A Discriminative Lexicon for Translating to Morphologically Rich Languages

Alex Fraser and Kristina Toutanova

MTM

Sept 14th, 2013 - Charles University MTM

Group

Leaders: Kristina Toutanova, Alex Fraser, Ondrej Bojar

- Decoding Team: Fabienne Braune and Ales Tamchyna
- Word Translation Extraction: Alexey Borisov and Sergey Gubanov
- Linguistic Feature Engineering: Marion Weller and Fran Tyers
- Experiment Pipeline and Stealth Project: Philipp Koehn

Discriminative Word Lexicon

The goal is to modify a discriminative phrase lexicon (phrase-sense-disambiguation) to predict words.

- A phrase lexicon is a substitute for phrase-based p(e|f)
- A discriminative **word lexicon** is a substitute for "lexical smoothing" p(e|f)
- We are targeting English to Czech
- A Czech word is predicted using its alignment links to English (each Czech word is predicted more or less independently)

Stealth Project

- We also implemented Minimal Translation Unit (MTU) extraction in the standard phrase-based framework
- The idea was to compare this with word prediction and phrase-sense-disambiguation
- We trained the standard phrase-sense-disambiguation pipeline on minimal units (so, a subset of the usual phrases)
- A short summary of the result: it is a possibly promising result showing issues that are conducive to further consideration

•

- Baseline is interesting (French-to-English science set from the DAMT project, training size is 139K sentences)
- BLEU using phrases (score on tune): 29.70
- BLEU using MTUs (score on tune): 28.92

Main Steps

- English to Czech baseline
- Defined lexicon lookup
 - A Czech word is predicted based on its aligned English words
 - Czech words can also be NULL-aligned
- Extract aligned English words for each Czech word in the parallel training data
 - \rightarrow We call this the "Aligned Group"
- Convert 15 position Czech tags to human readable form
- Convert feature extraction for classification from phrases to words

Pipeline

- Create annotated extraction file
- Create translation table (with "Aligned Groups")
- Run feature extraction
 - ► Baseline : source group, target word, absolute frequencies
 - ► Contrastive : morphologically rich annotation
- Train classifier
- Evaluate accuracy

Used features in contrastive system

- source side features :
 - word, lemma, pos tag, number
 - features extracted from dependency trees :
 - ★ parent and grandparent nodes : lemma, pos tag
 - ★ leftmost child, rightmost child : lemma, pos, dependency relation
 - ★ left sister, right sister : lemma, pos
- target side features :
 - word. lemma
 - ▶ 15 features :
 - ★ part of speech
 - * number
 - * gender
 - ★ case, person, case, grade, negation,...

Modifications to phrase-based setting I

- modified annotated extract files to handle "Aligned Groups"
 - sentence id
 - ► list of source spans
 - target span
 - annotated source group string
 - annotated target word string
- created a cept table to replace phrase-table
 - source cept
 - target cept
 - counts

Modifications to phrase-based setting II

- modified feature extraction code to handle cepts instead of phrases
 - Extract from rich annotations from source group
 - Extract features from annotated target word
 - Extract word pairs from all alignment links
 - Extract features to count gaps in aligned group

Results

Reference sentence results on English-Czech

- Baseline
 - · Source features lexical identity of the aligned source group: the_actions
 - Target features identity of the target word together with its lemma and morphological tags: akčni\/akčni\/AAIS4----1A----
- Local context
 - · Source features source group, left word, right word
 - · Target features target

Feature set	Training Acco		Test Accuracy Word+Factors	
Baseline	51.9	56.2	54.6	58.1
Local context	76.1	78.1	54.8	58.2

Next steps

- Train VW for more iterations (we seem to be undertraining)
- Rename the discriminative word lexicon to something cooler (dwl is taken in Moses)
- Compare word-level, MTU-level and phrase-level prediction
 - Figure out how to compare these better (and run them on the same data)
 - Classification setup already works for word, MTU, phrase
 - Decoder for word-level is very close (MTU and phrase already implemented)
- ADD TARGET CONTEXT (to the left from the LM and phrase, to the right from the phrase)!
 - ➤ This requires moving classification into hypothesis extension (efficiency!!!)