Forest MIRA

Forest rescoring in Joshua for MIRA training

Team Members

Matt Post (JHU) Gideon Wenniger (Amsterdam)

Forest MIRA

Margin-infused relaxed algorithm

Crammer & Singer (2003, 2006)

Large scale discriminative tuner; maximizes model score difference between "hope" and "fear" translations

Chiang et al. (2008, 2009); Chiang (2012)

Batch implementation in Moses (kbmira)

Cherry & Foster (2012)

MIRA

Works by maximizing the margin between **hope** and **fear** items

hope items maximize

model score + λ BLEU score

fear items maximize

model score – λ BLEU score

Problem

Moses' kbmira extracts hope and fear items from the k-best list

Visualization (Chiang, 2012)

The k-best list is not representative of the model space!

Visualization (Chiang, 2012)

The k-best list is not representative of the model space!

Visualization (Chiang, 2012)

The k-best list is not representative of the model space!

Goal

Implement forest rescoring in Joshua (Moses) for proper hope/fear updating in Cherry & Foster's kbmira implementation

- BLEU approximation that factors over the hypergraph
- Forest rescoring and extraction
- Write many-featured feature function

Factorizable BLEU

$$BP \times \exp\left(\sum_{n=1}^{n} \frac{1}{4} \log p_n\right)$$

Don't clip counts for each pn

Scale reference length to proportion of input consumed

 λ = (span width) / (sentence length) BP = elen / λ • reflen

Scoring hyperedges

Decoder combines chart items by adding model scores (vectors of scores)

 $score(e') = score(e_1) + score(e_2)$

Doesn't work with BLEU!

 $BLEU(e') \neq BLEU(e_1) + BLEU(e_2)$

~BLEU

Instead, we have to store the sufficient statistics on each hyperedge

These we can sum together and then use to compute ~BLEU

Terminal productions: accumulate all ngrams

Terminal productions: accumulate all ngrams

Terminal productions: accumulate all ngrams

Terminal productions: accumulate all ngrams

Terminal productions: accumulate all ngrams

Terminal productions: accumulate all ngrams

[X]	→ ł	barac	k ob	ama
I	2	3	4	len
2	I	0	0	

Terminal productions: accumulate all ngrams

[X]	→ ł	oarac	k ob	ama
I	2	3	4	len
2	Ι	0	0	2
	•			

Mixed productions: accumulate all ngrams that overlap tail node boundaries

	[X]	→[>	<],p	resic	lent	
	I	2	3	4	len	
x						

... barack obama, president ...

barack obama |, president

... barack obama, president ...

barack obama |, president

... barack obama, president ...

barack obama |, president

... barack obama, president ...

barack obama |, president

... barack obama, president ...

barack obama |, president

... barack obama, president ...

barack obama |, president

... barack obama, president ...

barack obama |, president

... barack obama, president ...

We count only ngrams in the new rule or crossing the

3

4

len

4

Rescoring

Once we have the BLEU scores on all edges, we apply standard k-best three times

- Extract the model best (per usual)
- Rescore with model + ~BLEU (hope)
- Rescore with model ~BLEU (fear)

Experiments

German-English Europarl + Common Crawl

Tuning on newstest2010

Testing on newstest2012

Running MIRA for 8 iterations, test model with best tuning score

10 features

Tuning

◆ MIRA ◆ Forest MIRA (k=100) ◆ Forest MIRA (k=300)

Test

Model	BLEU
MIRA	23.6
Forest MIRA (k=300)	23.I
Forest MIRA (k=100)	22.9

Problems

Can't use left-state minimization! We need the full state and don't want the complexity of state splitting

This means that we tune without left-state minimization, adding it back in for test, introducing a mismatch between models

Missing

Haven't included rolling / decaying BLEU "pseudo corpus" stats

Haven't tested on large feature sets (where we expect to see the most benefits, cf. Cherry (2013))

Summary

Shows promise

Implementation is a little messy but not difficult