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p(lose | Win or)� p(loose | Win or)

[Church et al, 2007]
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Heated indoor swimming pool
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présidente de la

Chambre

des représentants

Bedroom

of Representativestheofchairwoman

p(chairwoman of the House of Representatives)
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p(Another one bites the dust.)
>

p(Another one rides the bus.)
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Prediction Spelling Translation Speech

Essential Component: Language Model
p(in the raw) = ?
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Language model: fluency of output
7 How well it translates the source
7 Ratio to source sentence

3 Length
3 Ratio of letter “z” to letter “e”

3 Parsing
3 Sequence Models
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Parsing

S

NP

N

Moses

VP

V

compiles

p(S→ NP VP)

·p(NP→ N)p(VP→ V)

·p(N→ Moses)p(V→ compiles)

p(Moses compiles) =
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Sequence Models

p(Moses compiles)=p(Moses)p(compiles | Moses)

Chain Rule
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Sequence Model

log p(iran | <s> )= -3.33437
log p(is | <s> iran )= -1.05931
log p(one | <s> iran is )= -1.80743
log p(of | <s> iran is one )= -0.03705
log p(the | <s> iran is one of )= -0.08317
log p(few | <s> iran is one of the )= -1.20788
log p(countries | <s> iran is one of the few )= -1.62030
log p(. | <s> iran is one of the few countries )= -2.60261

+ log p(</s> | <s> iran is one of the few countries .)= -0.04688
= log p(<s> iran is one of the few countries . </s> )= -11.79900

Explicit begin and end of sentence.
Where do these probabilities come from?
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Probabilities from Text

p(raw | in the)
Model
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Estimating from Text

help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper
Highs in the 50s to lower 60s .

...

=⇒ p(raw | in the) ≈ 1
4

p(Ugrasena | in the) ≈ 0
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Estimating from Text

help in the search for an answer .
Copper burned in the raw wood .
put forward in the paper
Highs in the 50s to lower 60s .

...

=⇒ p(raw | in the) ≈ 1
6

p(Ugrasena | in the) ≈ 1
1000
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Problem
“in the Ugrasena” was not seen, but could happen.

p(Ugrasena | in the) =
count(in the Ugrasena)

count(in the)
= 0?

=
count(the Ugrasena)

count(the)
= 2.07 · 10−9

Stupid Backoff: Drop context until count is non-zero
[Brants et al, 2007]

Can we be less stupid?
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Smoothing
“in the Ugrasena” was not seen, but could happen.

1 Neural Networks: classifier predicts next word
2 Backoff : maybe “the Ugrasena” was seen?
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Language Modeling

1 Smoothing
Neural Networks
Backoff

2 Kneser-Ney Smoothing
3 Implementation
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Turning Words into Vectors


1

0

0

0


<s> 

0

1

0

0


in 

0

0

1

0


the 

0

0

0

1


raw

Assign each word a unique row.
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Recurrent Neural Network


1
0
0
0


<s>

0
0
0


Neural
Net

Word

State

p(<s>) =

0

p(in) = 0.4
p(the) = 0.2
p(raw) = 0.4


0
0
0
1


raw

2.1
−4
0.3



Neural
Net
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Recurrent Neural Network Properties

Treat language modeling as a classification problem:
Predict the next word.

State uses the entire context back to the beginning.
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Turning Words into Vectors

− 3

1.5

6.2


<s>  2.2

7.5

−.8


in − .10.8

9.1


the  1.1

7.0

−.2


raw

Vectors from a recurrent neural network
. . . or your favorite ACL paper.
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Neural N-gram Models

p(raw | Vector(in),Vector(the))

Vectors for context words
→ neural network classifier

→ probability distribution over words
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Language Modeling

1 Smoothing
Neural Networks
Backoff

2 Kneser-Ney Smoothing
3 Implementation
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Backoff Smoothing

“in the Ugrasena” was not seen → try “the Ugrasena”

p(Ugrasena | in the) ≈ p(Ugrasena | the)

b(in the)

“the Ugrasena” was not seen → try “Ugrasena”

p(Ugrasena | the) ≈ p(Ugrasena)

b(the)

Backoff b is a penalty for not matching context.
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Backoff Smoothing

“in the Ugrasena” was not seen → try “the Ugrasena”

p(Ugrasena | in the) = p(Ugrasena | the)b(in the)

“the Ugrasena” was not seen → try “Ugrasena”

p(Ugrasena | the) = p(Ugrasena)b(the)

Backoff b is a penalty for not matching context.
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Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3

Introduction Smoothing Kneser-Ney Implementation Conclusion
38



Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
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Query
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Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3

Query : p(of | iran is)
log p(of) −2.5
log b(is) −1.4
log b(iran is) + −0.4
log p(of | iran is) = −4.3
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Close words matter more.

Though long-distance matters:
Grammatical structure
Topical coherence
Words tend to repeat
Cross-sentence dependencies

Alternative: skip over words in the context
[Pickhardt et al, ACL 2014]
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Language Modeling

1 Smoothing
Neural Networks
Backoff

2 Kneser-Ney Smoothing
3 Implementation
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Where do p and b come from?
Text!

Kneser-Ney
Witten-Bell
Good-Turing
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Kneser-Ney

Common high-quality smoothing

1 Adjust
2 Normalize
3 Interpolate
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Adjusted counts are:
Trigrams Count in the text.
Others Number of unique words to the left.

Lower orders are used when a trigram did not match.
How freely does the text associate with new words?

Input
Trigam Count

are one of 1
is one of 5

are two of 3

Output
1-gram Adjusted

of 2

Output
2-gram Adjusted
one of 2
two of 1
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Discounting and Normalization

pseudo(wn|wn−1
1 ) =

adjusted(wn
1 )− discountn(adjusted(wn

1 ))∑
x adjusted(w

n−1
1 x)

Normalize

Save mass for unseen events

Input
3-gram Adjusted

are one of 1
are one that 2
is one of 5

Output
3-gram Pseudo

are one of 0.26
are one that 0.47

is one of 0.62
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Interpolate: Sparsity vs. Specificity

Interpolate unigrams with the uniform distribution.

p(of) = pseudo(of) + backoff(ε)
1

|vocabulary|

Interpolate bigrams with unigrams, etc.
p(of|one) = pseudo(of | one) + backoff(one)p(of)

Input
n-gram pseudo interpolation weight

of 0.1 backoff( ε) = 0.1
one of 0.2 backoff( one) = 0.3

are one of 0.4 backoff(are one) = 0.2

Output
n-gram p

of 0.110
one of 0.233

are one of 0.447
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Kneser-Ney Intuition

Adjust Measure association with new words.
Normalize Leave space for unseen events.
Interpolate Handle sparsity.

How do we implement it?
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Language Modeling

1 Smoothing
Neural Networks
Backoff

2 Kneser-Ney Smoothing
3 Implementation
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“LM queries often account for more than 50% of the CPU”
[Green et al, WMT 2014]

500 billion entries in my largest model

Need speed and memory efficiency
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Counting n-grams

<s> Australia is one of the few

5-gram Count
<s> Australia is one of 1
Australia is one of the 1
is one of the few 1

Hash table?

Runs out of RAM.
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Spill to Disk When RAM Runs Out
Text

Hash Table

Hash Table Hash Table

Sort Sort

File File

File

Merge Sort
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Split Data
Text

Hash Table Hash Table

Sort Sort

File File

File

Merge Sort
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Split and Merge
Text

Hash Table Hash Table

Sort Sort

File File

File

Merge Sort
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Training Problem:
Batch process large number of records.

Solution: Split/merge
Stupid backoff in one pass
Kneser-Ney in three passes

Training is designed for mutable batch access.
What about queries?
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Query

stupid(wn | wn−1
1 ) =


count(wn

1 )

count(wn−1
1 )

if count(wn
1 ) > 0

0.4stupid(wn | wn−1
2 ) if count(wn

1 ) = 0

stupid(few | is one of the)

count(is one of the few) = 5 3

count(is one of the) = 12
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Query

stupid(wn | wn−1
1 ) =


count(wn

1 )

count(wn−1
1 )

if count(wn
1 ) > 0

0.4stupid(wn | wn−1
2 ) if count(wn

1 ) = 0

stupid(periwinkle | is one of the)

count(is one of the periwinkle) = 0 7
count(one of the periwinkle) = 0 7

count(of the periwinkle) = 0 7
count(the periwinkle) = 3 3

count(the) = 1000
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Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of”.

Ignore collisions.

Birthday attack:
√
264 = 232.

=⇒ Low chance of collision until ≈ 4 billion entries.
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Default Hash Table

boost::unordered_map and __gnu_cxx::hash_map

0 1 2 3 4 5

Bucket array

n-grams

Lookup requires two random memory accesses.
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Linear Probing Hash Table

1.5 buckets/entry (so buckets = 6).
Ideal bucket = hash mod buckets.
Resolve bucket collisions using the next free bucket.

Bigrams
Words Ideal Hash Count
iran is 0 0x959e48455f4a2e90 3

0x0 0
is one 2 0x186a7caef34acf16 5
one of 2 0xac66610314db8dac 2
<s> iran 4 0xf0ae9c2442c6920e 1

0x0 0
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Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
→ Store a fingerprint of each n-gram

Low memory, but potential for false positives
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Less Memory: Sorted Array

Look up “zebra” in a dictionary.

Binary search
Open in the middle. O(n log n) time.

Interpolation search
Open near the end. O(n log log n) time.
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1

10
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Lo
ok

up
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Entries

probing
hash_set
unordered_set
interpolation
binary_search
set
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Trie

Reverse n-grams, arrange in a trie.

Australia <s>

are

one
are

is Australia
is Australia <s>

<s>

of one
are

is
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Saving More RAM

Quantization: store approximate values
Collapse probability and backoff
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Implementation Summary

Implementation involves sparse mapping
Hash table
Probing hash table
Minimal perfect hash table
Sorted array with binary or interpolation search
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Conclusion

Language models measure fluency.

Neural networks and backoff are the dominant formalisms.

Efficient implementation needs good data structures.
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