
Language Modeling

Kenneth Heafield
University of Edinburgh

p(type | Predictive) > p(Tyler | Predictive)

Introduction Smoothing Kneser-Ney Implementation Conclusion
2

p(type | Predictive) > p(Tyler | Predictive)

Introduction Smoothing Kneser-Ney Implementation Conclusion
3

p(lose | Win or)� p(loose | Win or)

[Church et al, 2007]

Introduction Smoothing Kneser-Ney Implementation Conclusion
4

Heated indoor swimming pool

Introduction Smoothing Kneser-Ney Implementation Conclusion
5

présidente de la

Chambre

des représentants

Bedroom

of Representativestheofchairwoman

p(chairwoman of the House of Representatives)
>

p(chairwoman of the Bedroom of Representatives)

Introduction Smoothing Kneser-Ney Implementation Conclusion
6

présidente de la Chambre des représentants

Bedroom of Representativestheofchairwoman

p(chairwoman of the House of Representatives)
>

p(chairwoman of the Bedroom of Representatives)

Introduction Smoothing Kneser-Ney Implementation Conclusion
7

présidente de la Chambre des représentants

House of Representativestheofchairwoman

p(chairwoman of the House of Representatives)
>

p(chairwoman of the Bedroom of Representatives)

Introduction Smoothing Kneser-Ney Implementation Conclusion
8

présidente de la Chambre des représentants

House of Representativestheofchairwoman

p(chairwoman of the House of Representatives)
>

p(chairwoman of the Bedroom of Representatives)

Introduction Smoothing Kneser-Ney Implementation Conclusion
9

p(Another one bites the dust.)
>

p(Another one rides the bus.)

Introduction Smoothing Kneser-Ney Implementation Conclusion
10

Prediction Spelling Translation Speech

Essential Component: Language Model
p(in the raw) = ?

Introduction Smoothing Kneser-Ney Implementation Conclusion
11

Language model: fluency of output
7 How well it translates the source
7 Ratio to source sentence

3 Length
3 Ratio of letter “z” to letter “e”

3 Parsing
3 Sequence Models

Introduction Smoothing Kneser-Ney Implementation Conclusion
12

Language model: fluency of output
7 How well it translates the source
7 Ratio to source sentence

3 Length
3 Ratio of letter “z” to letter “e”
3 Parsing
3 Sequence Models

Introduction Smoothing Kneser-Ney Implementation Conclusion
13

Parsing

S

NP

N

Moses

VP

V

compiles

p(S→ NP VP)

·p(NP→ N)p(VP→ V)

·p(N→ Moses)p(V→ compiles)

p(Moses compiles) =

Introduction Smoothing Kneser-Ney Implementation Conclusion
14

Sequence Models

p(Moses compiles)=p(Moses)p(compiles | Moses)

Chain Rule

Introduction Smoothing Kneser-Ney Implementation Conclusion
15

Sequence Model

log p(iran | <s>)= -3.33437
log p(is | <s> iran)= -1.05931
log p(one | <s> iran is)= -1.80743
log p(of | <s> iran is one)= -0.03705
log p(the | <s> iran is one of)= -0.08317
log p(few | <s> iran is one of the)= -1.20788
log p(countries | <s> iran is one of the few)= -1.62030
log p(. | <s> iran is one of the few countries)= -2.60261

+ log p(</s> | <s> iran is one of the few countries .)= -0.04688
= log p(<s> iran is one of the few countries . </s>)= -11.79900

Explicit begin and end of sentence.
Where do these probabilities come from?

Introduction Smoothing Kneser-Ney Implementation Conclusion
16

Sequence Model

log p(iran | <s>)= -3.33437
log p(is | <s> iran)= -1.05931
log p(one | <s> iran is)= -1.80743
log p(of | <s> iran is one)= -0.03705
log p(the | <s> iran is one of)= -0.08317
log p(few | <s> iran is one of the)= -1.20788
log p(countries | <s> iran is one of the few)= -1.62030
log p(. | <s> iran is one of the few countries)= -2.60261

+ log p(</s> | <s> iran is one of the few countries .)= -0.04688
= log p(<s> iran is one of the few countries . </s>)= -11.79900

Explicit begin and end of sentence.

Where do these probabilities come from?

Introduction Smoothing Kneser-Ney Implementation Conclusion
17

Sequence Model

log p(iran | <s>)= -3.33437
log p(is | <s> iran)= -1.05931
log p(one | <s> iran is)= -1.80743
log p(of | <s> iran is one)= -0.03705
log p(the | <s> iran is one of)= -0.08317
log p(few | <s> iran is one of the)= -1.20788
log p(countries | <s> iran is one of the few)= -1.62030
log p(. | <s> iran is one of the few countries)= -2.60261

+ log p(</s> | <s> iran is one of the few countries .)= -0.04688
= log p(<s> iran is one of the few countries . </s>)= -11.79900

Explicit begin and end of sentence.

Where do these probabilities come from?
Introduction Smoothing Kneser-Ney Implementation Conclusion

18

Probabilities from Text

p(raw | in the)
Model

Introduction Smoothing Kneser-Ney Implementation Conclusion
19

Estimating from Text

help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper
Highs in the 50s to lower 60s .

...

=⇒ p(raw | in the) ≈ 1
4

p(Ugrasena | in the) ≈ 0

Introduction Smoothing Kneser-Ney Implementation Conclusion
20

Estimating from Text

help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper
Highs in the 50s to lower 60s .

...

=⇒ p(raw | in the) ≈ 1
4

p(Ugrasena | in the) ≈ 0

Introduction Smoothing Kneser-Ney Implementation Conclusion
21

Estimating from Text

help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper
Highs in the 50s to lower 60s .

...

=⇒ p(raw | in the) ≈ 1
6

p(Ugrasena | in the) ≈ 1
1000

Introduction Smoothing Kneser-Ney Implementation Conclusion
22

Problem
“in the Ugrasena” was not seen, but could happen.

p(Ugrasena | in the) =
count(in the Ugrasena)

count(in the)
= 0?

=
count(the Ugrasena)

count(the)
= 2.07 · 10−9

Stupid Backoff: Drop context until count is non-zero
[Brants et al, 2007]

Can we be less stupid?

Introduction Smoothing Kneser-Ney Implementation Conclusion
23

Problem
“in the Ugrasena” was not seen, but could happen.

p(Ugrasena | in the) =
count(in the Ugrasena)

count(in the)
= 0?

=
count(the Ugrasena)

count(the)
= 2.07 · 10−9

Stupid Backoff: Drop context until count is non-zero
[Brants et al, 2007]

Can we be less stupid?

Introduction Smoothing Kneser-Ney Implementation Conclusion
24

Problem
“in the Ugrasena” was not seen, but could happen.

p(Ugrasena | in the) =
count(in the Ugrasena)

count(in the)
= 0?

=
count(the Ugrasena)

count(the)
= 2.07 · 10−9

Stupid Backoff: Drop context until count is non-zero
[Brants et al, 2007]

Can we be less stupid?
Introduction Smoothing Kneser-Ney Implementation Conclusion

25

Smoothing
“in the Ugrasena” was not seen, but could happen.

1 Neural Networks: classifier predicts next word
2 Backoff : maybe “the Ugrasena” was seen?

Introduction Smoothing Kneser-Ney Implementation Conclusion
26

Language Modeling

1 Smoothing
Neural Networks
Backoff

2 Kneser-Ney Smoothing
3 Implementation

Introduction Smoothing Kneser-Ney Implementation Conclusion
27

Turning Words into Vectors

1

0

0

0

<s>

0

1

0

0

in

0

0

1

0

the

0

0

0

1

raw

Assign each word a unique row.

Introduction Smoothing Kneser-Ney Implementation Conclusion
28

Recurrent Neural Network

1
0
0
0

<s>

0
0
0

Neural
Net

Word

State

p(<s>) =

0

p(in) = 0.4
p(the) = 0.2
p(raw) = 0.4

0
0
0
1

raw

2.1
−4
0.3

Neural
Net

Introduction Smoothing Kneser-Ney Implementation Conclusion
29

Recurrent Neural Network

1
0
0
0

<s>

0
0
0

Neural
Net

Word

State

p(<s>) =

0

p(in) = 0.4
p(the) = 0.2
p(raw) = 0.4

0
0
0
1

raw

2.1
−4
0.3

Neural
Net

Introduction Smoothing Kneser-Ney Implementation Conclusion
30

Recurrent Neural Network Properties

Treat language modeling as a classification problem:
Predict the next word.

State uses the entire context back to the beginning.

Introduction Smoothing Kneser-Ney Implementation Conclusion
31

Turning Words into Vectors

− 3

1.5

6.2

<s> 2.2

7.5

−.8

in − .10.8

9.1

the 1.1

7.0

−.2

raw

Vectors from a recurrent neural network
. . . or your favorite ACL paper.

Introduction Smoothing Kneser-Ney Implementation Conclusion
32

Neural N-gram Models

p(raw | Vector(in),Vector(the))

Vectors for context words
→ neural network classifier

→ probability distribution over words

Introduction Smoothing Kneser-Ney Implementation Conclusion
33

Language Modeling

1 Smoothing
Neural Networks
Backoff

2 Kneser-Ney Smoothing
3 Implementation

Introduction Smoothing Kneser-Ney Implementation Conclusion
34

Backoff Smoothing

“in the Ugrasena” was not seen → try “the Ugrasena”

p(Ugrasena | in the) ≈ p(Ugrasena | the)

b(in the)

“the Ugrasena” was not seen → try “Ugrasena”

p(Ugrasena | the) ≈ p(Ugrasena)

b(the)

Backoff b is a penalty for not matching context.

Introduction Smoothing Kneser-Ney Implementation Conclusion
35

Backoff Smoothing

“in the Ugrasena” was not seen → try “the Ugrasena”

p(Ugrasena | in the) ≈ p(Ugrasena | the)

b(in the)

“the Ugrasena” was not seen → try “Ugrasena”

p(Ugrasena | the) ≈ p(Ugrasena)

b(the)

Backoff b is a penalty for not matching context.

Introduction Smoothing Kneser-Ney Implementation Conclusion
36

Backoff Smoothing

“in the Ugrasena” was not seen → try “the Ugrasena”

p(Ugrasena | in the) = p(Ugrasena | the)b(in the)

“the Ugrasena” was not seen → try “Ugrasena”

p(Ugrasena | the) = p(Ugrasena)b(the)

Backoff b is a penalty for not matching context.

Introduction Smoothing Kneser-Ney Implementation Conclusion
37

Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3

Introduction Smoothing Kneser-Ney Implementation Conclusion
38

Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3

Query
log p(is | <s> iran) = −1.1

Introduction Smoothing Kneser-Ney Implementation Conclusion
39

Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3

Query : p(of | iran is)
log p(of) −2.5
log b(is) −1.4
log b(iran is) + −0.4
log p(of | iran is) = −4.3

Introduction Smoothing Kneser-Ney Implementation Conclusion
40

Close words matter more.

Though long-distance matters:
Grammatical structure
Topical coherence
Words tend to repeat
Cross-sentence dependencies

Alternative: skip over words in the context
[Pickhardt et al, ACL 2014]

Introduction Smoothing Kneser-Ney Implementation Conclusion
41

Language Modeling

1 Smoothing
Neural Networks
Backoff

2 Kneser-Ney Smoothing
3 Implementation

Introduction Smoothing Kneser-Ney Implementation Conclusion
42

Where do p and b come from?
Text!

Kneser-Ney
Witten-Bell
Good-Turing

Introduction Smoothing Kneser-Ney Implementation Conclusion
43

Kneser-Ney

Common high-quality smoothing

1 Adjust
2 Normalize
3 Interpolate

Introduction Smoothing Kneser-Ney Implementation Conclusion
44

Adjusted counts are:
Trigrams Count in the text.
Others Number of unique words to the left.

Lower orders are used when a trigram did not match.
How freely does the text associate with new words?

Input
Trigam Count

are one of 1
is one of 5

are two of 3

Output
1-gram Adjusted

of 2

Output
2-gram Adjusted
one of 2
two of 1

Introduction Smoothing Kneser-Ney Implementation Conclusion
45

Adjusted counts are:
Trigrams Count in the text.
Others Number of unique words to the left.

Lower orders are used when a trigram did not match.
How freely does the text associate with new words?

Input
Trigam Count

are one of 1
is one of 5

are two of 3

Output
1-gram Adjusted

of 2

Output
2-gram Adjusted
one of 2
two of 1

Introduction Smoothing Kneser-Ney Implementation Conclusion
46

Discounting and Normalization

pseudo(wn|wn−1
1) =

adjusted(wn
1)− discountn(adjusted(wn

1))∑
x adjusted(w

n−1
1 x)

Normalize

Save mass for unseen events

Input
3-gram Adjusted

are one of 1
are one that 2
is one of 5

Output
3-gram Pseudo

are one of 0.26
are one that 0.47

is one of 0.62

Introduction Smoothing Kneser-Ney Implementation Conclusion
47

Discounting and Normalization

pseudo(wn|wn−1
1) =

adjusted(wn
1)− discountn(adjusted(wn

1))∑
x adjusted(w

n−1
1 x)

Normalize

Save mass for unseen events

Input
3-gram Adjusted

are one of 1
are one that 2
is one of 5

Output
3-gram Pseudo

are one of 0.26
are one that 0.47

is one of 0.62

Introduction Smoothing Kneser-Ney Implementation Conclusion
48

Interpolate: Sparsity vs. Specificity

Interpolate unigrams with the uniform distribution.

p(of) = pseudo(of) + backoff(ε)
1

|vocabulary|

Interpolate bigrams with unigrams, etc.
p(of|one) = pseudo(of | one) + backoff(one)p(of)

Input
n-gram pseudo interpolation weight

of 0.1 backoff(ε) = 0.1
one of 0.2 backoff(one) = 0.3

are one of 0.4 backoff(are one) = 0.2

Output
n-gram p

of 0.110
one of 0.233

are one of 0.447

Introduction Smoothing Kneser-Ney Implementation Conclusion
49

Interpolate: Sparsity vs. Specificity

Interpolate unigrams with the uniform distribution,

p(of) = pseudo(of) + backoff(ε)
1

|vocabulary|

Interpolate bigrams with unigrams, etc.
p(of|one) = pseudo(of | one) + backoff(one)p(of)

Input
n-gram pseudo interpolation weight

of 0.1 backoff(ε) = 0.1
one of 0.2 backoff(one) = 0.3

are one of 0.4 backoff(are one) = 0.2

Output
n-gram p

of 0.110
one of 0.233

are one of 0.447

Introduction Smoothing Kneser-Ney Implementation Conclusion
50

Interpolate: Sparsity vs. Specificity

Interpolate unigrams with the uniform distribution,

p(of) = pseudo(of) + backoff(ε)
1

|vocabulary|

Interpolate bigrams with unigrams, etc.
p(of|one) = pseudo(of | one) + backoff(one)p(of)

Input
n-gram pseudo interpolation weight

of 0.1 backoff(ε) = 0.1
one of 0.2 backoff(one) = 0.3

are one of 0.4 backoff(are one) = 0.2

Output
n-gram p

of 0.110
one of 0.233

are one of 0.447

Introduction Smoothing Kneser-Ney Implementation Conclusion
51

Kneser-Ney Intuition

Adjust Measure association with new words.
Normalize Leave space for unseen events.
Interpolate Handle sparsity.

How do we implement it?

Introduction Smoothing Kneser-Ney Implementation Conclusion
52

Language Modeling

1 Smoothing
Neural Networks
Backoff

2 Kneser-Ney Smoothing
3 Implementation

Introduction Smoothing Kneser-Ney Implementation Conclusion
53

“LM queries often account for more than 50% of the CPU”
[Green et al, WMT 2014]

500 billion entries in my largest model

Need speed and memory efficiency

Introduction Smoothing Kneser-Ney Implementation Conclusion
54

Counting n-grams

<s> Australia is one of the few

5-gram Count
<s> Australia is one of 1
Australia is one of the 1
is one of the few 1

Hash table?

Runs out of RAM.

Introduction Smoothing Kneser-Ney Implementation Conclusion
55

Counting n-grams

<s> Australia is one of the few

5-gram Count
<s> Australia is one of 1
Australia is one of the 1
is one of the few 1

Hash table?
Runs out of RAM.

Introduction Smoothing Kneser-Ney Implementation Conclusion
56

Spill to Disk When RAM Runs Out
Text

Hash Table

Hash Table Hash Table

Sort Sort

File File

File

Merge Sort

Introduction Smoothing Kneser-Ney Implementation Conclusion
57

Split Data
Text

Hash Table Hash Table

Sort Sort

File File

File

Merge Sort

Introduction Smoothing Kneser-Ney Implementation Conclusion
58

Split and Merge
Text

Hash Table Hash Table

Sort Sort

File File

File

Merge Sort

Introduction Smoothing Kneser-Ney Implementation Conclusion
59

Training Problem:
Batch process large number of records.

Solution: Split/merge
Stupid backoff in one pass
Kneser-Ney in three passes

Training is designed for mutable batch access.
What about queries?

Introduction Smoothing Kneser-Ney Implementation Conclusion
60

Training Problem:
Batch process large number of records.

Solution: Split/merge
Stupid backoff in one pass
Kneser-Ney in three passes

Training is designed for mutable batch access.
What about queries?

Introduction Smoothing Kneser-Ney Implementation Conclusion
61

Query

stupid(wn | wn−1
1) =

count(wn

1)

count(wn−1
1)

if count(wn
1) > 0

0.4stupid(wn | wn−1
2) if count(wn

1) = 0

stupid(few | is one of the)

count(is one of the few) = 5 3

count(is one of the) = 12

Introduction Smoothing Kneser-Ney Implementation Conclusion
62

Query

stupid(wn | wn−1
1) =

count(wn

1)

count(wn−1
1)

if count(wn
1) > 0

0.4stupid(wn | wn−1
2) if count(wn

1) = 0

stupid(periwinkle | is one of the)

count(is one of the periwinkle) = 0 7
count(one of the periwinkle) = 0 7

count(of the periwinkle) = 0 7
count(the periwinkle) = 3 3

count(the) = 1000

Introduction Smoothing Kneser-Ney Implementation Conclusion
63

Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of”.

Ignore collisions.

Birthday attack:
√
264 = 232.

=⇒ Low chance of collision until ≈ 4 billion entries.

Introduction Smoothing Kneser-Ney Implementation Conclusion
64

Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of”.

Ignore collisions.

Birthday attack:
√
264 = 232.

=⇒ Low chance of collision until ≈ 4 billion entries.

Introduction Smoothing Kneser-Ney Implementation Conclusion
65

Default Hash Table

boost::unordered_map and __gnu_cxx::hash_map

0 1 2 3 4 5

Bucket array

n-grams

Lookup requires two random memory accesses.

Introduction Smoothing Kneser-Ney Implementation Conclusion
66

Default Hash Table

boost::unordered_map and __gnu_cxx::hash_map

0 1 2 3 4 5

Bucket array

n-grams

Lookup requires two random memory accesses.

Introduction Smoothing Kneser-Ney Implementation Conclusion
67

Linear Probing Hash Table

1.5 buckets/entry (so buckets = 6).
Ideal bucket = hash mod buckets.
Resolve bucket collisions using the next free bucket.

Bigrams
Words Ideal Hash Count
iran is 0 0x959e48455f4a2e90 3

0x0 0
is one 2 0x186a7caef34acf16 5
one of 2 0xac66610314db8dac 2
<s> iran 4 0xf0ae9c2442c6920e 1

0x0 0

Introduction Smoothing Kneser-Ney Implementation Conclusion
68

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
→ Store a fingerprint of each n-gram

Low memory, but potential for false positives

Introduction Smoothing Kneser-Ney Implementation Conclusion
69

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
→ Store a fingerprint of each n-gram

Low memory, but potential for false positives

Introduction Smoothing Kneser-Ney Implementation Conclusion
70

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
→ Store a fingerprint of each n-gram

Low memory, but potential for false positives

Introduction Smoothing Kneser-Ney Implementation Conclusion
71

Less Memory: Sorted Array

Look up “zebra” in a dictionary.

Binary search
Open in the middle. O(n log n) time.

Interpolation search
Open near the end. O(n log log n) time.

Introduction Smoothing Kneser-Ney Implementation Conclusion
72

1

10

100

10 1000 100000 107

Lo
ok

up
s/
µ
s

Entries

probing
hash_set
unordered_set
interpolation
binary_search
set

Introduction Smoothing Kneser-Ney Implementation Conclusion
73

Trie

Reverse n-grams, arrange in a trie.

Australia <s>

are

one
are

is Australia
is Australia <s>

<s>

of one
are

is

Introduction Smoothing Kneser-Ney Implementation Conclusion
74

Saving More RAM

Quantization: store approximate values
Collapse probability and backoff

Introduction Smoothing Kneser-Ney Implementation Conclusion
75

Implementation Summary

Implementation involves sparse mapping
Hash table
Probing hash table
Minimal perfect hash table
Sorted array with binary or interpolation search

Introduction Smoothing Kneser-Ney Implementation Conclusion
76

Conclusion

Language models measure fluency.

Neural networks and backoff are the dominant formalisms.

Efficient implementation needs good data structures.

Introduction Smoothing Kneser-Ney Implementation Conclusion
77

	Introduction
	Smoothing
	Neural Networks
	Backoff

	Kneser-Ney
	Implementation
	Estimation
	Sorting
	Querying

	Conclusion

