time.

Introduction 000000000000 Smoothing

Kneser-Ne

Implementation

Trie

Reverse *n*-grams, arrange in a trie.

Introduction

Smoothing

Kneser-Ney

Implementation

Conclusion

74

Saving More RAM

- Quantization: store approximate values
- Collapse probability and backoff

Implementation Summary

Implementation involves sparse mapping

- Hash table
- Probing hash table
- Minimal perfect hash table
- Sorted array with binary or interpolation search

Conclusion

- Language models measure fluency.
- Neural networks and backoff are the dominant formalisms.
- Efficient implementation needs good data structures.

Introduction 00000000000000 Smoothing 00000000000 Kneser-Ney 0000000 Implementation

Conclusion