Machine translation evaluation

Maja Popović
DFKI Berlin
maja.popovic@dfki.de

MT Marathon 2014
Trento, Italy
9 September 2014
what is the machine translation evaluation?

why it is important?

how can be carried out?
 ▶ human evaluation methods
 ▶ automatic evaluation methods

why is it difficult?
what is translation quality?

once we have a machine translation output
* is it good or bad?

what for?

▶ MT system development (comparison)
▶ publishing
▶ post-editing
▶ other applications (question answering, information retrieval)

why?

▶ error classification and analysis
ref: It will be a sort of bridge.
sys1: It *is almost* as a bridge *act*.
sys2: It will *act* as a bridge.
sys3: It will *not* act as a bridge.
sys4: It will _sort of bridge* be.

system comparison

ranking from the best to the worst:
sys2, sys4, sys1, sys3

error analysis

- ▶ sys1: word form error (*is*), mistranslation (*almost*), word order (*act*)
- ▶ sys2: no errors
- ▶ sys3: insertion (*not*)
- ▶ sys4: omission (*→a*), word order (*be*)
ref: It will be a sort of bridge.
sys1: It is almost as a bridge act.
sys2: It will act as a bridge.
sys3: It will not act as a bridge.
sys4: It will sort of bridge be.

data publishing
only sys2 is acceptable

data post-editing
sys3 is trivial to correct despite of the severity of the error

data preservation of meaning
only sys3 is not acceptable
how to measure those things?

- human evaluators
- automatic methods
 - comparison of translation output with a reference translation
 - relation between translation output and the source sentence: quality estimation (no reference)
human evaluation methods

▶ adequacy and fluency
 ▶ adequacy: does the translation convey the meaning of the source sentence?
 ▶ fluency: is the output good fluent target language?

5 = absolutely, ..., 1 = not at all

ref: It will be a sort of bridge.
sys1: It is almost as a bridge act. 2 1
sys2: It will act as a bridge. 5 5
sys3: It will not act as a bridge. 1 5
sys4: It will sort of bridge be. 4 2

▶ system ranking
 (basically guided by both adequacy and fluency)
human evaluation methods

- acceptability (estimated post-editing effort)
 - acceptable = no correction needed (1)
 - almost acceptable = little post-editing needed (2)
 - bad = better translate from scratch (3)

ref: It will be a sort of bridge.
sys1: It is almost as a bridge act. 3
sys2: It will act as a bridge. 1
sys3: It will not act as a bridge. 2
sys4: It will sort of bridge be. 2

effort

- post-editing (implicit error classification)
- error annotation (explicit error classification)
human evaluation methods

disadvantages

▶ no single objectively correct translation of a given text
▶ no single correct error class for a number of translation errors
⇒ relatively low inter-annotator agreement
▶ examples:
 which system is better (worse): sys1 or sys3?
 how to classify each error in sys3?

▶ resource-intensive and time-consuming
⇒ automatic evaluation and error analysis
what is an automatic evaluation metric?

- a computer program which calculates the translation quality
- input: translation output and reference translation(s)
- output: a numerical score related to their similarity

usual methods for comparison

- n-gram matching
 - F-score, BLEU, METEOR
- edit (Levenshtein) distance
 - WER, TER
n-gram matching: precision and recall

- precision: \(\frac{N(\text{matches in Translation Output})}{\text{Translation Output Length}} \)
- recall: \(\frac{N(\text{matches in Reference})}{\text{Reference Length}} \)

1-gram (word) matches:
- ref: It will be a sort of bridge. 7/8 (87.5%)
- sys4: It will sort of bridge be. 7/7 (100%)

2-gram matches:
- ref: It will will be a sort sort of of bridge bridge_. 4/7 (42.8%)
- sys4: It will will sort sort of of bridge bridge be be_. 3/6 (50%)

3-gram matches:
- ref: It will be will be a a sort sort of of bridge bridge be bridge be_. 1/6 (16.7%)
- sys4: It will sort will sort of of bridge bridge be bridge be_. 1/5 (20%)
unifying all n-grams, precisions and recalls

- How to put together different n-grams?
 - geometric mean
 - arithmetic mean
 (better, does not penalise too hard unseen n-grams)

- How to put together precision and recall?
 - harmonic mean – F-score:
 \[2 \cdot \text{precision} \cdot \text{recall} / (\text{precision} + \text{recall}) \]
n-gram based automatic metrics

* BLEU
 ▶ geometric mean of 1-, 2-, 3- and 4-grams
 ▶ precision + brevity penalty instead of recall

* METEOR
 ▶ flexible unigram matching
 ▶ does not penalise (too hard) common stems, synonyms and paraphrases

* F-score
 ▶ arithmetic mean of 1-, 2-, 3- and 4-grams
 ▶ standard harmonic mean
edit distance

edit (or Levenshtein) distance

- minimum number of edits to transform translation output to the reference
- edit types:
 - substitution: replace one word with another
 - deletion: a word is missing, it should be added
 - insertion: a word is inserted, it should be removed
Word Error Rate (WER) – Levenshtein distance itself

\[WER = \frac{N(\text{substitutions}) + N(\text{deletions}) + N(\text{insertions})}{\text{reference_Length}} \]

ref: It will be a del a del sort of bridge .
sys4: It will be sort of bridge be ins .

WER = 3/7 (37.5%)

Translation Edit Rate (TER)

\[TER = \frac{N(\text{substitutions}) + N(\text{deletions}) + N(\text{insertions}) + N(\text{block_shifts})}{\text{reference_Length}} \]
	n	ref: It will be a del a del sort of bridge .
sys4: It will be sort of bridge be shift .

TER = 2/7 (28.6%)
properties of automatic evaluation metrics

desirable characteristics

- fast and cheap
- consistent: repeated use should always give same results
- informative: the score should give intuitive interpretation of translation quality
- correct: better systems should be ranked higher
evaluation of automatic evaluation metrics

is an automatic metric good?

- yes, if it is fast, cheap and consistent (and it almost certainly is!)
- and if it is correct, i.e. if its system ranking correlates with human ranking (is it?)

how to measure correctness?

- correlation coefficients
correlation coefficients between human and automatic ranks

- 1 ⇒ absolute correlation (-1 ⇒ inverse correlation)
- 0 ⇒ no correlation

- document level
 - Spearman’s correlation coefficient
 - takes only rank into account
 - Pearson’s correlation coefficient
 - takes into account both rank and linearity

- sentence level
 - Kendall’s Tau coefficient
 - compares pairwise sentence rankings

- widely used metrics correlate reasonably (BLEU, TER) or rather well (METEOR) with human rankings
metric research

- WMT shared evaluation task
 http://www.statmt.org/wmt14/metrics-task/
 - develop a metric
 - check its correlations with human ranks

- a number of new metrics have shown high correlations
 - semantic equivalence (MEANT, HMEANT)
 - syntactic similarity (POS n-grams)
 - linguistic features
 - combination of metrics
 - ...

- many of them have (significantly) higher correlations than BLEU and TER
- however...
 - many of them are rather complex
 - no improvements for system tuning
F-score for MT evaluation

- word-level F-score correlates better than BLEU (and TER, not better than METEOR)
- arithmetic n-gram averaging better than geometric
- optimal n-gram length is 4
- even better correlations for morpheme and POS based F-scores, especially
 - on the sentence level
 - for translation from English
 - however: complex (external tools needed)

- rgbF tool:
 calculates the F-score averaged on all n-grams (default=4) of an arbitrary set of distinct units such as words, morphemes, POS tags or whatever, aligned on the sentence level

http://www.dfki.de/~mapo02/rgbF/
automatic evaluation metrics – summary

advantages and issues

+ fast and cheap
+ consistent

± not fully able to rank different types of systems (especially on the sentence level)
 ▶ research on extended and new metrics
- scores do not give any details about actual translation errors
 ▶ error classification and analysis
- require some kind of human reference translation
 ▶ evaluation without references – quality estimation
error classification

what evaluation scores cannot answer?

▶ what is a particular strength/weakness of the system?
▶ what does a certain modification of a system exactly improve?
▶ does a worse-ranked system outperform a better-ranked one in any aspect?

⇒ error classification and analysis is needed

Two main goals:

▶ distribution of errors over the error classes within an output
▶ distribution of errors over translation outputs within a class
human error classification (MQM scheme)

- adequacy (accuracy)
 - mistranslation
 - omission
 - addition
 - untranslated

- fluency
 - grammar
 - morphology (word form)
 - part of speech
 - agreement
 - tense/aspect/mood
 - word order
 - function words

- spelling
 - capitalisation

- typography
 - punctuation

- unintelligible
automatic error classification

Hjerson tool:

- compares raw machine translation output with the reference translation
- based on edit distance in combination with precision and recall
- distinguishes five error classes:
 - inflectional errors
 - reordering errors
 - missing words
 - extra words
 - incorrect lexical choice

http://www.dfki.de/~mapo02/hjerson/
evaluation of automatic error classification

▶ good correlation (Spearman and Pearson) with human error classification distributions
 * both over error classes and over translation outputs

▶ high recall (except for extra words)

▶ low precision
 \[N(\text{automatic_errors}) \gg N(\text{human_errors})\]
 * better precision when post-edited output is used as a reference
evaluation without reference translations

- both automatic evaluation and error classification require a reference translation
 - but
 - there is not much reference translations in “real life”!
 - if we already have a (high quality) translation, why would we need a machine translation output?

⇒ evaluate without a reference

- naive approach:
 - IBM-1 scores (on different levels) for each source sentence and its translation output
 - quality estimation system
quality estimation

- provides a metric which estimates quality of unseen translations

- main components of a QE system:
 - definition of quality – what to predict
 - human labelled data
 - features
 - machine learning algorithm
what to predict?

- absolute scores for adequacy/fluency
- absolute scores for post-editing effort
- average post-editing time per word
- relative rankings
- percentage of edits for the given sentence
- word-level edits and its types
- BLEU or other scores for document
features

- number of words in source and target sentences
- average source word length
- average number of word occurrences in the target sentence
- number of punctuation marks in source and target sentences
- LM probabilities of source and target sentences
- average number of translations per source word
- ...

...
machine translation evaluation – summary

- machine translation evaluation
 - important task
 - difficult task
 → still an open problem
- different aspects, goals, users
- human evaluation
 - time and resource extensive
 - not easily repeatable
- automatic methods
 - crucial for MT system development
 - good correlations with human results but it can be better
 - human knowledge is, one way or another, necessary
 - human references or annotations
 - human judgments for development/improvement
 ⇒ human evaluations are needed too
Questions?