
Experimenting in MT:
Moses Toolkit and Eman

Aleš Tamchyna, Onďrej Bojar
Institute of Formal and Applied Linguistics

Faculty of Mathematics and Physics
Charles University, Prague

Tue Sept 8, 2015

1 / 30

Outline

I Quick overview of Moses.
I Bird’s eye view of (phrase-based) MT.

I With pointers to Moses repository.

I Experiment management.
I Motivation.
I Overview of Eman.

I Run your own experiments.
I Introduce Eman’s features through building

a baseline Czech→English MT system.
I Inspect the pipeline and created models.
I Try some techniques to improve over the baseline.

2 / 30

Moses Toolkit
I Comprehensive open-source toolkit for SMT

I Core: phrase-based and syntactic decoder

I Includes many related tools:
I Data pre-processing:

cleaning, sentence splitting, tokenization, . . .
I Building models for translation:

create phrase/rule tables from word-aligned data,
train language models with KenLM

I Tuning translation systems (MERT and others)

I You still need a tool for word alignment:

I GIZA++, fast align, . . .

I Bundled with its own experiment manager EMS
I We will use a different one.

3 / 30

Moses Toolkit
I Comprehensive open-source toolkit for SMT

I Core: phrase-based and syntactic decoder
I Includes many related tools:

I Data pre-processing:
cleaning, sentence splitting, tokenization, . . .

I Building models for translation:
create phrase/rule tables from word-aligned data,
train language models with KenLM

I Tuning translation systems (MERT and others)

I You still need a tool for word alignment:

I GIZA++, fast align, . . .

I Bundled with its own experiment manager EMS
I We will use a different one.

3 / 30

Moses Toolkit
I Comprehensive open-source toolkit for SMT

I Core: phrase-based and syntactic decoder
I Includes many related tools:

I Data pre-processing:
cleaning, sentence splitting, tokenization, . . .

I Building models for translation:
create phrase/rule tables from word-aligned data,
train language models with KenLM

I Tuning translation systems (MERT and others)

I You still need a tool for word alignment:

I GIZA++, fast align, . . .

I Bundled with its own experiment manager EMS
I We will use a different one.

3 / 30

Bird’s Eye View of Phrase-Based MT
ParallelMonolingual Devset Input

4 / 30

Bird’s Eye View of Phrase-Based MT

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

4 / 30

Bird’s Eye View of Phrase-Based MT

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

4 / 30

Bird’s Eye View of Phrase-Based MT

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

4 / 30

Bird’s Eye View of Phrase-Based MT

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

4 / 30

Bird’s Eye View of Phrase-Based MT

Translate

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

4 / 30

Bird’s Eye View of Phrase-Based MT

train-model.perl

mert-moses.pl

moses-parallel.pl
Translate

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

4 / 30

Bird’s Eye View of Phrase-Based MT

train-model.perl

mert-moses.pl

moses-parallel.pl
Translate

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

moses.ini

moses.ini

4 / 30

Now, This Complex World...

Translate

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

5 / 30

...Has to Be Ruled by Someone

Translate

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

6 / 30

...Has to Be Ruled by Someone

Translate

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

Ducttape

EMS

M4M

6 / 30

...Has to Be Ruled by Someone

Translate

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

Ducttape

EMS

M4M

100

94

99

93

6 / 30

Motivation for Experiment Mgmt (1/2)

Research needs reproducibility.

I Console-based environment alone helps a lot:
I Bash history of past commands.
I Log files.

I Complications:
I Experiments carried out in parallel.

Experiments can take days.
⇒ Easy to lose track.

I Should reuse large intermediate files.
I Different versions of the research software.

(Both daily updates as well as yearly updates.)

7 / 30

Motivation for Experiment Mgmt (2/2)

Research is search.
(for the best procedure, the best configuration, . . .)

You can think of research in AI/machine-learning terms.
I Heuristics:

I Run quick probes (small data) first, then replicate on full.

I Beam Search: Increase your beam size:
I Run ˜10 variations of each experiment.

I Genetic Algorithms:
I Clone and modify most successful experiments.

I (“The best” varies based on the metric chosen.)
I So look at more metrics at once.

8 / 30

Features of Eman
I Console-based ⇒ easily scriptable (e.g. in bash).
I Versatile: “seeds” are up to the user, any language.

I Support for the manual search through the space of
experiment configurations.

I Support for finding and marking (“tagging”) steps or
experiments of interest.

I Support for organizing the results in 2D tables.

I Integrated with SGE
⇒ easy to run on common academic clusters.

eman --man will tell you some details.
http://ufal.mff.cuni.cz/eman/ has more.

9 / 30

Eman’s View

I Experiments consist of processing steps.
I Steps are:

I of a given type, e.g. align, tm, lm, mert,
I defined by immutable variables, e.g. ALISYM=gdfa,
I all located in one directory, the “playground”,
I timestamped unique directories, e.g.

s.mert.a123.20120215-1632
I self-contained in the dir as much as reasonable.
I dependent on other steps, e.g. first align, then build tm,

then mert.

Lifetime of a step:
seed INITED PREPARED

RUNNING

PREPFAILED

DONE

FAILED

10 / 30

Why INITED→PREPARED→RUNNING?
The call to eman init seed:

I Should be quick, it is used interactively.

I Should only check and set vars, “turn a blank directory
into a valid eman step”.

The call to eman prepare s.step.123.20120215:
I May check for various input files.

I Less useful with heavy experiments where even corpus
preparation needs cluster.

I Has to produce eman.command.
⇒ A chance to check it: are all file paths correct etc.?

The call to eman start s.step.123.20120215:

I Sends the job to the cluster.

11 / 30

Our Eman Seeds for MT

Translate

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

12 / 30

Our Eman Seeds for MT

Translate

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

align

tm

rm
lm

model

mert translate

corpus corpus corpus corpus

12 / 30

Our Eman Seeds for MT

Translate

Parameter optimization (MERT)

Optimized model

Basic model

Language
Model (LM)

Translation M. (TM)

Reordering M. (RM)

Word alignment

Phrase extraction

Preprocessing: tokenization, tagging...

ParallelMonolingual Devset Input

align

tm

rm
lm

model

mert translate

corpus corpus corpus corpuscorpman

12 / 30

Eman’s Bells and Whistles
Experiment management:

I ls, vars, stat for simple listing,

I select for finding steps,

I traceback for full info on experiments,

I redo failed experiments,

I clone individual steps as well as whole experiments.

Meta-information on steps:

I status,

I tags, autotags,

I collecting results,

I tabulate for putting results into 2D tables.

13 / 30

Whole Experiment = eman traceback
eman traceback s.evaluator.8102edfc.20120207-1611

+- s.evaluator.8102edfc.20120207-1611

| +- s.mosesgiza.b6073a00.20120202-0037

| +- s.translate.b17f203d.20120207-1604

| | +- s.mert.272f2f67.20120207-0013

| | | +- s.model.3e28def7.20120207-0013

| | | | +- s.lm.608df574.20120207-0004

| | | | | +- s.srilm.117f0cfe.20120202-0037

| | | | +- s.mosesgiza.b6073a00.20120202-0037

| | | | +- s.tm.527c9342.20120207-0012

| | | | | +- s.align.dec45f74.20120206-0111

| | | | | | +- s.mosesgiza.b6073a00.20120202-0037

| | | | | +- s.mosesgiza.b6073a00.20120202-0037

| | +- s.mosesgiza.b6073a00.20120202-0037

Options: --vars --stat --log ... --ignore=steptype
14 / 30

Finding Steps: eman select
I Step dirs don’t have nice names.

I You need to locate steps of given properties.

What language models do I have?

I eman ls lm

I eman select t lm

If we need just the finished ones:

I eman stat lm | grep DONE

I eman select t lm d

And just 5-gram ones for English:

I eman select t lm d vre ORDER=5 vre
CORPAUG=en

15 / 30

Deriving Experiments using clone
The text form of traceback allows to tweak the experiment:

I eman tb step | sed ’s/cs/de/’ | eman clone
replicates our experiment on German instead of Czech.

The regex substitution is available in eman itself:

I eman tb step -s ’/cs/de/’ -s ’/form/lc/’
shows the traceback with the substitutions highlighted.

I A good chance to check if the derivation does the intended.

I eman tb step -s ’/cs/de/’ -s ’/form/lc/’ \\
| eman clone --dry-run

I Last chance to check if existing steps get reused and what
vars will new steps be based on.

I Drop --dry-run to actually init the new steps.
I Add --start if you’re feeling lucky.

16 / 30

Hacking Welcome
Eman is designed to be hacking-friendly:

I Self-contained steps are easy to inspect:
I all logs are there,
I all (or most of) input files are there,
I the main code (eman.command) is there,
I often, even the binaries are there, or at least clearly

identifiable.

I Step halfway failed?
⇒ Hack its eman.command and use eman continue.

I Seed not quite fit for your current needs?
⇒ Just init the step and hack eman.seed.
⇒ Or also prepare and hack eman.command.

Always mark manually tweaked steps, e.g. using eman’s tags.

17 / 30

Fit for Cell-Phone SSH ,

I Experiments run long but fail often.

I You don’t want to be chained to a computer.

Most eman commands have a short nickname.

I How are my last 10 merts?
eman sel t mert l 10 --stat

Specify steps using any part of their name/hash or result:

I s.foobar.a0f3b123.20120215-1011 failed, retry it:
eman redo a0f3 --start

I How did I achieve this great BLEU score of 25.10?
eman tb 25.10 --vars | less

18 / 30

Fit for Team Work

Playgrounds can be effectively merged:

I eman add-remote /home/fred/playground freds-exps

I You can re-interpret Fred’s results.

I You can clone Fred’s experiments.
I You can make your steps depend on Fred’s steps.

I Only a shared file system is needed.

Caveat: we don’t bother checking for conflicts yet.

19 / 30

Summary

Hopefully, you now understand:

I within (PB)MT:
I the structure of a (PB)MT experiment,
I what is the language model and the translation model,

I meta-level:
I eman’s organization of the experimentation playground,
I the idea of cloning of experiments.

Now the exercise comes...

20 / 30

Extra Slides

21 / 30

Eman is Versatile

What types of steps should I have?

I Any, depending on your application.

What language do I write steps in?

I Any, e.g. bash.

What are the input and output files of the steps?

I Any, just make depending steps understand each other.

I Steps can have many output files and serve as
prerequisites to different types of other steps.

What are measured values of my experiments?

I Anything from any of the files any step produces.

22 / 30

What the User Implements: Just Seeds
Technically, a seed is any program that:

I responds to arbitrary environment variables,

I runs eman defvar to register step variables with eman,

I produces another program, ./eman.command that
does the real job.

The seed is actually run twice:

I At “init”: to check validity of input variables and
register them with eman.

I At “prepare”: to produce eman.command.

The user puts all seeds in playground/eman.seeds.

I Eman runs a local copy of the seed in a fresh step dir.

23 / 30

eman redo

On cluster, jobs can fail nondeterminically.

I Bad luck when scheduled to a swamped machine.

I Bad estimate of hard resource limits (RAM exceeds the
limit ⇒ job killed).

Eman to the rescue:

I eman redo step creates a new instance of each failed
step, preserving the experiment structure.

I eman redo step --start starts the steps right away.

To make sure eman will do what you expect, first try:

I eman redo step --dry-run

24 / 30

eman clone
Cloning is initing a new step using vars of an existing one.
Cloning of individual steps is useful:

I when a step failed (used in eman redo),

I when the seed has changed,

I when we want to redefine some vars:
ORDER=4 eman clone s.lm.1d6f791c...

Cloning of whole tracebacks:

I The text of a traceback gets instantiated as steps.

I Existing steps are reused if OK and with identical vars.

I eman traceback step | eman clone

I eman traceback step | mail bojar@ufal
followed by eman clone < the-received-mail.

25 / 30

eman tag or eman ls --tag shows tags
Tags and autotags are:

I arbitrary keywords assigned to individual steps,
I inherited from dependencies.

Tags are:
I added using eman add-tag the-tag steps,
I stored in s.stepdir.123/eman.tag.

⇒ Use them to manually mark exceptions.

Autotags are:
I specified in playground/eman.autotags as regexes

over step vars, e.g.: /ORDER=(.*)/$1gr/ for LM,
I (re-)observed at eman retag.

⇒ Use them to systematically mark experiment branches.
26 / 30

eman collect
Based on rules in eman.results.conf, e.g.:

BLEU */BLEU.opt BLEU\s*=\s*([^\s,]+)

Snts s.eval*/corpus.translation CMD: wc -l

eman collects results from all steps into eman.results:

Step Name Status Score Value Tags and Autotags

s.evaluator.11ccf590.20120208-1554 DONE TER 31.04 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE PER 44.61 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE CDER 33.97 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE BLEU 12.28 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE Snts 3003 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.29fa5679.20120207-1357 OUTDATED TER 17.66 5gr DEVwmt10 LMc-news

...

s.evaluator.473687bb.20120214-1509 FAILED Snts 3003

I Perhaps hard to read.
I Easy to grep, sort, whatever, or tabulate.

27 / 30

eman tabulate to Organize Results
The user specifies in the file eman.tabulate:

I which results to ignore, which to select,

I which tags contribute to col labels, e.g. TER, BLEU,

I which tags contribute to row labels, e.g. [0-9]gr,
towards-[A-Z]+, PRO.

Eman tabulates the results, output in eman.niceresults:
PER CDER TER BLEU

5gr towards-CDER 44.61 33.97 31.04 12.28

5gr 44.19 33.76 31.02 12.18

5gr PRO 43.91 33.87 31.49 12.09

5gr towards-PER 44.44 33.52 30.74 11.95

28 / 30

Related Experiment Mgmt Systems
Eman is just one of many, consider also:

I LoonyBin (Clark et al., 2010)
	 Clickable Java tool.
⊕ Support for multiple clusters and scheduler types.

I Moses EMS (Koehn, 2010)
I Experiment Management System primarily for Moses.
I Centered around a single experiment which consists of steps.

I Pure Makefiles
Yes, you can easily live with fancy Makefiles.

I You will use commands like make init.mert
or cp -r exp.mert.1 exp.mert.1b

I You need to learn to use $*, $@ etc.
I You are likely to implement your own eman soon. ,

There are also the following workflow management systems: DAGMan, Pegasus, Dryad.

29 / 30

References

Jonathan H. Clark, Jonathan Weese, Byung Gyu Ahn, Andreas Zollmann, Qin Gao, Kenneth
Heafield, and Alon Lavie. 2010. The Machine Translation Toolpack for LoonyBin: Automated
Management of Experimental Machine Translation HyperWorkflows. Prague Bulletin of
Mathematical Linguistics, 93:117–126.
Philipp Koehn. 2010. An Experimental Management System. Prague Bulletin of Mathematical
Linguistics, 94:87–96, September.

30 / 30

